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ABSTRACT

ABSTRACT

Artificial neural networks (ANNSs), as one of the most commonly used data
driven models for environmental and water resources problems, have been
applied successfully and extensively over the last two decades and are still
gaining in popularity. Consideration of the methods used in the steps in the
development of ANNSs, which consist of data collection, data processing, input
variable selection, data division, calibration and validation, are vitally
important, as ANN model development is based on data, rather than

understanding of the underlying physical processes.

Among these methods, input variable selection (IVS) plays a significant role,
as the performance of the developed model can be compromised if inputs
having a pronounced relationship with the modelled output are omitted. In
contrast, calibration becomes extremely challenging and modelling validation,
as well as knowledge extraction, are problematic if redundant or superfluous
inputs are included. Given the facts explained above, various techniques have

been developed for the sake of more accurate IVS.

Partial mutual information (PMI) is one of the most promising approaches to
IVS, as it has a number of desirable properties, such as the ability to account
for input relevance, the ability to cater to both linear and non-linear input-
output relationships and the ability to check the redundancy of selected inputs.
PMI is a stepwise input selection algorithm, which only selects one variable
per iteration, as part of which the strength of the relationship between each
potential input and the output is quantified using mutual information (MI) and
input redundancy is accounted for by removing the influence of already
selected inputs. This is achieved by developing models between the selected
input and the output and assessing the strength of the relationship (in terms of
MI) between the remaining potential inputs and the residuals of these models

during the next iteration, which is referred to as PMI.

Although PMI VS has already been applied successfully to a number of
studies in hydrological and water resource modelling, present
implementations predominantly depend on the assumption that the data used
to develop the model follow a Gaussian distribution. This assumption has the

XX



ABSTRACT

potential to affect two steps in the PMI process, including the estimation of
MI/PMI and the estimation of the residuals. In terms of MI/PMI estimation,
this requires kernel density estimates of the modelling data to be obtained for
the estimation of marginal and joint probability density functions (PDFs),
which rely on estimates of kernel bandwidths (or smoothing parameters) and
in most studies, the Gaussian reference rule is used for this purpose, which
only results in optimal bandwidth estimates if the modelling data follow a
Gaussian distribution. However, this is unlikely to be the case when dealing
with water resources and other environmental data. In terms of residual
estimation (RE), this has generally been done using general regression neural
networks (GRNNS), which also require estimates of kernel bandwidths to be
obtained and therefore suffers from the same issues as MI/PMI estimation.

The purpose of this thesis is to assess the impact the assumption that the data
follow a Gaussian distribution has on the performance of PMI IVS and the
efficacy of potential methods for overcoming any problems associated with
this assumption. In order to achieve this, a large number of numerical tests
are conducted on synthetic data with different degrees of normality and non-
linearity, investigating the effectiveness of a range of options for (i)
bandwidth estimation (caused by making Gaussian assumptions for non-
Gaussian circumstances when adopting kernel based estimations in both
MI/PMI and RE) and (ii) for dealing with boundary issues (caused by using a
symmetrical kernel for bounded/unsymmetrical data when implementing
kernel based estimations in both MI/PMI and RE), as well as methods for RE
that do not require kernel density estimates. The results from these tests are
used to develop preliminary guidelines for the selection of the most
appropriate bandwidth and the most effective treatment of the boundary issue,
which are then validated for two water resources case studies with different
data properties and problem linearity, including forecasting of river salinity in
the River Murray, Australia, and rainfall-runoff modelling in the Kentucky
River, USA.

The major research contributions are presented in three journal publications.
The motivations underlying these publications include: 1) the development

and testing of rigorous and novel analytical procedures for assessing if, and to
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what degree, the performances of residual and Ml estimates are affected by
bandwidth selection and boundary issues; 2) clear explanation of the
inaccurate performance of conventional PMI IVS under the influence of
bandwidth selection and boundary issues; 3) the development of effective
preliminary guidelines based upon synthetic studies dealing with both
bandwidth selection and boundary issues under different scenarios categorised
by data normality and problem linearity; 4) the development of more robust
and reliable PMI IVS software for realistic environmental and water resource
problems. Overall, the research outcomes suggest that the performance of
PMI IVS is significantly influenced by bandwidth selection and boundary
issues and can be effectively improved by following the proposed empirical
guidelines, although the findings of this work could be tested more broadly,
including for data sets with a wider range of attributes, such as different
degrees of noise, collinearity and interdependency, as well as incomplete

information.
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INTRODUCTION

CHAPTER 1 INTRODUCTION

1.1 Background
1.1.1 ANNSs in environmental and water resources modelling

Over the last two decades, artificial neural networks (ANNSs) have been
applied successfully and extensively to environmental (e.g. Adeloye et al.,
2012; Ibarra-Berastegi et al., 2008; Luccarini et al., 2010; Maier and Dandy,
1997b; Maier et al., 2004; Millie et al., 2012; Mufioz-Mas et al., 2014; Ozkaya
et al., 2007; Pradhan and Lee, 2010; Young Il et al., 2011) and water
resources (e.g. Abrahart et al., 2007; Abrahart et al., 2012; ASCE, 2000a, b;
Dawson and Wilby, 2001; Maier and Dandy, 2000b; Maier et al., 2010; Wolfs
and Willems, 2014; Wu et al., 2014b) problems, and their popularity is still
increasing. The methods used for the development of ANNSs are vitally
important, as their establishment is based on data rather than underlying
physical meaning. Consequently, investigating the methodological issues
associated with their development, including data collection, data processing,
input variable selection, data division, calibration, validation, and application
on real problems (as can be illustrated in Fig. 1.1 Development of ANNS), is
particularly vital, as suggested and emphasized by Abrahart et al. (2012),
Maier et al. (2010), and Wu et al. (2014b).

1.1.2 IVS

Among the steps in the development procedure of ANNS, input variable
selection (IVS) plays a crucial role, as the performance of such models can be
compromised significantly if either too few or too many inputs are selected
(Galelli et al., 2014; May et al., 2010; Wu et al., 2014b). Although the task of
IVS is not unique to environmental modelling, its application in an
environmental modelling context is complicated by a lack of understanding of

the underlying physical processes, the presence of significant temporal and
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spatial variation in potential input variables, the non-Gaussian, correlated and
collinear nature of potential input variables, and the non-linearity and inherent
complexity associated with environmental systems themselves, as emphasised
in Galelli et al. (2014).

Given the importance and challenge of the I\VVS problem, a large number of
approaches, categorised as either model free or model based, have been
developed and refined for the purpose of more accurate IVS (e.g. Galelli et al.,
2014; Galelli and Castelletti, 2013; Li et al., 2015; May et al., 2008, 2011;
Sharma, 2000), aiming to determine the smallest number of inputs that best
charaterise the input-output relationship with the least amount of variable
irrelvance or redundancy (Galelli et al., 2014; Guyon and Elisseeff, 2003).
Model free approaches determine the significant inputs on the basis of a
statistical measure of significance between the candidate inputs and the output,
while model based techniques depend on the adoption of an optimization
algorithm that is used to determine the combination of input variables that
maximizes the performance of a pre-selected data-driven model, in
accordance with Maier et al. (2010), Wu et al. (2014), May (2010), and
Castelletti et al. (2012b). Reviews of the typically applied 1VS methods for
ANN based environmental and water resources problems are summarised in
Table 1.1 and each approach is categorised and evaluated in the aspects of
type, criterion, linearity, computational cost, redundancy check, and optimum,
as these are the critical attributes of the IVS approaches. In Table 1.1, the
‘type’ indicates whether the IVS method is a model based or a model free
approach. The ‘criterion’ identifies the basis on which significant inputs are
selected. The ‘linearity’ reflects whether the IVS approach can be used for
linear problems under the linear assumption (which assumes linear input-
output relationships) or for non-linear circumstance without the linear
assumption. The ‘computation cost’ quantifies the efficiency of each IVS
method. The ‘redundancy check’ gives an indication of whether the IVS
approach removes redundant input variables, which contain useful but
repeating information to the output. The ‘optimum’ demonstrates the
convergence of the IVS method and shows whether the selected significant

input variables are a result of local optima (the combination of input variables
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that only outperforms some of other possible combinations in terms of
describing the output) or global optima (the combination of input variables
that outperforms all other possible combinations in terms of describing the
output). Details of each 1S approach listed in Table 1.1 can be obtained in
the corresponding reference provided in the table. As can be illustrated in
Table 1,1, among the various IVS techniques, partial mutual information (PMI)
based approaches are among the most promising model free techniques, as
they account for both the significance and independence of potential inputs
and have been successfully and extensively implemented in environmental
modelling (Bowden et al., 20053, b; Fernando et al., 2009; Galelli et al., 2014;
Gibbs et al., 2006; He et al., 2011; Li et al., 2015; May et al., 2008a, b; Wu et
al., 2013, 2014).

1.1.3 PMI IVS

The partial mutual information based input variable selection (PMI IVS) was
introduced by Sharma (2000) and is based on Shannon’s principle (Shannon,
1948). As illustrated in Fig. 1.1 (PMI-based I1VS), the first step is to procure
candidate inputs X and output(s) y from the available data in accordance with

an understanding of the system. Let: X = [X; ... X,,]7 be the input, where m

is the number of inputs; (Xj,yj) be the observed pairs of input and output

. ; T
data for j = 1, ..., n, where n is the number of observations, X/ = [X7 ... X7]

are the observed input data and y/ are the observed output data.

The second step is to estimate the marginal PDF of each individual input
f(X;)and the output f(y). The PDF is approximated by kernel density

estimation (KDE) in accordance with

fX) =230, K (X — X)) (L.1)

The kernel type Kjused in Eqg. (1.1) is the most commonly used Gaussian
kernel since the selection of kernel type has negligible impact on the accuracy
of KDE (May et al., 2008b; Scott, 1992; Wand and Jones, 1995). The
expression of the 1D Gaussian kernel is
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1 x?
Kh(X) = mexp (— ﬁ) (12)

In Eq. (1.2), h is the univariate kernel bandwidth, which determines the
accuracy of the KDE (Duong and Hazelton, 2003; Scott, 1992; Wand and
Jones, 1995). This single dimensional bandwidth, used for the marginal PDF
estimation, directly contributes to the bandwidth matrix used for the joint PDF

estimation (as explained later).

