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ABSTRACT  

Artificial neural networks (ANNs), as one of the most commonly used data 

driven models for environmental and water resources problems, have been 

applied successfully and extensively over the last two decades and are still 

gaining in popularity. Consideration of the methods used in the steps in the 

development of ANNs, which consist of data collection, data processing, input 

variable selection, data division, calibration and validation, are vitally 

important, as ANN model development is based on data, rather than 

understanding of the underlying physical processes.  

Among these methods, input variable selection (IVS) plays a significant role, 

as the performance of the developed model can be compromised if inputs 

having a pronounced relationship with the modelled output are omitted. In 

contrast, calibration becomes extremely challenging and modelling validation, 

as well as knowledge extraction, are problematic if redundant or superfluous 

inputs are included. Given the facts explained above, various techniques have 

been developed for the sake of more accurate IVS. 

Partial mutual information (PMI) is one of the most promising approaches to 

IVS, as it has a number of desirable properties, such as the ability to account 

for input relevance, the ability to cater to both linear and non-linear input-

output relationships and the ability to check the redundancy of selected inputs. 

PMI is a stepwise input selection algorithm, which only selects one variable 

per iteration, as part of which the strength of the relationship between each 

potential input and the output is quantified using mutual information (MI) and 

input redundancy is accounted for by removing the influence of already 

selected inputs.  This is achieved by developing models between the selected 

input and the output and assessing the strength of the relationship (in terms of 

MI) between the remaining potential inputs and the residuals of these models 

during the next iteration, which is referred to as PMI. 

Although PMI IVS has already been applied successfully to a number of 

studies in hydrological and water resource modelling, present 

implementations predominantly depend on the assumption that the data used 

to develop the model follow a Gaussian distribution.  This assumption has the 
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potential to affect two steps in the PMI process, including the estimation of 

MI/PMI and the estimation of the residuals.  In terms of MI/PMI estimation, 

this requires kernel density estimates of the modelling data to be obtained for 

the estimation of marginal and joint probability density functions (PDFs), 

which rely on estimates of kernel bandwidths (or smoothing parameters) and 

in most studies, the Gaussian reference rule is used for this purpose, which 

only results in optimal bandwidth estimates if the modelling data follow a 

Gaussian distribution.  However, this is unlikely to be the case when dealing 

with water resources and other environmental data.  In terms of residual 

estimation (RE), this has generally been done using general regression neural 

networks (GRNNs), which also require estimates of kernel bandwidths to be 

obtained and therefore suffers from the same issues as MI/PMI estimation. 

The purpose of this thesis is to assess the impact the assumption that the data 

follow a Gaussian distribution has on the performance of PMI IVS and the 

efficacy of potential methods for overcoming any problems associated with 

this assumption.  In order to achieve this, a large number of numerical tests 

are conducted on synthetic data with different degrees of normality and non-

linearity, investigating the effectiveness of a range of options for (i) 

bandwidth estimation (caused by making Gaussian assumptions for non-

Gaussian circumstances when adopting kernel based estimations in both 

MI/PMI and RE) and (ii) for dealing with boundary issues (caused by using a 

symmetrical kernel for bounded/unsymmetrical data when implementing 

kernel based estimations in both MI/PMI and RE), as well as methods for RE 

that do not require kernel density estimates.  The results from these tests are 

used to develop preliminary guidelines for the selection of the most 

appropriate bandwidth and the most effective treatment of the boundary issue, 

which are then validated for two water resources case studies with different 

data properties and problem linearity, including forecasting of river salinity in 

the River Murray, Australia, and rainfall-runoff modelling in the Kentucky 

River, USA.   

The major research contributions are presented in three journal publications. 

The motivations underlying these publications include: 1) the development 

and testing of rigorous and novel analytical procedures for assessing if, and to 
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what degree, the performances of residual and MI estimates are affected by 

bandwidth selection and boundary issues; 2) clear explanation of the 

inaccurate performance of conventional PMI IVS under the influence of 

bandwidth selection and boundary issues; 3) the development of effective 

preliminary guidelines based upon synthetic studies dealing with both 

bandwidth selection and boundary issues under different scenarios categorised 

by data normality and problem linearity;  4) the development of more robust 

and reliable PMI IVS software for realistic environmental and water resource 

problems. Overall, the research outcomes suggest that the performance of 

PMI IVS is significantly influenced by bandwidth selection and boundary 

issues and can be effectively improved by following the proposed empirical 

guidelines, although the findings of this work could be tested more broadly, 

including for data sets with a wider range of attributes, such as different 

degrees of noise, collinearity and interdependency, as well as incomplete 

information. 
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CHAPTER 1  INTRODUCTION 

 

1.1 Background 

1.1.1 ANNs in environmental and water resources modelling 

Over the last two decades, artificial neural networks (ANNs) have been 

applied successfully and extensively to environmental (e.g. Adeloye et al., 

2012; Ibarra-Berastegi et al., 2008; Luccarini et al., 2010; Maier and Dandy, 

1997b; Maier et al., 2004; Millie et al., 2012; Muñoz-Mas et al., 2014; Ozkaya 

et al., 2007; Pradhan and Lee, 2010; Young II et al., 2011) and water 

resources (e.g. Abrahart et al., 2007; Abrahart et al., 2012; ASCE, 2000a, b; 

Dawson and Wilby, 2001; Maier and Dandy, 2000b; Maier et al., 2010; Wolfs 

and Willems, 2014; Wu et al., 2014b) problems, and their popularity is still 

increasing. The methods used for the development of ANNs are vitally 

important, as their establishment is based on data rather than underlying 

physical meaning. Consequently, investigating the methodological issues 

associated with their  development, including data collection, data processing, 

input variable selection, data division, calibration, validation, and application 

on real problems (as can be illustrated in Fig. 1.1 Development of ANNs), is 

particularly vital, as suggested and emphasized by Abrahart et al. (2012), 

Maier et al. (2010), and Wu et al. (2014b). 

1.1.2 IVS 

Among the steps in the development procedure of ANNs, input variable 

selection (IVS) plays a crucial role, as the performance of such models can be 

compromised significantly if either too few or too many inputs are selected 

(Galelli et al., 2014; May et al., 2010; Wu et al., 2014b).  Although the task of 

IVS is not unique to environmental modelling, its application in an 

environmental modelling context is complicated by a lack of understanding of 

the underlying physical processes, the presence of significant temporal and 
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spatial variation in potential input variables, the non-Gaussian, correlated and 

collinear nature of potential input variables, and the non-linearity and inherent 

complexity associated with environmental systems themselves, as emphasised 

in Galelli et al. (2014).  

Given the importance and challenge of the IVS problem, a large number of 

approaches, categorised as either model free or model based, have been 

developed and refined for the purpose of more accurate IVS  (e.g. Galelli et al., 

2014; Galelli and Castelletti, 2013; Li et al., 2015; May et al., 2008, 2011; 

Sharma, 2000), aiming to determine the smallest number of inputs that best 

charaterise the input-output relationship with the least amount of variable 

irrelvance or redundancy (Galelli et al., 2014; Guyon and Elisseeff, 2003). 

Model free approaches determine the significant inputs on the basis of a 

statistical measure of significance between the candidate inputs and the output, 

while model based techniques depend on the adoption of an optimization 

algorithm that is used to determine the combination of input variables that 

maximizes the performance of a pre-selected data-driven model, in 

accordance with Maier et al. (2010), Wu et al. (2014), May (2010), and 

Castelletti et al. (2012b). Reviews of the typically applied IVS methods for 

ANN based environmental and water resources problems are summarised in 

Table 1.1 and each approach is categorised and evaluated in the aspects of 

type, criterion, linearity, computational cost, redundancy check, and optimum, 

as these are the critical attributes of the IVS approaches. In Table 1.1, the 

‘type’ indicates whether the IVS method is a model based or a model free 

approach. The ‘criterion’ identifies the basis on which significant inputs are 

selected. The ‘linearity’ reflects whether the IVS approach can be used for 

linear problems under the linear assumption (which assumes linear input-

output relationships) or for non-linear circumstance without the linear 

assumption. The ‘computation cost’ quantifies the efficiency of each IVS 

method. The ‘redundancy check’ gives an indication of whether the IVS 

approach removes redundant input variables, which contain useful but 

repeating information to the output. The ‘optimum’ demonstrates the 

convergence of the IVS method and shows whether the selected significant 

input variables are a result of local optima (the combination of input variables 
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that only outperforms some of other possible combinations in terms of 

describing the output) or global optima (the combination of input variables 

that outperforms all other possible combinations in terms of describing the 

output). Details of each IVS approach listed in Table 1.1 can be obtained in 

the corresponding reference provided in the table. As can be illustrated in 

Table 1,1, among the various IVS techniques, partial mutual information (PMI) 

based approaches are among the most promising model free techniques, as 

they account for both the significance and independence of potential inputs 

and have been successfully and extensively implemented in environmental 

modelling (Bowden et al., 2005a, b; Fernando et al., 2009; Galelli et al., 2014; 

Gibbs et al., 2006; He et al., 2011; Li et al., 2015; May et al., 2008a, b; Wu et 

al., 2013, 2014).  

1.1.3 PMI IVS 

The partial mutual information based input variable selection (PMI IVS) was 

introduced by Sharma (2000) and is based on Shannon’s principle (Shannon, 

1948).  As illustrated in Fig. 1.1 (PMI-based IVS), the first step is to procure 

candidate inputs 𝑿 and output(s) 𝑦 from the available data in accordance with 

an understanding of the system.  Let: 𝑿 = [𝑋1…  𝑋𝑚]
𝑇 be the input, where 𝑚 

is the number of inputs; (𝑿𝑗 , 𝑦𝑗) be the observed pairs of input and output 

data for 𝑗 = 1, … , 𝑛, where n is the number of observations, 𝑿𝑗 = [𝑋1
𝑗
… 𝑋𝑚

𝑗
]
𝑇
 

are the observed input data and 𝑦𝑗 are the observed output data. 

The second step is to estimate the marginal PDF of each individual input 

𝑓(𝑋𝑖) and the output  𝑓(𝑦) . The PDF is approximated by kernel density 

estimation (KDE) in accordance with  

𝑓(𝑋𝑖) =
1

𝑛
∑ 𝐾ℎ(𝑋𝑖 − 𝑋𝑖

𝑗
)𝑛

𝑗=1                                                                         (1.1) 

The kernel type 𝐾ℎused in Eq. (1.1) is the most commonly used Gaussian 

kernel since the selection of kernel type has negligible impact on the accuracy 

of KDE (May et al., 2008b; Scott, 1992; Wand and Jones, 1995). The 

expression of the 1D Gaussian kernel is 
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𝐾ℎ(𝑿) =
1

(√2𝜋|ℎ|)
𝑒𝑥𝑝 (−

𝑿2

2ℎ2
)                                                                      (1.2) 

In Eq. (1.2), ℎ is the univariate kernel bandwidth, which determines the 

accuracy of the KDE (Duong and Hazelton, 2003; Scott, 1992; Wand and 

Jones, 1995). This single dimensional bandwidth, used for the marginal PDF 

estimation, directly contributes to the bandwidth matrix used for the joint PDF 

estimation (as explained later). 

The third step is to calculate the joint PDF 𝑓(𝑋𝑖, 𝑦) between the i-th input 

and the output, which requires the development of a 2-D bandwidth matrix for 

the joint KDE. The currently used bivariate bandwidth matrix for standardised 

data is 

𝑯 =ℎ𝑖
2 [
𝑆𝑥,𝑖
2 𝑆𝑥𝑦,𝑖

𝑆𝑥𝑦,𝑖 𝑆𝑦
2 ]                                                                                    (1.3) 

where 𝑆𝑥,𝑖
2  is the sample variance of the input 𝑋𝑖 ; 𝑆𝑥𝑦,𝑖  is the covariance 

between input 𝑋𝑖and output 𝑦, 𝑆𝑦
2 is the sample variance of the output y, and 

ℎ𝑖(ℎ𝑖 = ℎ𝑥,𝑖 = ℎ𝑦) is the estimated 1-D kernel bandwidth if the data are 

standardised, or for non-standardised data 

𝑯 =  [
ℎ𝑥,𝑖
2 𝜌𝑥𝑦,𝑖ℎ𝑥,𝑖ℎ𝑦

𝜌𝑥𝑦,𝑖ℎ𝑥,𝑖ℎ𝑦 ℎ𝑦
2 ]                                                                  (1.4) 

(known as a hybrid class of bandwidth matrix), where 𝜌𝑥𝑦,𝑖 is the correlation 

coefficient between input 𝑋𝑖 and output 𝑦 . According to Wand and Jones 

(1993), the diagonal terms of the bandwidth matrix adjust the shape of the 

joint PDF, while the off-diagonal terms control the orientation. The empirical 

joint density of the 𝑖-th Xi input and the output y can be estimated by the 

Gaussian kernel-based estimator as 

𝑓(𝑋𝑖, 𝑦) =
1

𝑛
∑ 𝐾𝑯 ([

𝑋𝑖
𝑦
] − [

𝑋𝑖
𝑗

𝑦𝑗
])𝑛

𝑗=1                                                            (1.5)  

where the multivariate kernel is given by 

𝐾𝐻(𝑿) =
1

(√(2𝜋)𝑚|𝑯|)
exp [−

1

2
𝑿𝑇𝑯−1𝑿]                                                      (1.6) 
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It should be noted that this approximation is commonly known as the Parzen 

window density estimation (Cacoullos, 1966; Parzen, 1962). This is valid, 

however, only if the underlying density is continuous and the first partial 

derivative at any 𝑿 is small.   

According to Shannon (1948), MI, which quantifies the reduction in 

uncertainty with respect to y due to observation of 𝑋𝑖, is then approximated as 

𝐼𝑋𝑖,𝑦 ≈
1

𝑛
∑ 𝑙𝑜𝑔 [

𝑓(𝑋𝑖
𝑗
,𝑦𝑗 )

𝑓(𝑋
𝑖
𝑗
)𝑓(𝑦𝑗)

]𝑛
𝑗=1                                                                        (1.7) 

(marginal PDFs 𝑓(𝑋𝑖
𝑗
) and 𝑓(𝑦𝑗) are as defined in Eq. (1.1)) in the fourth 

step. The input with the greatest MI value is the most significant input among 

the candidate inputs. The significant inputs are selected by means of these 

four steps during the first run of the algorithm and added to the significant 

input set  𝑋𝑠 , that is, the set is updated to include 𝑋𝑖∗ ∈ 𝑋𝑠  where 𝑖∗ =

𝑎𝑟𝑔𝑚𝑎𝑥{𝐼𝑣𝑖,𝑢}. 

In order to remove any redundant information, RE is required in the fifth step. 

RE is at the core of the ‘partial’ aspect of PMI IVS and the mutual 

information shared between the residual inputs and output is called PMI (the 

term used after the 1
st
 iteration of the PMI IVS). Typically, a general 

regression neural network (GRNN) (Specht, 1991) is used as the residual 

estimator in PMI IVS (e.g. May et al., 2008b; He et al., 2011). The residual 

estimator is used to update the inputs and output by removing the influence of 

the selected input variables. The updated input is defined as the difference 

between the current value of the unselected inputs 𝑣𝑖 and the estimation of 𝑣𝑖 

based on the selected input 𝑋𝑖∗  and is given by 

𝑣𝑖
𝑗
← 𝑣𝑖

𝑗
− �̂�𝑣𝑖

(𝑋𝑖∗
𝑗
)                                                                                     (1.8) 

where �̂�𝑣𝑖
(𝑋𝑖∗

𝑗
) is the residual estimate of 𝑣𝑖 based on 𝑋𝑖∗which removes the 

shared information between the selected input 𝑋𝑖∗
𝑗
 and the remaining inputs 𝑣𝑖. 

Kernel residual estimator (e.g. General regression neural network) is the most 

commonly used approach to estimate residual, therefore the performance of 
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RE is significantly affected by the determination of kernel bandwidth (for uni-

dimensional variables) and bandwidth matrix (for multi-dimensional variables) 

(Bowden et al., 2005a; Bowden et al., 2005b; He et al., 2011; May et al., 

2008a; May et al., 2008b; Li et al., 2015) 

Similarly, the updated output is 

𝑢𝑗 ← 𝑢𝑗 − �̂�𝑢(𝑋𝑖∗
𝑗
)                                                                                    (1.9) 

where  �̂�𝑢(𝑋𝑖∗
𝑗
)  is the residual estimate of 𝑢  based on 𝑋𝑖∗ , which again 

eliminates the shared information between the selected inputs 𝑋𝑖∗ and the 

output 𝑢.  

The sixth step is to judge the selected input against the chosen stopping 

criterion. Potential stopping criteria include bootstrapping, tabulated critical 

values, the Akaike information criterion (AIC), and the Hampel test, as 

discussed and tested in May et al. (2008b). After updating the input and output 

variables based on the selected input variable, the corresponding PMI is 

estimated as 

𝐼𝒗𝒊,𝑢 ≈
1

𝑛
∑ log [

𝑓(𝑣𝑖
𝑗
,𝑢𝑖
𝑗
 )

𝑓(𝑣
𝑖
𝑗
)𝑓(𝑢

𝑖
𝑗
 )
]𝑛

𝑗=1                                                                     (1.10) 

based on Eqs. (1.7), (1.8), and (1.9). If the PMI value of the selected input is 

still significant according to the applied termination criterion, the above steps 

are repeated, as shown in Fig. 1.1, until all significant inputs 𝑋𝑠 have been 

determined.  In this way, the algorithm can accommodate a large number of 

potential input variables, as demonstrated in Fernando et al. (2009). 

1.1.4 Bandwidth issue in PMI IVS 

In Eqs. 1.7 and 1.10, KDE is used to approximate both marginal and joint 

PDFs (Eqs. 1.2 and 1.6) by the fact that simple methods exist for KDE that are 

a function of only a single parameter, the kernel bandwidth, otherwise termed 

the smoothing parameter (Scott, 1992; Wand and Jones, 1995). Nevertheless, 

determination of the optimal bandwidth is not trivial, as there is no clear 

consensus as to which bandwidth estimator performs best for general cases. 
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Overestimating the bandwidth can lead to an over-smoothing of the PDF, so 

that detailed local information (useful information that is not significantly 

different from others nearby) will not be effectively captured. On the contrary, 

under-estimating the bandwidth can make the general trend become more 

vulnerable to localised features (redundant or irrelevant information that is 

significantly different from others nearby), or even noise (Li et al., 2015). 

While many methods exist for estimating the bandwidth, in almost all existing 

PMI IVS studies dealing with environmental and water resources problems 

(e.g. Bowden et al., 2005a,b; May et al., 2008a,b; He et al., 2011) the 

Gaussian reference rule (GRR) is used for this purpose. The inherent 

limitation of this implementation of the PMI algorithm is that the input/output 

data are assumed to follow a Gaussian distribution. However, this is unlikely 

to be the case, as the distribution of most environmental and water resources 

data is generally far from normal.  This results in the so called ‘bandwidth 

selection issue’. Such issue impacts both MI and RE by the fact that the MI is 

a function of KDE based marginal and joint PDFs while the RE is 

approximated by the kernel based regression models (e.g. General regression 

neural network), which also depends on KDE, as can be illustrated in Fig. 1.1 

(unsolved issues for PMI-based IVS). 

1.1.5 Boundary issue in PMI IVS 

In Eqs. (1.6), 𝑯 is the kernel bandwidth matrix. The commonly used 𝐾𝐻  is 

symmetric, satisfies the following integral and moment 

conditions  ∫𝐾𝐻(𝑿)𝑑𝑿 = 1 ,  ∫𝑿𝐾𝐻(𝑿)𝑑𝑿 = 0 ,  ∫𝑿𝑿𝑇𝐾𝐻(𝑿)𝑑𝑿 = 𝑚 , and 

has at least two continuous derivatives. If the support of 𝑓 is bounded, and in 

the absence of exponentially falling tails (e.g. support [0, 𝑎]), strong under-

estimation occurs for all data points closer to the boundary, within a distance 

of the bandwidth h from the boundary. This region is also named the 

boundary region (Dai and Sperlich, 2010) because of the nonzero kernel 

density estimation outside the support of 𝑓 . As a consequence, the 

corresponding bias of 𝑓 is larger than expected. For example, the bias of 𝑓 is 

of order 𝑂(ℎ), rather than 𝑂(ℎ2), at the boundary point for the univariate case 

in accordance with Dai and Sperlich (2010), Karunamuni and Alberts (2005a), 
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and Wand and Jones (1995). These are the so-called ‘boundary issues’ 

associated with (non-parametric) KDE. As explained previously, KDE is used 

in both of the MI and RE, thereby the impact of boundary issue is expected to 

contribute to both MI and RE, as displayed in Fig. 1.1 (unsolved issues for 

PMI-based IVS). 

 Although many methods for bandwidth estimation exist in other disciplines 

(e.g. mathematics and statistics (Hall et al., 1992; Park and Marron, 1990; 

Rudemo, 1982; Scott, 1992; Scott and Terrell, 1987), as shown in Table 1.2), 

and a number of potential methods have been proposed within the statistical 

literature for addressing this issue (e.g. Cowling and Hall, 1996; Dai and 

Sperlich, 2010; Fan, 1992; Fan and Gijbels, 1996; Gasser and Müller, 1979; 

Hall and Park, 2002; Marron and Ruppert, 1994; Schuster, 1985; Zhang and 

Karunamuni, 1998; as shown in Table 1.3), their effectiveness has not yet 

been tested in the context of PMI IVS for data-driven environmental 

modelling.   

Consequently, the critical issues for PMI IVS in hydrological and 

environmental applications mainly consist of bandwidth selection and how to 

deal with boundary issues (as shown in Fig. 1.1). These issues are the primary 

focus of this thesis.  
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Figure 1.1 Framework of thesis 
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FS: forward selection (constructive) 

BE: backward elimination (pruning) 

ES: exhaustive search 

HS: heuristic search 

SVR: single variable regression (correlation based) 

SOM-GAGRNN: self-organising map genetic algorithm general regression neural network 

RVSDEM: recursive variable selection embedded in dynamic emulation models 

IIS: tree-based iterative input variable selection 

RC: rank correlation (Pearson correlation or linear correlation or cross-correlation) 

PC: partial correlation  

PCA: principal component analysis 

BJ: Box-Jenkins method 

GAMMA: Gamma test 

MSE: mean squared error 

MI: mutual information  

PMI: partial mutual information 

ICAIVS: hybrid independent component analysis and input variable selection filter 

DELSA: distributed evaluation of local sensitivity analysis  

ACF: auto-correlation function 

PACF: partial auto-correlation function 
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Table 1.2 Bandwidth estimators applied within the statistics literature 

Bandwidth 
estimator 

Author Year 
Fitness 

function 

Dependence on 

Normality Error basis 

GRR (Scott) 1992 

AMISE 
High 

Mean 

BCV 
(Scott and 

Terrell) 1987 

DPI 
(Park and 
Marron) 1992 Low 

SCV (Hall et al.) 1992 
EMISE 

LSCV (Rudemo) 1982 
None 

OM (Gibbs et al.) 2006 MAE/RMSE Mean/Squared 

 

GRR: Gaussian reference rule 

BCV: biased cross validation 

DPI: 2-stage direct plug-in 

SCV: smoothed cross validation 

LSCV: least squared cross validation 

OM: optimisation method 

AMISE: asymptotic mean integrated squared error 

EMISE: exact mean integrated squared error 

MAE: mean absolute error 

RMSE: root mean squared error 

 

Table 1.3 Boundary correctors proposed within the statistics literature 

Boundary 
corrector 

Author Year Modification 

RC (Schuster) 1985 Kernel function 

KT (Marron and Ruppert) 1994 Kernel function 

BK (Gasser and Müller) 1979 Kernel function 

LLM (Zhang and Karunamuni) 1998 Kernel function 

PA (Cowling and Hall) 1996 Kernel function 

ETC (Hall and Park) 2002 Kernel function 

LBE (Gasser et al.) 1985 Local bandwidth 

LBR (Dai and Sperlich) 2010 Local bandwidth 

LLP (Wand and Jones) 1995 Regression type 

LQP (Fan) 1992 Regression type 

LHOP (Fan and Gijbels) 1996 Regression type 

 

RC: reflection correction 

KT: kernel transformation 

BK: boundary kernel 

LLM: local linear method 

PA:  pseudo-data approach 

ETC: empirical translation correction 

LBE: local bandwidth (enlarging) 

LBR: local bandwidth (reducing) 

LLP: local linear polynomial 

LQP: local quadratic polynomial 

LHOP: local high order polynomial 
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1.2 Objectives 

According to the aforementioned critical issues for PMI IVS, the ultimate 

objective of this thesis is to improve the performance of PMI IVS by 

investigating the impact of bandwidth selection and boundary issues for data 

driven environmental and water resources models, such as multi-layer 

perceptron artificial neural networks (MLPANNs). In order to achieve this 

overall objective, a framework that addresses the influence of bandwidth 

selection and boundary issues from residual and MI estimates to the overall 

performance of PMI IVS is developed, as highlighted by the series of dashed 

line boxes in Fig. 1.1 Unsolved issues for PMI-based IVS, and the three 

corresponding objectives are explained in detail in below. 

Objective 1: The motivation underpinning this objective is the fact that the 

bandwidth (or smoothing parameters) of general regression neural networks 

(GRNNs), used for RE in PMI IVS, is still predominantly based on the GRR, 

which only results in optimal density estimates if the Gaussian assumption is 

valid. However this is not the general case for environmental and water 

resource data.  As a consequence, this objective is concerned with assessing 

the impact of data with different distributions on the performance of GRNNs 

and the effectiveness of alternative kernel density estimation techniques in 

improving GRNN performance.  Specifically, the sub-objectives are: (1) to 

compare the performance (accuracy and efficiency) of GRNN models for 

which bandwidths (or smoothing parameters) have been estimated using a 

range of methods, as well as that of a benchmark MLPANN model, for case 

studies with data that have varying degrees of normality, linearity and 

different modelling objectives (e.g. matching average or extreme events) (I1 

in Fig. 1.1); (2) to develop and test empirical guidelines for the selection of 

the most appropriate methods for GRNN models that are a function of the 

properties of the available data (i.e. degree of normality and problem non-

linearity) and the modelling objective (Chapter 2).  In the context of PMI 

IVS, this develops and tests guidelines for the best approach to estimating 

residuals using GRNNs for data with different degrees of normality and non-

linearity. 
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Objective 2: This objective builds on Objective 1 by using the guidelines 

developed in Objective 1 for RE to investigate the impact of data with 

different distributions on PMI IVS, as well as the effectiveness of alternative 

bandwidth estimators in improving PMI IVS performance, focussing on the 

best approaches for MI/PMI estimation. The specific objectives are: (1) to 

assess if, and to what degree, the performance of PMI IVS can be improved 

for data with different degrees of normality by using alternative bandwidth 

estimators with reduced reliance on the Gaussian assumption (GRR) (I2 in 

Fig. 1.1); (2) to develop and test a set of preliminary guidelines for selecting 

the most appropriate bandwidth estimator for data with different degrees of 

normality, which combines the outcomes of the studies addressing Objectives 

1 and 2 (Chapter 3). In the context of PMI IVS, this develops and tests 

guidelines for the best approach to estimating MI/PMI, as well as residuals 

using GRNNs, for data with different degrees of normality and non-linearity. 

Objective 3: This objective builds on Objectives 1 and 2 by using the 

guidelines developed in Objectives 1 and 2 for the most appropriate 

bandwidth estimators for MI/PMI and RE to investigate the effectiveness of 

alternative approaches to dealing with boundary issues associated with 

bandwidth selection in improving PMI IVS performance for data with 

different distributions. The specific objectives are: (1) to assess if, and to what 

degree, the performance of PMI IVS can be improved by various approaches 

to addressing boundary issues for data with different properties (i.e. degree of 

linearity and degree of normality) (I3 in Fig. 1.1). (2) to develop and test a set 

of preliminary empirical guidelines for the selection of the most appropriate 

methods for bandwidth estimation and addressing boundary issues for data 

with different properties (Chapter 4). In the context of PMI IVS, this 

develops and tests guidelines for the best approach to estimating MI/PMI, as 

well as residuals, for data with different degrees of normality and non-

linearity, considering both bandwidth estimation and boundary issues.  

Consequently, the guidelines presented under this objective represent best 

practice guidelines for PMI IVS and are therefore able to meet the ultimate 

objective of this thesis. 
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It is important to note the relationship between the issues addressed in 

Objectives 1 to 3, as this has an influence on the order of the objectives 

presented above. In Fig 1.1, it can be seen that I1 is not influenced by any 

other parts of the system, while the rest of the system is affected by this issue. 

Consequently, I1 is investigated primarily and its outcome is able to benefit 

both I2 and I3. Similarly, I2 (only affected by I1) has strong impacts on I3, 

therefore it is studied next and the results of I2, in conjunction with those of I1, 

contribute to I3. Finally, I3, the performance of which is influenced by both I1 

and I2, is addressed by consideration of the previous studies. In this way, the 

analytic procedure becomes rigorous and reliable, with clear logic and 

minimal side-effects and overlaps. 

 

1.3 Thesis overview 

The present thesis is organised into five chapters. In addition to the 

Introduction (Chapter 1), the main body (Chapters 2 to 4) is formed by three 

journal papers. The critical findings, contributions and suggested future 

research are then summarised in Chapter 5. Supplementary materials for 

Chapters 2 to 4 (three journal papers) are presented in APPDIX A to C, 

which summarise additional supporting analytic figures and tables and 

mathematical explanations and derivations (i.e. Gaussian reference rule, 2-

stage direct plug-in, smoothed cross validation, bivariate reflection correction, 

and local linear/quadratic polynomial regression). The synopsis, including the 

content and linkage to the objectives, of each chapter in the main body is 

outlined in the following sections. 

Chapter 2 (Journal paper 1) (Li et al., 2014b) is focused on the 

development of a systematic way of determining the optimal bandwidth (also 

known as the smoothing parameter) for the application of GRNN based RE. 

This is because the performance of GRNNs is essentially controlled by values 

of one or more bandwidths and insufficient attention has been given to the 

best way to estimate the bandwidths of GRNNs within environmental and 

water resource applications, particularly, with data that have varying degrees 
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of normality, linearity and distinct modelling objectives (I1 in Fig. 1.1). In 

order to overcome such issue, nine different bandwidth estimation methods 

that have different assumptions on normality, linearity and modelling 

objectives, as well as that of a benchmark MLPANN model, are assessed in 

terms of accuracy and computational efficiency for a number of synthetic data 

sets with distinct data properties [Objective 1 (1)]. Of these methods, five are 

based on bandwidth estimators used in kernel density estimation, and four are 

based on single and multivariable calibration strategies (details can be found 

in Section 2.3). Preliminary guidelines for the bandwidth selection of GRNNs 

based RE are developed in accordance with the critical findings of the 

synthetic tests and then validated on one water quality (forecasting river 

salinity in the River Murray in South Australia one, five and 14 days in 

advance) and one water quantity problem (prediction of runoff in the 

Kentucky River basin in the USA one day in advance) [Objective 1 (2)]. 

As discussed in Section 1.2, the bandwidth selection issue for GRNN based 

RE (I1 in Fig. 1.1) has a pronounced influence on the performance of PMI 

estimation, affected by both the bandwidth selection issue (I2 in Fig. 1.1) and 

the boundary issue (I3 in Fig. 1.1).  Consequently it is studied as the first 

priority in Chapter 2. 

Chapter 3 (Journal paper 2) (Li et al., 2015) focuses on the performance of 

PMI IVS under the impact of the bandwidth selection issue, as the currently 

applied PMI IVS methods in environmental and water resources depend 

predominately on the Gaussian reference rule (GRR), while the distribution of 

most water resources data is generally far from normal, which leads to 

inaccurate IVS for data that are highly non-Gaussian (I2 in Fig. 1.1). This 

issue is taken into account through the investigation of the performance of 

PMI IVS using six different kernel bandwidth techniques with varying 

Gaussian dependence [Objective 2 (1)]. Of these methods, five are kernel 

based approaches, and one depends on a single variable calibration strategy 

(details can be found in Section 3.3). The preliminary guidelines for the 

selection of the most appropriate methods for obtaining the accurate and 

efficient PMI IVS are determined based on the results of the synthetic case 

studies with data having various degrees of non-normality and are then 
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validated for two semi-real case studies developed based on the forecasting of 

river salinity in the River Murray, South Australia and predicting of flow in 

the Kentucky River basin, USA [Objective 2 (2)].  

As mentioned in Section 1.2, the preliminary guidelines developed to select 

the optimal bandwidth for RE in PMI IVS (I1 in Fig. 1.1) developed in 

Chapter 2 are merged into the ones established in Chapter 3. This results in 

the complete exploration of the performance of PMI IVS influenced by the 

bandwidth selection issue (I2 in Fig. 1.1). 

Chapter 4 (Journal paper 3) (Li et al., 2014a) addresses the boundary issue, 

which is caused by the adoption of the symmetrical kernel at the 

unsymmetrical boundary during kernel based MI and RE within PMI IVS, 

which has not been considered or investigated thus far in the environmental 

and water resources fields (I3 in Fig. 1.1). Systematic studies are conducted 

by investigating the effectiveness of sixteen approaches. Of these approaches, 

three are benchmark approaches without consideration of the boundary issue, 

two aim to improve the boundary issue in MI, seven aim to minimise the 

effect of the boundary issue in RE, and four take into account the boundary 

issue in both MI and RE (details can be found in Section 4.3). In addition, the 

effect of the bandwidth issue is effectively addressed in all sixteen approaches 

based on the guidelines developed for Objectives 1 and 2 [Objective 3 (1)]. 

The  preliminary guidelines that are developed based on the results of the 

above studies, which attenuate the boundary issue associated with the 

selection of the most appropriate bandwidth estimator for data with different 

degrees of normality, are validated for two semi-real case studies used in 

journal papers 1 and 2 [Objective 3 (2)]. 

By recalling Section 1.2, the boundary issue is not the only driving force on 

the performance of PMI IVS, since selection of the bandwidth also affects the 

accuracy of PMI IVS. Therefore, the boundary issue (I3 in Fig. 1.1) is studied 

after the bandwidth issue in PMI IVS has been addressed explicitly (I1 and I2 

in Fig. 1.1). By resolving I3 in conjunction with the outcomes of I1 and I2, 

the ultimate objective within this thesis, mentioned in Section 1.2, is achieved 

in Chapter 4.  
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CHAPTER 2 JOURNAL PAPER 1 - 

Selection of Smoothing Parameter Estimators for 

General Regression Neural Networks - Applications 

to Hydrological and Water Resources Modelling 

  



CHAPTER 2 JOURNAL PAPER 1 

 

20 

 

  



CHAPTER 2 JOURNAL PAPER 1 

 

21 

 

Abstract 

Multi-layer perceptron artificial neural networks are used extensively in 

hydrological and water resources modelling. However, a significant limitation 

with their application is that it is difficult to determine the optimal model 

structure. General regression neural networks (GRNNs) overcome this 

limitation, as their model structure is fixed. However, there has been limited 

investigation into the best way to estimate the parameters of GRNNs within 

water resources applications. In order to address this shortcoming, the 

performance of nine different estimation methods for the GRNN smoothing 

parameter is assessed in terms of accuracy and computational efficiency for a 

number of synthetic and measured data sets with distinct properties. Of these 

methods, five are based on bandwidth estimators used in kernel density 

estimation, and four are based on single and multivariable calibration 

strategies. In total, 5674 GRNN models are developed and preliminary 

guidelines for the selection of GRNN parameter estimation methods are 

provided and tested. 

