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ABSTRACT  

Artificial neural networks (ANNs), as one of the most commonly used data 

driven models for environmental and water resources problems, have been 

applied successfully and extensively over the last two decades and are still 

gaining in popularity. Consideration of the methods used in the steps in the 

development of ANNs, which consist of data collection, data processing, input 

variable selection, data division, calibration and validation, are vitally 

important, as ANN model development is based on data, rather than 

understanding of the underlying physical processes.  

Among these methods, input variable selection (IVS) plays a significant role, 

as the performance of the developed model can be compromised if inputs 

having a pronounced relationship with the modelled output are omitted. In 

contrast, calibration becomes extremely challenging and modelling validation, 

as well as knowledge extraction, are problematic if redundant or superfluous 

inputs are included. Given the facts explained above, various techniques have 

been developed for the sake of more accurate IVS. 

Partial mutual information (PMI) is one of the most promising approaches to 

IVS, as it has a number of desirable properties, such as the ability to account 

for input relevance, the ability to cater to both linear and non-linear input-

output relationships and the ability to check the redundancy of selected inputs. 

PMI is a stepwise input selection algorithm, which only selects one variable 

per iteration, as part of which the strength of the relationship between each 

potential input and the output is quantified using mutual information (MI) and 

input redundancy is accounted for by removing the influence of already 

selected inputs.  This is achieved by developing models between the selected 

input and the output and assessing the strength of the relationship (in terms of 

MI) between the remaining potential inputs and the residuals of these models 

during the next iteration, which is referred to as PMI. 

Although PMI IVS has already been applied successfully to a number of 

studies in hydrological and water resource modelling, present 

implementations predominantly depend on the assumption that the data used 

to develop the model follow a Gaussian distribution.  This assumption has the 
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potential to affect two steps in the PMI process, including the estimation of 

MI/PMI and the estimation of the residuals.  In terms of MI/PMI estimation, 

this requires kernel density estimates of the modelling data to be obtained for 

the estimation of marginal and joint probability density functions (PDFs), 

which rely on estimates of kernel bandwidths (or smoothing parameters) and 

in most studies, the Gaussian reference rule is used for this purpose, which 

only results in optimal bandwidth estimates if the modelling data follow a 

Gaussian distribution.  However, this is unlikely to be the case when dealing 

with water resources and other environmental data.  In terms of residual 

estimation (RE), this has generally been done using general regression neural 

networks (GRNNs), which also require estimates of kernel bandwidths to be 

obtained and therefore suffers from the same issues as MI/PMI estimation. 

The purpose of this thesis is to assess the impact the assumption that the data 

follow a Gaussian distribution has on the performance of PMI IVS and the 

efficacy of potential methods for overcoming any problems associated with 

this assumption.  In order to achieve this, a large number of numerical tests 

are conducted on synthetic data with different degrees of normality and non-

linearity, investigating the effectiveness of a range of options for (i) 

bandwidth estimation (caused by making Gaussian assumptions for non-

Gaussian circumstances when adopting kernel based estimations in both 

MI/PMI and RE) and (ii) for dealing with boundary issues (caused by using a 

symmetrical kernel for bounded/unsymmetrical data when implementing 

kernel based estimations in both MI/PMI and RE), as well as methods for RE 

that do not require kernel density estimates.  The results from these tests are 

used to develop preliminary guidelines for the selection of the most 

appropriate bandwidth and the most effective treatment of the boundary issue, 

which are then validated for two water resources case studies with different 

data properties and problem linearity, including forecasting of river salinity in 

the River Murray, Australia, and rainfall-runoff modelling in the Kentucky 

River, USA.   

The major research contributions are presented in three journal publications. 