The third step is to calculate the joint PDF f(X;, y) between the i-th input
and the output, which requires the development of a 2-D bandwidth matrix for
the joint KDE. The currently used bivariate bandwidth matrix for standardised

data is

l Sag,i Sxy,il (1.3)

where Sii is the sample variance of the input X;; S,,; IS the covariance

Y1
between input X;and output y, S5 is the sample variance of the output y, and
h;(h; = hy; = hy) is the estimated 1-D kernel bandwidth if the data are

standardised, or for non-standardised data

2
hx,i pxy,i hx,i hy

H =
pxy,ihx,i hy h32/

(1.4)
(known as a hybrid class of bandwidth matrix), where p,,, ; is the correlation
coefficient between input X;and output y. According to Wand and Jones
(1993), the diagonal terms of the bandwidth matrix adjust the shape of the
joint PDF, while the off-diagonal terms control the orientation. The empirical
joint density of the i-th X; input and the output y can be estimated by the

Gaussian kernel-based estimator as
. _1gm X x/
f X y) =Y1K <[y] L};D (1.5)

where the multivariate kernel is given by

Ky(X) = (

__r _lyryg-1
W)exp[ 2XH X] (1.6)

4
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It should be noted that this approximation is commonly known as the Parzen
window density estimation (Cacoullos, 1966; Parzen, 1962). This is valid,
however, only if the underlying density is continuous and the first partial

derivative at any X is small.

According to Shannon (1948), MI, which quantifies the reduction in
uncertainty with respect to y due to observation of X;, is then approximated as

()

1
by = 2= 090 o) @)

(marginal PDFs f(x/) and f(y/) are as defined in Eq. (1.1)) in the fourth
step. The input with the greatest MI value is the most significant input among
the candidate inputs. The significant inputs are selected by means of these
four steps during the first run of the algorithm and added to the significant

input set X, that is, the set is updated to include X;- € X; where i* =

argmax{ly, ., }.

In order to remove any redundant information, RE is required in the fifth step.
RE is at the core of the ‘partial’ aspect of PMI IVS and the mutual
information shared between the residual inputs and output is called PMI (the
term used after the 1% iteration of the PMI IVS). Typically, a general
regression neural network (GRNN) (Specht, 1991) is used as the residual
estimator in PMI IVS (e.g. May et al., 2008b; He et al., 2011). The residual
estimator is used to update the inputs and output by removing the influence of
the selected input variables. The updated input is defined as the difference
between the current value of the unselected inputs v; and the estimation of v;
based on the selected input X;- and is given by

vl vl —m, (X)) (1.8)

i

where r’fl,,i(Xij*) is the residual estimate of v; based on X;-which removes the

shared information between the selected input Xl’ and the remaining inputs v;.

Kernel residual estimator (e.g. General regression neural network) is the most

commonly used approach to estimate residual, therefore the performance of
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RE is significantly affected by the determination of kernel bandwidth (for uni-
dimensional variables) and bandwidth matrix (for multi-dimensional variables)
(Bowden et al., 2005a; Bowden et al., 2005b; He et al., 2011; May et al.,
2008a; May et al., 2008b; Li et al., 2015)

Similarly, the updated output is
w e w — iy, (X)) (1.9)

where r’ﬁu(Xi’;) is the residual estimate of u based on X;-, which again
eliminates the shared information between the selected inputs X;-and the

output u.

The sixth step is to judge the selected input against the chosen stopping
criterion. Potential stopping criteria include bootstrapping, tabulated critical
values, the Akaike information criterion (AIC), and the Hampel test, as
discussed and tested in May et al. (2008b). After updating the input and output
variables based on the selected input variable, the corresponding PMI is

estimated as

f vlju{
lotad) (1.10)

)

based on Egs. (1.7), (1.8), and (1.9). If the PMI value of the selected input is

still significant according to the applied termination criterion, the above steps

1on
Ivi,u ~ ; j=110g[

are repeated, as shown in Fig. 1.1, until all significant inputs X, have been
determined. In this way, the algorithm can accommodate a large number of

potential input variables, as demonstrated in Fernando et al. (2009).

1.1.4 Bandwidth issue in PMI IS

In Egs. 1.7 and 1.10, KDE is used to approximate both marginal and joint
PDFs (Egs. 1.2 and 1.6) by the fact that simple methods exist for KDE that are
a function of only a single parameter, the kernel bandwidth, otherwise termed
the smoothing parameter (Scott, 1992; Wand and Jones, 1995). Nevertheless,
determination of the optimal bandwidth is not trivial, as there is no clear

consensus as to which bandwidth estimator performs best for general cases.
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Overestimating the bandwidth can lead to an over-smoothing of the PDF, so
that detailed local information (useful information that is not significantly
different from others nearby) will not be effectively captured. On the contrary,
under-estimating the bandwidth can make the general trend become more
vulnerable to localised features (redundant or irrelevant information that is
significantly different from others nearby), or even noise (Li et al., 2015).
While many methods exist for estimating the bandwidth, in almost all existing
PMI IVS studies dealing with environmental and water resources problems
(e.g. Bowden et al., 2005a,b; May et al., 2008a,b; He et al.,, 2011) the
Gaussian reference rule (GRR) is used for this purpose. The inherent
limitation of this implementation of the PMI algorithm is that the input/output
data are assumed to follow a Gaussian distribution. However, this is unlikely
to be the case, as the distribution of most environmental and water resources
data is generally far from normal. This results in the so called ‘bandwidth
selection issue’. Such issue impacts both MI and RE by the fact that the M1 is
a function of KDE based marginal and joint PDFs while the RE is
approximated by the kernel based regression models (e.g. General regression
neural network), which also depends on KDE, as can be illustrated in Fig. 1.1
(unsolved issues for PMI-based I1VS).

1.1.5 Boundary issue in PMI IVS

In Egs. (1.6), H is the kernel bandwidth matrix. The commonly used K is
symmetric, satisfies  the  following integral and moment
conditions [ Ky(X)dX =1, [ XKy (X)dX =0, [ XXTKy(X)dX =m, and
has at least two continuous derivatives. If the support of £ is bounded, and in
the absence of exponentially falling tails (e.g. support [0, a]), strong under-
estimation occurs for all data points closer to the boundary, within a distance
of the bandwidth h from the boundary. This region is also named the
boundary region (Dai and Sperlich, 2010) because of the nonzero kernel
density estimation outside the support of f. As a consequence, the
corresponding bias of £ is larger than expected. For example, the bias of f is
of order O(h), rather than O (h?), at the boundary point for the univariate case

in accordance with Dai and Sperlich (2010), Karunamuni and Alberts (2005a),
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and Wand and Jones (1995). These are the so-called ‘boundary issues’
associated with (non-parametric) KDE. As explained previously, KDE is used
in both of the MI and RE, thereby the impact of boundary issue is expected to
contribute to both MI and RE, as displayed in Fig. 1.1 (unsolved issues for
PMI-based IVS).

Although many methods for bandwidth estimation exist in other disciplines
(e.g. mathematics and statistics (Hall et al., 1992; Park and Marron, 1990;
Rudemo, 1982; Scott, 1992; Scott and Terrell, 1987), as shown in Table 1.2),
and a number of potential methods have been proposed within the statistical
literature for addressing this issue (e.g. Cowling and Hall, 1996; Dai and
Sperlich, 2010; Fan, 1992; Fan and Gijbels, 1996; Gasser and Miiller, 1979;
Hall and Park, 2002; Marron and Ruppert, 1994; Schuster, 1985; Zhang and
Karunamuni, 1998; as shown in Table 1.3), their effectiveness has not yet
been tested in the context of PMI IVS for data-driven environmental

modelling.

Consequently, the critical issues for PMI IVS in hydrological and
environmental applications mainly consist of bandwidth selection and how to
deal with boundary issues (as shown in Fig. 1.1). These issues are the primary

focus of this thesis.
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FS: forward selection (constructive)

BE: backward elimination (pruning)

ES: exhaustive search

HS: heuristic search

SVR: single variable regression (correlation based)

SOM-GAGRNN: self-organising map genetic algorithm general regression neural network
RVSDEM: recursive variable selection embedded in dynamic emulation models

IIS: tree-based iterative input variable selection

RC: rank correlation (Pearson correlation or linear correlation or cross-correlation)
PC: partial correlation

PCA: principal component analysis

BJ: Box-Jenkins method

GAMMA: Gamma test

MSE: mean squared error

MI: mutual information

PMI: partial mutual information

ICAIVS: hybrid independent component analysis and input variable selection filter
DELSA: distributed evaluation of local sensitivity analysis

ACF: auto-correlation function

PACEF: partial auto-correlation function

11
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Table 1.2 Bandwidth estimators applied within the statistics literature

Bandwidth Fitness Dependence on
. Author Year ik
estimator function Normality Error basis
GRR (Scott) 1992
(Scott and High
BCV Terrell) 1987 AMISE
(Park and Mean
DPI Marron) 1992 Low
Scv (Hall et al.) 1992
EMISE
LScv (Rudemo) 1982
None
oM (Gibbs et al.) 2006 MAE/RMSE Mean/Squared

GRR: Gaussian reference rule

BCV: biased cross validation

DPI: 2-stage direct plug-in

SCV: smoothed cross validation
LSCV: least squared cross validation
OM: optimisation method

AMISE: asymptotic mean integrated squared error
EMISE: exact mean integrated squared error
MAE: mean absolute error
RMSE: root mean squared error

Table 1.3 Boundary correctors proposed within the statistics literature

22::2‘:3 Author Year Modification
RC (Schuster) 1985 Kernel function
KT (Marron and Ruppert) 1994 Kernel function
BK (Gasser and Miiller) 1979 Kernel function
LLM (zhang and Karunamuni) 1998 Kernel function
PA (Cowling and Hall) 1996 Kernel function
ETC (Hall and Park) 2002 Kernel function
LBE (Gasser et al.) 1985 Local bandwidth
LBR (Dai and Sperlich) 2010 Local bandwidth
LLP (Wand and Jones) 1995 Regression type
LQpP (Fan) 1992 Regression type

LHOP (Fan and Gijbels) 1996 Regression type

RC: reflection correction
KT: kernel transformation

BK: boundary kernel

LLM: local linear method

PA: pseudo-data approach

ETC: empirical translation correction
LBE: local bandwidth (enlarging)
LBR: local bandwidth (reducing)
LLP: local linear polynomial

LQP: local quadratic polynomial
LHOP: local high order polynomial

12
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1.2 Objectives

According to the aforementioned critical issues for PMI IVS, the ultimate
objective of this thesis is to improve the performance of PMI IVS by
investigating the impact of bandwidth selection and boundary issues for data
driven environmental and water resources models, such as multi-layer
perceptron artificial neural networks (MLPANNS). In order to achieve this
overall objective, a framework that addresses the influence of bandwidth
selection and boundary issues from residual and MI estimates to the overall
performance of PMI IVS is developed, as highlighted by the series of dashed
line boxes in Fig. 1.1 Unsolved issues for PMI-based IVS, and the three
corresponding objectives are explained in detail in below.