 

Software availability 

Software name: GRNNs 

Developer: Xuyuan Li, Postgraduate Student, the University of Adelaide, 

School of Civil, Environmental & Mining Engineering, Adelaide,  SA  5005, 

Australia 

Email:  xli@civeng.adelaide.edu.au;  

             xliadelaide@gmail.com 

Hardware requirements: 64-bit AMD64, 64-bit Intel 64 or 32-bit x86 

processor-based workstation or server with one or more single core or multi-

core microprocessors ; all versions of Visual Studio 2012, 2010 and 2008 are 

supported except Visual Studio Express; 256 MB RAM 

Software requirements: PGI Visual Fortran 2003 or later version  

Language: English 

Size: 4.74 MB 

mailto:xli@civeng.adelaide.edu.au
mailto:xliadelaide@gmail.com
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Availability: Free to download for research purposes from the following 

website: 

http://www.ecms.adelaide.edu.au/civeng/research/water/software/generalised-

regression-neural-network/ 

https://github.com/xuyuanli/GRNNs 
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2.1 Introduction 

Over the last two decades, artificial neural networks (ANNs) have been used 

extensively in the field of hydrological and water resources modelling, and 

their popularity is still increasing (Abrahart et al., 2012; Maier et al., 2010; 

Wu et al., 2014b). In the vast majority of these applications, multi-layer 

perceptrons (MLPs) have been used as the most common model architecture 

(Maier et al., 2010; Wu et al., 2014b). While the use of MLPs has generally 

resulted in good model performance, their development is complicated by the 

fact that there are no rigorous methods for determining an appropriate model 

structure.  Determination of the optimal number of hidden nodes is especially 

difficult, unless sophisticated Bayesian approaches are used (Kingston et al., 

2008; Zhang et al., 2011), which are computationally demanding and require 

substantial technical expertise to implement. Therefore, the optimal model 

structure is generally determined by trial and error (Maier et al., 2010; Wu et 

al., 2014).  This process usually involves a number of steps, including (i) 

selection of a trial model structure, (ii) calibration of the model with the 

selected structure, and (iii) evaluation of the predictive performance of the 

calibrated model.  These steps are repeated for models with different trial 

structures and the model structure that results in the best predictive 

performance is selected.  Consequently, the model structure that is found to be 

optimal is a function of a number of factors, including: 

(i) The trial model structures selected for evaluation: As the potential 

number of different model structures is generally large, the 

performance of a subset of all possible structures is usually evaluated.  

This can be achieved using different approaches, including ad-hoc, 

stepwise (e.g. constructive, pruning) or global approaches (Maier et al., 

2010).  Consequently, as different approaches generally result in the 

evaluation of different model structures, the structure obtained is a 

function of the adopted approach. 

(ii) The calibration method used: The predictive performance of a model 

with a particular structure is a function of the quality of the calibration 

(training) process.  Finding the combination of model parameters 
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(connection weights) that gives the best predictive performance for a 

given network structure is complicated by the presence of a large 

number of local optima in the error surface (Kingston et al., 2005b).  

This is particularly the case if gradient-based calibration (training) 

methods are used (Maier and Dandy, 1999), such as the most 

commonly used back-propagation algorithm (Maier et al., 2010; Wu et 

al., 2014). In addition to the choice of calibration (training) methods, 

the parameters that control the searching behaviour of these methods 

(e.g. learning rate and momentum when the back-propagation 

algorithm is used) can also have a significant impact on the best 

predictive model performance obtained for a particular model structure 

(Maier and Dandy, 1998a, b). Consequently, unless the predictive 

performance that corresponds to the global optimum in the error 

surface can be identified for all models with different structures, it is 

not possible to identify which model structure results in the best 

predictive performance with certainty.  As a result, the optimal model 

structure obtained is a function of the quality of the model calibration 

process. 

(iii) The calibration data used: The available data are generally split into 

different subsets for calibration (training) and validation, which can be 

done using a number of different methods (see Maier et al., 2010).  

Consequently, which data points are included in the different subsets 

can vary, depending on which data division method is used (Bowden 

et al., 2002; May et al., 2010; Wu et al., 2012; Wu et al., 2013). This 

can also have an impact on which model structure is found to result in 

the best predictive performance.  This is because different data points 

will result in different error surfaces during calibration, thereby 

potentially affecting calibration difficulty (see (ii)) and producing 

different global and local optima, which is likely to change which 

model structure results in the lowest error. 

Given the factors described above, it is generally not possible to isolate the 

impact of model structure on the predictive performance of MLPs, making it 

difficult to know which model structure should be used.  In addition, the trial-
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and-error process generally used to determine the optimal structure of MLPs 

is computationally expensive, as it necessitates the development of a 

potentially large number of models. 

Although there are other alternative ANN based approaches, including Radial 

Basis Functions (RBFs) (Buhmann, 2003), Recurrent Neural Networks 

(RNNs) (Williams and Zipser, 1989) and Probabilistic Neural Networks 

(PNNs) (Specht, 1990),  General regression neural networks (GRNNs) 

(Specht, 1991) provide an alternative ANN model structure that has been 

shown to perform well in a number of studies in water resources applications 

(Bowden et al., 2005b; Bowden et al., 2006; Cigizoglu and Alp, 2006; Gibbs 

et al., 2006) and overcomes the shortcomings associated with MLPs discussed 

above, as the structure of GRNNs is fixed (Bowden et al., 2005a).  This 

removes the ambiguity associated with determining which model structure is 

optimal.  In addition, it increases the computational efficiency of the model 

development process, as there is no need to develop a number of models with 

different structures in order to determine which is optimal. 

However, a potential issue with the application of GRNNs to hydrological and 

water resources problems is that there has been limited work on determining 

which smoothing parameter estimation methods should be adopted.  As 

GRNNs are essentially a Nadaraya-Watson kernel regression method (Cai, 

2001), parameter estimation only involves the determination of optimal values 

of one or more smoothing parameters, also known as kernel bandwidths.  

However, this is not a trivial issue, as illustrated by the vast amount of 

literature on kernel bandwidth estimation as applied to density estimation 

(Bowman, 1984; Hall et al., 1992; Park and Marron, 1990; Rudemo, 1982; 

Scott and Terrell, 1987; Wand and Jones, 1995). Overestimating the 

smoothing parameter can result in over-smoothing of the estimated density 

(i.e. kernel based probability density function (PDF)). In this case, the detailed 

local information (for instance the variation of daily rainfall in hydrological 

applications) will not be captured in the estimated density. In contrast, if 

values of the smoothing parameter are underestimated, the general trend of the 
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estimated density (for instance the overall rainfall trend within a given time 

period) can be disturbed by localised features or noise.   

Among the extensive literature on smoothing parameter (or kernel bandwidth) 

estimation in other areas of research, such as mathematics and statistics, there 

are a number of different approaches to obtaining optimal estimates of kernel 

density, which are based on assumptions about the form of the PDF and 

different fitness function types (i.e. the objective function on which the 

estimator is based). Consequently, their relative merits for determining the 

optimal values of the smoothing parameters for water resources GRNN 

models are likely to vary from case study to case study, depending on the 

distribution of the data and the modelling objective function used. However, 

the relationship between the performance of GRNNs with smoothing 

parameters obtained using different kernel density estimation methods and the 

properties of the water resources data used to develop them has not been 

considered previously, making it difficult to know which methods to use for 

particular case studies.     

Therefore, the objectives of the current study are: (i) to compare the 

performance, in terms of both predictive accuracy and computational cost, of 

GRNN models for which smoothing parameters have been estimated using a 

range of methods, as well as that of a benchmark MLP model, for case studies 

with data that have varying degrees of normality, linearity and different 

modelling objectives (e.g. matching average or extreme events); and (ii) to 

develop and test empirical guidelines for the selection of the most appropriate 

methods for GRNN smoothing parameter estimation based on the properties 

of the available data (i.e. degree of normality and non-linearity) and the 

modelling objective.  

The remainder of this paper is organised as follows.  A brief introduction to 

GRNNs is provided in Section 2.2, followed by the Methodology in Section 

2.3.  Results and discussion are given in Section 2.4, and conclusion and 

recommendations are provided in Section 2.5.  
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2.2 GRNNs 

According to Bowden et al. (2005a), GRNNs can be treated as supervised 

feedforward ANNs with a fixed model architecture. The general architecture 

of GRNNs is illustrated in Fig. 2.1.  

 

Figure 2.1 General architecture of a GRNN 

(based upon Gibbs et al. (2006)) 

Let: 𝑿 = [𝑋1…  𝑋𝑚]
𝑇 be the input, where  𝑚 is the number of inputs; (𝑿𝑗 , 𝑦𝑗) 

be the observed pairs of input and output data (the patterns) for 𝑗 = 1,… , 𝑛, 

where n is the number of observations, 𝑿𝑗 = [𝑋1
𝑗
… 𝑋𝑚

𝑗
 ]
𝑇
 are the observed 

input data and 𝑦𝑗 are the observed output data; and  �̂� be the GRNN estimate 

of the actual output  𝑦. If the joint density 𝑓(𝑿, 𝑦) is known, the conditional 

expectation of output 𝑦 given input 𝑿 is given as 

𝐸[𝑦|𝑿] =
∫ 𝑦𝑓(𝑿,𝑦)𝑑𝑦
∞
−∞

∫ 𝑓(𝑿,𝑦)𝑑𝑦
∞
−∞

                                                                                 (2.1) 
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The joint density 𝑓(𝑿, 𝑦) in Eq. (2.1) is generally unknown, however, the 

empirical joint density of the observed input/output pairs (𝑿𝑗 , 𝑦𝑗), j = 1, …, n 

can be estimated by the Gaussian kernel-based estimator as      

𝑓(𝑿, 𝑦) =
1

2𝜋
𝑚+1
2 ℎ(𝑚+1)

1

𝑛
∑ 𝑒𝑥𝑝 [−

(𝑿−𝑿𝑗)
𝑇
(𝑿−𝑿𝑗)

2ℎ2
]𝑛

𝑗=1 𝑒𝑥𝑝[−
(𝑦−𝑦𝑗)

2

2ℎ2
]          (2.2) 

where  ℎ is the kernel smoothing parameter  (Cacoullos, 1966; Parzen, 1962). 

Note that this approximation is commonly known as Parzen window density 

estimation. It is valid, however, only if the underlying density is continuous 

and the first partial derivative at any 𝑿 is small.  Specht (1991) combined the 

conditional expectation of 𝑦  (Eq. (2.1)) with the Parzen window density 

estimation 𝑓(𝑿, 𝑦) (Eq. (2.2)) to obtain the following estimator for y 

�̂�(𝑿, ℎ) =
∑ 𝑦𝑗𝑛
𝑗=1 exp (−

𝐷𝑗
2(𝑿)

2ℎ2
)

∑ exp (−
𝐷𝑗
2(𝑿)

2ℎ
)𝑛

𝑗=1

                                                                          (2.3) 

Where  𝐷𝑗
2 is the scalar function  

𝐷𝑗
2 = (𝑿 − 𝑿𝑗)𝑇(𝑿 − 𝑿𝑗)                                                                                      (2.4) 

which measures the Euclidian distance between the input 𝑿 and the observed 

data points 𝑿𝑗. Within this equation, the smoothing parameter ℎ is the only 

unknown parameter that needs to be obtained by training (calibration). 

With respect the GRNN formulation, the expression in Eq. (2.3) can be 

implemented by the four-unit (or layer) parallel network shown in Fig. 2.1. 

The GRNN consists of input, pattern, summation and output units that are 

fully connected. According to Specht (1991), the input units are formed by the 

elements of the input vector X, and these then feed into each of the pattern 

units. The pattern units record 𝐷𝑗
2 , the sum of squared (or absolute) difference 

between an input vector 𝑿 and the observed data 𝑿𝑗 , and then feed into a 

nonlinear activation function (e.g. the exponential function as in Eq. (2.3)) 

before passing into the summation units. The summation units contain two 

parts, A and B, which correspond to the numerator and denominator in Eq. 
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(2.3), respectively. Part A (the numerator) contains a dot product between the 

observed output records 𝑦𝑗  and the weights 𝑒𝑥 𝑝 (−
𝐷𝑗
2(𝑿)

2ℎ2
) from the pattern 

units, while part B (the denominator) only includes the weights from the 

pattern units. The quotient of parts A and B is the predicted output �̂�.  

In Fig. 2.1, the model architecture of GRNNs is fixed by the fact that the 

number of input nodes is determined by the number of inputs m; the number 

of pattern nodes depends on the size of the observed input data n; and the 

nodes in the summation units always consist of a denominator node and a 

numerator node.  

Within this study, a slightly generalised version of the GRNN estimator in Eq. 

(2.3) is considered, namely 

�̂�(𝑿, ℎ) =

∑ 𝑦𝑗𝑒𝑥𝑝(−
1

2
∑

(𝑿𝑖−𝑿𝑖
𝑗
)
2

ℎ𝑖
2

𝑚
𝑖=1 )𝑛

𝑗=1

∑ 𝑒𝑥𝑝(−
1

2
∑

(𝑿𝑖−𝑿𝑖
𝑗
)
2

ℎ𝑖
2

𝑚
𝑖=1 )𝑛

𝑗=1

                                                             (2.5) 

where the primary difference between Eq. (2.3) and Eq. (2.5) is the adoption 

of a unique smoothing parameter hi for each dimension of the input space i = 

1, …, n. The advantage of this form of the GRNN is that it enables an 

independent scaling of the kernel smoothing, as opposed to a common 

smoothing, along each dimension of the input space.   

 

2.3 Methodology 

The approach to the systematic assessment of the performance of GRNNs 

with different bandwidth estimators is illustrated in Fig. 2.2. As can be seen, 

there are four main steps: (i) procurement of input and output data with 

different degrees of normality and non-linearity; (ii) estimation of the optimal 

GRNN smoothing parameter (bandwidth) for these different input or output 

data using a number of different smoothing parameter estimators; (iii) 
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development of benchmark MLP models; and (iv) assessment of model 

performance.  Details of each of these steps are given in the subsequent 

sections.   

 

Figure 2.2 Overview of proposed assessment approach 

1. Procure input and output data with different degree of normality and non-linearity

Generated synthetic data Measured data with different degree of 

normality and non-linearity
Generate 2500 input data samples from 7 

distinct distributions

[NORM, LOGN, EXP, GAMMA, PT3, LOGPT3, 

EVT1]

Generate corresponding output data samples for 

each of the 2500 input data with 7 distributions 

via 3 functions with different degrees of non-

linearity

[EAR4, TEAR10, NL]

Obtain 21 sets of 2500 synthetically generated 

inputs and outputs

River Salinity (water 

quality)

3 cases with 

forecasting period of 

1, 5 & 14 days

Measured data 

follow approximately 

Gaussian 

distributions 

Strong linear 

relationships

Rainfall-runoff 

(water quantity)

1 case with 

forecasting period 

of 1 day

Measured data 

follow extremely 

non-Gaussian 

distributions 

Non-linear 

relationships

2. Estimate optimal smoothing parameters of GRNN models for each input and output data set using 9 methods 

with different fitness functions and assumptions on normality, non-linearity and error basis

[GRR, BCV, 2-stage DPI, BCVDPI, SCV, SVCS, SVCA, MVCS, MVCA]

Iterative process with i = 1, 30 (only for 

synthetic data) 

4. Assess performance 

Predictive accuracy

Assess predictive accuracy using criteria with 

different sensitivity on average and extreme events

[CE, IoAd, PI, MCE, MIoAd, MPI]

Computational efficiency

Assess computational expense using computational 

time

[CPU clock speed]

Synthetic tests

Assess average performance over 30 trials 

Real tests

Assess performance over 1 trial 

3. Develop benchmark MLP model
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2.3.1 Procurement of input/output data with different degrees 

of normality and non-linearity  

As can be seen from Fig. 2.2, two different approaches to procuring input and 

output data with different degrees of normality and non-linearity were used, 

including the generation of synthetic data and the use of measured data, as 

outlined below. 

Synthetically generated data 

Procurement of the synthetic data involved the generation of input data from 

distributions with differing degrees of normality, and the subsequent 

generation of the corresponding output data using synthetic models with 

different degrees of non-linearity.  Data were generated from seven distinct 

distributions, including normal (NORM), log-normal (LOGN), exponential 

(EXP), gamma (GAMMA), Pearson type III (PT3), log-Pearson type III 

(LOGPT3), and extreme value type I (EVT1) (see Fig. 2.2). These 

distributions were used because they are the most commonly adopted 

distributions in hydrological problems (Chow et al., 1988), and have the 

ability to generate data with a large range of skewness and kurtosis, which are 

measures of the degree of non-normality (Bennett et al., 2013). The properties 

of each distribution are given in Tables 2.1 and 2.2. For each distribution, an 

additional 25 data points were generated for each of the exogenous inputs in 

the time series models, as the first 25 points were rejected in order to prevent 

initialisation effects (May et al., 2008b). All data sets were split into training 

(60%), testing (20%) and validating sets (20%) using the DUPLEX method 

(see May et al., 2010), in accordance with the guidelines suggested by Wu et 

al. (2013).  
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Table 2.1 Details of the simulated input distributions for the time series models (EAR4, 

TEAR10) 

Distribution Key Parameters s k Normality 

NORM Mean=3.0; sd =1.0 0.000 -0.013 High 

GAMMA Shape=2.0; Scale=1.0 1.370 2.638 High 

LOGN Mean=0.5; sd=1.0 5.326 53.694 Low 

EXP Rate=1.0 2.132 7.219 Moderate 

PT3 Shape=2.5; Scale=3.0; Location=2.0 1.251 2.381 High 

LOGPT3 Shape=0.5; Scale=0.2; Location=2.0 4.792 43.265 Low 

EVT1 Shape=0.0; Scale=0.5; Location=10.0 1.198 2.880 High 

 

(Key parameters in the table are used to simulate the exogenous input variable; the skewness 

and kurtosis shown in the table are the averaged values of all input and output data) 

 

Table 2.2 Details of the simulated input distributions for the nonlinear model (NL)  

Distribution Key Parameters s k Normality 

NORM Mean=3.0; sd =1.0 1.826 5.158 High 

GAMMA Shape=2.0; Scale=1.0 10.520 192.091 Low 

LOGN Mean=0.5; sd=0.4 5.389 47.767 Low 

EXP Rate=1.0 14.029 334.408 Low 

PT3 Shape=0.5; Scale=1.0; Location=0.5 16.271 514.270 Low 

LOGPT3 Shape=0.5; Scale=0.2; Location=0.5 14.261 390.522 Low 

EVT1 Shape=0.1; Scale=0.0; Location=10.0 1.788 9.807 Moderate 

 

(Key parameters in the table are used to simulate each of the input variables; the skewness 

and kurtosis shown in the table are the averaged values of all input and output data) 

The synthetic models used to produce the output data included a linear 

exogenous auto-regressive time series model (EAR4), a threshold exogenous 

auto-regressive time series model (TEAR10), and a nonlinear input-output 

function (NL) (see Fig. 2.2), as they represent relationships with increasing 

degrees of non-linearity and are based on synthetic models used in previous 

studies (Bowden et al., 2005a; Galelli and Castelletti, 2013; May et al., 2008b). 

The equation for the linear exogenous auto-regressive time series of order four 

(EAR4) is given by 

 𝑥𝑡 = 0.6𝑥𝑡−1 − 0.4𝑥𝑡−4 + 𝑝𝑡−1 + 0.1𝜀𝑡                                                            (2.6)    

where 𝑥𝑡  is the output time series; 𝑥𝑡−𝑛 is the input time series with lag 𝑛; 

𝑝𝑡−𝑛 is the exogenous input with lag 𝑛; and 0.1𝜀𝑡 is the introduced error term.  
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The equation for the nonlinear exogenous auto-regressive time series model of 

order ten (TEAR10) is given by 

 𝑥𝑡 = {
−0.5𝑥𝑡−6 + 0.5𝑥𝑡−10 − 0.3𝑝𝑡−1 + 0.1𝜀𝑡;   𝑥𝑡−6 ≤ 0

0.8𝑥𝑡−10 − 0.3𝑝𝑡−1 + 0.1𝜀𝑡;   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
                       (2.7)      

and the equation for the nonlinear input-output function (NL) is given by 

𝑦 = (𝑥2)
3 + 𝑥6 + 5 sin(𝑥9) + 0.1𝜀𝑡                                                            (2.8)  

The first two synthetic models (Eqs. (2.6) and (2.7)) were modified versions 

of the synthetic models used in May et al. (2008b) and the third synthetic 

model (Eq. (2.8)) was modified from the one used in Bowden et al. (2005a). 

For the first two synthetic models, the modifications include the introduction 

of an independent lagged input 𝑝𝑡−1 into all exogenous AR models, and the 

𝑝𝑡−1 were sampled from the distributions outlined in Table 2.1. For the third 

synthetic model, the significance (coefficient) of each input was slightly 

modified and each input was sampled based on the distributions outlined in 

Table 2.2. In addition, the error term 0.1𝜀𝑡  was added to all models to 

introduce noise into the models without obscuring the influence of the actual 

independent variables. The noise term 𝜀𝑡  followed the standard normal 

distribution 𝑁(0,1). 

Real case studies 

In order to further test the impact of the degree of normality and non-linearity 

of the data on the predictive performance and computational efficiency of the 

different GRNN parameter estimation methods investigated, as well as the 

performance of the empirical guidelines for the selection of the most 

appropriate methods for GRNN smoothing parameter estimation developed 

based on the results from the synthetic data, two case studies with data with 

different degrees of normality and non-linearity were selected.  The first case 

study was concerned with forecasting salinity in the River Murray in South 

Australia one, five and 14 days in advance and the second with the prediction 

of runoff in the Kentucky River basin in the USA one day in advance.  The 
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data division procedure used for both real case studies was identical to the one 

used for the synthetic case studies (see Section 2.1.1). 

The salinity case has been studied extensively in the context of ANN 

modelling (Bowden et al., 2005b; Fernando et al., 2009; Kingston et al., 

2005a; Maier and Dandy, 1996; Maier and Dandy, 2000a). According to 

Maier and Dandy (1996), salinity in the River Murray is a function of 

upstream inflows of salinity, flow, river level and groundwater level. Maier 

and Dandy (2000) also found that different combinations of inputs contribute 

to the output during different forcasting periods. In line with this finding, 

different GRNNs were developed in this study to predict salinity at Murray 

Bridge one, five and 14 days in advance (Table 2.3). Different input variables 

with different lags (Table 2.3) were associated with each output in a given 

forecasting period, where the inputs were selected from previous studies (e.g. 

Maier and Dandy, 1996; Maier and Dandy, 2000; Kingston et al., 2005b). All 

data covered the period 1987 to 1990, and were the same as the data used by 

Maier and Dandy (1996; 2000).  

Analysis of the input data shows that the salinity based inputs are 

approximately normally distributed (average   𝑠 = −1.11 & 𝑘 = 0.319 ), 

although distributions of some lagged inputs have multiple peaks and the 

distribution of the water level based input is mildly non-Gaussian (average 

𝑠 = 5.96 & 𝑘 = 2.57).  According to Bowden (2003), the input and output 

data contain strongly linear components.  Consequently, the data for this case 

study are close to mildly non-normal and the relationship to be modelled is 

close to linear. 
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The rainfall-runoff problem from the Kentucky River basin has also been 

extensively studied in the ANN literature (Bowden et al., 2012; Jain and 

Srinivasulu, 2004; Srinivasulu and Jain, 2006; Wu et al., 2013). The 

catchment area is approximately 10240 km
2
 and the average daily total 

rainfall measurements come from five rain gauges located at Manchester, 

Hyden, Jackson, Heidelberg, and Lexington Airport. The average daily 

streamflow at Lock and Dam 10 are used as the output. Jain and Srinivasulu 

(2004) suggested five significant inputs (i.e. lagged effective rainfall 

𝑃(𝑡), 𝑃(𝑡 − 1), 𝑃(𝑡 − 2)  and lagged runoff 𝑄(𝑡 − 1), 𝑄(𝑡 − 2) ). Therefore, 

the effective rainfall, with lags from the present day to two days prior, and the 

flow with lags of the first two days, were adopted as inputs (Table 2.4). The 

data used in this paper were identical to the 13 years of training data (1960-

1972) utilised by Jain and Srinivasulu (2004). 

Analysis of the input and output data shows that the distributions of lagged 

effective rainfall and flow are extremely non-Gaussian (averaged 𝑠 =

5.11 & 𝑘 = 34.8). Although the linearity of the rainfall- runoff problem in the 

Kentucky River basin has not previously been analysed, the general rainfall-

runoff problem is well recognised as being highly nonlinear (Coulibaly et al., 

2001; Dawson et al., 2002; Hu et al., 2001; Jain and Indurthy, 2003), and 

therefore the data are likely to contain a strong nonlinear structure.  

Consequently, the data for this case study are considered to be highly non-

normal and the relationship to be modelled is likely to be highly non-linear. 

2.3.2 Estimation of GRNN smoothing parameters using 

different estimation methods  

The parameters for all of the GRNN models for the synthetic tests and real 

case studies were estimated using nine methods. Of these methods, five are 

adopted from the literature on kernel bandwidth selection for kernel density 

estimation, and four are based on single and multivariable calibration 

optimisation strategies. The methods adopted from the kernel density 

estimation literature are: the Gaussian reference rule (GRR); biased cross 

validation (BCV); 2-stage direct plug-in (DPI); a combination of BCV and 
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DPI (BCVDPI); smoothed cross validation (SCV). The methods based on 

calibration optimisation strategies are as follows: single variable calibration 

with squared error as the objective function (SVCS); single variable 

calibration with mean absolute error as the objective function (SVCA); multi-

variable calibration with squared error as the objective function (MVCS); and 

multi-variable calibration with mean absolute error as the objective function 

(MVCA) (Fig. 2.2). These methods were selected as they are based on 

different fitness functions and assumptions of normality and error basis, as 

shown in Table 2.5. Details of these smoothing parameter estimators are given 

in the following subsections. 

Gaussian reference rule (GRR) 

The GRR based smoothing parameter estimator is the most commonly used 

estimator. It is based on minimising the asymptotic mean integrated squared 

error (AMISE) under the integrability assumption of an unknown probability 

function 𝑓 of the given data (Scott, 1992; Wand and Jones, 1995). Under these 

assumptions, the derived AMISE has the expression 

𝐴𝑀𝐼𝑆𝐸{𝑓(. ; ℎ)} = (𝑛ℎ)−1𝑅(𝐾) +
1

4
ℎ4𝜇2(𝐾)

2𝑅(𝑓′′)̃                                 (2.9) 

where K is the kernel function; 𝑅(𝐾) = ∫[𝐾(𝑥)]2𝑑𝑥 is the integrated square 

of the kernel function; 𝜇2(𝐾) = ∫𝑥2𝐾(𝑥)𝑑𝑥 is the second moment of K; and 

𝑅(𝑓′′)̃  represents the approximation of the integrated squared second 

derivative of 𝑓. By assuming that the data follow a Gaussian distribution, and 

adopting a Gaussian kernel, the GRR based smoothing parameter estimator 

that minimises the AMISE is derived as 

ℎ̂𝐺𝑅𝑅,𝑖 = (
4

𝑚+2
)1/(𝑚+4)𝜎𝑖𝑛

−1/(𝑚+4)                                                           (2.10) 

where 𝜎𝑖  is the sample standard deviation of the  𝑋𝑖
𝑗
 (usually standardised 

first). As outlined in Table 2.5, this approach depends heavily on the Gaussian 

assumption. 
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Biased cross validation (BCV) 

As with the GRR, the BCV (Scott and Terrell, 1987) based smoothing 

parameter estimation method aims to minimise the AMISE, and is based on 

the assumption that the data are normally distributed. However, as the BCV is 

a combination of cross-validation and ‘plug-in’ bandwidth selection described 

by Wand and Jones (1995), it is potentially more robust than the GRR based 

approach through optimisation. The AMISE is expressed as follows by 

substituting the estimated 𝑅(𝑓′′)̃  into Eq. (2.9) 

𝐴𝑀𝐼𝑆𝐸𝐵𝐶𝑉,𝑖(ℎ) = (𝑛ℎ)
−1𝑅(𝐾) +

1

4
ℎ4𝜇2(𝐾)

2𝑛−2 

                                   ∑∑ (𝐾′′ ∗ 𝐾′′)(𝑋𝒊
𝒑
− 𝑋𝒊

𝒒
)𝑝≠𝑞                                       (2.11) 

where ∗ indicates the convolution operation. The BCV smoothing parameter is 

then given as 

ℎ̂𝐵𝐶𝑉,𝑖 = 𝑎𝑟𝑔𝑚𝑖𝑛ℎ{𝐴𝐼𝑀𝑆𝐸𝐵𝐶𝑉,𝑖(ℎ)}                                                          (2.12)  

As illustrated in Table 2.5, the underlying assumptions for the estimator 

ℎ̂𝐵𝐶𝑉,𝑖  are similar to ℎ̂𝐺𝑅𝑅,𝑖  (Eq. (2.10)), however ℎ̂𝐵𝐶𝑉,𝑖  is determined by 

minimising the 𝐴𝐼𝑀𝑆𝐸𝐵𝐶𝑉,𝑖(ℎ) through an optimisation process (in the current 

study, the golden section search (GSS) (Press et al., 1992) was used).  

Two-stage direct plug-in (DPI) 

The motivating idea behind the DPI (Park and Marron, 1992) is to 

approximate the unknown term 𝑅(𝑓′′)̃  with �̂�𝑟(𝑔) (which is a pilot kernel 

estimation of the r-th order integrated squared density derivative); 𝑔 is the 

pilot kernel bandwidth; 𝐿 is the pilot kernel; and 𝑟 is the stage number into Eq. 

(2.9) to obtain a computable form for the asymptotically optimal bandwidth. 

By minimising AMISE (Eq. (2.9)) and replacing 𝑅(𝑓′′)̃   with a pilot kernel 

bandwidth estimation �̂�4(𝑔), the DPI based smoothing parameter expression, 

for each input dimension i, becomes  

ℎ̂𝐷𝑃𝐼,𝑖 = [
𝑅(𝐾)

[𝜇2(𝐾)]2�̂�4(𝑔)𝑛
]1/5                                                                        (2.13) 
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where �̂�4(𝑔) = 𝑛
−1∑ �̂�(4)(𝑋𝑖; 𝑔)𝑛

𝑖=1   represents the fourth order integrated 

squared density derivative, which is approximated by the pilot kernel 𝐿, with 

the corresponding pilot bandwidth as 𝑔 (Hall and Marron, 1987; Jones and 

Sheather, 1991). The asymptotic mean squared error (AMSE) based optimal 

overall pilot bandwidth 𝑔 is  

𝑔 = [
𝑘!𝐿(𝑟)(0)

−𝜇𝑘(𝐿)�̂�𝑟+𝑘𝑛
]1/(𝑟+𝑘+1)                                                                        (2.14)  

where 𝑘 is the order of the pilot kernel 𝐿; 𝑟 is the stage number of 𝐿; 𝜇𝑘(𝐿) 

=∫𝑢𝑘𝐿(𝑢)𝑑𝑢 is the k-th moment of L. The stage number 𝑟 determines how 

many kernel estimations are required to approximate �̂�4(𝑔) based upon the 

higher order integrated squared density derivative. Although it has been found 

that more stages can result in a better estimation when using the DPI, the 

improvement comes at a significant cost in terms of computational efficiency 

(Wand and Jones, 1995). The commonly suggested number of stages is 𝑟 = 2 

(Park and Marron, 1992), which was adopted in this study. For a 2-stage DPI 

based estimator, the corresponding fitness function and assumptions on 

linearity and error basis are identical to those for the GRR and BCV based 

approaches, while the dependence on the Gaussian assumption is effectively 

reduced by the pilot kernel based fourth order integrated squared density 

derivative, as shown in Table 2.5.  

Combination of biased cross validation and two-stage direct plug-in 

(BCVDPI) 

The BCVDPI estimator is a combination of the BCV and 2-stage DPI, and is 

achieved by replacing the estimated term 𝑅(𝑓′′)̃  in Eq. (2.8) with the 2-stage 

DPI based �̂�4(𝑔) as follows 

𝐴𝑀𝐼𝑆𝐸𝐵𝐶𝑉𝐷𝑃𝐼,𝑖(ℎ) = (𝑛ℎ)
−1𝑅(𝐾) +

1

4
ℎ4𝜇2(𝐾)

2�̂�4(𝑔)𝐷𝑃𝐼                     (2.15)  

Although the BCVDPI has no closed form (it requires the solution of an 

optimisation problem), it inherits the positive attributes of a reduced 

dependence on the Gaussian assumption in comparison to the DPI. The 
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optimal smoothing parameter by minimising  𝐴𝐼𝑀𝑆𝐸𝐵𝐶𝑉𝐷𝑃𝐼,𝑖(ℎ)  can be 

expressed, for each input dimension i,  as 

ℎ̂𝐵𝐶𝑉𝐷𝑃𝐼,𝑖 = 𝑎𝑟𝑔𝑚𝑖𝑛ℎ{𝐴𝐼𝑀𝑆𝐸𝐵𝐶𝑉𝐷𝑃𝐼,𝑖(ℎ)}                                                (2.16)  

The fitness function and assumptions of the BCVDPI based approach are 

identical to those of the 2-stage DPI approach. The main difference between 

these two approaches is that the former uses GSS based optimisation due to 

the biased cross-validation procedure, while the latter does not.  

Smoothed cross validation (SCV) 

The concept behind SCV is very similar to that underpinning the DPI 

approach, except that SCV attempts to minimise the exact MISE, rather than 

the AMISE (Eq. (2.9)) used in the DPI method. The MISE can also be 

approximated as  

𝑀𝐼𝑆𝐸{𝑓(. ; ℎ)} ≈ (𝑛ℎ)−1𝑅(𝐾) + ∫(𝐾ℎ ∗ 𝑓 − 𝑓)(𝑥)
2𝑑𝑥                          (2.17) 

By replacing ∫(𝐾ℎ ∗ 𝑓 − 𝑓)(𝑥)
2𝑑𝑥 with 𝐼𝑆�̂�(ℎ) , where 𝐼𝑆�̂�(ℎ) is an 

estimation of the integrated squared bias, Eq. (2.16) can be re-written as  

𝐸𝑀𝐼𝑆𝐸𝑆𝐶𝑉,𝑖(ℎ) = (𝑛ℎ)
−1𝑅(𝐾) + 𝐼𝑆�̂�(ℎ)                                                 (2.18)  

where 𝐼𝑆�̂�(ℎ) is given by  

𝐼𝑆�̂�(ℎ) = 𝑛−2∑ ∑ (𝐾ℎ
𝑛

𝑞=1

𝑛

𝑝=1
∗ 𝐾ℎ ∗ 𝐿𝑔 ∗ 𝐿𝑔 − 2 ∗ 𝐾ℎ ∗ 𝐿𝑔 ∗ 𝐿𝑔 + 𝐿𝑔 ∗ 𝐿𝑔) 

                    (𝑋𝒊
𝒑
− 𝑋𝒊

𝒒
)                                                                                 (2.19) 

where 𝐾ℎ and 𝐿𝑔 are Gaussian kernels with kernel bandwidth ℎ and pilot 

kernel bandwidth 𝑔, respectively (Hall et al., 1992; Wand and Jones, 1995). 

The pilot kernel bandwidth 𝑔  is a function of a series of pilot kernel 

bandwidths, each estimated based upon sequentially higher order integrated 

squared density derivatives (Wand and Jones, 1995). The optimal smoothing 

parameter is determined by finding the parameter ℎ̂𝑆𝐶𝑉,𝑖 , which minimises 
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𝐸𝑀𝐼𝑆𝐸𝑆𝐶𝑉,𝑖(ℎ) through optimisation (GSS), as shown in Eq. (2.20) for the i-th 

input 

ℎ̂𝑆𝐶𝑉,𝑖 = 𝑎𝑟𝑔𝑚𝑖𝑛ℎ{𝐸𝐼𝑀𝑆𝐸𝑆𝐶𝑉,𝑖(ℎ)}                                                           (2.20) 

Although the assumptions with regard to normality, linearity, and error basis 

of the SCV based method are very similar to those of the 2-stage DPI based 

approach (Table 2.5), the fitness function of the SCV method is based upon an 

exact, rather than asymptotic, estimation of MISE. Therefore, the predictive 

accuracy of SCV is expected to be the same as or better than that of the DPI 

approach (Wand and Jones, 1995).   

Single variable calibration (SVC) and multi-variable calibration (MVC) 

The most commonly applied trial and error approaches to bandwidth 

estimation can be classified as single variable calibration (SVC) and multi-

variable calibration (MVC). The SVC estimator assumes that a common 

smoothing parameter is applicable to all input vectors, which increases 

computational efficiency compared with the MVC estimator, for which 

smoothing parameter estimates have to be obtained for each input vector, but 

at the cost of potential reductions in modelling accuracy and flexibility (Gibbs 

et al., 2006). The fitness function used to define the SVC and MVC estimators 

can be either extreme event oriented (e.g. squared error) or average event 

oriented (e.g. mean absolute error) (Dawson et al., 2007). The combination of 

different optimisation algorithms and modelling objectives results in four 

smoothing parameter estimators, namely SVCS, SVCA, MVCS, and MVCA. 