The motivations underlying these publications include: 1) the development 

and testing of rigorous and novel analytical procedures for assessing if, and to 
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what degree, the performances of residual and MI estimates are affected by 

bandwidth selection and boundary issues; 2) clear explanation of the 

inaccurate performance of conventional PMI IVS under the influence of 

bandwidth selection and boundary issues; 3) the development of effective 

preliminary guidelines based upon synthetic studies dealing with both 

bandwidth selection and boundary issues under different scenarios categorised 

by data normality and problem linearity;  4) the development of more robust 

and reliable PMI IVS software for realistic environmental and water resource 

problems. Overall, the research outcomes suggest that the performance of 

PMI IVS is significantly influenced by bandwidth selection and boundary 

issues and can be effectively improved by following the proposed empirical 

guidelines, although the findings of this work could be tested more broadly, 

including for data sets with a wider range of attributes, such as different 

degrees of noise, collinearity and interdependency, as well as incomplete 

information. 

 

 

 

 

 

 

 

 

 

 

 

 



ABSTRACT      

 

XXIII 

 

 

 

 

 

 

 

 

 



STATEMENT OF ORIGINALITY 

 

XXIV 

 

STATEMENT OF ORIGINALITY 

 

I Xuyuan Li hereby certify that this work contains no material which has 

been accepted for the award of any other degree or diploma in any university 

or other tertiary institution and, to the best of my knowledge and belief, 

contains no material previously published or written by another person, except 

where due reference has been made in the text. In addition, I certify that no 

part of this work will, in the future, be used in a submission for any other 

degree or diploma in any university or other tertiary institution without the 

prior approval of the University of Adelaide and where applicable, any partner 

institution responsible for the joint-award of this degree.  

 

I give consent to this copy of my thesis when deposited in the University 

Library, being made available for loan and photocopying, subject to the 

provisions of the Copyright Act 1968.  

 

I acknowledge that copyright of published works contained within this thesis 

resides with the copyright holder(s) of those works.  

 

I also give permission for the digital version of my thesis to be made available 

on the web, via the University’s digital research repository, the Library 

catalogue and also through web search engines, unless permission has been 

granted by the University to restrict access for a period of time.  

 

A list of works contained within this thesis is given in Section 5.3. 

 

 

Signature_________________________ Date__________________________ 

 

  



STATEMENT OF ORIGINALITY 

 

XXV 

 

 

 



ACKNOWLEDGEMENTS 

 

XXVI 

 

ACKNOWLEDGEMENTS 

I would take this opportunity to gratefully acknowledge my principal 

supervisor Professor Holger R. Maier and co-supervisor Dr. Aaron C. Zecchin, 

who have supervised me with invaluable support, encouragement, and 

patience. I really appreciate the critical and rigorous attitude, timely and 

effective feedback, great foresight, and comfortable research environment 

provided by both of my supervisors. I have enjoyed studying under their 

supervision and learnt a lot from them during my candidature. Without their 

excellent supervision, the present thesis would hardly be possible.  

I would like to sincerely thank Prof. A. Sharma, Dr. G.J. Bowden, Dr. R.J. 

May and Dr. G.B. Humphrey who brought me into the present research topic 

and kindly provided their suggestions and research materials. 

I would express my appreciation to my fellow postgraduates within the School 

for sharing their wisdom, experiences, successes, and lessons with me. It was 

my pleasure to meet Dr. Xun Sun, Dr. Wenyan Wu, Dr. Feifei Zheng, Dr. 

Liang Huang, Dr. Jeffrey P. Newman, Dr. Christopher Stokes, and Dr. Tao 

Zhang and have had a number of in-depth academic discussions with them.  

Special thanks are also given to School Editor Barbara Brougham, Computer 

Technician Dr. Stephen Carr, all School Administrators, and the research 

scholarship (AGRS) provided by the University of Adelaide. 

Last but not least, I would like to give an immense gratitude to my parents, Mr 

Xuelong Li and Ms Yongjing Liu, for their altruistic care and support from 

beginning to end (ab ovo usque ad mala). 

 

  



ACKNOWLEDGEMENTS 

 

XXVII 

 

 

 


	TITLE: Improving Partial Mutual Information Based Input Variable Selection for Data Driven Environmental and Water Resources Models
	TABLE OF CONTENT
	LIST OF FIGURES
	LIST OF TABLES
	NOMENCLATURE & ABBREVIATIONS
	ABSTRACT
	STATEMENT OF ORIGINALITY
	ACKNOWLEDGEMENTS