Objective 1: The motivation underpinning this objective is the fact that the
bandwidth (or smoothing parameters) of general regression neural networks
(GRNNS), used for RE in PMI 1VS, is still predominantly based on the GRR,
which only results in optimal density estimates if the Gaussian assumption is
valid. However this is not the general case for environmental and water
resource data. As a consequence, this objective is concerned with assessing
the impact of data with different distributions on the performance of GRNNs
and the effectiveness of alternative kernel density estimation techniques in
improving GRNN performance. Specifically, the sub-objectives are: (1) to
compare the performance (accuracy and efficiency) of GRNN models for
which bandwidths (or smoothing parameters) have been estimated using a
range of methods, as well as that of a benchmark MLPANN model, for case
studies with data that have varying degrees of normality, linearity and
different modelling objectives (e.g. matching average or extreme events) (11
in Fig. 1.1); (2) to develop and test empirical guidelines for the selection of
the most appropriate methods for GRNN models that are a function of the
properties of the available data (i.e. degree of normality and problem non-
linearity) and the modelling objective (Chapter 2). In the context of PMI
IVS, this develops and tests guidelines for the best approach to estimating
residuals using GRNNSs for data with different degrees of normality and non-

linearity.
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Objective 2: This objective builds on Objective 1 by using the guidelines
developed in Objective 1 for RE to investigate the impact of data with
different distributions on PMI 1VS, as well as the effectiveness of alternative
bandwidth estimators in improving PMI VS performance, focussing on the
best approaches for MI/PMI estimation. The specific objectives are: (1) to
assess if, and to what degree, the performance of PMI IVS can be improved
for data with different degrees of normality by using alternative bandwidth
estimators with reduced reliance on the Gaussian assumption (GRR) (12 in
Fig. 1.1); (2) to develop and test a set of preliminary guidelines for selecting
the most appropriate bandwidth estimator for data with different degrees of
normality, which combines the outcomes of the studies addressing Objectives
1 and 2 (Chapter 3). In the context of PMI IVS, this develops and tests
guidelines for the best approach to estimating MI/PMI, as well as residuals

using GRNNs, for data with different degrees of normality and non-linearity.

Objective 3: This objective builds on Objectives 1 and 2 by using the
guidelines developed in Objectives 1 and 2 for the most appropriate
bandwidth estimators for MI/PMI and RE to investigate the effectiveness of
alternative approaches to dealing with boundary issues associated with
bandwidth selection in improving PMI IVS performance for data with
different distributions. The specific objectives are: (1) to assess if, and to what
degree, the performance of PMI IVS can be improved by various approaches
to addressing boundary issues for data with different properties (i.e. degree of
linearity and degree of normality) (13 in Fig. 1.1). (2) to develop and test a set
of preliminary empirical guidelines for the selection of the most appropriate
methods for bandwidth estimation and addressing boundary issues for data
with different properties (Chapter 4). In the context of PMI IVS, this
develops and tests guidelines for the best approach to estimating MI/PMI, as
well as residuals, for data with different degrees of normality and non-
linearity, considering both bandwidth estimation and boundary issues.
Consequently, the guidelines presented under this objective represent best
practice guidelines for PMI IVS and are therefore able to meet the ultimate

objective of this thesis.
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It is important to note the relationship between the issues addressed in
Objectives 1 to 3, as this has an influence on the order of the objectives
presented above. In Fig 1.1, it can be seen that 11 is not influenced by any
other parts of the system, while the rest of the system is affected by this issue.
Consequently, 11 is investigated primarily and its outcome is able to benefit
both 12 and 13. Similarly, 12 (only affected by I11) has strong impacts on 13,
therefore it is studied next and the results of 12, in conjunction with those of 11,
contribute to 13. Finally, 13, the performance of which is influenced by both 11
and 12, is addressed by consideration of the previous studies. In this way, the
analytic procedure becomes rigorous and reliable, with clear logic and

minimal side-effects and overlaps.

1.3 Thesis overview

The present thesis is organised into five chapters. In addition to the
Introduction (Chapter 1), the main body (Chapters 2 to 4) is formed by three
journal papers. The critical findings, contributions and suggested future
research are then summarised in Chapter 5. Supplementary materials for
Chapters 2 to 4 (three journal papers) are presented in APPDIX A to C,
which summarise additional supporting analytic figures and tables and
mathematical explanations and derivations (i.e. Gaussian reference rule, 2-
stage direct plug-in, smoothed cross validation, bivariate reflection correction,
and local linear/quadratic polynomial regression). The synopsis, including the
content and linkage to the objectives, of each chapter in the main body is

outlined in the following sections.

Chapter 2 (Journal paper 1) (Li et al., 2014b) is focused on the
development of a systematic way of determining the optimal bandwidth (also
known as the smoothing parameter) for the application of GRNN based RE.
This is because the performance of GRNNs is essentially controlled by values
of one or more bandwidths and insufficient attention has been given to the
best way to estimate the bandwidths of GRNNs within environmental and

water resource applications, particularly, with data that have varying degrees
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of normality, linearity and distinct modelling objectives (11 in Fig. 1.1). In
order to overcome such issue, nine different bandwidth estimation methods
that have different assumptions on normality, linearity and modelling
objectives, as well as that of a benchmark MLPANN model, are assessed in
terms of accuracy and computational efficiency for a number of synthetic data
sets with distinct data properties [Objective 1 (1)]. Of these methods, five are
based on bandwidth estimators used in kernel density estimation, and four are
based on single and multivariable calibration strategies (details can be found
in Section 2.3). Preliminary guidelines for the bandwidth selection of GRNNs
based RE are developed in accordance with the critical findings of the
synthetic tests and then validated on one water quality (forecasting river
salinity in the River Murray in South Australia one, five and 14 days in
advance) and one water quantity problem (prediction of runoff in the

Kentucky River basin in the USA one day in advance) [Objective 1 (2)].

As discussed in Section 1.2, the bandwidth selection issue for GRNN based
RE (I1 in Fig. 1.1) has a pronounced influence on the performance of PMI
estimation, affected by both the bandwidth selection issue (12 in Fig. 1.1) and
the boundary issue (13 in Fig. 1.1). Consequently it is studied as the first
priority in Chapter 2.

Chapter 3 (Journal paper 2) (Li et al., 2015) focuses on the performance of
PMI IVS under the impact of the bandwidth selection issue, as the currently
applied PMI IVS methods in environmental and water resources depend
predominately on the Gaussian reference rule (GRR), while the distribution of
most water resources data is generally far from normal, which leads to
inaccurate VS for data that are highly non-Gaussian (12 in Fig. 1.1). This
issue is taken into account through the investigation of the performance of
PMI IVS using six different kernel bandwidth techniques with varying
Gaussian dependence [Objective 2 (1)]. Of these methods, five are kernel
based approaches, and one depends on a single variable calibration strategy
(details can be found in Section 3.3). The preliminary guidelines for the
selection of the most appropriate methods for obtaining the accurate and
efficient PMI IVS are determined based on the results of the synthetic case

studies with data having various degrees of non-normality and are then
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validated for two semi-real case studies developed based on the forecasting of
river salinity in the River Murray, South Australia and predicting of flow in
the Kentucky River basin, USA [Objective 2 (2)].

As mentioned in Section 1.2, the preliminary guidelines developed to select
the optimal bandwidth for RE in PMI IVS (11 in Fig. 1.1) developed in
Chapter 2 are merged into the ones established in Chapter 3. This results in
the complete exploration of the performance of PMI IVS influenced by the

bandwidth selection issue (12 in Fig. 1.1).

Chapter 4 (Journal paper 3) (Li et al., 2014a) addresses the boundary issue,
which is caused by the adoption of the symmetrical kernel at the
unsymmetrical boundary during kernel based MI and RE within PMI IVS,
which has not been considered or investigated thus far in the environmental
and water resources fields (13 in Fig. 1.1). Systematic studies are conducted
by investigating the effectiveness of sixteen approaches. Of these approaches,
three are benchmark approaches without consideration of the boundary issue,
two aim to improve the boundary issue in MI, seven aim to minimise the
effect of the boundary issue in RE, and four take into account the boundary
issue in both MI and RE (details can be found in Section 4.3). In addition, the
effect of the bandwidth issue is effectively addressed in all sixteen approaches
based on the guidelines developed for Objectives 1 and 2 [Objective 3 (1)].
The preliminary guidelines that are developed based on the results of the
above studies, which attenuate the boundary issue associated with the
selection of the most appropriate bandwidth estimator for data with different
degrees of normality, are validated for two semi-real case studies used in

journal papers 1 and 2 [Objective 3 (2)].