The mathematical formulations of these four estimators can be written as 

ℎ̂𝑆𝑉𝐶𝑆 = 𝑎𝑟𝑔𝑚𝑖𝑛ℎ { ∑ [𝑦𝑖 − �̂�(𝑿𝑗, ℎ)]
2𝑛

𝑖=1 }                                               (2.21)  

ℎ̂𝑆𝑉𝐶𝐴 = 𝑎𝑟𝑔𝑚𝑖𝑛ℎ { ∑ |𝑦𝑖 − �̂�(𝑿𝑗, ℎ)|𝑛
𝑖=1 }                                                 (2.22)  

�̂�𝑀𝑉𝐶𝑆 = 𝑎𝑟𝑔𝑚𝑖𝑛𝒉 { ∑ [𝑦𝑖 − �̂�(𝑿𝑗 , 𝒉)]
2𝑛

𝑖=1 }                                              (2.23)  

�̂�𝑀𝑉𝐶𝐴 = 𝑎𝑟𝑔𝑚𝑖𝑛𝒉 { ∑ |𝑦𝑖 − �̂�(𝑿𝑗 , 𝒉)|𝑛
𝑖=1 }                                                (2.24)  
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where  �̂�(𝑿𝑗 , 𝒉)  is the GRNN prediction based upon the bandwidth vector 

𝒉 = [ℎ1 ⋯ ℎ𝑚]
𝑇. The optimal single smoothing parameter in Eqs. (2.21) 

and (2.22) is achieved by minimising the errors (either squared errors or mean 

absolute errors) between the observed data 𝑦𝑖 and the predictions �̂�(𝑿𝑗, ℎ). In 

contrast, the optimal bandwidth matrix in Eqs. (2.23) and (2.24) is obtained by 

minimising the errors (either squared errors or mean absolute errors) between 

the observed records 𝑦𝑖  and the predictions �̂�(𝑿𝑗, 𝒉) . Unlike the previous 

methods, the fitness functions of the SVC and MVC based approaches depend 

only upon the calibration error between observed and predicted output data.  

Consequently, these approaches are independent of Gaussian assumptions 

(Table 2.5). In this research, GSS was used to obtain the bandwidths of the 

SVC estimators, while the evolutionary strategy particle swarm optimisation 

(PSO) algorithm (Poli et al., 2007), which was written in Fortran, was used for 

this purpose for the MVC approaches. 

2.3.3 Development of benchmark MLP model  

In order to assess the performance of the different GRNN models in absolute 

terms, standard MLPs were developed as benchmarks using the systematic 

approach outlined in Wu et al. (2014).  The model inputs/outputs and training, 

testing and validation data were identical to those used in the development of 

the GRNN models.  A single hidden layer was used and the optimal number 

of hidden nodes was determined by trial and error, considering a range of 0-5. 

The optimal number of hidden nodes for the different models was as follows: 

2 (EAR4), 2 (TEAR10), 3 (NL), 3 (river salinity 1 day), 3 (river salinity 5 

day), 4 (river salinity 14 day), and 4 (flow 1 day), respectively. The back-

propagation (BP) algorithm (with learning rate of 0.1 and momentum of 0.1) 

was used for calibration. 

2.3.4 Model performance assessment  

As mentioned in the Introduction and shown in Fig. 2.2, model performance 

criteria included predictive accuracy and computational efficiency. The 
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specific measures adopted to assess these two aspects of performance are 

outlined in the subsequent sections. 

Predictive accuracy 

As discussed in Bennett et al. (2013), careful selection of appropriate 

predictive performance measures is extremely important.  In this study, 

predictive accuracy was characterised by six dimensionless criteria (listed in 

Fig. 2.2), commonly used as evaluation metrics for hydrological prediction 

problems (Bennett et al., 2013; Dawson et al., 2007; Krause et al., 2005). 

These criteria include the coefficient of efficiency (CE), the index of 

agreement (IoAd), the persistence index (PI), and modified forms of CE, IoAd, 

and PI. These measures were chosen because: they are commonly used in 

hydrology; they have clear cut-off points to distinguish different extents of 

accuracy (good, satisfactory, or poor); and they are sensitive to different types 

of events, which assists performance characterisation with respect to the 

modelling objective. Particularly, CE compares the performance of the model 

to a model that only contains the mean of the observations; IoAd compares the 

sum of squared error to the potential error; and PI compares the sum of 

squared error to the error based on the predictions of previous observations 

(Bennett et al., 2013). In order to be able to assess the impact of the modelling 

objective on model performance, modified versions of these metrics were also 

used, in which squared error terms are replaced with absolute error terms (see 

Krause et al., 2005).   

Although predictive accuracy was assessed using all of the six performance 

metrics mentioned above, only the performance based on the averaged IoAd 

and modified IoAd (MIoAd) is presented in the body of the paper, while the 

performance based on the other metrics can be found in the APPENDIX-A 

(Figs. A.1, A.3, & A.5). IoAd is a measure of the overall agreement between 

the observed and modelled records, and is expressed as  

𝐼𝑜𝐴𝑑 = 1 −
∑ (𝑦𝑗−�̂�𝑗)2𝑛
𝑖=1

∑ (|�̂�𝑗−�̅�|+|𝑦𝑗−�̅�|)2𝑛
𝑖=1

                                                                (2.25)  
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where 𝒚𝒋 is the individual observation, �̂�𝒋 is the corresponding approximation 

and �̅� is the sample mean of the observations. IoAd is sensitive to the mean 

and variance differences between the observed and modelled records; 

however, it is insensitive to systematic positive or negative errors. Good 

performance corresponds to IoAd values greater than or equal to 0.9, and 

model performance with an IoAd less than 0.8 is considered to be poor 

(Dawson et al., 2007).  

The adopted MIoAd is very similar to Eq. (2.25), except that the squared error 

terms are replaced by the absolute value in both the numerator and 

denominator, so that performance becomes average event, rather than extreme 

event, sensitive. Details of the derivations and applications of the MIoAd can 

be found in Krause et al. (2005).   

The reason for detailing the sensitivity of the performance criteria to the 

average trends and extreme events is so that an assessment of the impact of 

the error basis of the fitness functions used by the different smoothing 

parameter estimators on the performance of the GRNN models with different 

modelling objectives can be made.  

Computational efficiency 

Computational efficiency was measured by computational time (CT) 

(measured by a dual processor 2.6 GHz Intel Machine), which was based on 

the average CPU clock speed (in seconds), as shown in Fig. 2.2.  

2.3.5 Test regime  

The test regime was implemented in accordance with Fig. 2.2.  Overall, 630 

synthetic data sets with 1,575,000 data points were generated, which consisted 

of 30 replicates of time series generated using 3 different models, for each of 

which input data were generated from 7 different distributions.  Each of the 

630 data sets was then divided into training, testing and validation sets and 

used to calibrate and validate 9 GRNN models, each using 1 of 9 different 

smoothing parameter estimation techniques, resulting in a total of 5670 
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GRNN models for the synthetic data.  In addition to the experiments with the 

synthetic data, 4 experiments were conducted with the real data, 3 for the 

salinity data with different forecasting periods and 1 for the rainfall runoff 

data.  MLPANNs were also developed for each of the 30 replicates of the 

synthetic data sets and for the 4 experiments with real data. As part of the 

model development process, the residuals of the training data of all GRNNs 

and MLPs were checked for replicative validity (see APPENDIX-A Figs. A.2, 

A.4, and A.6) in accordance with the recommendations of Wu et al. (2014). 

The residuals were generally ‘white noise’, indicating that all models can be 

considered replicatively valid.] The performance of all 5674 models was 

assessed using the 6 selected predictive accuracy criteria, as well as 

computational time. Because of the large computational requirements, all tests 

were coded in PGI Visual Fortran 2008 and run on a Linux 2.6.32.2 operating 

system. The software used for conducting the numerical experiments is 

available for others to use, as per the details in the Software Availability at the 

beginning of this paper. 

2.4 Results and discussion 

2.4.1 Synthetic case studies  

The predictive accuracy for the validation data and computational efficiency 

of all GRNN models for the synthetic data are summarised in Fig. 2.3 and Fig. 

2.4, respectively. The key findings in relation to the impact of the degree of 

normality, the degree of non-linearity and the modelling objective on GRNN 

performance (predictive accuracy and computational efficiency) for the 

different smoothing parameter estimators are presented in Performance of 

different smoothing parameter estimation methods, with the results of the 

comparison with the MLP benchmark models summarised in Comparison 

with MLP. Preliminary empirical guidelines for the selection of the most 

appropriate GRNN smoothing parameter estimator based on the properties of 

the data and the modelling objective derived from the results of the 

experiments on the synthetic data sets are presented in Suggested rules and 

guidelines for use. 
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Figure 2.3 Predictive accuracy for the validation data of MLPs and GRNNs for different 

synthetic data-generating models and distributions for which optimal parameters have 

been obtained using different methods  
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Figure 2.3 (Continued) 
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Figure 2.4 Computational efficiency of MLPs and GRNNs for different synthetic data-

generating models and distributions for which optimal parameters have been obtained 

using different methods 
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compared with that obtained using the GRR, particularly for the more extreme 

distributions (i.e. LOGPT3, EXP, LOGN in Fig. 2.3). 

In contrast, use of the SVCS/SVCA and MVCS/MVCA methods was 

generally successful in terms of improving the predictive performance of the 

GRNN models for data with high degrees of non-normality compared with the 

models for which the GRR was used for smoothing parameter estimation.  In 

fact, when the SVCS/SVCA and MVCS/MVCA methods are used, there is 

very little degradation in predictive performance with an increase in the non-

normality of the data.  This is most likely because these smoothing parameter 

estimation techniques do not rely on any Gaussian assumptions.  This makes 

use of the SVCS/SVCA approaches a particularly attractive option for highly 

non-Gaussian data, on account of their much smaller computational cost 

compared with the MVCS/MVCA methods. 

While the trends described above apply to all three synthetic data sets, they 

manifest themselves more strongly for the non-linear (NL) case. This suggests 

that the combination of non-linear and non-Gaussian data has the potential to 

result in a marked degradation in the predictive performance of GRNNs, 

unless the SVCS/SVCA or MVCS/MVCA methods are used.  It should also 

be noted that for the NL case, there was a noticeable improvement in 

predictive performance when the MVCS/MVCA approach was used instead 

of the SVCS/SVCA method.  However, this improvement was achieved at a 

significantly increased computational cost. 

Comparison with MLP 

In the vast majority of cases, the predictive performance of the MLP models 

was similar to that of the GRNN models for which the SVCS/SVCA and 

MVCS/MVCA methods were used for smoothing parameter estimation, 

although the MLPs performed slightly better than the best-performing GRNNs 

in some instances.  In addition, for Gaussian or nearly Gaussian data, the 

predictive performance of the GRNNs for which the GRR was used for 

smoothing parameter estimation was very similar to that of the MLPs.  

Consequently, the results suggest that if a bandwidth estimation technique is 
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used that is appropriate for the distribution of the data, the predictive 

performance of GRNNs is very similar to that of MLPs.  In addition, this can 

generally be achieved at a much reduced computational cost, unless the 

MVCS/MVCA bandwidth estimation technique is used.  Furthermore, use of 

GRNNs eliminates the uncertainty associated with the selection of an 

appropriate MLP model geometry. 

Suggested rules and guidelines for use 

Based on the findings of the 5670 computational experiments with the 

synthetically generated data, a set of preliminary empirical guidelines has 

been developed for selecting the most appropriate smoothing parameter 

estimation technique based on the degree of normality and degree of non-

linearity of the data, as well as the modelling objective (Fig. 2.5).  It should be 

noted that the smoothing parameter estimation techniques included in the 

suggested guidelines represent reasonable trade-offs between predictive 

accuracy and computational efficiency, although it is acknowledged that 

which trade-offs are optimal is also a function of case-study dependent 

circumstances and / or user preferences. 
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Based on Fig. 2.5, the preliminary empirical guidelines for selecting an 

appropriate method for estimating the parameter(s) of GRNNs can be grouped 

into a number of scenarios, as explained below:  

Scenario 1: If the problem has input/output data that are mainly mildly non-

Gaussian (average 𝑠 < 5 & 𝑘 < 30), the GRR (or BCV) smoothing parameter 

estimator is recommended, irrespective of linearity and model objective, as 

these methods are observed to provide good accuracy for these cases at a 

comparatively high computational efficiency.  

Scenario 2: If (i) inputs and outputs are extremely non-Gaussian (average 

𝑠 > 5 & 𝑘 > 30) and (ii) the modelling objective is to capture extreme events 

for a linear or non-linear problem, the use of SVCS or MVCS is suggested. 

However, this observed increase in predictive accuracy comes at the cost of 

significantly decreased computational efficiency (particularly for the MVCS). 

Scenario 3: If the problem is as in Scenario 2 (extremely non-Gaussian data 

& linear or non-linear problem), but with a modelling objective that is average 

magnitude event sensitive, SVCA or MVCA should be adopted. 

2.4.2 Real case studies  

The results for the two real case studies are given in Figs. 2.6 and 2.7. Fig. 2.6 

(a), (b), and (c) show the predictive accuracy for the validation data of river 

salinity at Murray Bridge 1, 5, and 14 days in advance and the corresponding 

computational efficiency is illustrated in Fig. 2.7 (a), (b), (c). Fig. 2.6 (d) 

displays the predictive accuracy for the validation data of runoff at Lock and 

Dam 10 in the Kentucky River basin 1 day in advance and the corresponding 

computational efficiency is given in Fig. 2.7 (d).   

River salinity at Murray Bridge 

By considering the properties of the data for the salinity case study (Table 2.3), 

and the modelling objective of capturing the averaged salinity trends, this case 

study corresponds to Scenario 1 in Fig. 2.5. Given this, the predictive 

performance of the GRNNs developed using the GRR or BCV based methods 
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was expected to be superior in terms of an appropriate trade-off between 

predictive accuracy and computational efficiency.  This is confirmed by the 

results, which indicate that predictive performance was not affected 

significantly by using the different smoothing parameter estimation methods.  

Although the methods that have reduced reliance on the Gaussian assumption 

result in a slight increase in predictive performance, this is probably not 

outweighed by the additional computational costs incurred. However, as 

mentioned previously, the method that is considered most appropriate is case 

study and user dependent.  For example, if high predictive accuracy was 

critical in this case and computational efficiency was not an issue, the MVCA 

based approach would be preferable.  As was the case for the synthetic case 

studies, the predictive performance of the GRNNs is very similar to that of the 

MLPs, but at a significantly reduced computational cost. 
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Rainfall-runoff in Kentucky River basin 

By considering the properties of the data for the rainfall-runoff case study 

(Table 2.4), and the modelling objective of capturing extreme events, this case 

study corresponds to Scenario 2 in Fig. 2.5. Given this, the predictive 

performance of the GRNNs developed using the SVCS and MVCS based 

methods was expected to be superior. 

As shown in Fig. 2.6(d), the predictive performance of the GRNNs developed 

using the SVCS and MVCS based methods was indeed significantly better 

than that of the GRNNs developed using the other parameter estimation 

methods and was as good as that of the MLPs.  In this case, the SVCS method 

provided the best trade-off between predictive accuracy and computational 

efficiency.  However, if predictive accuracy was critical, the large increase in 

computational cost incurred (Fig. 2.7 (d)) for a small increase in predictive 

accuracy (Fig. 2.6 (d)) when using the MVCS method might be warranted. 

 

2.5 Summary and conclusions 

Artificial neural networks (ANNs) have been used extensively for 

hydrological and water resources modelling over the last two decades.  In the 

vast majority of studies, multi-layer perceptrons (MLPs) have been used as 

the ANN model architecture.  However, obtaining the optimal structure of 

such models is not an easy task. By using general regression neural networks 

(GRNNs) as the ANN model architecture, this problem can be overcome, as 

GRNNs have a fixed model structure.  However, there has been limited 

investigation into the best way to estimate the parameters of GRNNs. In order 

to address this shortcoming, the performance of nine different GRNN 

parameter estimation methods was assessed in terms of accuracy and 

computational efficiency for data with distributions of varying degrees of 

normality and non-linearity on both synthetic and measured data.  In addition, 

the impact of the objective function on model performance was assessed.  In 

total, 5674 GRNN models were developed as part of the computational 
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experiments conducted. As a way of benchmarking, the predictive 

performance and computational efficiency of the GRNN models was also 

compared with that of MLP models. 

The main results from the synthetic case studies show that: 

1. The predictive performance of GRNNs developed using the GRR, 

BCV, DPI, BCVDPI, and SCV based methods was generally 

influenced by the distribution of the input/output data because of their 

dependence on the Gaussian assumption (assuming the underlying 

density follows a normal distribution). 

2. Compared to the GRNNs developed using the GRR, use of the DPI, 

BCVDPI, and SCV based methods did not effectively improve 

predictive performance, despite their decreased dependence on the 

Gaussian assumption and increased computational cost. 

3. The predictive accuracy of GRNNs developed using the SVCA/SVCS 

and MVCA/MVCS based methods was relatively insensitive to the 

distribution of the input/output data because of their independence of 

the Gaussian assumption.  

4. There is a distinct trade-off between predictive accuracy and 

computational efficiency for the methods investigated, with a 

reduction in computational efficiency for the methods that are least 

affected by the Gaussian assumption (i.e. SVCA/SVCS and 

MVCA/MVCS) by several orders of magnitude. 

5.  If an appropriate smoothing parameter estimation technique is used, 

the predictive performance of the GRNN models is very similar to that 

of the MLPANN models, although slightly worse in some instances. 

However, the computational cost of developing the GRNN models is 

generally significantly less.  In addition, there is no uncertainty in 

relation to the selection of the most appropriate model structure. 

Based on the general observations of the relationship between the 

performance of the different GRNN parameter estimation methods and the 

properties of the data and modelling objectives, preliminary empirical 

guidelines for selecting the GRNN parameter estimation method that 
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represents good trade-offs between predictive accuracy and computational 

efficiency were developed.  

The validity of the guidelines was tested and confirmed for two case studies 

with real data, including the forecasting of salinity in the River Murray in 

South Australia and a rainfall-runoff study in the Kentucky River basin in the 

USA. 

While the results of this study provide useful insights and guidance on the 

selection of appropriate parameter estimation methods for GRNNs, further 

research into the possibility of improving the predictive performance of some 

of the methods that rely on the Gaussian assumption to some degree is 

warranted, as these methods are much more computationally efficient than the 

methods that are found to perform well with extremely non-Gaussian data in 

this study.  In particular, the stage number used in the DPI, BCVDPI, and 

SCV methods may not be sufficient to describe extreme distributions with 

data accumulated at the boundary and a long tail. The boundary issue 

(Karunamuni and Alberts, 2005b; Scott, 1992), as another critical issue with 

the same importance as the bandwidth, needs to be studied further for 

problems that contain extreme data distributions. 
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Abstract 

Input variable selection (IVS) is one of the most important steps in the 

development of artificial neural network and other data driven environmental 

and water resources models. Partial mutual information (PMI) is one of the 

most promising approaches to IVS, but has the disadvantage of requiring 

kernel density estimates (KDEs) of the data to be obtained, which can become 

problematic when the data are non-normally distributed, as is often the case 

for environmental and water resources problems. In order to overcome this 

issue, preliminary guidelines for the selection of the most appropriate methods 

for obtaining the required KDEs are determined based on the results of 3,780 

trials using synthetic data with distributions of varying degrees of non-

normality and six different KDE techniques. The validity of the guidelines is 

confirmed for two semi-real case studies developed based on the forecasting 

of river salinity and rainfall-runoff modelling problems. 
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3.1 Introduction 

Artificial neural networks (ANNs) have been applied successfully and 

extensively to environmental (Adeloye et al., 2012; Ibarra-Berastegi et al., 

2008; Luccarini et al., 2010; Maier and Dandy, 1997b; Maier et al., 2004; 

Millie et al., 2012; Muñoz-Mas et al., 2014; Ozkaya et al., 2007; Pradhan and 

Lee, 2010; Young II et al., 2011) and water resources (Abrahart et al., 2012; 

ASCE, 2000a, b; Dawson and Wilby, 2001; Maier and Dandy, 2000b; Maier 

et al., 2010; Wolfs and Willems, 2014; Wu et al., 2014b) problems over the 

last two decades. One of the most important steps in the ANN model 

development process is the selection of appropriate inputs (Galelli et al., 2014; 

Humphrey et al., 2014; Maier et al., 2010; May et al., 2011; May et al., 2008b; 

Wu et al., 2014b).  According to Bowden et al. (2005a), if potential inputs that 

have a pronounced relationship with the modelled output are not included in 

the model, the performance of the resulting model will be compromised. 

Conversely, if redundant or superfluous inputs are included, computational 

efficiency is decreased, calibration becomes more difficult and model 

parameters are less well defined, potentially making model validation in terms 

of physical plausibility, as well as knowledge extraction, problematic 

(Dawson et al., 2014; Galelli et al., 2014; Haimi et al., 2013; Humphrey et al., 

2014; Maier et al., 2010; May et al., 2011; Mount et al., 2013). 

Given the importance and likely impact of input variable selection (IVS), it is 

somewhat surprising that in most studies, ad-hoc approaches are used (Maier 

et al., 2010; Wu et al., 2014b). However, a number of quantitative approaches 

to IVS for ANN water resources models have already been developed and 

utilized, such as sensitivity analysis (Jain et al., 1999; Maier and Dandy, 

1997a), the Gamma test (Agalbjörn et al., 1997; Noori et al., 2011), partial 

mutual information (PMI) (Bowden et al., 2005a), hybrid independent 

component analysis and input variable selection filter (Trappenberg et al., 

2006), principal component analysis (Hu et al., 2007), use of the Box-Jenkins 

method (Box et al., 2013), cross-correlation analysis (Chua and Wong, 2010), 

distributed evaluation of local sensitivity analysis (Rakovec et al., 2014), 

recursive variable selection (RVS) embedded in dynamic emulation models 
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(Castelletti et al., 2012a; Castelletti et al., 2012b), and tree-based iterative 

input variable selection (Galelli and Castelletti, 2013). Among these,  PMI 

IVS is one of the most promising approaches, as it has a number of desirable 

properties, such as the ability to account for input relevance, the ability to 

cater to both linear and non-linear input-output relationships and the ability to 

determine the relative contribution (significance) of selected inputs (May, 

2010). In addition, it has already been applied successfully to a number of 

studies (Bowden et al., 2005a; Bowden et al., 2005b; Fernando et al., 2009; 

He et al., 2011; May et al., 2008a; May et al., 2008b; Wu et al., 2013). 

However, current implementations of PMI IVS approaches are not without 

their limitations. Generally, kernel density estimation (KDE) is used to 

approximate the probability density function (PDF) needed for the calculation 

of MI (Bowden et al., 2005a; Bowden et al., 2005b; He et al., 2011; May et al., 

2008a; May et al., 2008b; Sharma, 2000a, b). One of the reasons for this is 

that simple methods exist for KDE that are a function of only a single 

parameter, the kernel bandwidth, otherwise termed the smoothing parameter 

(Scott, 1992; Wand and Jones, 1995). While many methods exist for 

estimating the bandwidth, in almost all existing PMI IVS studies dealing with 

environmental and water resources problems (e.g. Bowden et al., 2005a,b; 

May et al., 2008a,b; He et al., 2011) the Gaussian reference rule (GRR) is 

used for this purpose. The inherent limitation of this implementation of the 

PMI algorithm is that the input/output data are assumed to follow a Gaussian 

distribution. However, this is unlikely to be the case, as the distribution of 

most environmental and water resources data is generally far from normal.  As 

a result, use of the GRR for determining the bandwidth for the KDE needed 

for MI estimation is likely to result in inaccurate IVS for data that are highly 

non-Gaussian (Galelli et al., 2014; Humphrey et al., 2014), and over-

smoothed bandwidths have been found to result in more accurate MI estimates 

for such data (Harrold et al., 2001). Consequently, there is a need to 

investigate the effectiveness of alternative approaches to estimating the 

bandwidth in PMI IVS so that the performance of this commonly-used 

algorithm can be improved for data that follow non-Gaussian distributions. 
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In order to overcome the limitations of existing PMI IVS implementations 

outlined above, the objectives of the current study are: 1) to assess if, and to 

what degree, the performance of PMI IVS can be improved for data with 

different degrees of normality by using alternative bandwidth estimators with 

reduced reliance on the assumption that the data are normally distributed; and 

2) to develop and test a set of preliminary guidelines for selecting the most 

appropriate bandwidth estimator for data with different degrees of normality. 

Consequently this paper makes a specific contribution in terms of improving 

the performance of the PMI algorithm for data that are encountered most 

commonly in practice. 

The remainder of this paper is organised as follows. A detailed explanation of 

PMI IVS is provided in Section 2, followed by the methodology for meeting 

the objectives in Section 3. The results are presented and discussed in Section 

4. The developed guidelines are validated on the semi-real studies in Section 5, 

before a summary and conclusions are given in Section 6. 

 

3.2 PMI IVS  

Although PMI IVS has been described in Sharma (2000a), Bowden et al. 

(2005a), May et al. (2008b), He et al. (2011), and May et al. (2011), the 

implementation of the KDE in 2-D used in this paper has not been explained 

clearly thus far in this field of research. Consequently, the overall procedure, 

mathematical details, and relevant assumptions of the PMI IVS algorithm 

implemented in this paper are discussed in detail below for the sake of 

completeness. As illustrated in Fig. 3.1, the first step is to procure candidate 

inputs 𝑿  and output(s) 𝑦 from the available data in accordance with an 

understanding of the system.  Let: 𝑿 = [𝑋1…  𝑋𝑚]
𝑇be the input, where 𝑚 is 

the number of inputs; (𝑿𝑗 , 𝑦𝑗) be the observed pairs of input and output data 

for 𝑗 = 1,… , 𝑛, where n is the number of observations, 𝑿𝑗 = [𝑋1
𝑗
… 𝑋𝑚

𝑗
]
𝑇
 are 

the observed input data and 𝑦𝑗 are the observed output data. 
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The second step is to estimate the marginal PDF of each individual input 

𝑓(𝑋𝑖) and the output  𝑓(𝑦) . The PDF is approximated by kernel density 

estimation (KDE) in accordance with  

𝑓(𝑋𝑖) =
1

𝑛
∑ 𝐾ℎ(𝑋𝑖 − 𝑋𝑖

𝑗
)𝑛

𝑗=1                                                                         (3.1) 

The kernel type 𝐾ℎused in Eq. (3.1) is the most commonly used Gaussian 

kernel since the selection of kernel type has negligible impact on the accuracy 

of KDE (May et al., 2008b; Scott, 1992; Wand and Jones, 1995). The 

expression of the 1D Gaussian kernel is 

𝐾ℎ(𝑿) =
1

(√2𝜋|ℎ|)
𝑒𝑥𝑝 (−

𝑿2

2ℎ2
)                                                                      (3.2) 

In Eq. (3.2), ℎ is the univariate kernel bandwidth, which determines the 

accuracy of the KDE (Duong and Hazelton, 2003; Scott, 1992; Wand and 

Jones, 1995). This single dimensional bandwidth, used for the marginal PDF 

estimation, directly contributes to the bandwidth matrix used for the joint PDF 

estimation (as explained later). As mentioned previously, in most studies, the 

Gaussian reference rule (GRR) has been used for the estimation of the kernel 

bandwidth in PMI IVS due to its high computational efficiency, ease of 

implementation, and reasonable stability (Bowden et al., 2005a; He et al., 

2011; Huang and Chow, 2005; May et al., 2008b). 

The third step is to calculate the joint PDF 𝑓(𝑋𝑖, 𝑦) between the i-th input 

and the output, which requires the development of a 2-D bandwidth matrix for 

the joint KDE. The currently used bivariate bandwidth matrix for standardised 

data is 

𝑯 =ℎ𝑖
2 [
𝑆𝑥,𝑖
2 𝑆𝑥𝑦,𝑖

𝑆𝑥𝑦,𝑖 𝑆𝑦
2 ]                                                                                    (3.3) 

where 𝑆𝑥,𝑖
2  is the sample variance of the input 𝑋𝑖 ; 𝑆𝑥𝑦,𝑖  is the covariance 

between input 𝑋𝑖and output 𝑦, 𝑆𝑦
2 is the sample variance of the output y, and 

ℎ𝑖(ℎ𝑖 = ℎ𝑥,𝑖 = ℎ𝑦) is the estimated 1-D kernel bandwidth if the data are 

standardised, or for non-standardised data 
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𝑯 =  [
ℎ𝑥,𝑖
2 𝜌𝑥𝑦,𝑖ℎ𝑥,𝑖ℎ𝑦

𝜌𝑥𝑦,𝑖ℎ𝑥,𝑖ℎ𝑦 ℎ𝑦
2 ]                                                                  (3.4) 

(known as a hybrid class of bandwidth matrix), where 𝜌𝑥𝑦,𝑖 is the correlation 

coefficient between input 𝑋𝑖 and output 𝑦 . According to Wand and Jones 

(1993), the diagonal terms of the bandwidth matrix adjust the shape of the 

joint PDF, while the off-diagonal terms control the orientation. The empirical 

joint density of the 𝑖-th Xi input and the output y can be estimated by the 

Gaussian kernel-based estimator as 

𝑓(𝑋𝑖, 𝑦) =
1

𝑛
∑ 𝐾𝑯 ([

𝑋𝑖
𝑦
] − [

𝑋𝑖
𝑗

𝑦𝑗
])𝑛

𝑗=1                                                            (3.5)  

where the multivariate kernel is given by 

𝐾𝐻(𝑿) =
1

(√(2𝜋)𝑚|𝑯|)
exp [−

1

2
𝑿𝑇𝑯−1𝑿]                                                      (3.6) 

It should be noted that this approximation is commonly known as the Parzen 

window density estimation (Cacoullos, 1966; Parzen, 1962). This is valid, 

however, only if the underlying density is continuous and the first partial 

derivative at any 𝑿 is small.   

According to Shannon (1948), MI is then approximated as 

𝐼𝑋𝑖,𝑦 ≈
1

𝑛
∑ 𝑙𝑜𝑔 [

𝑓(𝑋𝑖
𝑗
,𝑦𝑗 )

𝑓(𝑋
𝑖
𝑗
)𝑓(𝑦𝑗)

]𝑛
𝑗=1                                                                        (3.7) 

(marginal PDFs 𝑓(𝑋𝑖
𝑗
) and 𝑓(𝑦𝑗) are as defined in Eq. (3.1)) in the fourth 

step. The input with the greatest MI value is the most significant input among 

the candidate inputs. The significant inputs are selected by means of these 

four steps during the first run of the algorithm and added to the significant 

input set  𝑋𝑠 , that is, the set is updated to include 𝑋𝑖∗ ∈ 𝑋𝑠  where 𝑖∗ =

𝑎𝑟𝑔𝑚𝑎𝑥{𝐼𝑣𝑖,𝑢}. 

In order to remove any redundant information, RE is required in the fifth step. 

RE is at the core of the ‘partial’ aspect of PMI IVS and the mutual 

information shared between the residual inputs and output is called PMI (the 
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term used after the 1
st
 iteration of the PMI IVS). Typically, a general 

regression neural network (GRNN) (Specht, 1991) is used as the residual 

estimator in PMI IVS (e.g. May et al., 2008b; He et al., 2011). The residual 

estimator is used to update the inputs and output by removing the influence of 

the selected input variables. The updated input is defined as the difference 

between the current value of the unselected inputs 𝑣𝑖 and the estimation of 𝑣𝑖 

based on the selected input 𝑋𝑖∗  and is given by 

𝑣𝑖
𝑗
← 𝑣𝑖

𝑗
− �̂�𝑣𝑖

(𝑋𝑖∗
𝑗
)                                                                                     (3.8) 

where �̂�𝑣𝑖
(𝑋𝑖∗

𝑗
) is the residual estimate of 𝑣𝑖 based on 𝑋𝑖∗which removes the 

shared information between the selected input 𝑋𝑖∗
𝑗
 and the remaining inputs 𝑣𝑖. 

Similarly, the updated output is 

𝑢𝑗 ← 𝑢𝑗 − �̂�𝑢(𝑋𝑖∗
𝑗
)                                                                                    (3.9) 

where  �̂�𝑢(𝑋𝑖∗
𝑗
)  is the residual estimate of 𝑢  based on 𝑋𝑖∗ , which again 

eliminates the shared information between the selected inputs 𝑋𝑖∗ and the 

output 𝑢.  

The sixth step is to judge the selected input against the chosen stopping 

criterion. Potential stopping criteria include bootstrapping, tabulated critical 

values, the Akaike information criterion (AIC), and the Hampel test, as 

discussed and tested in May et al. (2008b). After updating the input and output 

variables based on the selected input variable, the corresponding PMI is 

estimated as 

𝐼𝒗𝒊,𝑢 ≈
1

𝑛
∑ log [

𝑓(𝑣𝑖
𝑗
,𝑢𝑖
𝑗
 )

𝑓(𝑣
𝑖
𝑗
)𝑓(𝑢

𝑖
𝑗
 )
]𝑛

𝑗=1                                                                     (3.10) 

based on Eqs. (3.7), (3.8), and (3.9). If the PMI value of the selected input is 

still significant according to the applied termination criterion, the above steps 

are repeated, as shown in Fig. 3.1, until all significant inputs 𝑋𝑠 have been 

determined.  In this way, the algorithm can accommodate a large number of 

potential input variables, as demonstrated in Fernando et al. (2009). 
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Figure 3.1 Procedure of PMI IVS adopted in this study 

(The superscript is omitted, as all operations are performed over the input data  𝑗 = 1,⋯ , 𝑛) 

 

3.3 Methodology 

The adopted procedure for assessing if, and to what degree, the performance 

of PMI IVS can be improved for data with different degrees of normality by 

using alternative bandwidth estimators is outlined in Fig. 3.2. This proposed 

approach contains three main steps: (i) generation of input/output data for a 
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range of distributions (with different degrees of normality); (ii) estimation of 

the kernel PDF and MI for these data using a number of different kernel 

bandwidth estimators; (iii) assessment of the performance of the IVS process.  

 

 

Figure 3.2 Outline of the proposed experimental approach 
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3.3.1 Generation of input/output data with different degrees of 

normality 

As pointed out by Galelli et al. (2014), the accuracy of IVS algorithms can 

only be assessed in an objective and rigorous manner if the correct outputs are 

known.  Consequently, input data with different degrees of normality were 

generated from distributions with differing degrees of normality, and the 

corresponding output data were obtained by substituting the generated inputs 

into synthetic models. Seven distinct distributions were used for input data 

generation, including normal (NORM), log-normal (LOGN), exponential 

(EXP), gamma (GAMMA), Pearson type III (PT3), log-Pearson type III 

(LOGPT3), and extreme value type I (EVT1), as these are the most commonly 

adopted distributions in hydrological modelling (Chow et al., 1988). The 

degree of normality of the input/output data was measured using skewness 

and kurtosis in accordance with Bennett et al. (2013). The properties of each 

distribution are listed in Table 3.1 and 3.2. Although time series of different 

lengths (i.e. 500, 1,000, and 2,000) were considered in preliminary tests, their 

impact on the results was found to be insignificant. Therefore 500 data points 

were generated and the first additional 25 points were rejected in order to 

prevent initialisation effects (May et al., 2008b). 

Table 3.1 Details of the distributions used to generate values of the exogenous input 

variables and the statistical properties of the generated data for all time series models 

(EAR4, TEAR10) 

Distribution Key Parameters s k Normality 

NORM Mean=3.0; sd =1.0 0.000 -0.013 High 

GAMMA Shape=2.0; Scale=1.0 1.370 2.638 High 

LOGN Mean=0.5; sd=1.0 5.326 53.694 Low 

EXP Rate=1.0 2.132 7.219 Moderate 

PT3 Shape=2.5; Scale=3.0; Location=2.0 1.251 2.381 High 

LOGPT3 Shape=0.5; Scale=0.2; Location=2.0 4.792 43.265 Low 

EVT1 Shape=0.0; Scale=0.5; Location=10.0 1.198 2.880 High 

 

(The skewness and kurtosis shown in the table are the averaged values of all input and output 

data) 
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Table 3.2 Details of the distributions used to generate values of the input variables and 

the statistical properties of the generated data  for the non-linear model (NL) 

Distribution Key Parameters s k Normality 

NORM Mean=3.0; sd =1.0 1.826 5.158 High 

GAMMA Shape=2.0; Scale=1.0 10.520 192.091 Low 

LOGN Mean=0.5; sd=0.4 5.389 47.767 Low 

EXP Rate=1.0 14.029 334.408 Low 

PT3 Shape=0.5; Scale=1.0; Location=0.5 16.271 514.270 Low 

LOGPT3 Shape=0.5; Scale=0.2; Location=0.5 14.261 390.522 Low 

EVT1 Shape=0.1; Scale=0.0; Location=10.0 1.788 9.807 Moderate 

 

(The skewness and kurtosis shown in the table are the averaged values of all input and output 

data) 

 

The three synthetic models used for generating the known outputs, given a set 

of inputs, included a linear exogenous auto-regressive time series model 

(EAR4), a threshold exogenous auto-regressive time series model (TEAR10), 

and a non-linear input-output function (NL), as they are representative of 

general water engineering problem scenarios with increasing degrees of 

problem non-linearity and are based on those used for this purpose in previous 

studies (Bowden et al., 2005b; Galelli and Castelletti, 2013; Li et al., 2014b; 

May et al., 2008b). The equation of the EAR4 model is given by  

 𝑥𝑡 = 0.6𝑥𝑡−1 − 0.4𝑥𝑡−4 + 𝑝𝑡−1 + 0.1𝜀𝑡                                                  (3.11)  

where  𝑥𝑡  stands for the output time series; 𝑥𝑡−𝑛  represents the input time 

series with lag 𝑛; 𝑝𝑡−𝑛  is the exogenous input with lag 𝑛; and 0.1𝜀𝑡  is the 

introduced error term (as explained later).  The equation for the TEAR10 

model is given by 

𝑥𝑡 = {
−0.5𝑥𝑡−6 + 0.5𝑥𝑡−10 − 0.3𝑝𝑡−1 + 0.1𝜀𝑡;   𝑥𝑡−6 ≤ 0

0.8𝑥𝑡−10 − 0.3𝑝𝑡−1 + 0.1𝜀𝑡;  otherwise
                      (3.12) 

and the equation for NL is given by 

𝑦 = (𝑥2)
3 + 𝑥6 + 5 sin(𝑥9) + 0.1𝜀𝑡                                                         (3.13) 

The first two synthetic models (Eqs. (3.11) and (3.12)) were modified from 

those used May et al. (2008b) through the introduction of an independent 

lagged input 𝑝𝑡−1 into all exogenous AR models, and the 𝑝𝑡−1 were sampled 
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from the distributions outlined in Table 3.1. The third synthetic model (Eq. 

(3.13)) was modified from the one used in Bowden et al. (2005a) through a 

slight adjustment of the significance (coefficient) of each input, and each 

input was sampled based on the distributions outlined in Table 3.2. For all 

three synthetic models, the error term 0.1𝜀𝑡  was added to introduce noise 

without obscuring the influence of the actual independent variables. The noise 

term 𝜀𝑡 followed a standard normal distribution 𝑁(0,1). In addition, for each 

synthetic model, 22 redundant or irrelevant input variables of different lags 

were included, so that the effectiveness of PMI IVS could be tested. 

3.3.2 Estimation of PDF and MI using different bandwidth 

estimators 

The kernel bandwidths used to estimate the PDF and MI for the synthetic and 

semi-real data sets were approximated by six different bandwidth estimators, 

including the Gaussian reference rule (GRR), biased cross validation (BCV), 

2-stage direct plug-in (DPI), a combination of BCV and DPI (BCVDPI), 

smoothed cross validation (SCV) and single variable optimisation (SVO) (Fig. 

3.2). These bandwidth estimators were selected because they have distinct 

dependence on the Gaussian assumption. The mathematical details of each 

method are given in the following sections.  

Gaussian reference rule (GRR) As the most commonly used bandwidth 

estimator, the GRR is applied as the benchmark approach in this study. It 

approximates the bandwidth by minimising the asymptotic mean integrated 

squared error (AMISE) between the unknown probability function 𝑓 of the 

given data and the KDE 𝑓(∙; ℎ) under the integrability assumption of f, in 

accordance with Scott (1992) and Wand and Jones (1995). The expression of 

AMISE is given as 

AMISE{𝑓(∙; ℎ)} = (𝑛ℎ)−1𝑅(𝐾) +
1

4
ℎ4𝜇2(𝐾)

2𝑅(𝑓′′)̃                              (3.14) 

where 𝐾 is the kernel function; 𝑅(𝐾) is the integrated square of the kernel 

function; 𝜇2(𝐾)  is the second moment of 𝐾 ; and 𝑅(𝑓′′)̃  is the integrated 

squared second derivative of 𝑓 . According to Wand and Jones (1995), 
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although it is ideal to determine the bandwidth by directly investigating the 

mean squared error (MSE) (summation of bias and variance), its expression 

depends on the bandwidth in a complicated way, which makes it difficult to 

interpret the impact of the bandwidth on the performance of the KDE. 

Consequently, AMISE was developed with consideration of the bias and the 

variance of the approximated kernel density function {𝑓(∙; ℎ)} (assuming that 

the bandwidth approaches 0 at a rate slower than 𝑛−1 and 𝐾 has a finite 4
th

 

moment and symmetry about origin) to overcome such issues and the optimal 

univariate bandwidth with respect to the AMISE can be derived as 

ℎ̂𝐺𝑅𝑅,𝑖 = (
3

4
)

1

5
𝜎𝑛

−1

5                                                                                     (3.15) 

by assuming that the data follow a Gaussian distribution and by adopting a 

Gaussian kernel. A detailed derivation of Eq. (3.15) is given in Wand and 

Jones (1995) and Scott (1992). The detailed derivation is also given in 

APPENDIX-B B.1.   

Biased cross validation (BCV) Although the BCV based bandwidth 

estimator also minimises the AMISE, and depends on the Gaussian 

assumption through minimising the AMISE under the assumption of normally 

distributed data, it is a combination of a cross-validation and ‘plug-in’ 

approach, which is potentially more stable than the GRR (Scott and Terrell, 

1987) as its asymptotic variance is considerably lower. The BCV is achieved 

via replacing the unknown 𝑅(𝑓′′)̃  in Eq. (3.14) by a cross-validation kernel 

estimator 𝑅(𝑓′′)̃ = 𝑛−2∑∑ (𝐾′′ ∗ 𝐾′′)(𝑋𝑖
𝑝 − 𝑋𝑖

𝑞)𝑝≠𝑞  and the optimal 

bandwidth is then determined by minimising the approximation of the AMISE 

with the cross-validation term.  Therefore its expression is given as 

ℎ̂𝐵𝐶𝑉,𝑖 = 𝑎𝑟𝑔𝑚𝑖𝑛ℎ {(𝑛ℎ)
−1𝑅(𝐾) +

1

4
ℎ4𝜇2(𝐾)

2𝑛−2∑∑ (𝐾′′ ∗ 𝐾′′)(𝑋𝑖
𝑝 −𝑝≠𝑞

𝑋𝑖
𝑞)}                                                                                                          (3.16) 

where 𝐾′′ denotes the second derivative of kernel 𝐾 and ∗ is the convolution 

operation and the golden section search (GSS) method (Press et al., 1992) was 
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applied for the purpose of univariate optimisation in the current study. A 

detailed derivation of Eq. (3.16) is given in Wand and Jones (1995). 

2-stage direct plug-in (DPI) As with the GRR and BCV based approaches, 

the DPI estimates the optimal bandwidth by minimising the AMISE.  For 

univariate KDE, the optimal bandwidth for Eq. (3.14) can be derived as 

[
𝑅(𝐾)

𝜇2(𝐾)2𝑅(𝑓′′)̃ 𝑛
]

1

5
 in accordance with Wand and Jones (1995). The DPI is then 

established through replacing the unknown 𝑅(𝑓′′)̃  in [
𝑅(𝐾)

𝜇2(𝐾)2𝑅(𝑓′′)̃ 𝑛
]

1

5
 by a pilot 

kernel estimation of the 𝑟-th order integrated squared density derivative �̂�𝑟(𝑔) 

(where 𝑔 is the pilot kernel bandwidth; 𝐿 is the pilot kernel; and 𝑟 is the stage 

number), according to Park and Marron (1992). Hence the univariate 

bandwidth estimator of DPI becomes 

ℎ̂𝐷𝑃𝐼,𝑖 = [
𝑅(𝐾)

𝜇2(𝐾)2�̂�4(𝑔)𝑛
]

1

5
                                                                              (3.17) 

where �̂�4(𝑔) is the fourth order integrated squared density derivative, which 

is approximated by the pilot kernel 𝐿  with a pilot bandwidth 𝑔 (Hall and 

Marron, 1987; Jones and Sheather, 1991). Although the pilot kernel 𝐿 can be 

identical to the Gaussian kernel  𝐾 , the pilot bandwidth 𝑔  is estimated by 

minimising the asymptotic mean squared error (AMSE), resulting in 

𝑔 = [
𝐾!𝐿(𝑟)(0)

−𝜇𝑘(𝐿)�̂�𝑟+𝑘(𝑔)𝑛
]

1

𝑟+𝑘+1
                                                                           (3.18) 

where 𝑘 represents the order of the pilot kernel 𝐿 (normally 𝑘 = 2); 𝑟 is the 

stage number of 𝐿; and 𝜇𝑘(𝐿) is the 𝑘-th moment of 𝐿. Although the stage 

number 𝑟 determines how many kernel estimations are required to 

approximate �̂�4(𝑔) based upon the higher order integrated squared density 

derivative and more stages can result in a better estimation, determination of 

the optimal stage number is not trivial and there is a trade-off between an 

increase in accuracy and computational efficiency (Wand and Jones, 1995).  

Consequently, the stage number used for the current study was two, as 

suggested by Aldershof (1991) and Park and Marron (1992), which results in 
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a desirable balance between the effectiveness and computational cost of the 

pilot kernel. The motivation behind the DPI is that the dependence of the 

Gaussian assumption is attenuated by introducing the pilot kernel estimation 

with 𝑟 > 0 , which makes the estimation more sensitive to the actual 

distribution. In fact, the GRR can be treated as a special case of the DPI with 

𝑟 = 0 (see APPENDIX-B B.1). A detailed derivation of Eqs. (3.17) and (3.18) 

can be found in Wand and Jones (1995), which can also be illustrated in 

APPENDIX-B B.1. 

Combination of BCV and DPI (BCVDPI) The BCVDPI is simply a 

combination of the BCV and the DPI based approaches. The motivation 

behind this method is to maintain the advantage of low asymptotic variance in 

BCV, while adding the feature of reduced Gaussian dependence from the pilot 

kernel estimator used in DPI. Hence, the BCVDPI is implemented by 

replacing the cross-validation kernel estimator 𝑛−2∑∑ (𝐾′′ ∗ 𝐾′′)(𝑋𝑖
𝑝 −𝑝≠𝑞

𝑋𝑖
𝑞) in ℎ̂𝐵𝐶𝑉,𝑖 (Eq. (3.16)) with the �̂�4(𝑔) used in ℎ̂𝐷𝑃𝐼,𝑖 (Eq. (3.17)), resulting 

in the following expression  

ℎ̂𝐵𝐶𝑉𝐷𝑃𝐼,𝑖 = 𝑎𝑟𝑔𝑚𝑖𝑛ℎ {(𝑛ℎ)
−1𝑅(𝐾) +

1

4
ℎ4𝜇2(𝐾)

2�̂�4(𝑔)𝐷𝑃𝐼}                 (3.19) 

As such, the BCVDPI inherits the reduced dependence on the Gaussian 

assumption from the ‘plug-in’ term �̂�4(𝑔)  and the optimal bandwidth is 

approximated by minimising the AMISE, which was obtained for the 

BCVDPI in this study by optimisation with the GSS.  

Smoothed cross validation (SCV) Although the concept behind the SCV 

based bandwidth estimator is similar to that underpinning the aforementioned 

four approaches, SCV aims to minimise the exact MISE (EMISE), rather than 

the AMISE used in the other four methods. The main difference between the 

EMISE and AMISE is that the former estimates MISE as a summation of the 

exact integrated squared bias and the approximation of the integrated variance 

of 𝑓(∙; ℎ), while the later approximates MISE by integrating MSE (summation 

of bias and variance) with the integrability assumption and the asymptotic 

feature of the integrated squared bias. The EMISE derived for SCV is given as 
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EMISE𝑆𝐶𝑉,𝑖(ℎ) = (𝑛ℎ)−1𝑅(𝐾) + 𝐼𝑆�̂�(ℎ)                                                 (3.20) 

where the integrated squared bias 𝐼𝑆�̂�(ℎ) is estimated by 

𝐼𝑆�̂�(ℎ) = 𝑛−2∑ ∑ (𝐾ℎ ∗ 𝐾ℎ ∗ 𝐿𝑔 ∗ 𝐿𝑔 − 2 ∗ 𝐾ℎ ∗ 𝐿𝑔 ∗ 𝐿𝑔 + 𝐿𝑔 ∗
𝑛
𝑞=1

𝑛
𝑝=1

𝐿𝑔) (𝑋𝑖
𝑝 − 𝑋𝑖

𝑞)                                                                                            (3.21) 

where 𝐾ℎ and 𝐿𝑔 are the Gaussian kernels with kernel bandwidth ℎ and pilot 

kernel bandwidth 𝑔, respectively (Hall et al., 1992; Wand and Jones, 1995). 

𝑔 is a function of a series of pilot kernel bandwidths, each estimated based 

upon sequentially higher order integrated squared density derivatives, and up 

to the 10
th

  order was applied in this study based on Wand and Jones (1995). 

The SCV based optimal univariate bandwidth is then determined as 

ĥSCV,i = argminh{EMISESCV,i(h)}                                                           (3.22) 

A detailed derivation of Eq. (3.22) can be found in Wand and Jones (1995), 

which is also given in APPENDIX-B B.1. Although the dependence on the 

Gaussian assumption of SCV is also reduced by introducing the pilot kernel 

estimation, which is similar to that of the DPI, the predictive accuracy of the 

former is expected to be the same as or better than that of the latter due to 

minimising EMISE, rather than AMISE.  

Single variable optimisation (SVO) Unlike the five estimators mentioned 

above, SVO, developed in this paper, determines the best bandwidth by 

minimising the Kolmogorov-Smirnov (K-S) statistic (Parsons and Wirsching, 

1982) between the empirical and estimated CDFs. This method does not 

depend on the Gaussian assumption, nor the approximation of the MISE. The 

optimal univariate kernel bandwidth is determined as 

ℎ̂𝑆𝑉𝑂,𝑖 = 𝑎𝑟𝑔𝑚𝑖𝑛ℎ{𝑠𝑢𝑝𝑗=1…𝑛|𝐹𝑒𝑚𝑝(𝑋𝑖
𝑗
) − 𝐹𝑒𝑠𝑡(𝑋𝑖

𝑗
)|}                             (3.23) 

where𝐹𝑒𝑚𝑝(𝑋𝑖
𝑗
) is the empirical CDF of the input variable estimated by a 

histogram; 𝐹𝑒𝑠𝑡(𝑋𝑖
𝑗
) is the estimated kernel-based CDF of the input variable; 

and 𝑠𝑢𝑝 represents the supremum function. The adopted optimiser was the 
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GSS. The performance of the empirical histogram is a function of the 

histogram bin width, therefore a number of bin widths (from 0.001 to 1.0) 

were tested via sensitivity analysis. Although alternative ways can be used to 

estimate the histogram bin width for each case, the results of the sensitivity 

analysis (as shown in APPENDIX-B Figs. B.2.4 to B.2.6) suggest that a bin 

width of 0.01 was adequate for the purposes of this study. 

It should be noted that the introduced kernel bandwidth estimators were 

implemented directly for the estimation of the univariate marginal PDF, which 

then extended to the bivariate joint PDF in conjunction with the bandwidth 

matrix, as mentioned in Section 2 (as in Eqs. (3.3) to (3.6)). 

3.3.3 Performance assessment 

As mentioned in the Introduction and described in Fig. 3.2, PMI performance 

was assessed based on selection accuracy and computational efficiency. 

Selection accuracy was characterised by the correct selection rate (CSR), 

which corresponds to the percentage of times the correct inputs are selected in 

the 30 independent trials with different instances of a particular data set, as 

was done in May et al. (2008b) and Galelli and Castelletti (2013). In addition, 

the degree of over- and under-estimation of the correct inputs was also 

assessed, in order to provide additional information on selection accuracy (see 

Galelli et al., 2014). 

Computational efficiency was measured using the average CPU time 

(measured by a dual processor 2.6 GHz Intel Machine).  

3.3.4 Test regime 

The software used for conducting the numerical experiments was coded in 

Fortran 90/95 and run on a Linux 2.6.32.2 operating system. As outlined in 

Fig. 3.2, 630 synthetic data sets were generated, which consisted of a 

combination of 30 replicates, for each of the three synthetic models with input 

data generated from the seven distributions. For the 630 data sets, each of the 
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6 different kernel bandwidth estimators was used for KDE, resulting in a total 

of 3,780 tests for the synthetic case studies.   

The residual estimation required for PMI estimation (see Section 2) was 

carried out using a GRNN, as was the case in previous studies (e.g. Bowden et 

al., 2005a; May et al., 2008b; Fernando et al., 2009). The empirical guidelines 

proposed by Li et al. (2014b) for identifying the most appropriate bandwidth 

estimation approach based on the distributional properties of the data were 

used in order to isolate the impact of different bandwidth estimators for 

residual estimation on IVS accuracy as much as possible.  Details of the 

GRNN bandwidth estimators used for the different datasets resulting from the 

application of these empirical guidelines are given in Table 3.3. 

Table 3.3 GRNN bandwidth estimation techniques used for residual estimation during 

the PMI IVS process (based on the guidelines from Li et al. (2014b)) 

Synthetic data set  1 EAR4 

Data distribution NORM EVT1 PT3 GAMMA EXP LOGN LOGPT3 

Bandwidth estimator GRR GRR GRR GRR GRR SVCS SVCS 

Synthetic data set 2 TEAR10 

Data distribution NORM EVT1 PT3 GAMMA EXP LOGN LOGPT3 

Bandwidth estimator GRR GRR GRR GRR GRR SVCS SVCS 

Synthetic data set 3 NL 

Data distribution NORM EVT1 LOGN PT3 EXP LOGPT3 GAMMA 

Bandwidth estimator GRR GRR SVCS SVCS SVCS SVCS SVCS 

 

(GRR denotes for Gaussian reference rule; SVCS stands for single variable calibration with 

squared error based fitness function) 

 

The Akaike Information Criterion (AIC) (Akaike, 1974) was used as the 

stopping criterion (i.e. to decide when to stop adding inputs to the selected set) 

because it offers a trade-off between model accuracy and generalisation ability 

(Akaike, 1974; Bennett et al., 2013; Dawson et al., 2007; May et al., 2008b), 

has been found to perform well compared with alternative stopping criteria 

(May et al., 2008b) and has been successfully applied to a number of previous 

studies using PMI IVS (e.g. May et al., 2008a,b; He et al., 2011; Wu et al., 

2013).  The AIC stopping criterion for PMI IVS is computed as 
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𝐴𝐼𝐶 = 𝑛 × 𝑙𝑛 [
1

𝑛
∑ (𝑦𝑗 − �̂�𝑗)2𝑛
𝑗=1 ] + 2𝑒                                                     (3.24) 

where �̂�𝑗 denotes the estimated output and 𝑒 is the number of effective inputs, 

measured by the trace of the 𝑛 × 𝑛 hat-matrix in KDE (May et al., 2008b). 

The performance of all 3,780 synthetic tests was assessed against the 

performance criteria detailed in Section 3.3. 

 

3.4 Results and discussion 

Within the following, Section 4.1 focuses on assessing the selection accuracy 

of the PMI- IVS methods with different bandwidth estimators applied to the 

synthetic data sets, and Section 4.2 focusses on computational efficiency. The 

empirical guidelines for the selection of the most appropriate bandwidth 

estimators for PMI IVS are presented in Section 4.3. 

3.4.1 Selection accuracy  

The accuracy of the PMI algorithm with alternative bandwidth estimators for 

the three synthetic models is summarised in Figs. 3.3, 3.4 and 3.5.  As can be 

seen from Fig. 3.3, for the EAR4 model, the use of alternative bandwidth 

estimators did not result in any significant improvement in CSR when the 

input/output data followed Gaussian or nearly Gaussian distributions 

(average 𝑠 < 1.3 and 𝑘 < 3; i.e. NORM, EVT1, and PT3). For instance, the 

CSRs when the GRR was used were all above 96.7% for the NORM, EVT1, 

and PT3 distributions, indicating very high selection accuracy. This result can 

be explained by the fact that the alternative bandwidth estimators did not 

provide a significant improvement in KDE accuracy compared with the GRR, 

as assessed using the Kolmogorov-Smirnov (K-S) statistic (Parsons and 

Wirsching, 1982), as shown in Figs. 3.6(a), 3.6(b) and 3.6(c). This is not 

surprising, as the Gaussian assumption used in the KDE is consistent with the 

actual input/output data distributions, which resulted in an insignificant 

difference between the empirical and estimated CDFs (Figs. 3.6(a), 3.6(b) and 

3.6(c)). To better understand the causes for these findings, the predictive 
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accuracy of the GRNN models used for residual estimation at each step of the 

PMI process was assessed using the coefficient of efficiency (CE) (Fig. 3.7), 

which measures the difference in predictive performance of the model and a 

model that only contains the mean of the observations (Bennett et al., 2013). 

As can be seen, the predictive accuracy of the GRNN models was very high, 

as indicated by CE values close to 1. Consequently, errors in residual 

estimation were unlikely to contribute to any inaccuracies in PMI IVS.     

For data that were moderately non-Gaussian (average 1.3 <  𝑠 < 5 and 3 <

 𝑘 < 30; i.e. GAMMA and EXP), the alternative bandwidth estimators (DPI, 

BCVDPI, SCV, and SVO) increased the CSR (Fig. 3.3). For example, for data 

following the EXP distribution, use of the GRR resulted in a CSR of 86.7%, 

whereas the CSRs for the alternative bandwidth estimators were much higher 

at 96.7% (SVO), 93.3% (SCV and DPI) and 90.0% (BCVDPI). As can be 

seen from Figs. 3.3, 3.6(e), and 3.6(f), the trend in improvement in CSR for 

the different bandwidth estimation techniques is matched by a similar trend in 

KDE accuracy, suggesting that the improved KDE has a direct impact on CSR. 

This is because the DPI, BCVDPI, SCV, and SVO based estimators have a 

reduced dependence on the assumption that the data follow a Gaussian 

distribution compared with the GRR. As was the case for the data that 

followed mildly non-Gaussian distributions, the accuracy of the GRNNs used 

for residual estimation was very high (Fig. 3.7), suggesting that the residual 

estimation step in the PMI process was unlikely to have any negative impact 

on CSR.      

When the average distributions of the input/output data were extremely non-

Gaussian (average 𝑠 > 5 and 𝑘 > 30; i.e. LOGN and LOGPT3), use of the 

alternate bandwidth estimators still resulted in a noticeable improvement in 

CSR (Fig. 3.3). However, this improvement was less pronounced for the most 

extreme distribution (LOGPT3), increasing CSR from 43.3% when the GRR 

was used to just over 60% when the DPI, BCVDPI, SCV and SVO were used.  

This is significantly lower than the CSR (over 90%) obtained for all other 

distributions.  The reason for this is likely to be a combination of inaccuracy 

in KDE, as well as residual estimation.  As can be seen in Fig. 3.6(g), 
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although the use of SVO resulted in improved KDE, the K-S statistic is still 

outside the 95% confidence limits.  In addition, there are significant errors in 

residual estimation, as shown in Fig. 3.7, even though the bandwidth estimator 

was based on the empirical guidelines suggested by Li et al. (2014b). As seen 

in the LOGN and LOGPT3 boxplots in Fig. 3.7, despite the relatively high 

median, very low CE values were obtained for some of the 30 trials, which is 

likely to have a negative impact on CSR. These residual estimation 

inaccuracies are most likely caused by boundary issues (Scott, 1992; 

Karunamuni and Alberts, 2005), as discussed in Li et al. (2014b), which occur 

when a symmetrical kernel is applied at a bounded and unsymmetrical 

boundary, resulting in an under-estimated density near the boundary. 

It should also be noted that while the results suggest that improved accuracy 

in KDE results in improved PMI selection accuracy, consideration of the 

average ratio of the bandwidths of the 30 replicates used in the MI calculation 

(see Eq. (3.25)) is also informative.   

𝑅𝑎𝑡𝑖𝑜 𝑜𝑓 𝑡ℎ𝑒 𝑏𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ𝑠 =
ℎ̂𝑝𝑟𝑜,𝑖

ℎ̂𝐺𝑅𝑅,𝑖
                                                          (3.25)  

where  ℎ̂𝑝𝑟𝑜,𝑖  stands for the estimated bandwidth based on the proposed 

bandwidth estimators and ℎ̂𝐺𝑅𝑅,𝑖 is the estimated bandwidth based on the GRR 

(Eq. (3.15)). As part of an empirical study on the effect of different bandwidth 

ratios on the accuracy of MI estimation, Harrold et al. (2001) found that for 

highly non-Gaussian data, an over-smoothed bandwidth performs best, with 

an optimal bandwidth ratio of 1.5.  This general finding is confirmed by the 

results of this study (Table 3.4), which show that bandwidth ratios increase 

with the degree of non-Gaussianity for the bandwidth estimators that result in 

more accurate KDE. In addition, the GRR based PMI IVS is found to mainly 

underestimate the correct number of significant inputs (shown in APPENDIX-

B, Fig. B.2.1) for the non-Gaussian cases (e.g. LOGN and LOGPT3), which is 

consistent with the results (i.e. NL and Bank cases) in Galelli et al. (2014). 

This can be ascribed to the underestimated bandwidth, as the severity of 

underestimating the correct number of significant inputs is proportional to the 

bandwidth ratio outline in Table 3.4. However, alternative bandwidth 

estimators (i.e. DPI, BCVDPI, SCV, and SVO) tend to correct such 
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underestimation with increased bandwidths, which sometimes even result in 

slight overestimation. 

Table 3.4 Average ratio of different kernel bandwidths under different distribution 

scenarios for EAR4 model 

 
NORM EVT1 PT3 GAMMA EXP LOGN LOGPT3 

GRR - - - - - - - 
BCV 0.964 0.954 0.997 0.984 1.033 1.007 0.997 
DPI 0.958 0.886 1.039 0.971 1.265 1.716 1.804 

BCVDPI 0.958 0.886 1.039 0.971 1.265 1.716 1.804 
SCV 0.971 0.856 1.046 0.967 1.268 1.737 1.804 
SVO 0.493 0.418 0.810 0.791 1.190 1.399 1.497 

 

(The average ratio is between each of the alternative kernel bandwidth estimators and the 

GRR) 

 

The general trends observed for the EAR4 model were confirmed by those 

obtained for the TEAR10 and NL models, except for the comparatively low 

accuracy when SVO was used for the NORM and LOGPT3 distributions for 

the data generated from the TEAR10 model and the overall reduction in CSR 

for the data generated from the NL model. Even the alternative bandwidth 

estimators (i.e. DPI, BCVDPI, SCV, and SVO) were found to tend to 

underestimate the correct number of significant inputs, as shown in 

APPENDIX-B Fig. B.2.3. This observation is likely to be the result of the 

combined effect of the reduced KDE and residual estimation accuracy due to 

boundary issues, particularly influenced by increased problem non-linearity, 

as discussed below. For example, the non-Gaussianity of the NL model, as 

measured by skewness and kurtosis, is much more severe than that of the 

EAR4 and TEAR10 models (as shown in Tables 3.1 and 3.2), suggesting 

increased potential impact of boundary issues on KDE and residual estimation. 

For kernel based PDF and MI estimation, the corresponding accuracy of the 

KDE of the NL model is generally slightly worse than that of the EAR4 and 

TEAR10 models, as indicated by the K-S values in Figs. 3.6 and 3.8. For 

residual estimation, the overall accuracy of the NL model was found to be 

significantly less than that of the EAR4 model, as shown in Figs. 3.7 and 3.9. 

This can be explained by the fact that the univariate GRNN used for residual 

estimation is essentially a Nadaraya-Watson regression and therefore the 

corresponding bias is a function of the regression function  𝑚(𝑋𝑖) and the 

probability density function 𝑓(𝑋𝑖) with respect to input 𝑋𝑖. According to Fan 
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(1992), Ruppert and Wand (1994), and Masry (1996), this bias increases as 

the boundary issue becomes severe. Consequently, the accuracy of residual 

and PMI estimation is likely to be compromised as the influence of boundary 

issues increases with increasing problem non-linearity and non-normality. 

 
Figure 3.3 Correct selection rate of EAR4 model with alternative bandwidth estimators 

 

 
Figure 3.4 Correct selection rate of TEAR10 model with alternative bandwidth 

estimators 

 

 
Figure 3.5 Correct selection rate of NL model with alternative bandwidth estimators 
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Figure 3.6 KDE accuracy measured by K-S statistics for EAR4 & TEAR10 models  

 (The dashed line indicates the  95% confidence interval for kernel density estimation based 

on the Kolmogorov-Smirnov (K-S) statistic (Parsons and Wirsching, 1982)) 
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Figure 3.6 (Continued) 
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Figure 3.7 Residual accuracy measured by CE for EAR4 model  

 

 

 

Figure 3.8 KDE accuracy measured by K-S statistics for NL model 

 (The dashed line indicates the  95% confidence interval for kernel density estimation based 

on the Kolmogorov-Smirnov (K-S) statistic (Parsons and Wirsching, 1982)) 
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Figure 3.8 (Continued) 

 
Figure 3.9 Residual accuracy measured by CE for NL model  

 

 

 
Figure 3.10 Computational efficiency of EAR4 model with different bandwidth 

estimators 
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3.4.2 Computational efficiency 

The computational efficiency of different bandwidth estimators used for the 

EAR4 model is given in Fig. 3.10. The GRR based method was found to be 

the most efficient overall. This can be explained by the fact that the only 

unknown parameter is the size of the applied data after standardisation (May 

et al., 2008b). The computational expense of the BCV approach was close to 

that of the GRR because the fitness functions used are identical, although the 

BCV requires an additional iterative optimisation process. The average 

runtimes for both DPI and BCVDPI were double that required by the GRR. 

This is because of the additional time required for the estimation of the pilot 

bandwidths during each iteration of the MI estimation (Wand and Jones, 

1995). The efficiency of using SVO for bandwidth estimation is significantly 

less than that of the methods discussed thus far, with an average runtime of 

667s, which is over 110 times greater than that associated with the GRR. The 

increased computational requirements of SVO are a result of the need to 

estimate the fitness function for each trial bandwidth during the optimisation 

process. Use of the SCV method was most inefficient, with an average 

runtime of over 160 times greater than that for the GRR. The inefficiency of 

SCV can be ascribed to the need to approximate a high order integrated 

squared density derivative during each iteration of the MI estimation (Wand 

and Jones, 1995), as well as the optimisation searching process. These 

findings were supported by the results for the TEAR10 and NL models (See 

Figs. B.2.7 and B.2.8 in APPENDIX-B). 

 

3.4.3 Suggested rules and guidelines 

The preliminary empirical guidelines for selecting the most appropriate kernel 

bandwidth estimation technique based on the degree of normality of the data 

(according to the findings of the 3,780 computational experiments with the 

synthetically generated data) are given in Fig. 3.11. It should be noted that the 

proposed guidelines represent reasonable trade-offs between selection 

accuracy and computational efficiency, although it is acknowledged that the 
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best trade-off is also a function of case-study dependent features and user 

preferences.   

As can be seen in Fig. 3.11, the preliminary empirical guidelines can be 

categorised into three scenarios, as described below:  

Scenario 1: If most of the input/output data follow Gaussian or nearly 

Gaussian distributions (average s<1.3 and k<3) ,  the GRR is suggested for 

residual estimation and the GRR (or BCV) is recommended for MI estimation, 

as these methods are able to provide good selection accuracy at a 

comparatively greater computational efficiency.  

Scenario 2: If the input/output data are mainly moderately non-Gaussian 

(average 1.3<s<5 and 3<k<30), the GRR is suggested for residual estimation 

and the DPI (or BCVDPI) is recommended for MI estimation, so that 

selection accuracy can be improved with only a small reduction in 

computational efficiency, in comparison with using the GRR and BCV.  

Scenario 3: If the input/output data are mainly extremely non-Gaussian 

(average s>5 and k>30), the SVC is suggested for residual estimation and the 

DPI (or BCVDPI) is recommended for MI estimation. While these methods 

will decrease computational efficiency significantly, they are also likely to 

result in a marked increase in selection accuracy. 
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3.5 Testing of proposed rules and guidelines 

The rules and guidelines proposed in Section 4.3 were tested on two semi-real 

case studies, including the estimation of salinity in the River Murray in South 

Australia 14 days in advance (Bowden et al., 2005b; Fernando et al., 2009; 

Kingston et al., 2005a; Li et al., 2014b; Maier and Dandy, 1996) and the 

prediction of flow in the Kentucky River Basin in the USA one day in 

advance (Bowden et al., 2012; Jain and Srinivasulu, 2004; Li et al., 2014b; 

Srinivasulu and Jain, 2006; Wu et al., 2013).  The case studies are semi-real in 

the sense that actual input data are used, but that the corresponding output 

data are generated using a trained ANN model.  The adoption of semi-real 

case studies enabled the benefits of utilising measured input data (i.e. not 

generated from a known distribution) to be combined with those of having 

known outputs, thereby enabling the performance of IVS methods to be tested 

in an objective and rigorous manner, as suggested by Galelli et al. (2014) and 

Humphrey et al. (2014). Details of each semi-real case study are given in the 

subsequent sections. 

River salinity at Murray Bridge 

The study area of the first semi-real case is illustrated in Fig. 3.12. According 

to Maier and Dandy (1996), river salinity at Murray Bridge 14 days in 

advance (𝑀𝐵𝑆 + 13 ) is a function of the salinity at Mannum, Morgan, 

Waikerie and Loxton and the river level at Lock 1, given a specified lag time 

(i.e., river salinity: MAS-1, MOS-1, WAS-1, WAS-5, LOS-1 and river level: 

L1UL-1 at locations specified in Table 3.5). Consequently, these six inputs 

were used to generate the corresponding outputs ( 𝑀𝐵𝑆 + 13 ). Other 

redundant or irrelevant candidate inputs listed in Table 3.5 were also 

introduced for the purpose of testing the effectiveness of PMI IVS. 

 

 

 



CHAPTER 3 JOURNAL PAPER 2 

 

95 

 

 

 

 

 

Figure 3.12 The River Murray in South Australia (Maier and Dandy, 1996) 
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In order to generate the known outputs from the real inputs, standard 

multilayer perceptron (MLP) artificial neural networks (ANNs) were 

developed using the approach outlined in Wu et al. (2014).  The historical 

records from 1987 to 1990 were split into training (60%), testing (20%) and 

validating sets (20%) using the DUPLEX method (May et al., 2010), in 

accordance with the guidelines suggested by Wu et al. (2013). A single hidden 

layer was used and the optimal number of hidden nodes was determined by 

trial and error, considering a range of 0 to 6. The optimal model structure was 

found to be 6-4-1.  The back-propagation algorithm (with learning rate of 0.1 

and momentum of 0.1) was used for model calibration. The test inputs were 

then re-simulated 30 times based on the real observations in order to obtain 

data sets that contained a certain degree of variation, while still maintaining 

the major time patterns and data distributions. This enabled IVS performance 

to be evaluated over 30 independent trials. The corresponding output was 

obtained by substituting the simulated inputs into the trained ANN model. The 

input/output data contain strongly linear components and follow a mildly non-

Gaussian distribution, according to Bowden (2003), Wu et al. (2013) and Li et 

al. (2014b). Consequently, this study corresponds to Scenario 2 in Fig. 3.11. 

Given this, the selection performance of the PMI using the DPI (and BCVDPI) 

for KDE and the GRR for residual estimation was expected to be superior in 

terms of an appropriate trade-off between selection accuracy and 

computational efficiency.   

Based on the results in Fig. 3.13, this was observed to be the case.  The CSR 

resulting from the use of the proposed approach was 96.7%, compared with 

83.3% when the GRR and BCV approaches were used for KDE.  Although 

use of the SCV and SVO methods also resulted in a CSR of 96.7%, the 

associated computational cost was significantly greater. Consequently, the 

DPI/BCVDPI based method provided a good trade-off between selection 

accuracy and computational efficiency for this study, as suggested by the 

proposed guidelines (Fig. 3.11).  
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Figure 3.13 Correct selection rate and efficiency of salinity forecast at Murray Bridge 

with proposed and alternative bandwidth estimators 

 

Rainfall-runoff in Kentucky River Basin 

The second semi-real data set is concerned with rainfall-runoff modelling in 

the Kentucky River Basin in the USA (Fig. 3.14). The output variable for this 

case study is the forecast flow at Lock and Dam 10 one day in advance (Jain 

and Srinivasulu, 2004). The corresponding inputs, including average daily 

effective rainfall and runoff with specific lag time (i.e. average daily effective 

rainfall: P(t), P(t-1) and average daily runoff: Q(t-1), Q(t-2) at locations 

specified in Table 3.6), together with other redundant or irrelevant candidate 

inputs, are summarized in Table 3.6, which are the same as those used by 

Bowden (2003), Wu et al. (2013) and Li et al. (2014b). 
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Figure 3.14 The Kentucky River Basin in USA (Jain et al., 2004) 
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The historical rainfall-runoff records from 1960 to 1972 were used for 

developing the MLP-ANNs using the approach described for the salinity case 

study. The optimal model structure was determined as 4-4-1. Thirty sets of 

inputs and outputs were generated using the procedure described for the 

salinity case study.  It should be noted that the input/output data contain non-

linear components and follow extremely non-Gaussian distributions, as 

discussed by Wu et al. (2013), Li et al. (2014b) , and Galelli et al. (2014). 