By recalling Section 1.2, the boundary issue is not the only driving force on
the performance of PMI IVS, since selection of the bandwidth also affects the
accuracy of PMI IVS. Therefore, the boundary issue (13 in Fig. 1.1) is studied
after the bandwidth issue in PMI 1S has been addressed explicitly (11 and 12
in Fig. 1.1). By resolving 13 in conjunction with the outcomes of I1 and 12,
the ultimate objective within this thesis, mentioned in Section 1.2, is achieved
in Chapter 4.
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Abstract

Multi-layer perceptron artificial neural networks are used extensively in
hydrological and water resources modelling. However, a significant limitation
with their application is that it is difficult to determine the optimal model
structure. General regression neural networks (GRNNs) overcome this
limitation, as their model structure is fixed. However, there has been limited
investigation into the best way to estimate the parameters of GRNNs within
water resources applications. In order to address this shortcoming, the
performance of nine different estimation methods for the GRNN smoothing
parameter is assessed in terms of accuracy and computational efficiency for a
number of synthetic and measured data sets with distinct properties. Of these
methods, five are based on bandwidth estimators used in kernel density
estimation, and four are based on single and multivariable calibration
strategies. In total, 5674 GRNN models are developed and preliminary
guidelines for the selection of GRNN parameter estimation methods are

provided and tested.

Software availability

Software name: GRNNSs

Developer: Xuyuan Li, Postgraduate Student, the University of Adelaide,
School of Civil, Environmental & Mining Engineering, Adelaide, SA 5005,
Australia

Email: xli@civeng.adelaide.edu.au;

xliadelaide@gmail.com
Hardware requirements: 64-bit AMD64, 64-bit Intel 64 or 32-bit x86

processor-based workstation or server with one or more single core or multi-
core microprocessors ; all versions of Visual Studio 2012, 2010 and 2008 are
supported except Visual Studio Express; 256 MB RAM

Software requirements: PGI Visual Fortran 2003 or later version

Language: English

Size: 4.74 MB
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Availability: Free to download for research purposes from the following
website:
http://www.ecms.adelaide.edu.au/civeng/research/water/software/generalised-
regression-neural-network/

https://github.com/xuyuanli/GRNNs

22



CHAPTER 2 JOURNAL PAPER 1

2.1 Introduction

Over the last two decades, artificial neural networks (ANNSs) have been used
extensively in the field of hydrological and water resources modelling, and
their popularity is still increasing (Abrahart et al., 2012; Maier et al., 2010;
Wu et al., 2014b). In the vast majority of these applications, multi-layer
perceptrons (MLPs) have been used as the most common model architecture
(Maier et al., 2010; Wu et al., 2014b). While the use of MLPs has generally
resulted in good model performance, their development is complicated by the
fact that there are no rigorous methods for determining an appropriate model
structure. Determination of the optimal number of hidden nodes is especially
difficult, unless sophisticated Bayesian approaches are used (Kingston et al.,
2008; Zhang et al., 2011), which are computationally demanding and require
substantial technical expertise to implement. Therefore, the optimal model
structure is generally determined by trial and error (Maier et al., 2010; Wu et
al., 2014). This process usually involves a number of steps, including (i)
selection of a trial model structure, (ii) calibration of the model with the
selected structure, and (iii) evaluation of the predictive performance of the
calibrated model. These steps are repeated for models with different trial
structures and the model structure that results in the best predictive
performance is selected. Consequently, the model structure that is found to be

optimal is a function of a number of factors, including:

Q) The trial model structures selected for evaluation: As the potential
number of different model structures is generally large, the
performance of a subset of all possible structures is usually evaluated.
This can be achieved using different approaches, including ad-hoc,
stepwise (e.g. constructive, pruning) or global approaches (Maier et al.,
2010). Consequently, as different approaches generally result in the
evaluation of different model structures, the structure obtained is a
function of the adopted approach.

(i) The calibration method used: The predictive performance of a model
with a particular structure is a function of the quality of the calibration

(training) process. Finding the combination of model parameters
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(iii)

(connection weights) that gives the best predictive performance for a
given network structure is complicated by the presence of a large
number of local optima in the error surface (Kingston et al., 2005Db).
This is particularly the case if gradient-based calibration (training)
methods are used (Maier and Dandy, 1999), such as the most
commonly used back-propagation algorithm (Maier et al., 2010; Wu et
al., 2014). In addition to the choice of calibration (training) methods,
the parameters that control the searching behaviour of these methods
(e.g. learning rate and momentum when the back-propagation
algorithm is used) can also have a significant impact on the best
predictive model performance obtained for a particular model structure
(Maier and Dandy, 1998a, b). Consequently, unless the predictive
performance that corresponds to the global optimum in the error
surface can be identified for all models with different structures, it is
not possible to identify which model structure results in the best
predictive performance with certainty. As a result, the optimal model
structure obtained is a function of the quality of the model calibration
process.

The calibration data used: The available data are generally split into
different subsets for calibration (training) and validation, which can be
done using a number of different methods (see Maier et al., 2010).
Consequently, which data points are included in the different subsets
can vary, depending on which data division method is used (Bowden
et al., 2002; May et al., 2010; Wu et al., 2012; Wu et al., 2013). This
can also have an impact on which model structure is found to result in
the best predictive performance. This is because different data points
will result in different error surfaces during calibration, thereby
potentially affecting calibration difficulty (see (ii)) and producing
different global and local optima, which is likely to change which

model structure results in the lowest error.

Given the factors described above, it is generally not possible to isolate the

impact of model structure on the predictive performance of MLPs, making it

difficult to know which model structure should be used. In addition, the trial-
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and-error process generally used to determine the optimal structure of MLPs
is computationally expensive, as it necessitates the development of a

potentially large number of models.

Although there are other alternative ANN based approaches, including Radial
Basis Functions (RBFs) (Buhmann, 2003), Recurrent Neural Networks
(RNNs) (Williams and Zipser, 1989) and Probabilistic Neural Networks
(PNNs) (Specht, 1990), General regression neural networks (GRNNS)
(Specht, 1991) provide an alternative ANN model structure that has been
shown to perform well in a number of studies in water resources applications
(Bowden et al., 2005b; Bowden et al., 2006; Cigizoglu and Alp, 2006; Gibbs
et al., 2006) and overcomes the shortcomings associated with MLPs discussed
above, as the structure of GRNNs is fixed (Bowden et al., 2005a). This
removes the ambiguity associated with determining which model structure is
optimal. In addition, it increases the computational efficiency of the model
development process, as there is no need to develop a number of models with

different structures in order to determine which is optimal.

However, a potential issue with the application of GRNNs to hydrological and
water resources problems is that there has been limited work on determining
which smoothing parameter estimation methods should be adopted. As
GRNNs are essentially a Nadaraya-Watson kernel regression method (Cai,
2001), parameter estimation only involves the determination of optimal values
of one or more smoothing parameters, also known as kernel bandwidths.
However, this is not a trivial issue, as illustrated by the vast amount of
literature on kernel bandwidth estimation as applied to density estimation
(Bowman, 1984; Hall et al., 1992; Park and Marron, 1990; Rudemo, 1982;
Scott and Terrell, 1987; Wand and Jones, 1995). Overestimating the
smoothing parameter can result in over-smoothing of the estimated density
(i.e. kernel based probability density function (PDF)). In this case, the detailed
local information (for instance the variation of daily rainfall in hydrological
applications) will not be captured in the estimated density. In contrast, if

values of the smoothing parameter are underestimated, the general trend of the
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estimated density (for instance the overall rainfall trend within a given time

period) can be disturbed by localised features or noise.

Among the extensive literature on smoothing parameter (or kernel bandwidth)
estimation in other areas of research, such as mathematics and statistics, there
are a number of different approaches to obtaining optimal estimates of kernel
density, which are based on assumptions about the form of the PDF and
different fitness function types (i.e. the objective function on which the
estimator is based). Consequently, their relative merits for determining the
optimal values of the smoothing parameters for water resources GRNN
models are likely to vary from case study to case study, depending on the
distribution of the data and the modelling objective function used. However,
the relationship between the performance of GRNNs with smoothing
parameters obtained using different kernel density estimation methods and the
properties of the water resources data used to develop them has not been
considered previously, making it difficult to know which methods to use for

particular case studies.

Therefore, the objectives of the current study are: (i) to compare the
performance, in terms of both predictive accuracy and computational cost, of
GRNN models for which smoothing parameters have been estimated using a
range of methods, as well as that of a benchmark MLP model, for case studies
with data that have varying degrees of normality, linearity and different
modelling objectives (e.g. matching average or extreme events); and (ii) to
develop and test empirical guidelines for the selection of the most appropriate
methods for GRNN smoothing parameter estimation based on the properties
of the available data (i.e. degree of normality and non-linearity) and the
modelling objective.

The remainder of this paper is organised as follows. A brief introduction to
GRNNSs is provided in Section 2.2, followed by the Methodology in Section
2.3. Results and discussion are given in Section 2.4, and conclusion and

recommendations are provided in Section 2.5.
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2.2 GRNNSs

According to Bowden et al. (2005a), GRNNs can be treated as supervised
feedforward ANNs with a fixed model architecture. The general architecture
of GRNNs is illustrated in Fig. 2.1.

Input Units Pattern Units Summation Units  Output Units

Figure 2.1 General architecture of a GRNN

(based upon Gibbs et al. (2006))

Let: X = [X; ... X,,]7 be the input, where m is the number of inputs; (X, y/)

be the observed pairs of input and output data (the patterns) forj =1, ..., n,

, ; . T
where n is the number of observations, X/ = [X] ... X7, | are the observed
input data and y/ are the observed output data; and ¥ be the GRNN estimate
of the actual output y. If the joint density f(X,y) is known, the conditional

expectation of output y given input X is given as

2 yf(Xy)ay

Elylx] = I Fxydy

(2.1)
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The joint density f(X,y) in Eqg. (2.1) is generally unknown, however, the
empirical joint density of the observed input/output pairs (Xf,yf), j=1,...,n

can be estimated by the Gaussian kernel-based estimator as

f(X: y) = m+11

1 _ (X—XJ')T(X—XJ')
2m 2 pm+1) M

127=1exp[ Gox) X g 0 (a9
where h is the kernel smoothing parameter (Cacoullos, 1966; Parzen, 1962).
Note that this approximation is commonly known as Parzen window density
estimation. It is valid, however, only if the underlying density is continuous
and the first partial derivative at any X is small. Specht (1991) combined the
conditional expectation of y (Eqg. (2.1)) with the Parzen window density

estimation £ (X, y) (Eq. (2.2)) to obtain the following estimator for y

D5 (X)
2h2 )
o (2.3)
Z?:lexp(_ 2h )

) (-
9K, ) = 22—

Where Dj2 is the scalar function
D} = (X -Xx)T(Xx-X)) (2.4)

which measures the Euclidian distance between the input X and the observed
data points X/. Within this equation, the smoothing parameter h is the only

unknown parameter that needs to be obtained by training (calibration).