Consequently, this study corresponds to Scenario 3 in Fig. 3.11. Given this, 

the selection performance of the PMI using the DPI (and BCVDPI) for KDE 

was expected to be superior in terms of an appropriate trade-off between 

selection accuracy and computational efficiency. 

As indicated in Fig. 3.15(a), use of the approach suggested in the proposed 

guidelines derived from the synthetic data (i.e. DPI with SVC) clearly results 

in the best CSR, with an accuracy of 96.7%.  This is much higher than the 

CSR of 77.8% when the ‘standard’ approach (i.e. GRR with GRR) is used.  

While this increased selection accuracy comes at a significant increase in 

computational cost (i.e. 68 times more computationally expensive), as shown 

in Fig. 3.15(b), this still seems to provide the best trade-off between selection 

accuracy and computational efficiency, as suggested by the proposed 

guidelines (Fig. 3.11). 
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Figure 3.15 Correct selection rate and efficiency of flow forecast at Kentucky River 

Basin with proposed and alternative bandwidth estimators 

 

3.6 Summary and conclusions 

Input variable selection (IVS), as one of the most important steps in the 

development of ANN and other data driven environmental and water 

resources models, determines the quality and quantity of information used in 

the modelling process. Partial mutual information (PMI) is one of the most 

promising approaches to IVS, as it is able to account for the relevance and 

redundancy of all candidate inputs and can be used for both linear and non-

linear problems. However, one disadvantage of using PMI is that it requires 

kernel density estimates (KDEs) of the data to be obtained, which can become 

problematic when the data are non-normally distributed, as is often the case 

for environmental and water resources problems.  However, this is an issue 

that has been ignored in previous studies on the application of PMI IVS, in 

which the Gaussian reference rule (GRR) has generally been used to obtain 
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the required KDEs.  This is likely to result in a reduced CSR for data that are 

non-Gaussian, as shown by Galelli et al. (2014) and Humphrey et al. (2014). 

In order to develop an improved approach to PMI IVS for data that are non-

normally distributed, the selection performances of PMI with six different 

kernel bandwidth estimators for KDE were assessed in terms of selection 

accuracy and computational efficiency for input/output data with distinct 

degrees of normality on three synthetic data sets. The results from the 3,780 

trials with the synthetic data were used to develop empirical guidelines for the 

choice of the most appropriate bandwidth estimation techniques for data with 

different degrees of non-normality.  The validity of these guidelines was then 

tested on the two semi-real data sets.   

The results of the synthetic case studies suggest that the use of GRR-based 

bandwidth estimators only results in good input selection accuracy if the 

input/output data follow Gaussian or nearly Gaussian distributions, which is in 

line with the results obtained by Galelli et al. (2014) and Humphrey et al. 

(2014).  As a result of their reduced dependence on the Gaussian assumption, 

DPI, BCVDPI, SCV, and SVO based bandwidth estimators generally result in 

marked improvements in CSR for problems with data that follow non-

Gaussian distributions. However, there is a distinct trade-off between 

selection accuracy and computational efficiency. 

One of the major outcomes of this paper is the development of the empirical 

guidelines based on the synthetic tests. As shown in Fig. 3.11, the suggested 

bandwidth estimators for KDE used in the MI calculation should be used in 

conjunction with the bandwidth estimators for residual estimation suggested 

by Li et al. (2014b).  The results for the two semi-real data sets, which follow 

mildly and extremely non-Gaussian distributions, support the validity of the 

proposed guidelines for the selection of appropriate bandwidth estimation 

methods for data with different degrees of non-normality. It should be noted 

that the proposed guidelines are valid for environmental and water resource 

applications with data that have distributional properties similar to those 

provided in the guidelines, and that the implementation of the guidelines is 
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also likely to benefit other data-driven environmental and water resources 

models, even though they were only tested on MLPs. 

Although the results of this study indicate that the use of alternate bandwidth 

estimators can result in significant improvements in PMI input selection 

accuracy for data that are non-normally distributed, these improvements were 

not as pronounced for extremely non-Gaussian data and the non-linear 

synthetic case study.  This is likely due to boundary issues associated with 

KDE for highly non-Gaussian data (Karunamuni and Alberts, 2005b; Scott, 

1992).  Consequently, future research should focus on potential improvements 

to input variable selection accuracy as a result of the consideration of such 

boundary issues. In addition, alternative methods for dealing with non-

Gaussian data in the context of PMI IVS, such as transforming the input data 

to normality (Bowden et al., 2003) and estimating the required densities using 

histogram-based methods (e.g. Fernando et al., 2009), require further 

investigation, as does the impact of the stopping criterion (see May et al., 

2008a) on the results obtained in this study. Finally, there is a need to assess 

the performance of the proposed modifications to the implementation of the 

PMI algorithm on a broader set of data and against that of other IVS 

algorithms (see Galelli et al., 2014). 
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Abstract 

Input variable selection (IVS) is vital in the development of data-driven 

models.  Among different IVS methods, partial mutual information (PMI) has 

shown significant promise, although its performance has been found to 

deteriorate for non-Gaussian and non-linear data.  In this paper, the 

effectiveness of different approaches to improving PMI performance is 

investigated, focussing on boundary issues associated with bandwidth 

estimation, which plays an important role during two steps of the PMI 

algorithm.  In total, the effectiveness of 16 different approaches is tested on 

synthetically generated data, and the results used to develop preliminary 

guidelines for the selection of the most appropriate PMI variants based on the 

degree of non-linearity and normality of the data.  These guidelines are 

validated on two semi-real case studies, showing that by using the proposed 

guidelines, the correct inputs can be identified in 100% of trials, even if the 

data are highly non-linear or extremely non-Gaussian. 

 

Software availability 

Software name: IVS_PMI_ 2014 

Developers: Xuyuan Li, Postgraduate Student, the University of Adelaide, 
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Email:  xliadelaide@gmail.com 

Hardware requirements: 64-bit AMD64, 64-bit Intel 64 or 32-bit x86 processor-

based workstation or server with one or more single core or multi-core 

microprocessors; all versions of Visual Studio 2012, 2010 and 2008 are 

supported except Visual Studio Express; 256 MB RAM 

Software requirements: PGI Visual Fortran 2003 or later version  

Language: English 
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Size: 4.55MB 

Availability: Free to download for research purposes from the following 

website:  

https://github.com/xuyuanli/IVS_PMI_2014 
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4.1 Introduction 

Input variable selection (IVS) plays a vital role in the development of data 

driven environmental models, such as artificial neural networks (ANNs), as 

the performance of such models can be compromised significantly if either 

too few or too many inputs are selected (e.g. Galelli et al., 2014; Maier et al., 

2010; Wu et al., 2014a; Wu et al., 2014b).  Although the task of IVS is not 

unique to environmental modelling, its application in an environmental 

modelling context is complicated by a lack of understanding of the underlying 

physical processes, the presence of significant temporal and spatial variation 

in potential input variables, the non-Gaussian, correlated and collinear nature 

of potential input variables, and the non-linearity and inherent complexity 

associated with environmental systems themselves, as emphasised in Galelli 

et al. (2014). Given the importance and challenge of the IVS problem, a large 

number of approaches, categorised as either model free (on the basis of a 

statistical measures of significance between the candidate inputs and the 

output) or model based (depending on the adoption of an optimization 

algorithm that is used to determine the combination of input variables that 

maximizes the performance of a pre-selected data-driven model), have been 

developed and refined for the purpose of more accurate IVS (e.g. Galelli and 

Castelletti, 2013; Galelli et al., 2014; Li et al., 2015; May et al., 2011; May et 

al., 2008b; Sharma, 2000a), aiming to determine the smallest number of inputs 

that best charaterise the input-output relationship with the least amount of 

variable irrelvance or redundancy (Galelli et al., 2014; Guyon and Elisseeff, 

2003). Among the various IVS techniques, partial mutual information (PMI) 

based approaches are among the most promising model free techniques, as 

they account for both the significance and independence of potential inputs 

and have been successfully and extensively implemented in environmental 

modelling (e.g. Bowden et al., 2005a; Galelli et al., 2014; May et al., 2008b; 

Wu et al., 2014b; Wu et al., 2013). 

The PMI IVS approach was introduced by Sharma (2000a) and is based on 

Shannon’s principle (Shannon, 1948), otherwise termed Shannon’s entropy, 

which measures the MI between a random input variable and a random output 



CHAPTER 4 JOURNAL PAPER 3 

 

111 

 

variable. As part of the PMI algorithm, inputs are chosen using a forward 

selection approach, during which one input variable is selected at each 

iteration, based on the amount of information a potential input provides (in 

addition to inputs selected at previous iterations)  until certain stopping 

criteria are met. The amount of information provided by a potential input is 

given as a function of mutual information (MI), which quantifies the reduction 

in uncertainty with respect to the output due to observation of an input 

variable, and the contribution of already selected inputs is accounted for by 

calculating the MI between potential inputs and the residuals of models 

between the already selected inputs and the desired output, referred to as 

partial mutual information (PMI). Consequently, the performance of different 

implementations of the PMI algorithm, in terms of input variable selection 

accuracy and computational efficiency, is a function of the methods used for 

mutual information (MI) and residual estimation (RE), which is highlighted in 

Li et al. (2015) and May et al. (2008b).  

In previous studies on the use of PMI for IVS for data-driven environmental 

models, the requisite MI estimates have been obtained using kernel density 

based methods in order to approximate marginal and joint PDFs and residual 

estimates have been obtained using kernel based regression methods for the 

estimation of kernel based weights (e.g. Bowden et al., 2005a; Bowden et al., 

2005b; Gibbs et al., 2006; He et al., 2011; Li et al., 2015; May et al., 2008a; 

May et al., 2008b). As such, the performance of PMI IVS is heavily 

influenced by the accuracy of the kernel density estimates required for MI and 

RE, which are a function of bandwidth (otherwise termed ‘smoothing 

parameter’) selection and how well any boundary issues are addressed, as 

pointed by Santhosh and Srinivas (2013), Scott (1992), and Wand and Jones 

(1995), as discussed below.   

The bandwidth selection issue is caused by the fact that although many 

methods for bandwidth estimation exist in other disciplines (e.g. mathematics 

and statistics (e.g. Hall et al., 1992; Park and Marron, 1990; Rudemo, 1982; 

Scott, 1992; Scott and Terrell, 1987)), there is no clear consensus as to which 

bandwidth estimator performs best for general cases and in almost all existing 
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PMI IVS studies in environmental modelling the Gaussian reference rule 

(GRR) has been used for bandwidth estimation due to its simplicity (e.g. 

Bowden et al., 2005a; Bowden et al., 2005b; He et al., 2011; May et al., 2008a; 

May et al., 2008b).  However, as highlighted by Harrold et al. (2001) and 

Galelli et al. (2014), use of the GRR can result in less accurate estimation of 

MI and PMI for data that are highly non-Gaussian, which is generally the case 

in environmental and water resources modelling problems.  

Another potential problem with kernel based methods in environmental and 

water resources modelling is the so called ‘boundary issue’, which is 

associated with the inaccuracies in density estimation arising from the 

extension of symmetrical kernels beyond the feasible bounds of potential 

input variable values (e.g. densities associated with negative values of flow 

obtained using symmetrical kernels) (Wand and Jones, 1995) and generally 

results in an underestimation of MI or residuals near the boundary. This is 

commonly encountered in environmental and water resources modelling due 

to the fact that data can be bounded in accordance with their physical 

feasibility (e.g. rainfall-runoff data are bounded at 0mm). 

While the impact of different bandwidth estimators for MI and RE on the 

performance of PMI IVS has been assessed recently, and empirical guidelines 

proposed for the selection of the optimal bandwidth for MI and residual 

estimation for data following different distributions (Li et al., 2015), the 

impact of boundary issues associated with MI and residual estimation on the 

performance of PMI IVS has not yet been considered, although a number of 

potential methods have been proposed within the statistical literature for 

addressing this issue (e.g. Cowling and Hall, 1996; Dai and Sperlich, 2010; 

Fan, 1992; Fan and Gijbels, 1996; Gasser and Müller, 1979; Hall and Park, 

2002; Marron and Ruppert, 1994; Schuster, 1985; Zhang and Karunamuni, 

1998).  However, this is likely to be a significant problem, as environmental 

data can be highly skewed near variable boundaries. Consequently, there is a 

need to establish to what degree the performance of PMI IVS is influenced by 

the boundary issue, and which methods are the most effective in addressing 

this. 
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In order to address the aforementioned research needs, the objectives of the 

current study are: (i) to assess if, and to what degree, the performance of PMI 

IVS can be improved by various approaches to addressing boundary issues for 

data with different properties (i.e. degree of linearity and degree of normality); 

and (ii) to develop and test a set of preliminary empirical guidelines for the 

selection of the most appropriate methods for bandwidth estimation and 

addressing boundary issues for data with different properties. The remainder 

of this paper is organised as follows. An explanation of PMI IVS and 

boundary issues is provided in Section 2, followed by the methodology for 

fulfilling the outlined objectives in Section 3. The results are presented and 

analysed in Section 4. The proposed guidelines are validated on the semi-real 

studies in Section 5, before a summary and conclusions are given in Section 6. 

 

4.2 Background on PMI IVS and Boundary Issues  

4.2.1 PMI IVS 

Although details of the PMI IVS approach are provided in a number of papers 

(e.g. Sharma, 2000; Bowden et al., 2005a; May et al., 2008b; He et al., 2011; 

May et al. 2011; Li et al., 2015), a brief outline of the main steps in the 

process are given below for the sake of completeness: 

Let: 𝑿 = [𝑋1…  𝑋𝑚]
𝑇 be the input, where 𝑚 is the number of inputs; (𝑿𝑗 , 𝑦𝑗) 

be the observed pairs of input and output data for 𝑗 = 1,… , 𝑛, where n is the 

number of observations, 𝑿𝑗 = [𝑋1
𝑗
… 𝑋𝑚

𝑗
]
𝑇
 are the observed input data and 𝑦𝑗 

are the observed output data 

Step 1: Procure candidate inputs 𝑿  and the output 𝑦  based on an 

understanding of the system to be modelled; 

Step 2: Estimate the marginal PDF of each candidate input 𝑓(𝑋𝑖) and the 

output 𝑓(𝑦) through univariate kernel density estimation (KDE) (i.e. 𝐾ℎ𝑥(𝑋𝑖) 

and 𝐾ℎ𝑦(𝑦)) (May et al., 2008b; Scott, 2004; Wand and Jones, 1995), where 
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ℎ𝑥 and ℎ𝑦 are the univariate kernel bandwidths, which determine the accuracy 

of the KDE and the marginal PDF (Duong and Hazelton, 2003; Scott, 1992; 

Wand and Jones, 1995); 

Step 3: Calculate the joint PDF 𝑓(𝑋𝑖, 𝑦) between each candidate input and the 

output through bivariate KDE (Cacoullos, 1966; Parzen, 1962). Calculation of  

the bivariate KDE requires the determination of a bandwidth matrix, which is 

formed by the univariate kernel bandwidths ℎ𝑥 and ℎ𝑦; 

Step 4: Approximate the MI 𝐼𝑋𝑖,𝑦  between each candidate input 𝑋𝑖 and the 

output 𝑦 based on the estimated marginal (𝑓(𝑋𝑖) and 𝑓(𝑦)) and joint 𝑓(𝑋𝑖, 𝑦) 

PDFs in accordance with Shannon’s entropy (Shannon, 1948), which 

measures the reduction in uncertainty with respect to 𝑦 due to observation 

of 𝑋𝑖; 

Step 5: Select the candidate input with the highest MI; 

Step 6: Remove the redundant information provided by the selected input(s) 

through (i) development of input-output model(s) �̂�𝑦(𝑋𝑖∗) between the 

selected input(s) 𝑋𝑖∗  and the output 𝑦  and (ii) obtaining the residuals (𝑦 −

�̂�𝑦(𝑋𝑖∗)) of these models (i.e. the components of the remaining input and 

output that are not captured by a conditional prediction by the selected input).  

In past studies, kernel regression models, such as generalised regression 

neural networks (GRNNs) (Specht, 1991), have been used for this purpose; 

Step 7: Determine if the selected stopping criterion has been satisfied. 

Potential stopping criteria include bootstrapping, tabulated critical values, 

Akaike information criterion (AIC), and the Hampel test, as discussed and 

tested in May et al. (2008b).  If the stopping criterion has been satisfied, stop 

the process.  If the stopping criterion has not been satisfied, proceed to step 8;  

Step 8: Estimate the marginal PDF (i.e. 𝑓(𝑣𝑖) and 𝑓(𝑢)) of each remaining 

candidate input 𝑣𝑖 = 𝑋𝑖 − �̂�𝑋𝑖
(𝑋𝑖∗)  and output residual 𝑢 = 𝑦 − �̂�𝑦(𝑋𝑖∗) 

obtained in Step 6 through univariate kernel density estimation (Wand and 

Jones, 1995; Scott, 1992; May et al., 2008b); 
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Step 9: Calculate the joint PDF 𝑓(𝑣𝑖, 𝑢 ) between each remaining candidate 

input 𝑣𝑖 and the output residuals 𝑢 through bivariate kernel density estimation 

(Cacoullos, 1966; Parzen, 1962); 

Step 10: Approximate the MI 𝐼𝒗𝒊,𝑢 between each remaining candidate input 𝑣𝑖 

and the output residuals 𝑢 based on the estimated marginal and joint PDFs in 

accordance with Shannon’s entropy (Shannon, 1948). This is the PMI 

between the candidate input and output; 

Step 11: Select the candidate input with highest PMI; 

Step 12: Repeat Steps 7 to 12. 

As can be seen, the performance of PMI IVS is a function of MI 

approximation (Steps 2 to 4 and 7 to 9) and residual estimation (Step 5).  As 

discussed previously, the accuracy of MI approximation is a function of the 

way the kernel density is estimated (KDE in Step 2 and Step 3), which is 

likely to be affected by boundary issues.  In addition, based on the way 

residual have been estimated in previous studies (i.e. using kernel regression 

models in Step 6), the accuracy of RE is also affected by boundary issues.  

However, it should be noted that there is the possibility of avoiding any 

potential boundary issues associated with residual estimation by using 

modelling approaches that are not reliant on kernel regression methods. 

Background information of the boundary issue and of its relevance to PMI 

IVS are given in the following subsection.   

4.2.2 Boundary issues in PMI IVS 

Let 𝑓 indicate a non-parametric estimation of the PDF of the input 𝑿 with 

support [−𝑎, 𝑎] , and 𝑿 = [𝑋1…  𝑋𝑚]
𝑇 be the input vector, where  𝑚  is the 

number of inputs; 𝑿𝑗 = [𝑋1
𝑗
… 𝑋𝑚

𝑗
 ]
𝑇
 are the observed input data from which 

the non-parametric estimation is undertaken, for 𝑗 = 1, … , 𝑛, where n is the 

number of observations. The conventional KDE (used in Steps 2, 3, and 6 in 

PMI IVS) is given by 

𝑓(𝑋𝑖; 𝑯) =
1

𝑛
∑ 𝐾𝐻(𝑋𝑖 − 𝑋𝑖

𝑗
)𝑛

𝑗=1                                                                  (4.1) 
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where 𝑋𝑖  represents the 𝑖 th input vector and 𝐾𝐻  denotes the kernel type, 

commonly selected as the Gaussian kernel (May et al., 2008b; Scott, 1992; 

Wand and Jones, 1995), which is expressed as  

𝐾𝐻(𝑿) =
1

(√2𝜋|𝑯|)𝑚
exp [−

1

2
𝑿𝑇𝑯−1𝑿]                                                  (4.2) 

In Eq. (4.2), 𝑯  is the kernel bandwidth matrix (or kernel bandwidth for 

univariate problems). The commonly used 𝐾𝐻  is symmetric, satisfies the 

following integral and moment conditions ∫𝐾𝐻(𝑿)𝑑𝑿 = 1, ∫𝑿𝐾𝐻(𝑿)𝑑𝑿 =

0 ,  ∫ 𝑿𝑿𝑇𝐾𝐻(𝑿)𝑑𝑿 = 𝑚 , and has at least two continuous derivatives. 

According to Dai and Sperlich (2010), if the support of 𝑓 is bounded, and in 

the absence of exponentially falling tails (e.g. support [0, 𝑎]), strong under-

estimation occurs for all data points in the boundary region (which are within 

a distance of the bandwidth h from the boundary) because of the nonzero 

kernel density estimation outside the support of 𝑓 . As a consequence, the 

corresponding bias of 𝑓 is larger than expected. For example, the bias of 𝑓 is 

of order 𝑂(ℎ), rather than 𝑂(ℎ2), at the boundary point for the univariate case 

in accordance with Dai and Sperlich (2010), Karunamuni and Alberts (2005a), 

and Wand and Jones (1995). These are the so-called ‘boundary issues’ 

associated with non-parametric kernel-based estimations.  

A graphical representation of boundary issue in 2D is also provided in Fig. 4.1 

in accordance with Hazelton and Marshall (2009). In Fig. 4.1, the kernel 

density estimates are an approximation of data on the location of childhood 

leukaemia and lymphoma in North Humberside, England. It can be seen that 

the left-hand estimate without boundary correction has a smoothed edge, 

while the right hand estimate with boundary correction has a sharper and 

significantly higher edge at the same point. This indicates strong under-

estimates for all data points in the boundary region, as mentioned above. 
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Figure 4.1 Graphical representation of the boundary issue in 2D (Hazelton and Marshall, 

2009) 

 

As mentioned previously, for PMI IVS in environmental modelling, boundary 

issues can potentially be encountered in both MI (through KDE, in steps 2 and 

3) and RE (through kernel regression estimation, in step 6) when the 

observations are bounded and/or follow non-Gaussian distributions (e.g. with 

high skewness and kurtosis).  

4.2.3 Potential solutions to solve boundary issues in PMI IVS 

In order to address the impact of boundary issues, a number of methods have 

been suggested in the literature (e.g. Dai and Sperlich, 2010; Karunamuni and 

Alberts, 2005; Wand and Jones, 1995; Fan and Gijbels, 1996), which have 

been categorised in accordance with whether they can be used during MI 

estimation, RE, or both, as outlined in Fig. 4.2. Methods used to correct the 

boundary issue in MI estimation can be further divided into two groups based 

on whether they modify kernel functions or bandwidths. As can be seen from 

Fig. 4.2: 

1. Methods that consider modification of the kernel functions include:  

 Reflection correction (RC) (Schuster, 1985; Silverman, 1986), which 

‘reflects’ the data at the boundary and adds the density outside the 

support of 𝑓 back to the boundary region; 
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 Boundary kernel (BK) (Gasser and Müller, 1979; Marshall and 

Hazelton, 2010; Zhang and Karunamuni, 2000),  which replaces the 

conventional Gaussian kernel with a more adaptive kernel that is able 

to capture any shape of the density, although negative densities can be 

generated near the boundary; 

 Pseudo-data approach (PA) (Cowling and Hall, 1996), which 

generates additional data based on the ‘three-point-rule’ and combines 

them with the original data before implementing kernel estimation; 

 Kernel transformation (KT) (Marron and Ruppert, 1994), which 

requires (i) a transformation function 𝑔  so that 𝑔(𝑋𝑖)  has a first 

derivative as 0 at the boundary; (ii) a kernel estimator with reflection 

on 𝑔(𝑋𝑖); and (iii) a back-conversion through the change-of-variables 

formula to achieve 𝑓; 

 Local linear method (LLM) (Zhang and Karunamuni, 1998), which 

plugs a special case of the boundary kernel (with fixed bandwidth) into 

a local linear fitting function;   

 Empirical translation correction (Hall and Park, 2002; Jakeman et al., 

2006), which removes boundary issues by introducing an additional 

empirical data perturbation term �̂�, constructed specifically to adjust 

the bias of density estimate within the boundary region,  inside the 

kernel.  

2. Methods that consider modification of the bandwidth include: 

 Local bandwidth (reducing) (LBR) (Dai and Sperlich, 2010), which 

adopts a reduced local bandwidth within the boundary region;  

 Local bandwidth (enlarging) (LBE) (Gasser et al., 1985; Hall and 

Wehrly, 1991; John, 1984), which uses a larger local bandwidth within 

the boundary region. 

 

As can be seen from Fig. 4.2, all of the methods used to correct the boundary 

issue in MI estimation are theoretically also applicable to RE in cases where 

kernel regression models are used for this purpose.  However, in the case of 

RE, there are also other alternatives for addressing boundary issues, including 
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modification of the kernel regression type and the use of kernel free modelling 

approaches.  In relation to different kernel regression types, typical options 

include local linear, quadratic, and high order polynomial regression (LLP, 

LQP, and LHOP), all of which belong to the local polynomial family. 

Compared to the most commonly used univariate general regression neural 

network (GRNN) (which is equivalent to the Nadaraya-Watson estimator), the 

LLP (also known as the linear smoother), LQP, and LHOP regression types 

are much less influenced by boundary issues (Dai and Sperlich, 2010; Fan, 

1992; Fan and Gijbels, 1996) because the weighted average of each estimating 

point is more adaptive to the actual observations. In relation to kernel free 

modelling approaches, multi-layer perceptron artificial neural networks 

(MLPANNs) provide an attractive option, as they are universal function 

approximators and have been applied successfully and extensively to 

environmental (Adeloye et al., 2012; Ibarra-Berastegi et al., 2008; Luccarini 

et al., 2010; Maier and Dandy, 1997b; Maier et al., 2004; Millie et al., 2012; 

Muñoz-Mas et al., 2014; Ozkaya et al., 2007; Pradhan and Lee, 2010; Young 

II et al., 2011) and water resources (Abrahart et al., 2007; Abrahart et al., 

2012; ASCE, 2000a, b; Dawson and Wilby, 2001; Maier and Dandy, 2000b; 

Maier et al., 2010; Wolfs and Willems, 2014; Wu et al., 2014a; Wu et al., 

2014b) problems. In addition, they are independent from boundary issues due 

to their kernel free features (Maier et al., 2010; Wu et al., 2014b), although a 

major drawback of MLPANNs is their generally high computational 

requirements. In this paper, only selected and appropriate approaches from the 

aforementioned methods in Fig. 4.2 are implemented to fulfil the required 

objectives.  Details of the analytical processes associated with the different 

approaches are described in the subsequent section. 
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Figure 4.2 Taxonomy of methods for dealing with boundary issues in mutual 

information and residual estimation 

 

4.3 Methodology 

The approach adopted for the systematic assessment of methods for 

addressing boundary issues on the performance of PMI IVS is outlined in Fig. 

4.3.  As can be seen, the approach consists of four main steps, including: (i) 

generation of input/output data that follow a range of distributions (with 

different degrees of normality used to indicate different severities of boundary 

issues); (ii) estimation of MI using different approaches for dealing with 

boundary issues; (iii) estimation of residuals using different approaches for 

dealing with boundary issues; (iv) assessment of the performance of PMI IVS 

in terms of input variable selection accuracy and computational efficiency for 

different combinations of approaches for dealing with boundary issues for MI 

and residual estimation. Details of each of these steps are given in the 

subsequent sections. 
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Figure 4.3 Overview of the proposed analysis for the PMI IVS influenced by bandwidth 

and boundary issues 
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4.3.1 Generate input/output data with different degrees of 

normality 

As pointed out by Galelli et al. (2014), the accuracy of IVS algorithms can 

only be assessed in an objective and rigorous manner if the correct outputs are 

known. Consequently, input data are generated from distributions with 

differing degrees of normality, and the corresponding output data are obtained 

by substituting the generated inputs into mathematical models. The synthetic 

data are generated from seven distributions with different degrees of 

normality, including normal (NORM), log-normal (LOGN), exponential 

(EXP), gamma (GAMMA), Pearson type III (PT3), log-Pearson type III 

(LOGPT3), and extreme value type I (EVT1), as these are the most commonly 

adopted distributions in hydrological modelling (Chow et al., 1988) and result 

in boundary issues of varying severity. The degree of normality of the 

input/output data is measured using skewness and kurtosis based on Bennett et 

al. (2013). The properties of each distribution are listed in Tables 4.1 and 4.2. 

In total, 525 data points are generated for each of the exogenous inputs for the 

three functions considered (details given below) and the first 25 points are 

rejected in order to prevent initialisation effects (May et al., 2008b), resulting 

in 500 data points to be used in the analysis. 

Table 4.1 Details of the distributions used to generate values of the exogenous input 

variables and the statistical properties of the generated data for all time series models 

(EAR4, TEAR10) 

Distribution Key Parameters s k Normality 

NORM Mean=3.0; sd =1.0 0.000 -0.013 High 

GAMMA Shape=2.0; Scale=1.0 1.370 2.638 High 

LOGN Mean=0.5; sd=1.0 5.326 53.694 Low 

EXP Rate=1.0 2.132 7.219 Moderate 

PT3 Shape=2.5; Scale=3.0; Location=2.0 1.251 2.381 High 

LOGPT3 Shape=0.5; Scale=0.2; Location=2.0 4.792 43.265 Low 

EVT1 Shape=0.0; Scale=0.5; Location=10.0 1.198 2.880 High 

 

(The skewness and kurtosis shown in the table are the averaged values of all input and output 

data) 
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Table 4.2 Details of the distributions used to generate values of the input variables and 

the statistical properties of the generated data  for the non-linear model (NL) 

Distribution Key Parameters s k Normality 

NORM Mean=3.0; sd =1.0 1.826 5.158 High 

GAMMA Shape=2.0; Scale=1.0 10.520 192.091 Low 

LOGN Mean=0.5; sd=0.4 5.389 47.767 Low 

EXP Rate=1.0 14.029 334.408 Low 

PT3 Shape=0.5; Scale=1.0; Location=0.5 16.271 514.270 Low 

LOGPT3 Shape=0.5; Scale=0.2; Location=0.5 14.261 390.522 Low 

EVT1 Shape=0.1; Scale=0.0; Location=10.0 1.788 9.807 Moderate 

 

(The skewness and kurtosis shown in the table are the averaged values of all input and output 

data) 

 

The output data are generated by substituting the generated input data into 

three synthetic models, including one linear exogenous auto-regressive time 

series model (EAR4), one threshold exogenous auto-regressive time series 

model (TEAR10), and one non-linear input-output function (NL), as they are 

representative of general water resource problem scenarios with increasing 

degrees of problem non-linearity.  Similar models have also been used in 

previous IVS algorithm evaluation studies (Bowden et al., 2005b; Galelli and 

Castelletti, 2013; Li et al., 2014b; May et al., 2008b). 

The equation of the EAR4 model is given by 

𝑥𝑡 = 0.6𝑥𝑡−1 − 0.4𝑥𝑡−4 + 𝑝𝑡−1 + 0.1𝜀𝑡                                                                (4.3) 

where 𝑥𝑡  denotes the output time series; 𝑥𝑡−𝑛 stands for the input time series 

with lag 𝑛; 𝑝𝑡−𝑛 represents the exogenous input with lag 𝑛; and 0.1𝜀𝑡 is the 

introduced error term (explained shortly). 

The equation for the TEAR10 model is given by 

 𝑥𝑡 = {
−0.5𝑥𝑡−6 + 0.5𝑥𝑡−10 − 0.3𝑝𝑡−1 + 0.1𝜀𝑡;   𝑥𝑡−6 ≤ 0

0.8𝑥𝑡−10 − 0.3𝑝𝑡−1 + 0.1𝜀𝑡;  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
                       (4.4) 

The equation for NL is given by 

 𝑦 = (𝑥2)
3 + 𝑥6 + 5 sin(𝑥9) + 0.1𝜀𝑡                                                          (4.5) 
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The first two time series models are modified from May et al. (2008b) by 

introducing an additional independent lagged input 𝑝𝑡−1 into exogenous AR 

models, and the third synthetic model is modified from the one used by 

Bowden et al. (2005a) through the slight adjustment of the significance 

(coefficient) of each input. All three synthetic models have also been studied 

in Li et al. (2014b, 2015). The error term 𝜀𝑡  follows a standard normal 

distribution 𝑁(0,1), which introduces noise without obscuring the influence 

of the actual independent variables. In the present study, all data are scaled 

between 0 and 1. 

4.3.2 Estimate MI using different boundary correctors and 

suggested bandwidth estimators 

Although a number of potential methods aiming to ameliorate boundary issues 

by means of modification of the kernel function have been introduced in 

Section 2.2, not all are suited to MI estimation from a practical perspective. 

This is because MI estimation requires application of these methods in a 

bivariate setting, but the performance of a number of the methods has not 

been verified under these conditions. Consequently, three methods, including 

the conventional kernel (CK) (Bowden et al., 2005a; He et al., 2011; May et 

al., 2008b) without boundary correction, the reflection correction (RC) 

(Schuster, 1985; Silverman, 1986), and the boundary kernel (BK) (Gasser and 

Müller, 1979; Marshall and Hazelton, 2010; Zhang and Karunamuni, 2000) 

are applied in this study. The CK is selected as a benchmark model against 

which the performance of the other approaches can be compared; the RC is 

adopted because it can be extended into a bivariate setting with relative ease; 

while the BK is implemented because it has theoretically amenable 

derivations and successful applications to both univariate and bivariate cases. 

Details of these estimators are given in the following subsections. It should be 

noted that in each case, in order to minimise any impact due to bandwidth 

selection, the bandwidths are estimated based on the GRR (for data with 

Gaussian or nearly Gaussian distributions; e.g. NORM and EVT1 synthetic 

cases) and 2-stage direct plug-in (DPI) (for data with non-Gaussian 
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distributions; e.g. LOGN and LOGPT3 synthetic cases), according to the 

empirical guidelines proposed by Li et al. (2015). 

Conventional kernel (CK) The CK is the most commonly used approach for 

the estimation of the PDF and its expression is given in Eqs. (4.1) and (4.2).  

As mentioned in Section 2, this method does not provide any boundary 

correction, and is therefore used as a benchmark approach. 

Refection correction (RC) As described in Section 2, the motivation behind 

the RC approach is to ‘reflect’ data (add −𝑋𝑖
𝑗
, 𝑗 = 1,⋯ , 𝑛 to the original data 

set) so that the underestimated density within the boundary region can be 

added back based on these reflected data. The more adaptive approach is to 

only reflect the data within the boundary region (add −𝑋𝑖 if ℎ𝑥 ≥ 𝑋𝑖 ≥ 0) 

(Dai and Sperlich, 2010; Silverman, 1986) and the corresponding expression 

for the univariate RC becomes 

𝑓(𝑋𝑖; ℎ𝑥) =

{
 

 
1

𝑛
∑ [𝐾ℎ𝑥(𝑋𝑖 − 𝑋𝑖

𝑗
) + 𝐾ℎ𝑥(𝑋𝑖 + 𝑋𝑖

𝑗
)]; ℎ𝑥 ≥ 𝑋𝑖 ≥ 0𝑛

𝑗=1

1

𝑛
∑ [𝐾ℎ𝑥(𝑋𝑖 − 𝑋𝑖

𝑗
)]; 𝑋𝑖 > ℎ𝑥

𝑛
𝑗=1

0; 𝑋𝑖 < 0 

       (4.6) 

where ℎ𝑥  is the bandwidth for input 𝑋𝑖  and the expression for the bivariate RC 

can be extended as 

𝑓(𝑋𝑖, 𝑦;𝑯) =

{
 
 
 
 
 

 
 
 
 
 1

𝑛
∑ [𝐾𝐻 ([

𝑋𝑖
𝑦
] − [

𝑋𝑖
𝑗

𝑦𝑗
]) + 𝐾𝐻 ([

𝑋𝑖
𝑦
] − [

−𝑋𝑖
𝑗

−𝑦𝑗
])]𝑛

𝑗=1 ; ℎ𝑥 ≥ 𝑋𝑖 ≥ 0, ℎ𝑦 ≥ 𝑦 ≥ 0

1

𝑛
∑ [𝐾𝐻 ([

𝑋𝑖
𝑦
] − [

𝑋𝑖
𝑗

𝑦𝑗
]) + 𝐾𝐻 ([

𝑋𝑖
𝑦
] − [

−𝑋𝑖
𝑗

𝑦𝑗
])]𝑛

𝑗=1 ; ℎ𝑥 ≥ 𝑋𝑖 ≥ 0,  𝑦 > ℎ𝑦

1

𝑛
∑ [𝐾𝐻 ([

𝑋𝑖
𝑦
] − [

𝑋𝑖
𝑗

𝑦𝑗
]) + 𝐾𝐻 ([

𝑋𝑖
𝑦
] − [

𝑋𝑖
𝑗

−𝑦𝑗
])]𝑛

𝑗=1 ; 𝑋𝑖 > ℎ𝑥,  ℎ𝑦 ≥ 𝑦 ≥ 0

1

𝑛
∑ [𝐾𝐻 ([

𝑋𝑖
𝑦
] − [

𝑋𝑖
𝑗

𝑦𝑗
])]𝑛

𝑗=1 ; 𝑋𝑖 > ℎ𝑥 ,  𝑦 > ℎ𝑦

0; 𝑋𝑖 < 0 , 𝑦 < 0

  

(4.7) 

where 𝑯 is the bandwidth matrix, defined as  
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 𝑯 =  [
ℎ𝑥
2 𝜌𝑥𝑦ℎ𝑥ℎ𝑦

𝜌𝑥𝑦ℎ𝑥ℎ𝑦 ℎ𝑦
2 ]                                                                       (4.8) 

(known as a hybrid class of bandwidth matrix), where ℎ𝑦 is the bandwidth for 

output 𝑦 and 𝜌𝑥𝑦 is the correlation coefficient between input 𝑋𝑖 and output 𝑦, 

in accordance with Li et al. (2015). The detailed explanation of the bivariate 

RC can be found in the APPENDIX-C C.1 and it should be noted that the 

conditional terms all correspond to different regions in the data space, as 

influenced by both boundaries, just x, just y, and neither. 