With respect the GRNN formulation, the expression in Eqg. (2.3) can be
implemented by the four-unit (or layer) parallel network shown in Fig. 2.1.
The GRNN consists of input, pattern, summation and output units that are
fully connected. According to Specht (1991), the input units are formed by the
elements of the input vector X, and these then feed into each of the pattern
units. The pattern units record Dj2 , the sum of squared (or absolute) difference
between an input vector X and the observed data X/, and then feed into a
nonlinear activation function (e.g. the exponential function as in Eq. (2.3))
before passing into the summation units. The summation units contain two

parts, A and B, which correspond to the numerator and denominator in Eq.
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(2.3), respectively. Part A (the numerator) contains a dot product between the

2

) . 2(X
observed output records y’/ and the weights ex p (— Dé}iz)) from the pattern

units, while part B (the denominator) only includes the weights from the

pattern units. The quotient of parts A and B is the predicted output .

In Fig. 2.1, the model architecture of GRNNSs is fixed by the fact that the
number of input nodes is determined by the number of inputs m; the number
of pattern nodes depends on the size of the observed input data n; and the
nodes in the summation units always consist of a denominator node and a

numerator node.

Within this study, a slightly generalised version of the GRNN estimator in Eq.

(2.3) is considered, namely

N2

x;-x!

. 1 i
Z"]’.lzly]exp<_5 '{7;1< l) )

N2

]

o ]

Z;'lzl exp<_52?=ll :

2
hi

y(X,h) =

(2.5)

where the primary difference between Eg. (2.3) and Eq. (2.5) is the adoption
of a unigque smoothing parameter h; for each dimension of the input space i =
1, ..., n. The advantage of this form of the GRNN is that it enables an
independent scaling of the kernel smoothing, as opposed to a common
smoothing, along each dimension of the input space.

2.3 Methodology

The approach to the systematic assessment of the performance of GRNNs
with different bandwidth estimators is illustrated in Fig. 2.2. As can be seen,
there are four main steps: (i) procurement of input and output data with
different degrees of normality and non-linearity; (ii) estimation of the optimal
GRNN smoothing parameter (bandwidth) for these different input or output

data using a number of different smoothing parameter estimators; (iii)
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development of benchmark MLP models; and (iv) assessment of model

performance. Details of each of these steps are given in the subsequent

sections.

1. Procure input and output data with different degree of normality and non-linearity

Generated synthetic data

Generate 2500 input data samples from 7

Measured data with different degree of
normality and non-linearity

distinct distributions River Salinity (water Rainfall-runoff
[NORM, LOGN, EXP, GAMMA, PT3, LOGPT3, quality) (water quantity)
EVT1] 3 cases with 1 case with

¢ forecasting period of forecasting period

- 1,5 & 14 days of 1 day
Generate corresponding output data samples for
fthe 2 . . .

each of the 2500 input data with 7 distributions Measured data Measured data
via 3 functions with different degrees of non- .
) . follow approximately follow extremely
linearity . .
EARA. TEAR1O. NL Gaussian non-Gaussian
[ . LN ¢ distributions distributions
Obtain 21 sets of 2500 synthetically generated Strong linear Non-linear
inputs and outputs relationships relationships

|

v

Iterative process with i = 1, 30 (only for
synthetic data)
l A 4

2. Estimate optimal smoothing parameters of GRNN models for each input and output data set using 9 methods
with different fitness functions and assumptions on normality, non-linearity and error basis
[GRR, BCV, 2-stage DPI, BCVDPI, SCV, SVCS, SVCA, MVCS, MVCA]

3. Develop benchmark MLP model

4. Assess performance

Predictive accuracy

Assess predictive accuracy using criteria with
different sensitivity on average and extreme events
[CE, IoAd, PI, MCE, MloAd, MPI]

Computational efficiency

Assess computational expense using computational
time

[CPU clock speed]

Synthetic tests
Assess average performance over 30 trials

Real tests
Assess performance over 1 trial

Figure 2.2 Overview of proposed assessment approach
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2.3.1 Procurement of input/output data with different degrees

of normality and non-linearity

As can be seen from Fig. 2.2, two different approaches to procuring input and
output data with different degrees of normality and non-linearity were used,
including the generation of synthetic data and the use of measured data, as

outlined below.
Synthetically generated data

Procurement of the synthetic data involved the generation of input data from
distributions with differing degrees of normality, and the subsequent
generation of the corresponding output data using synthetic models with
different degrees of non-linearity. Data were generated from seven distinct
distributions, including normal (NORM), log-normal (LOGN), exponential
(EXP), gamma (GAMMA), Pearson type Il (PT3), log-Pearson type IlI
(LOGPT3), and extreme value type | (EVT1) (see Fig. 2.2). These
distributions were used because they are the most commonly adopted
distributions in hydrological problems (Chow et al., 1988), and have the
ability to generate data with a large range of skewness and kurtosis, which are
measures of the degree of non-normality (Bennett et al., 2013). The properties
of each distribution are given in Tables 2.1 and 2.2. For each distribution, an
additional 25 data points were generated for each of the exogenous inputs in
the time series models, as the first 25 points were rejected in order to prevent
initialisation effects (May et al., 2008b). All data sets were split into training
(60%), testing (20%) and validating sets (20%) using the DUPLEX method
(see May et al., 2010), in accordance with the guidelines suggested by Wu et
al. (2013).
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Table 2.1 Details of the simulated input distributions for the time series models (EAR4,
TEAR10)

Distribution Key Parameters s k Normality
NORM Mean=3.0; sd =1.0 0.000 -0.013 High
GAMMA Shape=2.0; Scale=1.0 1.370 2.638 High
LOGN Mean=0.5; sd=1.0 5.326 53.694 Low

EXP Rate=1.0 2.132 7.219 Moderate
PT3 Shape=2.5; Scale=3.0; Location=2.0 1.251 2.381 High
LOGPT3 Shape=0.5; Scale=0.2; Location=2.0 4.792 43.265 Low
EVT1 Shape=0.0; Scale=0.5; Location=10.0 1.198 2.880 High

(Key parameters in the table are used to simulate the exogenous input variable; the skewness
and kurtosis shown in the table are the averaged values of all input and output data)

Table 2.2 Details of the simulated input distributions for the nonlinear model (NL)

Distribution Key Parameters s k Normality
NORM Mean=3.0; sd =1.0 1.826 5.158 High
GAMMA Shape=2.0; Scale=1.0 10.520 192.091 Low
LOGN Mean=0.5; sd=0.4 5.389 47.767 Low
EXP Rate=1.0 14.029 334.408 Low
PT3 Shape=0.5; Scale=1.0; Location=0.5 16.271 514.270 Low
LOGPT3 Shape=0.5; Scale=0.2; Location=0.5 14.261 390.522 Low

EVT1 Shape=0.1; Scale=0.0; Location=10.0 1.788 9.807 Moderate

(Key parameters in the table are used to simulate each of the input variables; the skewness
and kurtosis shown in the table are the averaged values of all input and output data)

The synthetic models used to produce the output data included a linear
exogenous auto-regressive time series model (EAR4), a threshold exogenous
auto-regressive time series model (TEAR10), and a nonlinear input-output
function (NL) (see Fig. 2.2), as they represent relationships with increasing
degrees of non-linearity and are based on synthetic models used in previous
studies (Bowden et al., 2005a; Galelli and Castelletti, 2013; May et al., 2008b).
The equation for the linear exogenous auto-regressive time series of order four
(EARA4) is given by

xt = 0.6Xt_1 - 0.4‘xt_4 + pt—l + 0.18,: (26)
where x; is the output time series; x;_, is the input time series with lag n;

P:—n IS the exogenous input with lag n; and 0.1¢; is the introduced error term.
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The equation for the nonlinear exogenous auto-regressive time series model of
order ten (TEAR1O0) is given by

_ {_O.Sxt_ﬁ + 0.5xt_10 - O'3pt—1 + 0'1£t; Xt—6 < 0

e = 0.8x;_19 — 0.3p;—1 + 0.1¢;; otherwise (2.7)

and the equation for the nonlinear input-output function (NL) is given by
y = (x3)3 + x¢ + 5sin(xy) + 0.1¢; (2.8)

The first two synthetic models (Egs. (2.6) and (2.7)) were modified versions
of the synthetic models used in May et al. (2008b) and the third synthetic
model (Eg. (2.8)) was modified from the one used in Bowden et al. (2005a).
For the first two synthetic models, the modifications include the introduction
of an independent lagged input p,_, into all exogenous AR models, and the
p:—1 Were sampled from the distributions outlined in Table 2.1. For the third
synthetic model, the significance (coefficient) of each input was slightly
modified and each input was sampled based on the distributions outlined in
Table 2.2. In addition, the error term 0.1¢, was added to all models to
introduce noise into the models without obscuring the influence of the actual
independent variables. The noise term &, followed the standard normal
distribution N(0,1).

Real case studies

In order to further test the impact of the degree of normality and non-linearity
of the data on the predictive performance and computational efficiency of the
different GRNN parameter estimation methods investigated, as well as the
performance of the empirical guidelines for the selection of the most
appropriate methods for GRNN smoothing parameter estimation developed
based on the results from the synthetic data, two case studies with data with
different degrees of normality and non-linearity were selected. The first case
study was concerned with forecasting salinity in the River Murray in South
Australia one, five and 14 days in advance and the second with the prediction

of runoff in the Kentucky River basin in the USA one day in advance. The
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data division procedure used for both real case studies was identical to the one

used for the synthetic case studies (see Section 2.1.1).

The salinity case has been studied extensively in the context of ANN
modelling (Bowden et al., 2005b; Fernando et al., 2009; Kingston et al.,
2005a; Maier and Dandy, 1996; Maier and Dandy, 2000a). According to
Maier and Dandy (1996), salinity in the River Murray is a function of
upstream inflows of salinity, flow, river level and groundwater level. Maier
and Dandy (2000) also found that different combinations of inputs contribute
to the output during different forcasting periods. In line with this finding,
different GRNNs were developed in this study to predict salinity at Murray
Bridge one, five and 14 days in advance (Table 2.3). Different input variables
with different lags (Table 2.3) were associated with each output in a given
forecasting period, where the inputs were selected from previous studies (e.g.
Maier and Dandy, 1996; Maier and Dandy, 2000; Kingston et al., 2005b). All
data covered the period 1987 to 1990, and were the same as the data used by
Maier and Dandy (1996; 2000).

Analysis of the input data shows that the salinity based inputs are
approximately normally distributed (average s = —1.11&k = 0.319 ),
although distributions of some lagged inputs have multiple peaks and the
distribution of the water level based input is mildly non-Gaussian (average
s =596 & k = 2.57). According to Bowden (2003), the input and output
data contain strongly linear components. Consequently, the data for this case
study are close to mildly non-normal and the relationship to be modelled is

close to linear.
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The rainfall-runoff problem from the Kentucky River basin has also been
extensively studied in the ANN literature (Bowden et al., 2012; Jain and
Srinivasulu, 2004; Srinivasulu and Jain, 2006; Wu et al., 2013). The
catchment area is approximately 10240 km? and the average daily total
rainfall measurements come from five rain gauges located at Manchester,
Hyden, Jackson, Heidelberg, and Lexington Airport. The average daily
streamflow at Lock and Dam 10 are used as the output. Jain and Srinivasulu
(2004) suggested five significant inputs (i.e. lagged effective rainfall
P(t),P(t —1),P(t —2) and lagged runoff Q(t — 1),Q(t — 2)). Therefore,
the effective rainfall, with lags from the present day to two days prior, and the
flow with lags of the first two days, were adopted as inputs (Table 2.4). The
data used in this paper were identical to the 13 years of training data (1960-
1972) utilised by Jain and Srinivasulu (2004).

Analysis of the input and output data shows that the distributions of lagged
effective rainfall and flow are extremely non-Gaussian (averaged s =
5.11 & k = 34.8). Although the linearity of the rainfall- runoff problem in the
Kentucky River basin has not previously been analysed, the general rainfall-
runoff problem is well recognised as being highly nonlinear (Coulibaly et al.,
2001; Dawson et al., 2002; Hu et al., 2001; Jain and Indurthy, 2003), and
therefore the data are likely to contain a strong nonlinear structure.
Consequently, the data for this case study are considered to be highly non-

normal and the relationship to be modelled is likely to be highly non-linear.

2.3.2 Estimation of GRNN smoothing parameters using

different estimation methods

The parameters for all of the GRNN models for the synthetic tests and real
case studies were estimated using nine methods. Of these methods, five are
adopted from the literature on kernel bandwidth selection for kernel density
estimation, and four are based on single and multivariable calibration
optimisation strategies. The methods adopted from the kernel density
estimation literature are: the Gaussian reference rule (GRR); biased cross
validation (BCV); 2-stage direct plug-in (DPI); a combination of BCV and
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DPI (BCVDPI); smoothed cross validation (SCV). The methods based on
calibration optimisation strategies are as follows: single variable calibration
with squared error as the objective function (SVCS); single variable
calibration with mean absolute error as the objective function (SVCA); multi-
variable calibration with squared error as the objective function (MVCS); and
multi-variable calibration with mean absolute error as the objective function
(MVCA) (Fig. 2.2). These methods were selected as they are based on
different fitness functions and assumptions of normality and error basis, as
shown in Table 2.5. Details of these smoothing parameter estimators are given

in the following subsections.

Gaussian reference rule (GRR)

The GRR based smoothing parameter estimator is the most commonly used
estimator. It is based on minimising the asymptotic mean integrated squared
error (AMISE) under the integrability assumption of an unknown probability
function f of the given data (Scott, 1992; Wand and Jones, 1995). Under these

assumptions, the derived AMISE has the expression
AMISE{f(;; 1)} = (nh) 'R(K) + 5 h*u, (K)2R(F") (2.9)

where K is the kernel function; R(K) = [[K(x)]?dx is the integrated square
of the kernel function; u,(K) = [ x?K(x)dx is the second moment of K; and
R(f7) represents the approximation of the integrated squared second
derivative of f. By assuming that the data follow a Gaussian distribution, and
adopting a Gaussian kernel, the GRR based smoothing parameter estimator

that minimises the AMISE is derived as

= ()14 g =1/ (mea) (2.10)

Rrop:
GRR,i =

where g; is the sample standard deviation of the Xij (usually standardised

first). As outlined in Table 2.5, this approach depends heavily on the Gaussian

assumption.
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Biased cross validation (BCV)

As with the GRR, the BCV (Scott and Terrell, 1987) based smoothing
parameter estimation method aims to minimise the AMISE, and is based on
the assumption that the data are normally distributed. However, as the BCV is
a combination of cross-validation and ‘plug-in’ bandwidth selection described
by Wand and Jones (1995), it is potentially more robust than the GRR based
approach through optimisation. The AMISE is expressed as follows by

substituting the estimated R(f”") into Eq. (2.9)

1
AMISEgcy;(R) = (nh)™'R(K) + Zh4M2(K)2n_2

% peq(K" * K" (XP = X1) (211)
where * indicates the convolution operation. The BCV smoothing parameter is

then given as
hgey,; = argmin,{AIMSEgcy ;(h)} (2.12)

As illustrated in Table 2.5, the underlying assumptions for the estimator
hgey,; are similar to hggg; (EQ. (2.10)), however hgcy; is determined by
minimising the AIMSEgcy ;(h) through an optimisation process (in the current

study, the golden section search (GSS) (Press et al., 1992) was used).

Two-stage direct plug-in (DPI)

The motivating idea behind the DPI (Park and Marron, 1992) is to
approximate the unknown term R(f"") with @,.(g) (which is a pilot kernel
estimation of the r-th order integrated squared density derivative); g is the
pilot kernel bandwidth; L is the pilot kernel; and r is the stage number into Eq.
(2.9) to obtain a computable form for the asymptotically optimal bandwidth.
By minimising AMISE (Eq. (2.9)) and replacing R(f”") with a pilot kernel
bandwidth estimation @,(g), the DPI based smoothing parameter expression,
for each input dimension i, becomes

N L C.9 B Y
hopii [[uz(x)12¢4(g)n] (2.13)
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where @,(g) =n"tY™, LW (X% g) represents the fourth order integrated
squared density derivative, which is approximated by the pilot kernel L, with
the corresponding pilot bandwidth as g (Hall and Marron, 1987; Jones and
Sheather, 1991). The asymptotic mean squared error (AMSE) based optimal
overall pilot bandwidth g is

— Kk!L(M(0) 1/(r+k+1) (214)

—Ur(L)Prirn

where k is the order of the pilot kernel L; r is the stage number of L; p; (L)
=[ u*L(u)du is the k-th moment of L. The stage number r determines how
many kernel estimations are required to approximate ¢,(g) based upon the
higher order integrated squared density derivative. Although it has been found
that more stages can result in a better estimation when using the DPI, the
improvement comes at a significant cost in terms of computational efficiency
(Wand and Jones, 1995). The commonly suggested number of stages is r = 2
(Park and Marron, 1992), which was adopted in this study. For a 2-stage DPI
based estimator, the corresponding fitness function and assumptions on
linearity and error basis are identical to those for the GRR and BCV based
approaches, while the dependence on the Gaussian assumption is effectively
reduced by the pilot kernel based fourth order integrated squared density

derivative, as shown in Table 2.5.

Combination of biased cross validation and two-stage direct plug-in
(BCVDPI)

The BCVDPI estimator is a combination of the BCV and 2-stage DPI, and is
achieved by replacing the estimated term R(f"") in Eq. (2.8) with the 2-stage
DPI based @,(g) as follows

AMISEgcyppri(h) = (nh)™'R(K) + ih4H2(K)2¢4(9)DP1 (2.15)

Although the BCVDPI has no closed form (it requires the solution of an
optimisation problem), it inherits the positive attributes of a reduced
dependence on the Gaussian assumption in comparison to the DPI. The
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optimal smoothing parameter by minimising AIMSEgcypp;i(h) can be

expressed, for each input dimension i, as
HBCVDPI,i = argminh{AIMSEBCVDPI,i(h)} (2.16)

The fitness function and assumptions of the BCVDPI based approach are
identical to those of the 2-stage DPI approach. The main difference between
these two approaches is that the former uses GSS based optimisation due to
the biased cross-validation procedure, while the latter does not.