Boundary kernel (BK) Compared to RC, BK is more flexible, as it is 

designed to automatically adapt to any shape of density within the boundary 

region. The motivation behind BK is that it is a type of linear boundary kernel 

for use with an adaptive density estimator (Abramson, 1982) and the adaptive 

density estimator adjusts the weight of each of the kernel functions in 

accordance with the actual distribution of the data.  Consequently, no 

assumption is required about the distribution of the data (Marshall and 

Hazelton, 2010).  

The expression of the univariate BK is given by 

𝐵(𝑢; ℎ𝑥) =
[(𝑎3

(1)
+4𝑎2)−(𝑎2

(1)
+3𝑎1)𝑢]𝐾ℎ𝑥(𝑢)

(𝑎3
(1)
+4𝑎2)𝑎0−(𝑎2

(1)
+3𝑎1)𝑎1

                                                     (4.9) 

where 𝑎𝛼
(𝛾)
= ∫𝑢𝛼𝐷𝛾𝐾ℎ(𝑢) 𝑑𝑢; 𝐷𝛾𝐾ℎ(𝑢) = (𝜕

∫𝑢𝐾ℎ(𝑢)𝑑𝑢 𝜕⁄ 𝑢∫𝑢𝐾ℎ(𝑢)𝑑𝑢) ∙ 

𝐾ℎ(𝑢) ; and 𝑢 = (𝑋𝑖 − 𝑋𝑖
𝑗
) ℎ𝑥⁄ . This adaptive kernel estimator 𝐵(𝑢; ℎ𝑥) 

results from a linear combination of kernel terms, combined with an adaptive 

bandwidth, dependent on the density function f(x). This maintains the bias as 

O(ℎ2) for the density estimation function 𝑓 regardless of the boundary issue. 

The scaled data result in two regions, including the boundary region (𝑢𝑚𝑖𝑛, 1) 

and the boundary free region (1, 𝑢𝑚𝑎𝑥). The univariate BK 𝐵(𝑢; ℎ𝑥) has an 

adaptive form for the scaled data within (𝑢𝑚𝑖𝑛, 1) and a fixed form for the 

scaled data within (1, 𝑢𝑚𝑎𝑥), thereby being able to add the underestimated 

density back within the boundary region while keeping the density unchanged 

in the free region.  
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By extending this concept into two dimensions, the expression of the bivariate 

BK is given as 

 𝐵(𝑢, 𝑣;𝑯) =
𝑏0𝐾𝐻(𝑢,𝑣)+𝑏1𝑢𝐾𝐻(𝑢,𝑣)+𝑏2𝑣𝐾𝐻(𝑢,𝑣)

𝑏0𝑎00+𝑏1𝑎10+𝑏2𝑎01
                                            (4.10) 

where  

𝑏0 = (𝑎30
(10)

+ 𝑎21
(01)

+ 5𝑎20) (𝑎12
(10)

+ 𝑎03
(01)

+ 5𝑎02) − (𝑎21
(10)

+ 𝑎12
(01)

+ 5𝑎11)(𝑎21
(10)

+

𝑎12
(01)

+ 5𝑎11); 

𝑏1 = (𝑎11
(10)

+ 𝑎02
(01)

+ 4𝑎01) (𝑎21
(10)

+ 𝑎12
(01)

+ 5𝑎11) − (𝑎20
(10)

+ 𝑎11
(01)

+ 4𝑎10)(𝑎12
(10)

+

𝑎03
(01)

+ 5𝑎02); 

𝑏2 = (𝑎20
(10)

+ 𝑎11
(01)

+ 4𝑎10) (𝑎21
(10)

+ 𝑎12
(01)

+ 5𝑎11) − (𝑎11
(10)

+ 𝑎02
(01)

+ 4𝑎01)(𝑎30
(10)

+

𝑎21
(01)

+ 5𝑎20); 

and 𝑣 = (𝑦 − 𝑦𝑗) ℎ𝑦⁄ . This results in a linear combination of three kernels, 

which is able to eliminate the 𝑂(ℎ)  extra bias term that is present in the 

bivariate case when compared with the univariate one (Eq. 4.9). Similar to the 

univariate BK 𝐵(𝑢; ℎ𝑥), the bivariate BK 𝐵(𝑢, 𝑣; 𝑯) is again adaptive for the 

scaled data within the boundary region (i.e. 𝑢 ∈ (𝑢𝑚𝑖𝑛, 1) and/or  𝑣 ∈

(𝑣𝑚𝑖𝑛, 1)), however, it becomes constant when the scaled data are within the 

boundary free region (i.e. (1, 𝑢𝑚𝑎𝑥) and (1, 𝑣𝑚𝑎𝑥)). The detailed mathematic 

derivations and explanations of Eqs. (4.9) and (4.10) can be found in Marshall 

and Hazelton (2010).  

4.3.3 Estimate residuals using alternative approaches and 

suggested bandwidth estimators 

In order to assess the effectiveness of different approaches to minimising the 

impact of any boundary issues in RE, selected approaches from those shown 

in Fig. 4.3 are implemented.  In addition to the most commonly used GRNN 

with the CK (as a benchmark), seven alternative residual estimators are 

implemented. Of these, three are based on the modification of the kernel 

function (i.e. BC, BK, and PA); one is based on the modification of the kernel 
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bandwidth (i.e. LBR); two are based on the modification of the regression 

type (i.e. LLP and LQP); and one is a kernel free approach (i.e. MLPANN). 

The selected approaches are not only representative of the different categories 

outlined in Fig. 4.3, but are also theoretically applicable to univariate 

approaches to residual estimation.  Details of these methods are given in the 

following subsections.  

It should be noted that in each case, in order to minimise any impact due to 

bandwidth selection, where applicable, the bandwidths are estimated based on 

the empirical guidelines proposed by Li et al. (2014a), as outlined in Table 4.3. 

Table 4.3  GRNN bandwidth estimation techniques used for residual estimation during 

the PMI IVS  

Synthetic data set  1 EAR4 

Data distribution NORM EVT1 PT3 GAMMA EXP LOGN LOGPT3 
Bandwidth estimator GRR GRR GRR SVO SVO SVO SVO 

Synthetic data set 2 TEAR10 

Data distribution NORM EVT1 PT3 GAMMA EXP LOGN LOGPT3 
Bandwidth estimator GRR GRR GRR SVO SVO SVO SVO 

Synthetic data set 3 NL 

Data distribution NORM EVT1 LOGN PT3 EXP LOGPT3 GAMMA 
Bandwidth estimator GRR GRR SVO SVO SVO SVO SVO 

(GRR stands for the Gaussian reference rule; SVO denotes single variable optimisation) 

GRNN with CK The GRNN with CK, developed by Specht (1991), is the 

univariate regression approach used for residual approximation in all previous 

studies of PMI IVS in environmental modelling. Its expression is given by (Li 

et al., 2014a) 

�̂�𝐺𝑅𝑁𝑁(𝑋𝑖, ℎ) =

∑ 𝑦𝑗𝑒𝑥𝑝[−
(𝑋𝑖−𝑋𝑖

𝑗
)
2

2ℎ𝑥
2 ]𝑛

𝑗=1

∑ 𝑒𝑥𝑝[−
(𝑋𝑖−𝑋𝑖

𝑗
)
2

2ℎ𝑥
2 ]𝑛

𝑗=1

                                                         (4.11) 

This method does not involve any boundary correction, therefore it is 

expected to be significantly influenced by boundary issues and is used as a 

benchmark approach.  

GRNN with RC The motivation behind RC (Silverman, 1986) has been 

explained in Section 2.2 and Section 3.2. The RC method is implemented by 
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replacing the symmetric kernel estimation part 𝑒𝑥𝑝 [−
(𝑋𝑖−𝑋𝑖

𝑗
)
2

𝟐ℎ𝑥
2 ] in Eq. (4.11) 

with the RC in Eq. (4.6). The expression for the estimator then becomes  

�̂�𝑅𝐶(𝑋𝑖, ℎ) =

{
 
 
 
 
 
 

 
 
 
 
 
 ∑ 𝑦𝑗[𝑒𝑥𝑝(−

(𝑋𝑖−𝑋𝑖
𝑗
)
2

2ℎ𝑥
2 )+𝑒𝑥𝑝(−

(𝑋𝑖+𝑋𝑖
𝑗
)
2

2ℎ𝑥
2 )]𝑛

𝑗=1

∑ [𝑒𝑥𝑝(−
(𝑋𝑖−𝑋𝑖

𝑗
)
2

2ℎ𝑥
2 )+𝑒𝑥𝑝(−

(𝑋𝑖+𝑋𝑖
𝑗
)
2

2ℎ𝑥
2 )]𝑛

𝑗=1

; ℎ𝑥 ≥ 𝑋𝑖 ≥ 0

∑ 𝑦𝑗[𝑒𝑥𝑝(−
(𝑋𝑖−𝑋𝑖

𝑗
)
2

2ℎ𝑥
2 )]𝑛

𝑗=1

∑ [𝑒𝑥𝑝(−
(𝑋𝑖−𝑋𝑖

𝑗
)
2

2ℎ𝑥
2 )]𝑛

𝑗=1

; 𝑋𝑖 > ℎ𝑥

0; 𝑋𝑖 < 0

   (4.12) 

GRNN with BK The motivation behind BK has also been explained in 

Section 2.2 and Section 3.2. Similar to the approach taken with the RC 

method, the boundary kernel (Eq. (4.9)) is plugged into Eq. (4.11), resulting 

in the following expression 

�̂�𝐵𝐾(𝑋𝑖, ℎ) =

∑ 𝑦𝑗{
[(𝑎3

(1)
+4𝑎2)−(𝑎2

(1)
+3𝑎1)𝑢]𝐾ℎ(𝑢)

(𝑎3
(1)

+4𝑎2)𝑎0−(𝑎2
(1)

+3𝑎1)𝑎1

}𝑛
𝑗=1

∑ {
[(𝑎3

(1)
+4𝑎2)−(𝑎2

(1)
+3𝑎1)𝑢]𝐾ℎ(𝑢)

(𝑎3
(1)

+4𝑎2)𝑎0−(𝑎2
(1)

+3𝑎1)𝑎1

}𝑛
𝑗=1

                                  (4.13) 

GRNN with PA The implementation of PA is different from the above three 

methods. According to Cowling and Hall (1996), the motivation behind this 

approach is to generate pseudo-data beyond the boundary based on the 

existing data, so that the under-estimated kernel density near the boundary can 

be compensated by these additional data that contain the same trend. By using 

the PA, the bias does not increase significantly at the boundary, nor does the 

variance. The PA was implemented in three steps. Firstly, two additional data 

points are linearly interpolated in-between every two adjacent original data 

points and the pseudo-data are then generated by the ‘three-point rule’, which 

is  

𝑋(−𝑗) = −5𝑋(
𝑗

3
) − 4𝑋(

2𝑗

3
) +

10

3
𝑋(𝑗), 𝑗 = 1,⋯ , 𝑛                                  (4.14) 
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where 𝑋(
𝑗

3
)
 and 𝑋(

2𝑗

3
) refer to the 

𝑗

3
th and 

2𝑗

3
th data points formed by the 

interpolated and original data points (Cowling and Hall, 1996), which 

effectively capture the features of the original data. Secondly, the 

corresponding density estimation is approximated as 

𝑓(𝑋𝑖) =
1

𝑛ℎ
{∑ 𝐾ℎ[(𝑋𝑖 − 𝑋𝑖

𝑗
)/ℎ] +𝑛

𝑗=1 ∑ 𝐾ℎ[(𝑋𝑖 − 𝑋𝑖
(−𝑗)

)/ℎ]𝑙
𝑗=1 }           (4.15) 

where 𝑙 is an integer less than 𝑛. When 𝑋𝑖
𝑗
 is within the boundary region, the 

pseudo-data 𝑋𝑖
(−𝑗)

 contribute to the estimation of 𝑓 by rendering the bias and 

variance to the minimal possible values 𝑂(ℎ𝑚) and 𝑂[(𝑛ℎ)−1] if 𝑙 is a large 

integer. However, when 𝑋𝑖
𝑗
 is not in the vicinity of the boundary region, the 

correction due to the pseudo-data 𝑋𝑖
(−𝑗)

 is negligible with small  𝑙 , as 

explained by Cowling and Hall (1996). Although 𝑙 can significantly affect 

the performance of boundary correction, determination of this parameter is 

not trivial. In the present study, 𝑙 is estimated through the golden section 

search (GSS) optimisation algorithm (Press et al., 1992) and the search is 

truncated using the ceiling function. Finally, by combining Eq. (4.11) and Eq. 

(4.15), the expression for GRNN(PA) is given by 

�̂�𝑃𝐴(𝑋𝑖, ℎ) =
∑ 𝑦𝑗{∑ 𝐾ℎ[(𝑋𝑖−𝑋𝑖

𝑗
)/ℎ]+𝑛

𝑗=1 ∑ 𝐾ℎ[(𝑋𝑖−𝑋𝑖
(−𝑗)

)/ℎ]𝑙
𝑗=1 }𝑛

𝑗=1

∑ 𝐾ℎ[(𝑋𝑖−𝑋𝑖
𝑗
)/ℎ]+𝑛

𝑗=1 ∑ 𝐾ℎ[(𝑋𝑖−𝑋𝑖
(−𝑗)

)/ℎ]𝑙
𝑗=1

                      (4.16) 

GRNN with LBR The concept behind the LBR is to adjust the bandwidth 

within the boundary region, rather than modifying the kernel. It is found that 

use of a smaller bandwidth within the boundary region can correct the density 

estimation affected by the boundary issue, therefore, according to Dai and 

Sperlich (2010), the bandwidth ℎ used for 𝑎 ≤ 𝑋𝑖
𝑗
≤ 𝑐, where 𝑎 and 𝑐 are left 

and right boundaries, is defined by 

ℎ
𝑋𝑖
𝑗 = {

max(𝑋𝑖
𝑗
− 𝑎, 𝜀) ; 𝑖𝑓 𝑎 ≤ 𝑋𝑖

𝑗
< (ℎ + 𝑎)

max(𝑐 − 𝑋𝑖
𝑗
, 𝜀) ; 𝑖𝑓 (𝑐 − ℎ) < 𝑋𝑖

𝑗
≤ 𝑐

ℎ; 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

                                        (4.17) 

and 𝜀 = 0.001 is added to avoid zero bandwidth values and the regression 

model used is identical to Eq. (4.11).    
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Local linear polynomial regression (LLP) As mentioned in Section 2.2, the 

LLP regression model is theoretically more advanced than the GRNN in terms 

of its resistance to boundary issues (Dai and Sperlich, 2010; Fan, 1992; Fan 

and Gijbels, 1996). This is due to the fact that the LLP is a linear order 

polynomial regression, while the GRNN is a zero-order polynomial regression. 

Consequently, the estimates obtained from the former are more driven by the 

actual distribution of the data than those obtained from the latter since the 

estimated weight of each point is more sensitive to the actual data. As a result, 

the bias and variance of the estimates from the former are smaller than those 

from the latter. The general expression for models belonging to the local 

polynomial family is given by 

�̂�𝐿𝑃(𝑋𝑖; 𝑝, ℎ) = 𝒆1
𝑇 [

�̂�0 ⋯ �̂�𝑝
⋮ ⋱ ⋮
�̂�𝑝 ⋯ �̂�2𝑝

]

−1

[
�̂�0
⋮
�̂�𝑝

]                                                 (4.18) 

Where 𝒆𝟏  is a vector having 1 in the first entry and 0 elsewhere,   �̂�𝑟 =

𝑛−1∑ (𝑋𝑖
𝑗
− 𝑋𝑖)

𝑟𝑛
𝑗=1 𝐾ℎ(𝑋𝑖

𝑗
− 𝑋𝑖)  and �̂�𝑟 = 𝑛

−1∑ (𝑋𝑖
𝑗
− 𝑋𝑖)

𝑟𝑛
𝑗=1 𝐾ℎ(𝑋𝑖

𝑗
−

𝑋𝑖)𝑦
𝑗  (Cigizoglu and Alp, 2006).  The univariate LLP is obtained by 

substituting 𝑝 = 1 into Eq. (4.18), giving   

�̂�𝐿𝐿𝑃(𝑋𝑖; 1, ℎ) = 𝑛−1∑
{�̂�2−�̂�1(𝑋𝑖

𝑗
−𝑋𝑖)}𝐾ℎ(𝑋𝑖

𝑗
−𝑋𝑖)𝑦

𝑗

�̂�2�̂�0−�̂�1�̂�1

𝑛
𝑗=1                                   (4.19) 

Local quadratic polynomial regression (LQP) Although the general 

expression for the LQP and LLP is identical (Eq. (4.18)), the former is more 

flexible and adaptive than the latter because �̂�𝑟 and �̂�𝑟 are approximated based 

on a quadratic relationship (𝑝 = 2), rather than a linear relationship (𝑝 = 1).  

As a result, the LQP is theoretically more resistant to the boundary issue than 

the LLP because the density depends more on the actual distribution of the 

data, resulting in smaller values of bias and variance. By substituting 𝑝 = 2 

into Eq. (4.18), the univariate equation for the LQP is given as 

�̂�𝐿𝑄𝑃(𝑋𝑖; 2, ℎ) =

𝑛−1∑
[(�̂�2�̂�4−�̂�3�̂�3)−(�̂�1�̂�4−�̂�2�̂�3)(𝑋𝑖

𝑗
−𝑋𝑖)+(�̂�1�̂�3−�̂�2�̂�2)(𝑋

𝑖−𝑋)
2
]𝐾ℎ(𝑋𝑖

𝑗
−𝑋𝑖)𝑦

𝑖

[�̂�0(�̂�2�̂�4−�̂�3�̂�3)−�̂�1(�̂�4�̂�1−�̂�3�̂�2)+�̂�2(�̂�1�̂�3−�̂�2�̂�2)]
𝑛
𝑗=1        (4.20) 
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MLPANN The MLP models are developed using the systematic approach 

proposed by Wu et al. (2014b). A single hidden layer is used and the optimal 

number of hidden nodes is obtained by trial and error, considering a range of 0 

to 4. The optimal number of hidden nodes for the different models is 2 

(EAR4), 2 (TEAR10), and 3 (NL). The back-propagation (BP) algorithm 

(with learning rate of 0.1 and momentum of 0.1) is used for calibration. This 

is consistent with the procedure implemented by Li et al. (2015). 

4.3.4 Test regime 

As outlined in Fig. 4.3, 630 synthetic data sets are simulated, which include 

30 replicates for each of the three synthetic models, for each of the seven 

distributions. For each of the 630 synthetic data sets, 16 distinct PMI IVS 

approaches are applied, consisting of a combination of the 3 methods used for 

MI estimation and the 8 regression approaches used for residual estimation (as 

shown in Table 4.4), resulting in a total of 10,080 tests.  

Of these 16 approaches, three are benchmark approaches without 

consideration of the boundary issue (B1 to B3), two aim to improve the 

boundary issue in MI estimation (M1 to M2), seven aim to minimise the effect 

of the boundary issue in residual estimation (R1 to R7), and four take into 

account the boundary issue in both MI and residual estimations (C1 to C4). 

The benchmark studies represent the most commonly used approach applied 

in previous studies (B1) and the proposed approaches for data with non-

Gaussian distributions, in accordance with Li et al. (2014b, 2015) (B2 and B3). 

The methods that only address the boundary issue in MI estimation include 

the RC and BK based MI estimations, as mentioned in Section 3.2. The 

approaches that only investigate the boundary issue in residual estimation 

contain kernel based (modification of kernel function, kernel bandwidth, and 

kernel type) and kernel free methods, as detailed in Section 3.3. The 

techniques that consider the boundary issue in both MI and residual 

estimations are a combination of one boundary corrector used in MI (RK) and 

four boundary resistant algorithms from each category outlined in Sections 2.2 

and 3.3. These 16 approaches cover the different combinations of approaches 
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for dealing with the boundary issue in PMI IVS, although there are other 

combinations of methods that are likely to result in similar outcomes. In 

addition, the influence of the bandwidth selection issue in both MI and 

residual estimations is minimised by following the guidelines proposed by Li 

et al. (2014b, 2015), as specified in Sections 3.2 and 3.3, respectively. 

Table 4.4 Different approaches used for PMI IVS by considering bandwidth and 

boundary issues  

  MI RE 

  Bandwidth Kernel Bandwidth Kernel Regression  

B1 GRR CK GRR CK GRNN 

B2 DPI CK GRR CK GRNN 

B3 DPI CK SVO CK GRNN 

M1 DPI RC SVO CK GRNN 

M2 DPI BK SVO CK GRNN 

R1 DPI CK SVO RK GRNN 

R2 DPI CK SVO BK GRNN 

R3 DPI CK SVO PA GRNN 

R4 DPI CK SVO CK LBR 

R5 DPI CK SVO CK LLP 

R6 DPI CK SVO CK LQP 

R7 DPI CK - - MLPANN 

C1 DPI RK SVO RC GRNN 

C2 DPI RK SVO CK LBR 

C3 DPI RK SVO CK LLP 

C4 DPI RK - - MLPANN 

(B: benchmark approach; M: boundary correction in MI estimation; R: reducing boundary impact in 

residual estimation; C: combination of methods resistant to boundary issue, used in both MI and residual 

estimations) 

The Akaike Information Criterion (AIC) (Akaike, 1974) is used as the PMI 

IVS algorithm stopping criterion because it provides a good balance between 

model accuracy and generalisation ability (Akaike, 1974; Bennett et al., 2013; 

Dawson et al., 2007; May et al., 2008b) and has been found to perform 

comparatively well with alternative criteria (May et al., 2008b). It has also 

been successfully applied by May et al. (2008a, b), He et al. (2011), Wu et al. 

(2013), and Li et al. (2015).  
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The software developed for conducting the numerical experiments is open for 

use by others (see Software Availability at the beginning of this paper), is 

coded in FORTRAN 90/95 and run on a Linux 2.6.32.2 operating system. 

4.3.5 Assess performance of IVS over 30 trials 

The performance of the PMI variants used in the tests is assessed in terms of 

selection accuracy and computational efficiency, as detailed below.  

Selection Accuracy As shown in Fig. 4.3, the accuracy of PMI IVS is 

assessed by the correct selection rate (CSR) (Galelli and Castelletti, 2013; Li 

et al., 2015; May et al., 2008b), which measures the percentage of times the 

correct inputs are selected in the 30 independent trials (i.e. replicates). In order 

to better understand the relative impact of the different approaches to 

addressing the boundary issue on CSR, their impact on MI and residual 

estimation is also assessed, as detailed below. 

The impact of the different approaches to addressing the boundary issue on 

MI estimation is assessed by comparing both the variation of the 

Kolmogorov-Smirnov (KS) statistic (Parsons and Wirsching, 1982) and the 

corresponding change in MI between two approaches, which is able to detect 

whether MI can be better estimated as a result of boundary correction in 

marginal or joint PDF estimates or not. The variation of the KS is expressed 

as follows 

𝐾𝑆 𝑣𝑎𝑟𝑖𝑎𝑡𝑖𝑜𝑛 (%) =
𝐾𝑆𝐴1−𝐾𝑆𝐴2

𝐾𝑆𝐴1
× 100%                                                 (4.21) 

where the KS statistic measures the supremum distance between the empirical 

and estimated CDFs and the subscripts (A1, A2) refer to different approaches 

to addressing the boundary issue (see Table 4.4). A positive KS variation 

indicates improvement of accuracy, and vice versa. It should be noted that the 

performance of the empirical kernel based CDF is a function of the bin width, 

therefore a number of bin widths (from 0.001 to 1.0) have been tested through 

a sensitivity analysis. Bin widths of 0.01 were found to be adequate for the 
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purposes of this study, which is consistent with the tests conducted in Li et al. 

(2015). The corresponding expression measuring the change in MI is given by 

𝑀𝐼 𝑣𝑎𝑟𝑖𝑎𝑡𝑖𝑜𝑛 (%) =
𝑀𝐼𝐴1−𝑀𝐼𝐴2

𝑀𝐼𝐴1
× 100%                                                 (4.22) 

and indicates to what extent the improvement or deterioration in kernel 

density estimation can be propagated to the estimation of MI. When 

considering Eqs. (4.21) and (4.22), high KS and MI variations indicate 

effective improvement of boundary issue in MI estimates as a result of 

boundary correction in the estimation of marginal PDFs. High MI variation 

but low KS variation corresponds to effective improvement of the boundary 

issue in MI estimates due to boundary correction in the estimation of joint 

PDFs, while low MI variation suggests insignificant impact of boundary issue 

in MI estimates, regardless of the KS variation. 

The impact of the different approaches to addressing the boundary issue on 

RE is assessed by using the coefficient of efficiency (CE) of the models from 

which the residuals are extracted.  CE measures the difference in predictive 

performance of the model and a model that only contains the mean of the 

observations (Bennett et al., 2013) and ranges between 0 (poorest) and 1 

(Ozkaya et al., 2007). 

Computational efficiency The computational efficiency of PMI IVS is 

evaluated by the computational time (CT), as measured by the average CPU 

time (measured on a dual processor 2.6 GHz Intel Machine).  

 

4.4 Results and Discussion 

Within this section, the selection accuracy of the PMI IVS method with 

different approaches to addressing the boundary issue (see Table 4.4) and 

their corresponding computational efficiency are discussed in Sections 4.1 and 

4.2, respectively. The resulting empirical guidelines for selecting the 
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appropriate techniques for dealing with boundary and bandwidth issues are 

then summarised in Section 4.3.     

4.4.1 Selection accuracy 

The selection accuracy of the PMI IVS methods with the different approaches 

to addressing the boundary issue for the EAR4 model is summarised in Fig. 

4.4. As can be seen, the benchmark approaches following the guidelines 

suggested by Li et al. (2015) (i.e. B2 and B3) have a CSR of 100% for the 

data that follow a Gaussian or nearly Gaussian distribution (i.e. NORM and 

EVT1), as these data are not expected to be impacted by any boundary issues.  

Consequently, there is no need for addressing boundary issues in these cases. 

For the data that follow a moderately (i.e. PT3, GAMMA, EXP) or severely 

(i.e. LOGPT3, LOGN) non-Gaussian distribution and are therefore expected 

to be impacted by boundary issues, some improvement is observed when the 

benchmark approaches that utilise the guidelines proposed by Li et al. (2015) 

are implemented for MI estimation (B2) and both MI and residual estimation 

(B3), compared with the most commonly used approach (B1), but generally 

CSRs do not exceed 90% (Fig. 4.4).  However, these CSRs can be improved 

to 100% when some of the proposed approaches to addressing the boundary 

issue are used, including methods R5, R6, R7, C3 and C4, although not all of 

the approaches investigated exhibit the same level of success (i.e. methods M1, 

M2, R1, R2, R3, R4, C1, C2).  Potential reasons for these differences in 

performance are discussed below. 

The methods that only address boundary issues in MI estimation (i.e. methods 

M1 and M2) are not successful in improving CSR compared with the best-

performing benchmark approach (i.e. B3).  This is despite the fact that these 

methods are able to improve the accuracy with which the underlying 

distribution is estimated, as measured by changes in the K-S statistic between 

methods B3 and M1 (Fig 4.5(a)). The reason for this is that the improvements 

in the estimates in the underlying distributions do not translate into changes in 

MI estimates (e.g. an approximately 50% increase in the K-S statistic between 

methods B3 and M1 for the EXP distribution translates into a change in MI 
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estimation that is close to 0%) (Figs. 4.5(a) and 4.5(b)).  This can be explained 

by considering the expression of MI (Shannon, 1948), which is given as  

𝐼𝑋𝑖,𝑦 ≈
1

𝑛
∑ 𝑙𝑜𝑔 [

𝑓(𝑋𝑖
𝑗
,𝑦𝑗 )

𝑓(𝑋
𝑖
𝑗
)𝑓(𝑦𝑗)

]𝑛
𝑗=1                                                                       (4.23) 

When applying the boundary correction (e.g. RC in M1), estimation of 𝐼𝑋𝑖,𝑦 

becomes 

𝐼𝑋𝑖,𝑦 ≈
1

𝑛
∑ 𝑙𝑜𝑔 {

𝑓(𝑋𝑖
𝑗
,𝑦𝑗 )∆𝑋𝑖

𝑗
𝑦𝑗

[𝑓(𝑋
𝑖
𝑗
)∆𝑋

𝑖
𝑗
][𝑓(𝑦𝑗)∆𝑦𝑗]

}𝑛
𝑗=1                                                       (4.24) 

where ∆𝑋𝑖
𝑗
𝑦𝑗 , ∆𝑋𝑖

𝑗
, and ∆𝑦𝑗  indicate variations in the marginal and joint 

densities due to the boundary correction. This equation is equivalent to  

𝐼𝑋𝑖,𝑦 ≈
1

𝑛
∑ 𝑙𝑜𝑔 [

𝑓(𝑋𝑖
𝑗
,𝑦𝑗 )

𝑓(𝑋
𝑖
𝑗
)𝑓(𝑦𝑗)

]𝑛
𝑗=1 + {𝑙𝑜𝑔(∆𝑋𝑖

𝑗
𝑦𝑗) − 𝑙𝑜𝑔(∆𝑋𝑖

𝑗
) − 𝑙𝑜𝑔(∆𝑦𝑗)}(4.25) 

In Eq. (4.25), the log terms (i.e. 𝑙𝑜𝑔(∆𝑋𝑖
𝑗
𝑦𝑗), 𝑙𝑜𝑔(∆𝑋𝑖

𝑗
), and 𝑙𝑜𝑔(∆𝑦𝑗)) can 

diminish the overall improvement of boundary correction (e.g. a change up to 

50% in 𝑓(𝑋𝑖
𝑗
, 𝑦𝑗  ) only results in variation of 0.4 in 𝑙𝑜𝑔(∆𝑋𝑖

𝑗
𝑦𝑗)) and the 

overall sum of the term {𝑙𝑜𝑔(∆𝑋𝑖
𝑗
𝑦𝑗) − 𝑙𝑜𝑔(∆𝑋𝑖

𝑗
) − 𝑙𝑜𝑔(∆𝑦𝑗)} can be very 

small (close to zero), which yields a near negligible change in the resulting MI. 

In contrast, the accuracy of the models from which the residuals are obtained 

has a significant impact on MI values.  For example, the improved CSRs for 

methods R5, R6 and R7 (Fig. 4.4) correspond to higher values of the 

Coefficients of Efficiency of these models compared with that for method B3 

(Fig. 4.6).  In contrast, there reverse applies for method R2.  Similar results 

can also be found in APPENDIX-C Fig. C.2.3.  The effectiveness of R5 and 

R6 can be explained by the fact that the bias of the Nadaraya-Watson 

Regression (equivalent to the univariate GRNN used in all three benchmark 

models) has an additional error term 
𝑚′(𝑥)𝑓𝑥

′
(𝑥)

𝑓𝑥(𝑥)
 (𝑚(𝑥)  is the regression 

function; 𝑓𝑥(𝑥) is the probability density function with respect to 𝑥) than the 

local polynomial regression (e.g. LLP and LQP) used in R5 and R6, and this 

term increases as the boundary issue becomes severe (Fan, 1992; Masry, 1996; 
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Ruppert and Wand, 1994).  In contrast, the effectiveness of R7 can be 

ascribed to the kernel free feature of the MLPANN used for RE. Therefore, 

CSR is improved mainly through the adoption of boundary resistant methods 

in RE, rather than methods that focus on boundary correction.  
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Figure 4.5 Relative change of K-S and MI in-between M1 and B3 for EAR4 model 

 

 

 

 

 

 

 

 

 

 

 

 

 

-50%

0%

50%

100%

NORM EVT1 PT3 GAMMA EXP LOGPT3 LOGN

R
e

la
ti

ve
 K

-S
 %

 c
h

an
ge

Data distribution

(a) EAR4 K-S Variation (M1 vs. B3)

Q1 min med max Q3

-10%

-5%

0%

5%

10%

NORM EVT1 PT3 GAMMA EXP LOGPT3 LOGN

R
e

la
ti

ve
 M

I %
 c

h
an

ge

Data distribution

(b) EAR4 MI Variation (M1 vs. B3)

Q1 min med max Q3



CHAPTER 4 JOURNAL PAPER 3 

 

141 

 

 

 

 

 

 
Figure 4.6 Accuracy of residual estimation with alternative estimators for EAR4 model 

(3 cases) 
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The above results suggest that addressing boundary issues in RE is much 

more important than addressing these issues in MI estimation.  This is also 

confirmed by the results for the combined methods, as the combined methods 

that resulted in a marked increase in CSR (i.e. C3 and C4) are those that used 

the most successful methods for addressing the boundary issue in RE (i.e. R5 

and R7), and the methods that did not result in an increase in CSR (i.e. M1 

and M2) are those that used methods for addressing the boundary issue in RE 

that are not successful (i.e. R1 and R4), irrespective of which methods are 

used for addressing the boundary issue in MI estimation. 

The general findings for the EAR4 model (addressing boundary issues in RE 

is more important than addressing boundary issues in MI estimation and that 

the use of boundary resistant methods is more effective than the use of 

boundary correction methods) are confirmed by the results for the TEAR10 

(Fig. 4.7) and NL (Fig. 4.8) models, with additional supporting information 

provided in APPENDIX-C Figs. C.2.1 to C.2.5.  However, it should be noted 

that compared with the results for the EAR4 model, the differences between 

the different methods are less pronounced for the TEAR10 and more 

pronounced for the NL model.  This can be attributed to the relative predictive 

performance of the models from which the residuals are obtained for these 

two datasets, with much higher coefficients of efficiency for the TEAR10 

model (Fig. 4.9) than the NL model (Fig. 4.10).  This is most likely due the 

different degrees of non-linearity of the datasets. In addition, benchmark 

method B1 is found to underestimate the correct number of significant inputs 

for the non-Gaussian cases (e.g. LOGN and LOGPT3), which can be ascribed 

to the underestimated bandwidth, as the severity of underestimating the 

correct number of significant inputs is proportional to the bandwidth ratio. 

Nevertheless, methods with effective improvement (e.g. R5, R6, R7, C3, and 

C4) tend to correct such error with increased bandwidths, which is consistent 

with the finding in Harrold et al. (2001) and Li et al. (2015). 
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Figure 4.9 Accuracy of residual estimation with alternative estimators for TEAR10 

model (3 cases) 
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Figure 4.10 Accuracy of residual estimation with alternative estimators for NL model (3 

cases) 
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While the TEAR10 model is a threshold function, and would therefore be 

expected to be more difficult to approximate than the EAR4 model, analysis 

of the data generated from the TEAR10 model indicates that the threshold 

function is not activated very often, thereby resulting in quasi-linear model 

behaviour.  In contrast, the high degree of non-linearity of the NL model 

makes it more difficult to develop the single-input, single-output models from 

which the residuals are obtained, reducing the effectiveness of some of the 

methods for dealing with the boundary issue. 

This effect is particularly marked for the local polynomial regression based 

approaches (R5 and R6), which are very effective for the EAR4 and TEAR10 

models, with a 100% CSR for all distributions (Figs. 4.4 and 4.7), but much 

less effective for the NL model, for data that are moderately or severely non-

Gaussian. This can be attributed to the fact that the residual estimation of non-

linear problems, as influenced by both the boundary issue and problem 

nonlinearity, cannot be effectively improved by using local linear (1
st
 order) 

or quadratic (2
nd

 order) regression.  It should be noted that higher order 

polynomials (𝑝 > 2) could be introduced to potentially overcome these issues.  