Smoothed cross validation (SCV)

The concept behind SCV is very similar to that underpinning the DPI
approach, except that SCV attempts to minimise the exact MISE, rather than
the AMISE (Eqg. (2.9)) used in the DPI method. The MISE can also be

approximated as
MISE{f(.; )} = (nh)"*R(K) + [(Kp * f — f)(x)%dx (2.17)

By replacing [(Kj = f — f)(x)?dx with ISB(h), where ISB(h) is an

estimation of the integrated squared bias, Eq. (2.16) can be re-written as
EMISEgcy ;(h) = (nh)"*R(K) + ISB(h) (2.18)

where ISB(h) is given by

n n
ISB(h) =n~? Zp_lzq_l(l(h *Kp*Lg*Lyg—2%Ky*Lg*Ly+Lg*Lg)

CHED 6 (2.19)
where K, and L, are Gaussian kernels with kernel bandwidth h and pilot

kernel bandwidth g, respectively (Hall et al., 1992; Wand and Jones, 1995).
The pilot kernel bandwidth g is a function of a series of pilot kernel
bandwidths, each estimated based upon sequentially higher order integrated
squared density derivatives (Wand and Jones, 1995). The optimal smoothing

parameter is determined by finding the parameter ﬁscv,i, which minimises
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EMISEscy ;(h) through optimisation (GSS), as shown in Eq. (2.20) for the i-th
input

hscvi = argming{EIMSEs¢y ;(h)} (2.20)

Although the assumptions with regard to normality, linearity, and error basis
of the SCV based method are very similar to those of the 2-stage DPI based
approach (Table 2.5), the fitness function of the SCV method is based upon an
exact, rather than asymptotic, estimation of MISE. Therefore, the predictive
accuracy of SCV is expected to be the same as or better than that of the DPI

approach (Wand and Jones, 1995).

Single variable calibration (SVC) and multi-variable calibration (MVC)

The most commonly applied trial and error approaches to bandwidth
estimation can be classified as single variable calibration (SVC) and multi-
variable calibration (MVC). The SVC estimator assumes that a common
smoothing parameter is applicable to all input vectors, which increases
computational efficiency compared with the MVC estimator, for which
smoothing parameter estimates have to be obtained for each input vector, but
at the cost of potential reductions in modelling accuracy and flexibility (Gibbs
et al., 2006). The fitness function used to define the SVC and MVC estimators
can be either extreme event oriented (e.g. squared error) or average event
oriented (e.g. mean absolute error) (Dawson et al., 2007). The combination of
different optimisation algorithms and modelling objectives results in four
smoothing parameter estimators, namely SVCS, SVCA, MVCS, and MVCA.

The mathematical formulations of these four estimators can be written as

Rsves = argming{ T,y — 9, )]’} (2.21)
ﬁSVCA = argming{ Z?=1|yi - y(xj: h)l} (2.22)
Ruves = argming{ $i,[y' — 9%/, )]’} (2.23)
EMVCA = argming{ Z?=1|yi - )A’(Xj' h)l} (2.24)

43



CHAPTER 2 JOURNAL PAPER 1

where y(xf, h) is the GRNN prediction based upon the bandwidth vector
h=1[h; -+ hy]". The optimal single smoothing parameter in Egs. (2.21)
and (2.22) is achieved by minimising the errors (either squared errors or mean
absolute errors) between the observed data y* and the predictions $(X’, h). In
contrast, the optimal bandwidth matrix in Egs. (2.23) and (2.24) is obtained by
minimising the errors (either squared errors or mean absolute errors) between
the observed records y* and the predictions $(X’, h). Unlike the previous
methods, the fitness functions of the SVC and MVC based approaches depend
only upon the calibration error between observed and predicted output data.
Consequently, these approaches are independent of Gaussian assumptions
(Table 2.5). In this research, GSS was used to obtain the bandwidths of the
SVC estimators, while the evolutionary strategy particle swarm optimisation
(PSO) algorithm (Poli et al., 2007), which was written in Fortran, was used for

this purpose for the MV C approaches.
2.3.3 Development of benchmark MLP model

In order to assess the performance of the different GRNN models in absolute
terms, standard MLPs were developed as benchmarks using the systematic
approach outlined in Wu et al. (2014). The model inputs/outputs and training,
testing and validation data were identical to those used in the development of
the GRNN models. A single hidden layer was used and the optimal number
of hidden nodes was determined by trial and error, considering a range of 0-5.
The optimal number of hidden nodes for the different models was as follows:
2 (EAR4), 2 (TEAR10), 3 (NL), 3 (river salinity 1 day), 3 (river salinity 5
day), 4 (river salinity 14 day), and 4 (flow 1 day), respectively. The back-
propagation (BP) algorithm (with learning rate of 0.1 and momentum of 0.1)

was used for calibration.
2.3.4 Model performance assessment

As mentioned in the Introduction and shown in Fig. 2.2, model performance

criteria included predictive accuracy and computational efficiency. The
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specific measures adopted to assess these two aspects of performance are

outlined in the subsequent sections.

Predictive accuracy

As discussed in Bennett et al. (2013), careful selection of appropriate
predictive performance measures is extremely important. In this study,
predictive accuracy was characterised by six dimensionless criteria (listed in
Fig. 2.2), commonly used as evaluation metrics for hydrological prediction
problems (Bennett et al., 2013; Dawson et al., 2007; Krause et al., 2005).
These criteria include the coefficient of efficiency (CE), the index of
agreement (IoAd), the persistence index (P1), and modified forms of CE, l0Ad,
and PIl. These measures were chosen because: they are commonly used in
hydrology; they have clear cut-off points to distinguish different extents of
accuracy (good, satisfactory, or poor); and they are sensitive to different types
of events, which assists performance characterisation with respect to the
modelling objective. Particularly, CE compares the performance of the model
to a model that only contains the mean of the observations; loAd compares the
sum of squared error to the potential error; and Pl compares the sum of
squared error to the error based on the predictions of previous observations
(Bennett et al., 2013). In order to be able to assess the impact of the modelling
objective on model performance, modified versions of these metrics were also
used, in which squared error terms are replaced with absolute error terms (see
Krause et al., 2005).

Although predictive accuracy was assessed using all of the six performance
metrics mentioned above, only the performance based on the averaged 10Ad
and modified loAd (MIoAd) is presented in the body of the paper, while the
performance based on the other metrics can be found in the APPENDIX-A
(Figs. A.1, A3, & A5). IoAd is a measure of the overall agreement between

the observed and modelled records, and is expressed as

4 IR Gi-90)?
loAd =1 = i ST i 517 (2.25)
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where y/ is the individual observation, 3/ is the corresponding approximation
and y is the sample mean of the observations. 10Ad is sensitive to the mean
and variance differences between the observed and modelled records;
however, it is insensitive to systematic positive or negative errors. Good
performance corresponds to 10Ad values greater than or equal to 0.9, and
model performance with an IoAd less than 0.8 is considered to be poor
(Dawson et al., 2007).

The adopted MIoAd is very similar to Eq. (2.25), except that the squared error
terms are replaced by the absolute value in both the numerator and
denominator, so that performance becomes average event, rather than extreme
event, sensitive. Details of the derivations and applications of the MIoAd can
be found in Krause et al. (2005).

The reason for detailing the sensitivity of the performance criteria to the
average trends and extreme events is so that an assessment of the impact of
the error basis of the fitness functions used by the different smoothing
parameter estimators on the performance of the GRNN models with different

modelling objectives can be made.

Computational efficiency

Computational efficiency was measured by computational time (CT)
(measured by a dual processor 2.6 GHz Intel Machine), which was based on

the average CPU clock speed (in seconds), as shown in Fig. 2.2.
2.3.5 Test regime

The test regime was implemented in accordance with Fig. 2.2. Overall, 630
synthetic data sets with 1,575,000 data points were generated, which consisted
of 30 replicates of time series generated using 3 different models, for each of
which input data were generated from 7 different distributions. Each of the
630 data sets was then divided into training, testing and validation sets and
used to calibrate and validate 9 GRNN models, each using 1 of 9 different

smoothing parameter estimation techniques, resulting in a total of 5670
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GRNN models for the synthetic data. In addition to the experiments with the
synthetic data, 4 experiments were conducted with the real data, 3 for the
salinity data with different forecasting periods and 1 for the rainfall runoff
data. MLPANNs were also developed for each of the 30 replicates of the
synthetic data sets and for the 4 experiments with real data. As part of the
model development process, the residuals of the training data of all GRNNs
and MLPs were checked for replicative validity (see APPENDIX-A Figs. A.2,
A.4, and A.6) in accordance with the recommendations of Wu et al. (2014).
The residuals were generally ‘white noise’, indicating that all models can be
considered replicatively valid.] The performance of all 5674 models was
assessed using the 6 selected predictive accuracy criteria, as well as
computational time. Because of the large computational requirements, all tests
were coded in PGI Visual Fortran 2008 and run on a Linux 2.6.32.2 operating
system. The software used for conducting the numerical experiments is
available for others to use, as per the details in the Software Availability at the

beginning of this paper.
2.4 Results and discussion
2.4.1 Synthetic case studies

The predictive accuracy for the validation data and computational efficiency
of all GRNN models for the synthetic data are summarised in Fig. 2.3 and Fig.
2.4, respectively. The key findings in relation to the impact of the degree of
normality, the degree of non-linearity and the modelling objective on GRNN
performance (predictive accuracy and computational efficiency) for the
different smoothing parameter estimators are presented in Performance of
different smoothing parameter estimation methods, with the results of the
comparison with the MLP benchmark models summarised in Comparison
with MLP. Preliminary empirical guidelines for the selection of the most
appropriate GRNN smoothing parameter estimator based on the properties of
the data and the modelling objective derived from the results of the
experiments on the synthetic data sets are presented in Suggested rules and

guidelines for use.
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Figure 2.3 Predictive accuracy for the validation data of MLPs and GRNNSs for different

synthetic data-generating models and distributions for which optimal parameters have

been obtained using different methods
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Figure 2.4 Computational efficiency of MLPs and GRNNs for different synthetic data-
generating models and distributions for which optimal parameters have been obtained

using different methods

Performance of different smoothing parameter estimation methods

Overall, the results indicate that the predictive performance of the GRNN
models reduces as the degree of non-Gaussianity in the data increases,
especially when the GRR, BCV, DPI, BCDPI and SCV methods were used
for smoothing parameter estimation. This suggests that the DPI (or BCVDPI)
and SCV methods are not consistently effective in improving the predictive
performance of GRNN models for non-Gaussian data compared with using
the GRR, despite their reduced reliance on the normality assumption and their
increased computational cost. In fact, in many instances, use of these
parameter estimation methods resulted in a decrease in predictive performance
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compared with that obtained using the GRR, particularly for the more extreme
distributions (i.e. LOGPT3, EXP, LOGN in Fig. 2.3).