The effectiveness of using models that are better able to deal with higher 

degrees of nonlinearity is confirmed by the 100% CSRs for almost all cases 

when approach R7 is used (Fig. 4.8), which uses a MLPANN as the RE model.  

In this setting, the use of MLPANNs might prove advantageous over using 

higher-order polynomials, as they are universal function approximators and do 

not require the functional form of the model to be selected a priori.   

4.4.2 Computational efficiency 

The computational efficiency of the different PMI IVS approaches 

investigated is displayed in Fig. 4.11.  As can be seen, the conventional 

benchmark approach (B1) is most efficient overall due to the simplicity of the 

GRR and GRNNs. B2 was the second most efficient approach, as the 

additional computational cost associated with improving the bandwidth (i.e. 

DPI) in MI estimation is minimal, followed by B3, which uses a more 

computationally expensive bandwidth estimator (i.e. SVO) in residual 
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estimation than B2. The efficiency of M1, M2 and C1 is similar to that of B3, 

indicating an insignificant increase in computational effort when applying 

boundary correction in MI estimation. On the contrary, the methods for 

addressing the boundary issue in residual estimation (i.e. R1, R2, R3, R5, R6, 

R7, C3 and C4) have a marked negative impact on computational efficiency 

(please note the log-scale on the y-axis of Fig. 4.11), except for the 

modification of kernel bandwidth (R4 and C2), as these methods require the 

implementation of optimisation procedures. This reduction in computational 

efficiency is particularly prominent for the two approaches that performed 

best in terms of CSE (i.e. approaches R7 and C4), with an average runtime of 

1122s, which is over 227 times greater than that of the most efficient approach 

(B1). This is mainly due to the time taken for the development of the 

MLPANNs. 
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4.4.3 Suggested rules and guidelines 

Based on the results presented in Sections 4.1 and 4.2, as well as the findings 

of previous studies by Li et al. (2014b, 2015), a set of empirical guidelines for 

determining the best composition of the PMI IVS approaches for a range of 

data distribution types and system input/output mappings have been 

developed, as shown in Fig. 4.12. It should be noted that reasonable trade-offs 

between selection accuracy and efficiency are considered in the development 

of these guidelines.  However, it is acknowledged that the relative importance 

of CSR and computational efficiency is also a function of case-study 

dependent features and user preferences.  
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Overall, four distinct scenarios are identified, as described below: 

Scenario 1: If the input/output data are mainly, or nearly, Gaussian (average 

𝑠 ≤ 1.3 and 𝑘 ≤ 3), approach B1 (with the GRR based GRNN for residual 

estimation and the GRR for MI estimation) is recommended, as this 

combination is able to provide good selection accuracy at the best possible 

computational efficiency. 

Scenario 2: If the input/output data follow moderately non-Gaussian (average 

1.3 <  𝑠 ≤ 5  and 3 <  𝑘 ≤ 30 ) distributions, approach B2 (with the GRR 

based GRNN for residual estimation and the DPI for MI estimation) is 

suggested, so that CSR can be improved with only a very small reduction in 

computational efficiency. In addition, if the boundary issue is anticipated to be 

significant (i.e. for cases where the input/output data are clustered near the 

physical bounds of the data variables), approach R5 (with the SVO based LLP 

for residual estimation and the DPI for MI estimation) is proposed for IVS. 

Scenario 3: If most of the input/output data follow extremely non-Gaussian 

(average 𝑠 > 5 and 𝑘 > 30) distributions and the problem is linear or slightly 

non-linear, approach R5 (with the SVO based LLP for residual estimation and 

the DPI for MI estimation) should be implemented, as the combined impact of 

bandwidth and boundary issues can be effectively overcome at a good trade-

off between selection accuracy and efficiency when this approach is 

implemented.  

Scenario 4: If the same conditions as in Scenario 3 apply, except that the 

problem becomes moderately to extremely non-linear, approach R7 (with the 

MLPANN for residual estimation and the DPI for MI estimation) is proposed. 

Although this PMI IVS approach will decrease computational efficiency 

significantly, it is the only approach that results in reliable selection accuracy 

under these conditions. 
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4.5 Validation on Murray Bridge and Kentucky River 

Basin case studies 

4.5.1 Background 

The rules and guidelines proposed in Section 4.4.3 are tested on two semi-real 

case studies, including the estimation of salinity in the River Murray in South 

Australia 14 days in advance (Bowden et al., 2005b; Fernando et al., 2009; 

Kingston et al., 2005a; Li et al., 2014b; Li et al., 2015; Maier and Dandy, 

1996) and the prediction of flow in the Kentucky River Basin in the USA one 

day in advance (Bowden et al., 2012; Jain and Srinivasulu, 2004; Li et al., 

2014b; Li et al., 2015; Srinivasulu and Jain, 2006; Wu et al., 2013).   

River salinity at Murray Bridge 14 days in advance (MBS+13) is a function of 

the salinity at Mannum, Morgan, Waikerie and Loxton, and the river level at 

Lock 1, given a specified lag time (i.e. river salinity: MAS-1, MOS-1, WAS-1, 

WAS-5, LOS-1 and river level: L1UL-1) (Galelli et al., 2014; Maier and 

Dandy, 1996), However, for the purposes of assessing the effectiveness of 

PMI IVS, an additional 24 redundant or irrelevant candidate inputs are 

introduced, as shown in Table 4.5. 

The average daily runoff in the Kentucky River Basin one day in advance is 

influenced by previous values of average daily effective rainfall and runoff 

(i.e. average daily effective rainfall: P(t), P(t-1) and average daily runoff: Q(t-

1), Q(t-2)) (Galelli et al., 2014; Jain and Srinivasulu, 2004). For this case 

study, the effectiveness of PMI IVS is investigated by introducing another 17 

redundant or irrelevant candidate inputs, as shown in Table 4.6. 
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4.5.2 Experimental Procedure 

Both case studies are semi-real in the sense that actual input data are used, but 

that the corresponding output data are generated using a trained ANN model. 

The adoption of semi-real case studies enabled the benefits of utilising 

measured input data (i.e. not generated from a known distribution) to be 

combined with those of having known outputs, thereby enabling the 

performance of IVS methods to be tested in an objective and rigorous manner, 

as suggested by Galelli et al., (2014) and Humphrey et al. (2014).  

For both case studies, standard MLPs are developed using the approach 

proposed by Wu et al. (2014b). The DUPLEX method (May et al., 2010) is 

implemented to split the historical records into training (60%), testing (20%) 

and validating (20%) sets. By using a single hidden layer and empirically 

trying between 0 and 6 hidden nodes (in increments of 1), the optimal model 

structures are found to be 6-4-1 and 4-4-1 for the salinity and rainfall-runoff 

cases respectively. Model calibration is conducted using the back-propagation 

algorithm (with learning rate of 0.1 and momentum of 0.1). The input data 

used in the PMI IVS are re-simulated 30 times based on the observations, so 

that the data sets contain random variations while maintaining the major time 

patterns. Finally, the corresponding output data are obtained by substituting 

the re-simulated inputs into the trained ANN model. This procedure has also 

been successfully applied in Li et al. (2015).  

4.5.3 Results and discussion 

The salinity case study is categorised as a strong linear problem with mildly 

non-Gaussian input and output distributions (not significantly affected by 

bandwidth and boundary issues) (Bowden, 2003; Galelli et al., 2014; Li et al., 

2014b; Li et al., 2015; Wu et al., 2013). Consequently, these data correspond 

to Scenario 2 in Fig. 4.12. Given this, the performance of PMI IVS using 

approach B2 is expected to be superior in terms of a desirable trade-off 

between selection accuracy and efficiency.  
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The results presented in Fig. 4.13 are consistent with this expectation. The 

CSR associated with using approach B2 is 100% (estimated in 107s), 

compared with a CSR of less than 84% (estimated in 47s) when approach B1 

is used. CSRs of 100% are also achieved by the alternative approaches (except 

R2), however, at additional computational cost (487s to 7565s). Consequently, 

the best trade-off between selection accuracy and efficiency is given by 

approach B2, as suggested by the proposed guidelines (Fig. 4.12).   

 

 
Figure 4.13 Selection accuracy and efficiency of the PMI IVS with suggested settings for 

Murray Bridge case 
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performance of PMI IVS using approach R7 is expected to be superior in 

terms of a balance between selection accuracy and efficiency.  

Based on the results in Figs. 4.14 (a) and 4.14 (b), this is indeed the case. The 

CSRs associated with using approaches R7 and C4 are 100%, followed by 
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those of approaches B3, M1, M2, R1, R4, C1, C2 (all around 93%), B2, R3 

(both approximately 87%), R2 (83%), R6, B1 (both near 77%), R5 and C3 

(both about 73%). While the use of approach R7 increased CSR at significant 

computational cost (at around 45856s; over 162 times B1’s runtime), as 

shown in Fig. 4.14 (b), this provide the most robust selection accuracy, as 

suggested by the proposed guidelines (Fig. 4.12).   

 

 
Figure 4.14 Selection accuracy and efficiency of the PMI IVS with suggested settings for 

Kentucky River basin case 

 

4.6 Summary and Conclusions 

Partial mutual information (PMI) has been successfully and extensively 

implemented in environmental and water resources modelling, as it considers 

both the significance and independence of candidate inputs. Given that PMI 

input variable selection (IVS) is a function of kernel based MI and residual 

estimation (RE), the performance of PMI IVS is influenced by the 

determination of an appropriate bandwidth (otherwise termed the smoothing 

parameter) and boundary issues. Although the impact of bandwidth selection 
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been studied previously, the impact of the boundary issue has not yet been 

addressed, making it difficult to know to what degree the performance of PMI 

IVS can be compromised by such issues and which methods can effectively 

address this impact.  

In order to develop a more reliable PMI IVS algorithm for problems with 

boundary issues, in conjunction with bandwidth issues, the CSR and 

computational efficiency of PMI IVS were assessed for 16 different 

approaches to addressing these issues on synthetic data sets with different 

degrees of normality and non-linearity.  Of these 16 methods, three are 

benchmark approaches without explicitly considering the boundary issue (B1 

to B3), two aim to improve the boundary issue in MI estimation (M1, M2), 

seven ameliorate the boundary issue in RE (R1 to R7), and four are combined 

approaches that take into account the boundary issue in both MI and RE (C1 

to C4). The results from 10,080 trials with the synthetic data contributed to the 

establishment of preliminary empirical guidelines for the selection of the most 

appropriate PMI IVS approach, for data with different degrees of normality 

and non-linearity. The validity of the developed guidelines was then tested on 

two semi-real data sets. 

Results of the synthetic studies suggest that methods that address boundary 

issues in MI estimation do not result in improvements in CSR. In contrast, 

methods that address boundary issues in RE are able to increase CSR to 100% 

(or very close to 100%) for even the most non-Gaussian and non-linear 

datasets tested.  However, this is not the case for all methods, with boundary 

resistant methods exhibiting greater success than methods focussed on 

boundary correction.  In particular, the use of MLPANNs for RE results in the 

most robust selection accuracy, although at a significant decrease in 

computational efficiency. 

Based on the empirical guidelines for the selection of the most appropriate 

PMI IVS approaches developed (Fig. 4.12), the most commonly used 

combination of GRR-based kernel bandwidth selection and GRNN-based RE 

only results in reliable IVS if the input/output data follow Gaussian or nearly 

Gaussian distributions and do not have any boundary issues.  If the data are 
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moderately or highly non-Gaussian, the DPI should be used for MI bandwidth 

estimation, regardless of the degree of non-linearity in the data.  However, as 

the data become more non-Gaussian and non-linear, RE approaches should 

move from GRNNs to LLPs to MLPANNs in order to achieve CSRs near 

100%, with associated decreases in computational efficiency.  

The accuracy of the proposed guidelines was supported by the results of the 

two semi-real case studies.  For the salinity case study, for which the data 

were close to linear and followed a mildly non-Gaussian distribution, method 

B2 (Table 4.4), which used the DPI for MI bandwidth estimation and the 

GRNN with the GRR for bandwidth estimation, resulted in 100% CSR while 

being very computationally efficient.  For the rainfall runoff case study, for 

which the data were highly nonlinear and followed an extremely non-

Gaussian distribution, MLPANNs had to be used for RE in order to achieve 

100% CSRs. 

Overall, the results show that by using methods for MI and RE that are 

tailored to the input-output data under consideration, CSRs of 100% (or close 

to 100%) can be achieved when using PMI IVS, even for data that are highly 

non-linear and highly non-Gaussian.  This is in contrast to PMI IVS methods 

that use “standard” approaches to MI and RE, which have been shown to 

perform poorly under such circumstances in this and previous studies (e.g. Li 

et al., 2015; Galelli et al., 2014). However, alternative methods for dealing 

with non-Gaussian data in the context of PMI IVS, such as transforming the 

input data to normality (e.g. Bowden et al., 2003) and estimating the required 

densities using histogram-based methods (e.g. Fernando et al., 2009), require 

further investigation, as does the impact of the stopping criterion (see May et 

al., 2008a) on the results obtained in this study. In addition, the findings of 

this work should be tested more broadly, including for data sets with a wider 

range of attributes, such as different degrees of noise, collinearity and 

interdependency, as well as incomplete information (see Galelli et al., 2014). 
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CHAPTER 5  CONCLUSIONS  

 

5.1 Thesis summary 

Artificial neural networks (ANNs) are one of the most commonly used data 

driven models for addressing environmental and water resources problems 

and they have been applied successfully and extensively over the last two 

decades. The performance of ANNs is essentially determined by the quality of 

the methods used in the various steps of their development, which consist of 

data collection, data processing, input variable selection (IVS), data division, 

calibration, validation, and application to real problems. IVS, as one of the 

most important steps in the development of ANNs and other data driven 

environmental and water resources models, as it determines the quality and 

quantity of information used in the modelling process. 

Despite the existence of a large number of IVS techniques, partial mutual 

information (PMI) is one of the most promising approaches to IVS, as it is 

able to account for the relevance and redundancy of all candidate inputs and 

can be used for both linear and non-linear problems. However, current 

implementations of PMI IVS are not without their limitations. To the best of 

the author’s knowledge, on one hand, the Gaussian reference rule (GRR), 

which assumes that the input/output data follow a Gaussian distribution, is 

still predominately used for the estimation of the kernel bandwidth within 

PMI IVS, even though the distribution of most water resources data is 

generally far from normal (this is known as bandwidth selection issue). On the 

other hand, the impact of the boundary issue, which is a result of the use of a 

symmetrical kernel at boundary, has not been addressed in environmental and 

water resources applications, although this contributes to an under-estimation 

of the kernel density near the boundary. As a result, the performance of 

current implementations of PMI IVS is compromised by both bandwidth 

selection and boundary issues. Consequently, the corresponding ultimate 

objective of this thesis is to improve the performance of PMI IVS by 
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investigating the impact of bandwidth selection and boundary issues for 

ANNs and other data driven environmental and water resources models. 

In order to achieve the ultimate objective of this research, three detailed 

objectives and papers are established.  Firstly, the performance of GRNN 

based residual estimation (RE), as part of PMI IVS, is assessed through the 

investigation of nine bandwidth estimators with various Gaussian dependence. 

Secondly, the performance of PMI IVS is studied through five bandwidth 

estimators with varying Gaussian dependence, as well as the proposed 

suggestions of bandwidth estimation of GRNN based RE. Thirdly, the 

performance of PMI IVS is further investigated by introducing sixteen 

methods that attenuate boundary issues associated with the guidelines of 

bandwidth selection with distinct data properties, obtained through the studies 

of the first two objectives. All the methods are assessed on synthetic models 

with distinct problem non-linearity. As pointed out by Galelli et al. (2014), the 

accuracy of IVS algorithms can only be assessed in an objective and rigorous 

manner if the correct outputs are known. Consequently, input data with 

different degrees of normality are generated from distributions with differing 

degrees of normality, and the corresponding output data are obtained by 

substituting the generated inputs into synthetic models. 

Based on the findings of the research presented in this thesis, it is suggested 

that: 

1. The performance of PMI IVS is influenced by both bandwidth 

selection and boundary issues. 

 

2. Currently implemented PMI IVS methods (i.e. depending on the 

Gaussian assumption without boundary correction) only result in 

reliable IVS if the input/output data follow Gaussian or nearly 

Gaussian distributions. 

 

3. Bandwidths with reduced dependence on the Gaussian assumption can 

effectively improve selection accuracy for data that are non-Gaussian. 
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4. The proposed methods are very effective in addressing the boundary 

issue 

 

5. It is vital to consider both bandwidth selection and boundary issues 

simultaneously. 

The guidelines for selecting appropriate methods for MI/PMI and RE based 

on the properties of the available data appear to be very effective when tested 

on the semi-real validation data.  The case studies are semi-real in the sense 

that actual input data are used, but that the corresponding output data are 

generated using a trained ANN model.  The adoption of semi-real case studies 

enable the benefits of utilising measured input data (i.e. not generated from a 

known distribution) to be combined with those of having known outputs, 

thereby enabling the performance of IVS methods to be tested in an objective 

and rigorous manner, as suggested by Galelli et al., (2014) and Humphrey et 

al. (2014). Although the developed guidelines are applied to datasets in which 

variables have similar distributions in Chapters 2, 3, and 4, this does not limit 

the methodological contribution of this research. As such, it is expected that 

this research is able to provide more robust and rigorous applications of PMI 

IVS for ANNs and other data driven environmental and water resources 

models.  

 

5.2 Research contributions 

The overall contribution of the present research is the effective improvement 

of PMI IVS, by considering a balance between accuracy and efficiency, 

through the investigation of both bandwidth selection and boundary issues. 

Based on the research presented in Chapters 2 to 4 of this thesis, details of 

critical contributions are summarised as follows: 

1. The first contribution of this research is that it proposes rigorous and novel 

analytical procedures for assessing if, and to what degree, the performance of 

residuals and MI/PMI is affected by bandwidth selection and boundary issues. 
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For each study, a rigorous and novel analytical framework, including 

simulation of synthetic cases, adoption of investigated methods, application to 

semi-real problem based cases, and examination of modelling performance, is 

designed and implemented. 

2. The second contribution of this research is that it provides an explanation 

for the suboptimal performance of conventional PMI IVS under the influence 

of the bandwidth selection and boundary issues. It is confirmed that use of 

GRR based bandwidth estimator only results in good input selection accuracy 

if the input/output data follow Gaussian or nearly Gaussian distributions. In 

contrast, 2-stage direct plug-in (DPI), combination of biased cross validation 

and DPI (BCVDPI), smoothed cross validation (SCV), and single variable 

optimisation (SVO) based bandwidth estimators, as a result of their reduced 

dependence on the Gaussian assumption, generally result in pronounced 

improvements in selection accuracy. The use of local linear polynomial (LLP) 

regression and multi-layer perceptron artificial neural network (MLPANN) 

models for RE is found to result in marked improvement when dealing with 

boundary issues, as a result of their increased resistance to the boundary issue 

for problems with data bounded at certain point(s).  

3. The third contribution of this research is the development of effective 

preliminary guidelines based on the results of extensive controllable synthetic 

studies to deal with bandwidth selection and boundary issues under different 

scenarios categorised by data normality and problem linearity. By 

consolidating the established preliminary guidelines within all three papers 

and recalling Fig. 4.12, it is suggested that  

(1) If the input/output data are mainly, or nearly, Gaussian (average 

𝑠 ≤ 1.3 and 𝑘 ≤ 3), a PMI approach with the GRR based GRNN for 

RE and the GRR for MI estimation (B1) is recommended, as this 

combination is able to provide good selection accuracy at the best 

possible computational efficiency. 

(2) If the input/output data follow moderately non-Gaussian (average 

1.3 <  𝑠 ≤ 5 and 3 <  𝑘 ≤ 30) distributions, a PMI approach with 
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the GRR based GRNN for RE and the DPI for MI estimation (B2) is 

suggested, so that correct selection rate (CSR) can be improved with 

only a very small reduction in computational efficiency. In addition, 

if the boundary issue is anticipated to be significant (i.e. for cases 

where the input/output data are clustered near the physical bounds of 

the data variables), a PMI approach with the SVO based LLP for RE 

and the DPI for MI estimation (R5) is proposed for IVS. It should be 

noted that increasing computational challenges are expected when 

introducing the DPI and the SVO based LLP. 

(3) If most of the input/output data follow extremely non-Gaussian 

(average 𝑠 > 5 and 𝑘 > 30) distributions and the problem is linear or 

slightly non-linear, a PMI approach with the SVO based LLP for RE  

and the DPI for MI estimation (R5) should be implemented, as the 

combined impact of bandwidth and boundary issues can be 

effectively overcome at a good trade-off between selection accuracy 

and efficiency when this approach is implemented. The additional 

computational expense is mainly contributed to the SVO based LLP. 

(4) If the same conditions as in Scenario 3 apply, except that the 

problem becomes moderately to extremely non-linear, a PMI 

approach with the MLPANN for RE and the DPI for MI estimation 

(R7) is proposed. Although this PMI IVS approach will decrease 

computational efficiency significantly, it is the only approach that 

results in reliable selection accuracy under these conditions. 

It should be noted that reasonable trade-offs between selection accuracy and 

efficiency are considered in the development of these guidelines. However, it 

is acknowledged that the relative importance of CSR and computational 

efficiency is also a function of case-study dependent features and user 

preferences.  

When applying the proposed guidelines to different water resources and 

environmental modelling problems, it is recommended to check the average 

distributions (skewness and kurtosis) of input and output variables first and to 



CONCLUSIONS 

 

170 

 

then categorise the problem into the most suitable scenario. In general, most 

water quantity models contain input and output variables that are bounded by 

their physical meaning and form highly skewed distributions (e.g. average 

daily rainfall-runoff data), thereby selection of bandwidth and boundary issue 

should be considered in accordance with scenarios 3 and 4 in Fig. 4.12. While 

most water quality models mainly include input and output variables that 

follow Gaussian or nearly Gaussian distributions (e.g. concentration of 

dissolved oxygen in the river), therefore scenarios 1 and 2 in Fig. 4.12 should 

be implemented for the sake of good selection accuracy at the best possible 

computational efficiency. However, it is also acknowledged that the 

application of the proposed guidelines is also a function of case-study 

dependent features and user preferences.  
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4. The fourth contribution of this research is more robust and reliable software 

based applications of the proposed PMI IVS for realistic environmental and 

water resources problems. A number of programs have been developed in 

accordance with the preliminary guidelines discussed in each of the journal 

papers and they are free to download for research purposes from the following 

website: 

http://www.ecms.adelaide.edu.au/civeng/research/water/software/generalised-

regression-neural-network/ 

https://github.com/xuyuanli/GRNNs 

https://github.com/xuyuanli/IVS_PMI_2014 

 

5.3 Publications 

List of works contained within this thesis: 

Paper 1 presented in Chapter 2 (Li et al., 2014b): Li, X., Zecchin, A.C., 

Maier, H.R., 2014b. Selection of smoothing parameter estimators for general 

regression neural networks - Applications to hydrological and water resources 

modelling. Environmental Modelling and Software 59 162-186 DOI: 

110.1016/j.envsoft. 2014.1005.1010. 

Paper 2 presented in Chapter 3 (Li et al., 2015): Li, X., Maier, H.R., 

Zecchin, A.C., 2015. Improved PMI-based input variable selection approach 

for artificial neural network and other data driven environmental and water 

resource models. Environmental Modelling and Software 65 15-29 DOI: 

10.1016/j.envsoft.2014.11.028 

Paper 3 presented in Chapter 4 (Li et al., 2014a): Li, X., Zecchin, A.C., 

Maier, H.R., 2014a. Improving partial mutual information-based input 

variable selection by consideration of boundary issues associated with 

bandwidth estimation. Environmental Modelling and Software, submitted on 

04/12/2014. 
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List of works resulting from research associated with thesis but not contained 

within: 

Li, X., Maier, H.R., Zecchin, A.C., 2013. Improving PMI based input 

selection by using different kernel bandwidths for artificial neural network 

models (extended abstract), 20th International Congress on Modelling and 

Simulation (MODSIM2013): Adelaide, Australia. 

 

5.4 Recommendations for future research 

Overall, the results show that by using methods for MI and RE that are 

tailored to the input-output data under consideration, CSRs of 100% (or close 

to 100%) can be achieved when using PMI IVS, even for data that are highly 

non-linear and highly non-Gaussian.  This is in contrast to PMI IVS methods 

that use “standard” approaches to MI and RE, which have been shown to 

perform poorly under such circumstances in this and previous studies (e.g. Li 

et al., 2014a; Galelli et al., 2014). However, the computational expense of 

some methods described in the proposed guidelines is of concern and the 

development of alternative methods with equivalent selection accuracy but 

better computational efficiency is suggested for future research. Alternative 

methods for dealing with non-Gaussian data in the context of PMI IVS that 

deserve consideration in this context include:  

1) transforming the input  data to normality (e.g. Bowden et al., 2003), 

which requires a combination of normalising the data and transforming the 

kernel. As such, the computational efficiency can be improved by 

applying the Gaussian assumption to the normalised data, while the 

bandwidth and boundary issues are addressed simultaneously. The major 

challenges of this approach are to determine the most effective data 

transformation method(s) and to derive the corresponding transformation 

kernel(s) in 1D and 2D.   

2) estimating the required densities using histogram-based methods (e.g. 

Fernando et al., 2009), which could potentially perform as well as the 
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proposed guidelines, but with better efficiency due to the fact that such 

methods are not affected by the boundary issue, which is only associated 

with kernel based approaches. However, the major challenge of this 

histogram-based method is to approximate the optimal histogram bin 

width, so that it is neither too large nor too small for general cases. This 

challenge is, in fact, technically similar to the bandwidth selection issue. 

As part of the PMI IVS approach, the stopping criterion can also affect the 

stability of selection accuracy, which has been mentioned before in this 

research (Section 3.2 and 4.2.1 PMI IVS). However, in this research only AIC, 

suggested by May et al. (2008b), is used. As a consequence, the impact of the 

stopping criterion also requires further investigation to secure the robustness 

of the proposed guidelines. Alternative stopping criteria that could be 

considered for this purpose include bootstrapping, tabulated critical values, 

and the Hampel test, as discussed and tested in May et al. (2008b). 

In addition, the data used for the synthetic tests are pre-determined and 

controllable with low degree of noise, collinearity and interdependency. In 

contrast, the data for realistic water resources and environmental problems can 

be far more complicated. Consequently, the findings of this work should be 

tested more broadly, including for data sets with a wider range of attributes, 

such as different degrees of noise, collinearity and interdependency, as well as 

incomplete information (see Galelli et al., 2014). All future analysis and tests 

of IVS are also strongly recommended to follow the systematic approach 

proposed by Galelli et al. (2014). 
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APPENDICES 

APPENDIX-A Supplementary Material from Paper 1 

(Chapter 2) 

 

Figure A.1 Predictive accuracy for the validation data of MLPs and GRNNs, measured 

by CE, MCE, PI & MPI, for different synthetic data-generating models and 

distributions for which optimal parameters have been obtained using different methods 
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Figure A.1 (Continued) 
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Figure A.1 (Continued) 
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 Figure A.1 (Continued) 
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Figure A.2 Standardised residuals for the training data of MLPs and GRNNs with 

different smoothing parameters for EAR4 model with different distributions  

(performance of the BCV was similar to that of the GRR; performance of the BCVDPI and 

SCV was similar to that of the DPI; similar plots were also observed for TEAR10 & NL 

models) 
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Figure A.2 (Continued) 
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Figure A.2 (Continued) 
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Figure A.2 (Continued) 
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Figure A.2 (Continued) 
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Figure A.2 (Continued) 
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Figure A.2 (Continued) 
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Figure A.2 (Continued) 
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Figure A.2 (Continued) 
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Figure A.2 (Continued) 
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Figure A.2 (Continued) 
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Figure A.2 (Continued) 
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Figure A.2 (Continued) 
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Figure A.2 (Continued) 
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Figure A.2 (Continued) 
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Figure A.2 (Continued) 
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Figure A.2 (Continued) 

 

Figure A.3. Predictive accuracy for the validation data of MLPs and GRNNs with 

different smoothing parameters for river salinity at Murray Bridge 1 day in advance  

(similar plots were also observed for 5 days & 14 days in advance) 
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Figure A.4 Standardised residuals for the training data of MLPs and GRNNs with 

different smoothing parameters for river salinity at Murray Bridge 1 day in advance  

(plots of the BCV were similar to those of the GRR; plots of the BCVDPI and SCV were 

similar to those of the DPI; similar plots were also observed for 5 days & 14 days in advance) 
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Figure A.4 (Continued) 
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Figure A.4 (Continued) 

 

 

Figure A.5. Predictive accuracy for the validation data of MLPs and GRNNs with 

different smoothing parameters for runoff at Lock and Dam 10 in the Kentucky River 

basin1 day in advance 
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Fig. A.6 Standardised residuals for the training data of MLPs and GRNNs with 

different smoothing parameters for runoff at Lock and Dam 10 in the Kentucky River 

basin1 day in advance(plots of the BCV were similar to those of the GRR; plots of the 

BCVDPI and SCV were similar to those of the DPI) 
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Figure A.6 (Continued) 
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Figure A.6 (Continued) 
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APPENDIX-B Supplementary Material from Paper 2 

(Chapter 3) 

B.1 Mathematical derivations 

Derivation of Gaussian reference rule 

Let𝑓 be the Gaussian density function 𝑁(𝜇, 𝜎), 𝐾 be the Gaussian kernel, and  

ℎ =
𝑅(𝐾)

𝜇(𝐾)2𝑅(𝑓′′)

1

5
𝑛
−1

5  be the optimal bandwidth with respect to asymptotic 

mean integrated squared error (AMISE), then 

𝑓 =
1

𝜎√2𝜋
𝑒
−(𝑥−𝜇)2

2𝜎2  

𝑓′ =
1

𝜎√2𝜋
×
−2(𝑥 − 𝜇)

2𝜎2
× 𝑒

−(𝑥−𝜇)2

2𝜎𝐾
2

 

      =
−(𝑥 − 𝜇)

𝜎3√2𝜋
𝑒
−(𝑥−𝜇)2

2𝜎2  

𝑓′′ =
−1

𝜎3√2𝜋
𝑒
−(𝑥−𝜇)2

2𝜎2 +
−2(𝑥 − 𝜇)2

2𝜎5√2𝜋
𝑒
−(𝑥−𝜇)2

2𝜎2  

       =
−1

𝜎3√2𝜋
𝑒
−(𝑥−𝜇)2

2𝜎2 × [
−(𝑥 − 𝜇)2

𝜎2
+ 1] 

(𝑓′′)2 =
1

𝜎62𝜋
𝑒
−(𝑥−𝜇)2

𝜎2 × [
(𝑥 − 𝜇)4

𝜎4
−
2(𝑥 − 𝜇)2

𝜎2
+ 1] 

Let
𝑦

√2
= 𝑥, then 

𝑑𝑥

√2
= 𝑑𝑦 

∫(𝑓′′)2 𝑑𝑥 = ∫
1

𝜎62𝜋
𝑒
−(𝑥−𝜇)2

𝜎2 × [
(𝑥 − 𝜇)4

𝜎4
−
2(𝑥 − 𝜇)2

𝜎2
+ 1] 𝑑𝑥 

                     = ∫
1

𝜎62𝜋
𝑒

−(
𝑦

√2
−𝜇)

2

𝜎2 × [

(
𝑦

√2
− 𝜇)4

𝜎4
−

2(
𝑦

√2
− 𝜇)2

𝜎2
+ 1] ×

𝑑𝑦

√2
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                     = ∫
1

𝜎62𝜋
𝑒
−(𝑦−𝜇√2)

2

2𝜎2 × [
(𝑦 − 𝜇√2)4

4𝜎4
−
(𝑦 − 𝜇√2)2

𝜎2
+ 1] ×

𝑑𝑦

√2
 

                      = ∫
1

𝜎√2𝜋
𝑒
−(𝑦−𝜇√2)

2

2𝜎2 × [
(𝑦 − 𝜇√2)4

4𝜎4
−
(𝑦 − 𝜇√2)2

𝜎2
+ 1]

×
1

𝜎5√2𝜋
×
𝑑𝑦

√2
 

 

for Gaussian distribution, 𝐸(𝑥 − 𝜇)𝑝 {
0, 𝑖𝑓 𝑝 𝑖𝑠 𝑜𝑑𝑑

𝜎𝑝(𝑝 − 1)‼, 𝑖𝑓 𝑝 𝑖𝑠 𝑒𝑣𝑒𝑛
 

∫(𝑓′′)2 𝑑𝑥 =
1

2𝜎5√𝜋
× (

𝜎4 × 3‼

4𝜎4
−
𝜎2 × 1‼

𝜎2
+ 1) 

∫(𝑓′′)2 𝑑𝑥 =
1

2𝜎5√𝜋
× (

3

4
− 1 + 1) 

∫(𝑓′′)2 𝑑𝑥 =
3

8𝜎5√𝜋
 

𝐾 =
1

𝜎(𝐾)√2𝜋
𝑒
−[𝑥−𝜇(𝐾)]2

2𝜎(𝐾)2  

𝐾2 =
1

𝜎(𝐾)22𝜋
𝑒
−[𝑥−𝜇(𝐾)]2

𝜎(𝐾)2  

∫𝐾2 𝑑𝑥 = ∫
1

𝜎(𝐾)√2𝜋
𝑒
−[𝑥−𝜇(𝐾)]2

𝜎(𝐾)2 ×
1

𝜎(𝐾)√2𝜋
𝑑𝑥 

                 = ∫
1

𝜎(𝐾)√2𝜋
𝑒

−[
𝑦

√2
−𝜇(𝐾)]

2

𝜎(𝐾)2 ×
1

𝜎(𝐾)√2𝜋

𝑑𝑦

√2
 

                 =
1

𝜎(𝐾)2√𝜋
×
𝜎(𝐾)2 × 1‼

𝜎(𝐾)2
 

                 =
1

𝜎(𝐾)2√𝜋
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for standard normal distribution 𝜎(𝐾) = 1, 𝜇2(𝐾) = ∫ 𝑥
2𝐾(𝑥)𝑑𝑥 ≈ 𝜎(𝐾)2 =

1, then 

ℎ̂𝐺𝑅𝑅,𝑖 =
𝑅(𝐾)

𝑅(𝑓′′)

1
5

𝑛
−1
5  

ℎ̂𝐺𝑅𝑅,𝑖 =
∫𝐾2 𝑑𝑥

∫(𝑓′′)2 𝑑𝑥

1
5

𝑛
−1
5  

ℎ̂𝐺𝑅𝑅,𝑖 =

1

2√𝜋
3

8𝜎5√𝜋

1
5

𝑛
−1
5  

ℎ̂𝐺𝑅𝑅,𝑖 = (
3

4
)

1
5
𝜎𝑛

−1
5  

which results in Eqs. (3.15). This also consists with Wand and Jones (1995) 

and Scott (1992). 

 

Derivation of 2-stage direct plug-in  

Let �̂�𝑟 =
(−1)𝑟 2⁄ 𝑟!

(2𝜎)𝑟+1(𝑟 2⁄ )!𝜋1 2⁄  be the normal scale (NS), 𝜎  be the standard 

deviation of the sample, then 

�̂�8
𝑁𝑆 =

(−1)48!

(2𝜎)94! 𝜋1 2⁄
 

         =
27 × 32 × 5 × 7

212 × 3 × 𝜎9 × 𝜋1 2⁄
 

         =
105

32𝜎9𝜋1 2⁄
 

Let 𝐾  be the Gaussian kernel with𝜇2(𝐾) = ∫𝑥
2𝐾(𝑥)𝑑𝑥 =𝑛−1∑ (𝑋𝑖

𝑗
−𝑛

𝑗=1

𝑋𝑖)
2𝐾ℎ(𝑋𝑖

𝑗
− 𝑋𝑖) = 1  for Gaussian kernel, 𝐾(𝑛)  be the 𝑛 th derivative of 

𝐾then, 
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𝐾 =
1

𝜎(𝐾)√2𝜋
𝑒
−[𝑥−𝜇(𝐾)]2

2𝜎(𝐾)2  

𝐾(1) =
1

𝜎(𝐾)3√2𝜋
𝑒
−[𝑥−𝜇(𝐾)]2

2𝜎(𝐾)2 × [𝜇(𝐾) − 𝑥] 

𝐾(2) =
1

𝜎(𝐾)3√2𝜋
{−𝑒

−[𝑥−𝜇(𝐾)]2

2𝜎(𝐾)2 +
[𝑥 − 𝜇(𝐾)]2

𝜎(𝐾)2
𝑒
−[𝑥−𝜇(𝐾)]2

2𝜎(𝐾)2 } 

𝐾(3) =
1

𝜎(𝐾)3√2𝜋
{
3[𝑥 − 𝜇(𝐾)]

𝜎(𝐾)2
𝑒
−[𝑥−𝜇(𝐾)]2

2𝜎(𝐾)2 −
[𝑥 − 𝜇(𝐾)]3

𝜎(𝐾)4
𝑒
−[𝑥−𝜇(𝐾)]2

2𝜎(𝐾)2 } 

𝐾(4) =
1

𝜎(𝐾)3√2𝜋
{

3

𝜎(𝐾)2
𝑒
−[𝑥−𝜇(𝐾)]2

2𝜎(𝐾)2 −
6[𝑥 − 𝜇(𝐾)]2

𝜎(𝐾)4
𝑒
−[𝑥−𝜇(𝐾)]2

2𝜎(𝐾)2

+
[𝑥 − 𝜇(𝐾)]4

𝜎(𝐾)6
𝑒
−[𝑥−𝜇(𝐾)]2

2𝜎(𝐾)2 } 

𝐾(5) =
1

𝜎(𝐾)3√2𝜋
{
−15

𝜎(𝐾)4
𝑒
−[𝑥−𝜇(𝐾)]2

2𝜎(𝐾)2 +
10[𝑥 − 𝜇(𝐾)]3

𝜎(𝐾)6
𝑒
−[𝑥−𝜇(𝐾)]2

2𝜎(𝐾)2

−
[𝑥 − 𝜇(𝐾)]5

𝜎(𝐾)8
𝑒
−[𝑥−𝜇(𝐾)]2

2𝜎(𝐾)2 } 

𝐾(6) =
1

𝜎(𝐾)3√2𝜋
{
−15

𝜎(𝐾)4
𝑒
−[𝑥−𝜇(𝐾)]2

2𝜎(𝐾)2 +
45[𝑥 − 𝜇(𝐾)]2

𝜎(𝐾)6
𝑒
−[𝑥−𝜇(𝐾)]2

2𝜎(𝐾)2

−
15[𝑥 − 𝜇(𝐾)]4

𝜎(𝐾)8
𝑒
−[𝑥−𝜇(𝐾)]2

2𝜎(𝐾)2 +
[𝑥 − 𝜇(𝐾)]6

𝜎(𝐾)10
𝑒
−[𝑥−𝜇(𝐾)]2

2𝜎(𝐾)2 } 

For standard normal case, 𝜎(𝐾) = 1 

𝐾(6)(0) =
−15

√2𝜋
 

𝐾(4)(0) =
3

√2𝜋
 

recall Eq. (3.18)  

𝑔1 = [−2𝐾(6)(0)/{𝜇2(𝐾)�̂�8
𝑁𝑆𝑛}]

1 9⁄
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𝑔1 = [−2 ×
−15

√2𝜋
/ {

105

32𝜎9𝜋1 2⁄
𝑛}]

1 9⁄

 

Let �̂�𝑟(𝑔) = 𝑛
−1∑ 𝑓(𝑟)(𝑋𝑎; 𝑔) = 𝑛−2∑ ∑ 𝐿𝑔

(𝑟)(𝑋𝑖
𝑗
− 𝑋𝑖)

𝑛
𝑗=1

𝑚
𝑖=1

𝑛
𝑎=1  be the 

general case and 𝐿 = 𝐾, then  

�̂�6(𝑔1) = 𝑛−2∑∑𝐿𝑔1
(6)(𝑋𝑖

𝑗
− 𝑋𝑖)

𝑛

𝑗=1

𝑚

𝑖=1

 

             = 𝑛−2∑∑
1

𝑔1√2𝜋
𝑒

−(𝑋𝑖
𝑗
−𝑋𝑖)

2

2𝑔1
2

𝑛

𝑗=1

𝑚

𝑖=1

 

𝑔2 = [−2𝐾
(4)(0)/{𝜇2(𝐾)�̂�6(𝑔1)𝑛}]

1 7⁄
 

𝑔2 = [−2 ×
3

√2𝜋
/{𝑛−1∑∑

1

𝑔1√2𝜋
𝑒

−(𝑋𝑖
𝑗
−𝑋𝑖)

2

2𝑔1
2

𝑛

𝑗=1

𝑚

𝑖=1

}]

1 7⁄

 

�̂�4(𝑔2) = 𝑛
−2∑∑𝐿𝑔2

(4)(𝑋𝑖
𝑗
− 𝑋𝑖)

𝑛

𝑗=1

𝑚

𝑖=1

 

             = 𝑛−2∑∑
1

𝑔2√2𝜋
𝑒

−(𝑋𝑖
𝑗
−𝑋𝑖)

2

2𝑔2
2

𝑛

𝑗=1

𝑚

𝑖=1

 

recall Eq. (3.17)  

ℎ̂𝐷𝑃𝐼,𝑖 = [
𝑅(𝐾)

[𝜇2(𝐾)]2�̂�4(𝑔)𝑛
]

1
5

 

ℎ̂𝐷𝑃𝐼,𝑖 =

[
 
 
 
 
 
 

1

2√𝜋

{𝑛−1∑ ∑
1

𝑔2√2𝜋
𝑒

−(𝑋
𝑖
𝑗
−𝑋𝑖)

2

2𝑔2
2𝑛

𝑗=1
𝑚
𝑖=1 }

]
 
 
 
 
 
 

1
5
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Derivation of the linkage in between GRR and DPI 

Recall �̂�𝑟 =
(−1)𝑟 2⁄ 𝑟!

(2𝜎)𝑟+1(𝑟 2⁄ )!𝜋1 2⁄ , ℎ =
𝑅(𝐾)

𝜇(𝐾)2𝑅(𝑓′′)

1

5
𝑛
−1

5 , 𝑅(𝐾) =  
1

2√𝜋
, 𝑅(𝑓′′) =

3

8𝜎5√𝜋
 and 𝜇2(𝐾) = 1 for standard normal case then  

�̂�4
𝑁𝑆 ≈ 𝑅(𝑓′′) 

         =
(−1)24!

(2𝜎)52! 𝜋1 2⁄
 

         =
23 × 3

26𝜎5𝜋1 2⁄
 

         =
3

8𝜎5𝜋1 2⁄
 

For 𝑟 = 0, 

ℎ̂𝐷𝑃𝐼,𝑖 = [

1

2√𝜋

12
3

8𝜎5𝜋1 2⁄ 𝑛
]

1
5

 

= (
3

4
)

1
5
𝜎𝑛

−1
5  

               = ℎ̂𝐺𝑅𝑅,𝑖 

hence, GRR is equivalent to 0-stage DPI, which is a special case in the DPI 

family. 

 

Derivation of smoothed cross validation 

Let �̂�𝑟 =
(−1)𝑟 2⁄ 𝑟!

(2𝜎)𝑟+1(𝑟 2⁄ )!𝜋1 2⁄
 be the normal scale (NS), 𝜎  be the standard 

deviation of the sample, then 

�̂�12
𝑁𝑆 =

(−1)612!

(2𝜎)136! 𝜋1 2⁄
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         =
210 × 35 × 52 × 7 × 11

217 × 32 × 5 × 𝜎13 × 𝜋1 2⁄
 

         =
945 × 11

27𝜎13𝜋1 2⁄
 

�̂�8
𝑁𝑆 =

(−1)48!

(2𝜎)94! 𝜋1 2⁄
 

         =
27 × 32 × 5 × 7

212 × 3 × 𝜎9 × 𝜋1 2⁄
 

         =
105

32𝜎9𝜋1 2⁄
 

Let 𝐾  be the Gaussian kernel and 𝜇2(𝐾) = ∫𝑥2𝐾(𝑥)𝑑𝑥 =𝑛−1∑ (𝑋𝑖
𝑗
−𝑛

𝑗=1

𝑋𝑖)
2𝐾ℎ(𝑋𝑖

𝑗
− 𝑋𝑖) = 1 for Gaussian kernel, then 

𝐾 =
1

𝜎(𝐾)√2𝜋
𝑒
−[𝑥−𝜇(𝐾)]2

2𝜎(𝐾)2  

𝐾(1) =
1

𝜎(𝐾)3√2𝜋
𝑒
−[𝑥−𝜇(𝐾)]2

2𝜎(𝐾)2 × [𝜇(𝐾) − 𝑥] 

𝐾(2) =
1

𝜎(𝐾)3√2𝜋
{−𝑒

−[𝑥−𝜇(𝐾)]2

2𝜎(𝐾)2 +
[𝑥 − 𝜇(𝐾)]2

𝜎(𝐾)2
𝑒
−[𝑥−𝜇(𝐾)]2

2𝜎(𝐾)2 } 

𝐾(3) =
1

𝜎(𝐾)3√2𝜋
{
3[𝑥 − 𝜇(𝐾)]

𝜎(𝐾)2
𝑒
−[𝑥−𝜇(𝐾)]2

2𝜎(𝐾)2 −
[𝑥 − 𝜇(𝐾)]3

𝜎(𝐾)4
𝑒
−[𝑥−𝜇(𝐾)]2

2𝜎(𝐾)2 } 

𝐾(4) =
1

𝜎(𝐾)3√2𝜋
{

3

𝜎(𝐾)2
𝑒
−[𝑥−𝜇(𝐾)]2

2𝜎(𝐾)2 −
6[𝑥 − 𝜇(𝐾)]2

𝜎(𝐾)4
𝑒
−[𝑥−𝜇(𝐾)]2

2𝜎(𝐾)2

+
[𝑥 − 𝜇(𝐾)]4

𝜎(𝐾)6
𝑒
−[𝑥−𝜇(𝐾)]2

2𝜎(𝐾)2 } 

𝐾(5) =
1

𝜎(𝐾)3√2𝜋
{
−15[𝑥 − 𝜇(𝐾)]

𝜎(𝐾)4
𝑒
−[𝑥−𝜇(𝐾)]2

2𝜎(𝐾)2 +
10[𝑥 − 𝜇(𝐾)]3

𝜎(𝐾)6
𝑒
−[𝑥−𝜇(𝐾)]2

2𝜎(𝐾)2

−
[𝑥 − 𝜇(𝐾)]5

𝜎(𝐾)8
𝑒
−[𝑥−𝜇(𝐾)]2

2𝜎(𝐾)2 } 
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𝐾(6) =
1

𝜎(𝐾)3√2𝜋
{
−15

𝜎(𝐾)4
𝑒
−[𝑥−𝜇(𝐾)]2

2𝜎(𝐾)2 +
45[𝑥 − 𝜇(𝐾)]2

𝜎(𝐾)6
𝑒
−[𝑥−𝜇(𝐾)]2

2𝜎(𝐾)2

−
15[𝑥 − 𝜇(𝐾)]4

𝜎(𝐾)8
𝑒
−[𝑥−𝜇(𝐾)]2

2𝜎(𝐾)2 +
[𝑥 − 𝜇(𝐾)]6

𝜎(𝐾)10
𝑒
−[𝑥−𝜇(𝐾)]2

2𝜎(𝐾)2 } 

𝐾(7) =
1

𝜎(𝐾)3√2𝜋
{
105[𝑥 − 𝜇(𝐾)]

𝜎(𝐾)6
𝑒
−[𝑥−𝜇(𝐾)]2

2𝜎(𝐾)2

−
105[𝑥 − 𝜇(𝐾)]3

𝜎(𝐾)8
𝑒
−[𝑥−𝜇(𝐾)]2

2𝜎(𝐾)2 +
21[𝑥 − 𝜇(𝐾)]5

𝜎(𝐾)10
𝑒
−[𝑥−𝜇(𝐾)]2

2𝜎(𝐾)2

−
[𝑥 − 𝜇(𝐾)]7

𝜎(𝐾)10
𝑒
−[𝑥−𝜇(𝐾)]2

2𝜎(𝐾)2 } 

𝐾(8) =
1

𝜎(𝐾)3√2𝜋
{
105

𝜎(𝐾)6
𝑒
−[𝑥−𝜇(𝐾)]2

2𝜎(𝐾)2 −
420[𝑥 − 𝜇(𝐾)]2

𝜎(𝐾)8
𝑒
−[𝑥−𝜇(𝐾)]2

2𝜎(𝐾)2

+
210[𝑥 − 𝜇(𝐾)]4

𝜎(𝐾)10
𝑒
−[𝑥−𝜇(𝐾)]2

2𝜎(𝐾)2 −
28[𝑥 − 𝜇(𝐾)]6

𝜎(𝐾)12
𝑒
−[𝑥−𝜇(𝐾)]2

2𝜎(𝐾)2

+
[𝑥 − 𝜇(𝐾)]8

𝜎(𝐾)14
𝑒
−[𝑥−𝜇(𝐾)]2

2𝜎(𝐾)2 } 

𝐾(9) =
1

𝜎(𝐾)3√2𝜋
{
−945[𝑥 − 𝜇(𝐾)]

𝜎(𝐾)8
𝑒
−[𝑥−𝜇(𝐾)]2

2𝜎(𝐾)2

+
1260[𝑥 − 𝜇(𝐾)]3

𝜎(𝐾)10
𝑒
−[𝑥−𝜇(𝐾)]2

2𝜎(𝐾)2

−
378[𝑥 − 𝜇(𝐾)]5

𝜎(𝐾)12
𝑒
−[𝑥−𝜇(𝐾)]2

2𝜎(𝐾)2 +
36[𝑥 − 𝜇(𝐾)]7

𝜎(𝐾)14
𝑒
−[𝑥−𝜇(𝐾)]2

2𝜎(𝐾)2

−
[𝑥 − 𝜇(𝐾)]9

𝜎(𝐾)16
𝑒
−[𝑥−𝜇(𝐾)]2

2𝜎(𝐾)2 } 

𝐾(10) =
1

𝜎(𝐾)3√2𝜋
{
−945

𝜎(𝐾)8
𝑒
−[𝑥−𝜇(𝐾)]2

2𝜎(𝐾)2 +
4725[𝑥 − 𝜇(𝐾)]2

𝜎(𝐾)10
𝑒
−[𝑥−𝜇(𝐾)]2

2𝜎(𝐾)2

−
3150[𝑥 − 𝜇(𝐾)]4

𝜎(𝐾)12
𝑒
−[𝑥−𝜇(𝐾)]2

2𝜎(𝐾)2

+
630[𝑥 − 𝜇(𝐾)]6

𝜎(𝐾)14
𝑒
−[𝑥−𝜇(𝐾)]2

2𝜎(𝐾)2 −
45[𝑥 − 𝜇(𝐾)]8

𝜎(𝐾)16
𝑒
−[𝑥−𝜇(𝐾)]2

2𝜎(𝐾)2

+
[𝑥 − 𝜇(𝐾)]10

𝜎(𝐾)18
𝑒
−[𝑥−𝜇(𝐾)]2

2𝜎(𝐾)2 } 
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For standard normal case, 𝜎(𝐾) = 1 

𝐾(6)(0) =
−15

√2𝜋
 

𝐾(10)(0) =
−945

√2𝜋
 

𝑔1 = [−2𝐾(6)(0)/{𝜇2(𝐾)�̂�8
𝑁𝑆𝑛}]

1 9⁄
 

     = [2 ×

15

√2𝜋

{
105

32𝜎9𝜋1 2⁄ 𝑛}
]

1 9⁄

 

     = [2/(7𝑛)]1 9⁄ 21 2⁄ 𝜎 

𝑔2 = [−2𝐾
(10)(0)/{𝜇2(𝐾)�̂�12

𝑁𝑆𝑛}]
1 13⁄

 

     = [2 ×

945

√2𝜋
945 × 11
27𝜎13𝜋1 2⁄

]

1 13⁄

 

     = [2/(11𝑛)]1 13⁄ 21 2⁄ 𝜎 

 

Let �̂�𝑟(𝑔) = 𝑛
−1∑ 𝑓(𝑟)(𝑋𝑎; 𝑔) = 𝑛−2∑ ∑ 𝐿𝑔

(𝑟)(𝑋𝑖
𝑗
− 𝑋𝑖)

𝑛
𝑗=1

𝑚
𝑖=1

𝑛
𝑎=1  be the 

general case and 𝐿 = 𝐾, then  

�̂�6(𝑔1) = 𝑛−2∑∑𝐿𝑔1
(6)(𝑋𝑖

𝑗
− 𝑋𝑖)

𝑛

𝑗=1

𝑚

𝑖=1

 

             = 𝑛−2∑∑
1

𝑔1√2𝜋
𝑒

−(𝑋𝑖
𝑗
−𝑋𝑖)

2

2𝑔1
2

𝑛

𝑗=1

𝑚

𝑖=1

 

�̂�10(𝑔2) = 𝑛−2∑∑𝐿𝑔2
(10)(𝑋𝑖

𝑗
− 𝑋𝑖)

𝑛

𝑗=1

𝑚

𝑖=1
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             = 𝑛−2∑∑
1

𝑔2√2𝜋
𝑒

−(𝑋𝑖
𝑗
−𝑋𝑖)

2

2𝑔2
2

𝑛

𝑗=1

𝑚

𝑖=1

 

𝐾(4)(0) =
3

√2𝜋
 

𝐾(8)(0) =
105

√2𝜋
 

𝑔3 = [−2𝐾
(4)(0)/{𝜇2(𝐾)�̂�6𝑛}]

1 7⁄
 

     =

[
 
 
 
 
 
 

−2 ×

3

√2𝜋

{𝑛−1∑ ∑
1

𝑔1√2𝜋
𝑒

−(𝑋
𝑖
𝑗
−𝑋𝑖)

2

2𝑔1
2𝑛

𝑗=1
𝑚
𝑖=1 }

]
 
 
 
 
 
 
1 7⁄

 

𝑔4 = [−2𝐾
(8)(0)/{𝜇2(𝐾)�̂�10𝑛}]

1 11⁄
 

     =

[
 
 
 
 
 
 

−2 ×

105

√2𝜋

{𝑛−1∑ ∑
1

𝑔2√2𝜋
𝑒

−(𝑋
𝑖
𝑗
−𝑋𝑖)

2

2𝑔2
2𝑛

𝑗=1
𝑚
𝑖=1 }

]
 
 
 
 
 
 
1 7⁄

 

 

recall Eq. (3.22), 

ℎ̂𝑆𝐶𝑉,𝑖 = 𝑎𝑟𝑔𝑚𝑖𝑛ℎ{𝐸𝐼𝑀𝑆𝐸𝑆𝐶𝑉,𝑖(ℎ)} 

            = (𝑛ℎ)−1(2𝜋1 2⁄ )
−1

 

                +∑∑{ɸ
(2ℎ2+2𝑔2)

1 2⁄ − 2ɸ
(ℎ2+2𝑔2)

1 2⁄ + ɸ
(2𝑔2)

1 2⁄ } (𝑋𝑖
𝑗
− 𝑋𝑖)

𝑛

𝑗=1

𝑚

𝑖=1

 

where  

𝑔 = �̂�𝑛−23/45ℎ−2 
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and 

�̂� = {
441

(64𝜋)
}

1
18
(4𝜋)−

1
5�̂�4(𝑔3)

−
2
5�̂�8(𝑔4)

−
1
9 

= {
441

(64𝜋)
}

1
18
(4𝜋)−

1
5 {𝑛−2∑∑𝐿𝑔3

(4)(𝑋𝑖
𝑗
− 𝑋𝑖)

𝑛

𝑗=1

𝑚

𝑖=1

}

−
2
5

 

{𝑛−2∑∑𝐿𝑔4
(8)(𝑋𝑖

𝑗
− 𝑋𝑖)

𝑛

𝑗=1

𝑚

𝑖=1

}

−1/9

 

 

The derived formulas have been compiled in the Software. Further details can 

also be referred to Wand and Jones (1995) and Scott (1992). 
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B.2 Supplementary figures and tables 

 

 

 

 

 

Figure.B.2.1 Number of selected additional inputs of EAR4 model with alternative 

bandwidth estimators (0 indicates correct number of significant inputs; overestimation 

occurs if above 0; and underestimation appears if below 0) 
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Figure B.2.1 (Continued) 
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Figure.B.2.2 Number of selected additional inputs of TEAR10 model with alternative 

bandwidth estimators (0 indicates correct number of significant inputs; overestimation 

occurs if above 0; and underestimation appears if below 0)  
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Figure B.2.2 (Continued) 
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Figure.B.2.3 Number of selected additional inputs of NL model with alternative 

bandwidth estimators (0 indicates correct number of significant inputs; overestimation 

occurs if above 0; and underestimation appears if below 0)  
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Figure B.2.3 (Continued) 
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Figure.B.2.4 Sensitivity analysis of univariate histogram bin width for EAR4 model 

(LOGN and LOGPT3 cases; 𝒙𝒕−𝟔, 𝒑𝒕−𝟏 and  𝒙𝒕) 
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Figure B.2.4 (Continued) 

 

 

 

Figure.B.2.5 Sensitivity analysis of univariate histogram bin width for TEAR10 model 

(LOGN and LOGPT3 cases; 𝒙𝒕−𝟏, 𝒑𝒕−𝟏 and 𝒙𝒕) 
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Figure B.2.5 (Continued) 
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Figure.B.2.6 Sensitivity analysis of univariate histogram bin width for NL model (PT3 

and LOGPT3 cases; 𝒙𝟐and 𝒚) 
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Figure. B.2.7 Computational efficiency of TEAR10 model with different bandwidth 

estimators 

 

 

Figure. B.2.8 Computational efficiency of NL model with different bandwidth estimators 
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APPENDIX-C Supplementary Material from Paper 3 

(Chapter 4) 

C.1 Mathematical explanation and derivations 

Explanation of Bivariate Reflection Correction 

 

Figure. C.1.1 Quadrants of Bivariate Reflection Correction 

 

As mentioned in Section 2, let: 𝑿 = [𝑋1…  𝑋𝑚]
𝑇 be the input, where  𝑚 is the 

number of inputs; (𝑿𝑗 , 𝑦𝑗) be the observed pairs of input and output data 

for 𝑗 = 1,… , 𝑛, where n is the number of observations, 𝑿𝑗 = [𝑋1
𝑗
… 𝑋𝑚

𝑗
 ]
𝑇
 are 

the observed input data and 𝑦𝑗  are the observed output data. 𝑯  is the 

bandwidth matrix, defined as 𝑯 =  [
ℎ𝑥
2 𝜌𝑥𝑦ℎ𝑥ℎ𝑦

𝜌𝑥𝑦ℎ𝑥ℎ𝑦 ℎ𝑦
2 ] , where ℎ𝑥  and 

ℎ𝑦 are the estimated bandwidths for input 𝑋𝑖 and output 𝑦, respectively, and 

𝜌𝑥𝑦 is the correlation coefficient between input 𝑋𝑖 and output 𝑦 . Four 

quadrants are created by the x-axis and y-axis, as shown in Fig. C.1.1. Within 



Supplementary Material from Paper 3 (Chapter 4) 

 

244 

 

Quadrant I, four regions (S1 to S4) are further generated by the lines passing 

through 𝑥 = ℎ𝑥 and 𝑦 = ℎ𝑦.  

After scaling all data within [0,1] in both x-axis and y-axis, all points fall into 

Quadrant I. Points falling into S1 (𝑋𝑖
𝑗
> ℎ𝑥, 𝑦

𝑗 > ℎ𝑦) are not influenced by the 

boundary issue, therefore the density can be estimated based on Eqs. (4.1) and 

(4.2), as outlined in Section 2, which is expressed as 

𝑓(𝑋𝑖, 𝑦;𝑯) =
1

𝑛
∑ [𝐾𝐻 ([

𝑋𝑖
𝑦
] − [

𝑋𝑖
𝑗

𝑦𝑗
])]𝑛

𝑗=1 ; 𝑋𝑖 > ℎ𝑥 , 𝑦 > ℎ𝑦  

Points falling into S2 ( ℎ𝑥 ≥ 𝑋𝑖
𝑗
≥ 0, 𝑦𝑗 > ℎ𝑦 ) are only influenced by the 

boundary issue on the x-axis, therefore reflection correction is required only 

on the x-axis. By implementing the reflection kernel on the x-axis, the kernel 

density is given as   

𝑓(𝑋𝑖, 𝑦;𝑯) =
1

𝑛
∑[𝐾𝐻 ([

𝑋𝑖
𝑦
] − [

𝑋𝑖
𝑗

𝑦𝑗
]) + 𝐾𝐻 ([

𝑋𝑖
𝑦
] − [

−𝑋𝑖
𝑗

𝑦𝑗
])]

𝑛

𝑗=1

; ℎ𝑥 ≥ 𝑋𝑖 ≥ 0, 𝑦

> ℎ𝑦 

where points in S2 are ‘reflected’ into Quadrant II, so that the underestimated 

density near the boundary (y-axis) can be compensated for.  

Points falling into S3 (ℎ𝑥 ≥ 𝑋𝑖
𝑗
≥ 0, ℎ𝑦 ≥ 𝑦𝑗 ≥ 0) are affected by the boundary 

issue in both x-axis and y-axis, consequently, reflection correction is required 

in both dimensions, which then results in 

𝑓(𝑋𝑖, 𝑦;𝑯) =
1

𝑛
∑[𝐾𝐻 ([

𝑋𝑖
𝑦
] − [

𝑋𝑖
𝑗

𝑦𝑗
]) + 𝐾𝐻 ([

𝑋𝑖
𝑦
] − [

−𝑋𝑖
𝑗

−𝑦𝑗
])]

𝑛

𝑗=1

; ℎ𝑥 ≥ 𝑋𝑖 ≥ 0, ℎ𝑦

≥ 𝑦 ≥ 0 

Where points in S3 are ‘reflected’ into Quadrant III, and hence the problem 

associated with underestimated density near the boundary (x-axis and y-axis) 

can be addressed.  
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Points falling into S4 (𝑋𝑖
𝑗
> ℎ𝑥 , ℎ𝑦 ≥ 𝑦𝑗 ≥ 0) have identical circumstances 

to those in S2, however, the impact due to the boundary issue is only on the y-

axis, therefore the corresponding expression is  

 𝑓(𝑋𝑖, 𝑦;𝑯) =
1

𝑛
∑ [𝐾𝐻 ([

𝑋𝑖
𝑦
] − [

𝑋𝑖
𝑗

𝑦𝑗
]) + 𝐾𝐻 ([

𝑋𝑖
𝑦
] − [

𝑋𝑖
𝑗

−𝑦𝑗
])]𝑛

𝑗=1 ; 𝑋𝑖 > ℎ𝑥 , ℎ𝑦 ≥

𝑦 ≥ 0  

where points in S4 are ‘reflected’ into Quadrant IV, so that the underestimated 

density near the boundary (x-axis) can be ameliorated.  

In addition, any points outside of Quadrant I result in a density of zero. By 

summarising all scenarios described above, the bivariate reflection correction 

can be derived as shown in Eq. (4.7). 

 

Derivation of local linear polynomial regression 

Let �̂�𝑟 = 𝑛
−1∑ (𝑋𝑖

𝑗
− 𝑋𝑖)

𝑟𝑛
𝑗=1 𝐾ℎ(𝑋𝑖

𝑗
− 𝑋𝑖), �̂�𝑟 = 𝑛

−1∑ (𝑋𝑖
𝑗
−𝑛

𝑗=1

𝑋𝑖)
𝑟 𝐾ℎ(𝑋𝑖

𝑗
− 𝑋𝑖)𝑦

𝑗, and �̂�(𝑿; 𝑝, ℎ)𝐿𝑃 = 𝒆1
𝑇 [

�̂�0 ⋯ �̂�𝑝
⋮ ⋱ ⋮
�̂�𝑝 ⋯ �̂�2𝑝

]

−1

[
�̂�0
⋮
�̂�𝑝

]                                         

Then for �̂�(𝑿; 1, ℎ)𝐿𝐿𝑃, 

 𝒆1
𝑇 = [1, 0] 

�̂�0 = 𝑛
−1∑ 𝐾ℎ(𝑋𝑖

𝑗
− 𝑋𝑖)

𝑛
𝑗=1   

�̂�1 = 𝑛−1∑ (𝑋𝑖
𝑗
− 𝑋𝑖)

1𝑛
𝑗=1 𝐾ℎ(𝑋𝑖

𝑗
− 𝑋𝑖)  

�̂�2 = 𝑛
−1∑ (𝑋𝑖

𝑗
− 𝑋𝑖)

2𝑛
𝑗=1 𝐾ℎ(𝑋𝑖

𝑗
− 𝑋𝑖)  

�̂�0 = 𝑛
−1∑ 𝐾ℎ(𝑋𝑖

𝑗
− 𝑋𝑖)𝑦

𝑗𝑛
𝑗=1   

�̂�1 = 𝑛
−1∑ (𝑋𝑖

𝑗
− 𝑋𝑖)

1𝑛
𝑗=1 𝐾ℎ(𝑋𝑖

𝑗
− 𝑋𝑖)𝑦

𝑗  

�̂�(𝑿; 1, ℎ)𝐿𝐿𝑃 = [1, 0] × [
�̂�0 �̂�1
�̂�1 �̂�2

]
−1

× [
�̂�0
�̂�1
]  

                        = [1, 0] ×
1

�̂�0�̂�2−�̂�1
2 × [

�̂�2 −�̂�1
�̂�1 �̂�0

] × [
�̂�0
�̂�1
]  

                        =
�̂�2�̂�0−�̂�1�̂�1

�̂�0�̂�2−�̂�1
2   
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                        =
�̂�2𝑛

−1 ∑ 𝐾ℎ(𝑋𝑖
𝑗
−𝑋𝑖)𝑦

𝑗𝑛
𝑗=1 −�̂�1𝑛

−1∑ (𝑋𝑖
𝑗
−𝑋𝑖)

1𝑛
𝑗=1 𝐾ℎ(𝑋𝑖

𝑗
−𝑋𝑖)𝑦

𝑗

�̂�0�̂�2−�̂�1
2   

                              = 𝑛−1∑
[�̂�2−�̂�1(𝑋𝑖

𝑗
−𝑋𝑖)]𝐾ℎ(𝑋𝑖

𝑗
−𝑋𝑖)𝑦

𝑖

�̂�2�̂�0−�̂�1�̂�1

𝑛
𝑗=1   

which results in Eq. (4.19). 

 

Derivation of local quadratic polynomial regression 

Let �̂�𝑟 = 𝑛
−1∑ (𝑋𝑖

𝑗
− 𝑋𝑖)

𝑟𝑛
𝑗=1 𝐾ℎ(𝑋𝑖

𝑗
− 𝑋𝑖), �̂�𝑟 = 𝑛

−1∑ (𝑋𝑖
𝑗
−𝑛

𝑗=1

𝑋𝑖)
𝑟 𝐾ℎ(𝑋𝑖

𝑗
− 𝑋𝑖)𝑦

𝑗, and �̂�(𝑿; 𝑝, ℎ)𝐿𝑃 = 𝒆1
𝑇 [

�̂�0 ⋯ �̂�𝑝
⋮ ⋱ ⋮
�̂�𝑝 ⋯ �̂�2𝑝

]

−1

[
�̂�0
⋮
�̂�𝑝

]                                         

Then for �̂�(𝑿; 2, ℎ)𝐿𝑄𝑃, 

𝒆1
𝑇 = [1, 0, 0] 

�̂�0 = 𝑛
−1∑ 𝐾ℎ(𝑋𝑖

𝑗
− 𝑋𝑖)

𝑛
𝑗=1   

�̂�1 = 𝑛−1∑ (𝑋𝑖
𝑗
− 𝑋𝑖)

1𝑛
𝑗=1 𝐾ℎ(𝑋𝑖

𝑗
− 𝑋𝑖)  

�̂�2 = 𝑛
−1∑ (𝑋𝑖

𝑗
− 𝑋𝑖)

2𝑛
𝑗=1 𝐾ℎ(𝑋𝑖

𝑗
− 𝑋𝑖)  

�̂�3 = 𝑛
−1∑ (𝑋𝑖

𝑗
− 𝑋𝑖)

3𝑛
𝑗=1 𝐾ℎ(𝑋𝑖

𝑗
− 𝑋𝑖)  

�̂�4 = 𝑛
−1∑ (𝑋𝑖

𝑗
− 𝑋𝑖)

4𝑛
𝑗=1 𝐾ℎ(𝑋𝑖

𝑗
− 𝑋𝑖)  

�̂�0 = 𝑛
−1∑ 𝐾ℎ(𝑋𝑖

𝑗
− 𝑋𝑖)𝑦

𝑗𝑛
𝑗=1   

�̂�1 = 𝑛
−1∑ (𝑋𝑖

𝑗
− 𝑋𝑖)

1𝑛
𝑗=1 𝐾ℎ(𝑋𝑖

𝑗
− 𝑋𝑖)𝑦

𝑗  

�̂�2 = 𝑛
−1∑ (𝑋𝑖

𝑗
− 𝑋𝑖)

2𝑛
𝑗=1 𝐾ℎ(𝑋𝑖

𝑗
− 𝑋𝑖)𝑦

𝑗  

�̂�(𝑿; 1, ℎ)𝐿𝑄𝑃 = [1, 0, 0] × [

�̂�0 �̂�1 �̂�2
�̂�1 �̂�2 �̂�3
�̂�2 �̂�3 �̂�4

]

−1

× [

�̂�0
�̂�1
�̂�2

]  

                          =
(�̂�2�̂�4−�̂�3�̂�3)�̂�0−(�̂�1�̂�4−�̂�2�̂�3)�̂�1+(�̂�1�̂�3−�̂�2�̂�2)�̂�2

𝑑𝑒𝑡[

�̂�0 �̂�1 �̂�2
�̂�1 �̂�2 �̂�3
�̂�2 �̂�3 �̂�4

]

  

                          =

(�̂�2�̂�4−�̂�3�̂�3)𝑛
−1∑ 𝐾ℎ(𝑋𝑖

𝑗
−𝑋𝑖)𝑦

𝑗𝑛
𝑗=1 −(�̂�1�̂�4−�̂�2�̂�3)𝑛

−1

∑ (𝑋𝑖
𝑗
−𝑋𝑖)

1𝑛
𝑗=1 𝐾ℎ(𝑋𝑖

𝑗
−𝑋𝑖)𝑦

𝑗+(�̂�1�̂�3−�̂�2�̂�2)𝑛
−1∑ (𝑋𝑖

𝑗
−𝑋𝑖)

2𝑛
𝑗=1 𝐾ℎ(𝑋𝑖

𝑗
−𝑋𝑖)𝑦

𝑗

(�̂�2�̂�4−�̂�3�̂�3)�̂�0−(�̂�1�̂�4−�̂�2�̂�3)�̂�1+(�̂�1�̂�3−�̂�2�̂�2)�̂�2
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                = 𝑛−1∑

[
(�̂�2�̂�4 − �̂�3�̂�3) − (�̂�1�̂�4 − �̂�2�̂�3)(𝑋𝑖

𝑗
− 𝑋𝑖) +

(�̂�1�̂�3 − �̂�2�̂�2)(𝑋
𝑖 − 𝑋)2

]𝐾ℎ(𝑋𝑖
𝑗
− 𝑋𝑖)𝑦

𝑖

[�̂�0(�̂�2�̂�4 − �̂�3�̂�3) − �̂�1(�̂�4�̂�1 − �̂�3�̂�2) + �̂�2(�̂�1�̂�3 − �̂�2�̂�2)]

𝑛

𝑗=1

 

which results in Eq. (4.20). 
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C.2 Supplementary figures and tables  

   

 

 

 

Figure. C.2.1. Relative change of K-S and MI in-between M1 and B3 (TEAR10 and NL) 
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Figure. C.2.2. Relative change of K-S and MI in-between M2 and B3 for EAR4, 

TEAR10 and NL models 
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Figure. C.2.2. (Continued)  

 

Figure. C.2.3. Accuracy of residual estimation with alternative estimators for EAR4 

model (other 4 cases) 
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Figure. C.2.3. (Continued) 

 

 

 

0

0.2

0.4

0.6

0.8

1

B3 R1 R2 R3 R4 R5 R6 R7

C
E

Methods

(b) EAR4 GAMMA

Q1 Min Med Max Q3

0

0.2

0.4

0.6

0.8

1

B3 R1 R2 R3 R4 R5 R6 R7

C
E

Methods

(c) EAR4 PT3

Q1 Min Med Max Q3

0

0.2

0.4

0.6

0.8

1

B3 R1 R2 R3 R4 R5 R6 R7

C
E

Methods

(d) EAR4 LOGPT3

Q1 Min Med Max Q3



Supplementary Material from Paper 3 (Chapter 4) 

 

252 

 

 

 

 

Figure. C.2.4. Accuracy of residual estimation with alternative estimators for TEAR10 

model (other 4 cases) 
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Figure. C.2.4. (Continued) 

 

Figure. C.2.5. Accuracy of residual estimation with alternative estimators for NL model 

(other 4 cases) 
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Figure. C.2.5. (Continued) 
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