In contrast, use of the SVCS/SVCA and MVCS/MVCA methods was
generally successful in terms of improving the predictive performance of the
GRNN models for data with high degrees of non-normality compared with the
models for which the GRR was used for smoothing parameter estimation. In
fact, when the SVCS/SVCA and MVCS/MVCA methods are used, there is
very little degradation in predictive performance with an increase in the non-
normality of the data. This is most likely because these smoothing parameter
estimation techniques do not rely on any Gaussian assumptions. This makes
use of the SVCS/SVCA approaches a particularly attractive option for highly
non-Gaussian data, on account of their much smaller computational cost
compared with the MVCS/MVCA methods.

While the trends described above apply to all three synthetic data sets, they
manifest themselves more strongly for the non-linear (NL) case. This suggests
that the combination of non-linear and non-Gaussian data has the potential to
result in a marked degradation in the predictive performance of GRNNSs,
unless the SVCS/SVCA or MVCS/MVCA methods are used. It should also
be noted that for the NL case, there was a noticeable improvement in
predictive performance when the MVCS/MVCA approach was used instead
of the SVCS/SVCA method. However, this improvement was achieved at a

significantly increased computational cost.

Comparison with MLP

In the vast majority of cases, the predictive performance of the MLP models
was similar to that of the GRNN models for which the SVCS/SVCA and
MVCS/MVCA methods were used for smoothing parameter estimation,
although the MLPs performed slightly better than the best-performing GRNNs
in some instances. In addition, for Gaussian or nearly Gaussian data, the
predictive performance of the GRNNs for which the GRR was used for
smoothing parameter estimation was very similar to that of the MLPs.

Consequently, the results suggest that if a bandwidth estimation technique is
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used that is appropriate for the distribution of the data, the predictive
performance of GRNNSs is very similar to that of MLPs. In addition, this can
generally be achieved at a much reduced computational cost, unless the
MVCS/MVCA bandwidth estimation technique is used. Furthermore, use of
GRNNs eliminates the uncertainty associated with the selection of an

appropriate MLP model geometry.

Suggested rules and guidelines for use

Based on the findings of the 5670 computational experiments with the
synthetically generated data, a set of preliminary empirical guidelines has
been developed for selecting the most appropriate smoothing parameter
estimation technique based on the degree of normality and degree of non-
linearity of the data, as well as the modelling objective (Fig. 2.5). It should be
noted that the smoothing parameter estimation techniques included in the
suggested guidelines represent reasonable trade-offs between predictive
accuracy and computational efficiency, although it is acknowledged that
which trade-offs are optimal is also a function of case-study dependent

circumstances and / or user preferences.
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Based on Fig. 2.5, the preliminary empirical guidelines for selecting an
appropriate method for estimating the parameter(s) of GRNNs can be grouped

into a number of scenarios, as explained below:

Scenario 1: If the problem has input/output data that are mainly mildly non-
Gaussian (average s < 5 & k < 30), the GRR (or BCV) smoothing parameter
estimator is recommended, irrespective of linearity and model objective, as
these methods are observed to provide good accuracy for these cases at a
comparatively high computational efficiency.

Scenario 2: If (i) inputs and outputs are extremely non-Gaussian (average
s > 5 &k > 30) and (ii) the modelling objective is to capture extreme events
for a linear or non-linear problem, the use of SVCS or MVCS is suggested.
However, this observed increase in predictive accuracy comes at the cost of

significantly decreased computational efficiency (particularly for the MVCS).

Scenario 3: If the problem is as in Scenario 2 (extremely non-Gaussian data
& linear or non-linear problem), but with a modelling objective that is average
magnitude event sensitive, SVCA or MV CA should be adopted.

2.4.2 Real case studies

The results for the two real case studies are given in Figs. 2.6 and 2.7. Fig. 2.6
(@), (b), and (c) show the predictive accuracy for the validation data of river
salinity at Murray Bridge 1, 5, and 14 days in advance and the corresponding
computational efficiency is illustrated in Fig. 2.7 (a), (b), (c). Fig. 2.6 (d)
displays the predictive accuracy for the validation data of runoff at Lock and
Dam 10 in the Kentucky River basin 1 day in advance and the corresponding

computational efficiency is given in Fig. 2.7 (d).

River salinity at Murray Bridge

By considering the properties of the data for the salinity case study (Table 2.3),
and the modelling objective of capturing the averaged salinity trends, this case
study corresponds to Scenario 1 in Fig. 2.5. Given this, the predictive
performance of the GRNNs developed using the GRR or BCV based methods
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was expected to be superior in terms of an appropriate trade-off between
predictive accuracy and computational efficiency. This is confirmed by the
results, which indicate that predictive performance was not affected
significantly by using the different smoothing parameter estimation methods.
Although the methods that have reduced reliance on the Gaussian assumption
result in a slight increase in predictive performance, this is probably not
outweighed by the additional computational costs incurred. However, as
mentioned previously, the method that is considered most appropriate is case
study and user dependent. For example, if high predictive accuracy was
critical in this case and computational efficiency was not an issue, the MVCA
based approach would be preferable. As was the case for the synthetic case
studies, the predictive performance of the GRNNS is very similar to that of the

MLPs, but at a significantly reduced computational cost.

55



CHAPTER 2 JOURNAL PAPER 1

(eaueape ur Aep T uiseq JaArY Aomuad ayl ul QT weq pue 207 1e younu :(p) doueape ul sAep T pue ‘G ‘T abprig Aesnpy 18 Aluljes 1aaLl :(9) pue ‘(q) ‘(e))

SBIPNIS 9SO [eaJ 8yl J0J B1eP UOIIEpPIeA 8] 10§ S101eWISs Ja1aweled Bulyl00ws 1UaIaIp YUM SNNHO pue sd1IA 10 Aoeanade sAndipadd 9°Z aanbiq

J0jewils3 Jajaweled Sulyjoows Jojewns3 Jayaweled Suiyloows
A_n_h_\/“um A>Um A_n_ﬁ_>Um A>Um
mzz<n:_>_ SOAN SOAS 10) 14a E ¥yo mzz<5_>_ VOAW  YOAS ADS 10) 1d@ BV D)

r 0c0 - 080

- - | O#.O I mw.o
- 090 S =
2 - 0609
o

- 080 <60

00'T 00T

(p) ()
Jojewils3y Jajawelsed Suiyloows Jojewilsy J919weled Suiyloows
(1danog (nog (1danog (nog
mzz<n:_>_ YOAN YONAS ADS J10) Idd _ov YO SNNVdIN  VOAIN VIAS Jo) 1da § yy4yo

- 080 L - 080
= =
060 © - 060 O
2 2

S6°0 S6°0

00'T 00T

(q) (e)

56



CHAPTER 2 JOURNAL PAPER 1

(soueApe Ul Aep T ulseq JaAlY AMoNuay ayl ul 0T weq pue %007 Je Jounu :(p) :aoueape ul sAep T pue ‘G ‘T abpug Aeun 1e Aluijes Jaall () pue ‘(q) ‘(e))

$a1pN1s ased [ead 8y}l 40} elep uoirepleA sy 10} sia1aweded BUIYI00WS JUBIBHIP UM SNNYD pue sd1IA JO AdUsIdIL8 SAIIPaId /g 3nbi4

Jojew)s3 19)aweled Suiyroows

(1dandg (ADg
SNNVATN  SDAIN SOAS ADS 1o)|da  Jo) Yyo
(p)
Jojewilsy J9yoweled m:_r_uoo..:m
(1dandg (nog
SNNVATA  VOAN VYIAS ADS Jo)|da  40) y¥o

000

00°00T
00°00¢
00°00¢
0000
00°00s
00°009
00°00L

(s) 1502 jeuoneandwo)

000

ooot

=

(a)

00°'0¢
0o'og
00’0
00°'0s
00°09

(s) 1503 Jeuonneindwo)

Jojewnls3 J1913weled Suiyjoows

(ldandg  (Aog
SNNVdTAN  VOAN VIAS ADS J0) 1da  J10) Yyo
| | |
()
Jojewysy J919wesed Suiyjoows
(1dandg (ADg
SNNVdIN  VIAN VIAS NS Jo)|da  Jo) ¥yo

000
00°0¢
00°0v
00°09
00°08
00°00T

(s) 3502 jeuoneindwo)

000

00°0T

00°0¢

00°0¢€

00°0v

1

o
Q
o
wn
(s) 3s0d jeuoneindwo)

(e)

00°09

57



CHAPTER 2 JOURNAL PAPER 1

Rainfall-runoff in Kentucky River basin

By considering the properties of the data for the rainfall-runoff case study
(Table 2.4), and the modelling objective of capturing extreme events, this case
study corresponds to Scenario 2 in Fig. 2.5. Given this, the predictive
performance of the GRNNs developed using the SVCS and MVCS based

methods was expected to be superior.

As shown in Fig. 2.6(d), the predictive performance of the GRNNs developed
using the SVCS and MVCS based methods was indeed significantly better
than that of the GRNNs developed using the other parameter estimation
methods and was as good as that of the MLPs. In this case, the SVCS method
provided the best trade-off between predictive accuracy and computational
efficiency. However, if predictive accuracy was critical, the large increase in
computational cost incurred (Fig. 2.7 (d)) for a small increase in predictive

accuracy (Fig. 2.6 (d)) when using the MVVCS method might be warranted.

2.5 Summary and conclusions

Artificial neural networks (ANNs) have been used extensively for
hydrological and water resources modelling over the last two decades. In the
vast majority of studies, multi-layer perceptrons (MLPs) have been used as
the ANN model architecture. However, obtaining the optimal structure of
such models is not an easy task. By using general regression neural networks
(GRNNSs) as the ANN model architecture, this problem can be overcome, as
GRNNSs have a fixed model structure. However, there has been limited
investigation into the best way to estimate the parameters of GRNNSs. In order
to address this shortcoming, the performance of nine different GRNN
parameter estimation methods was assessed in terms of accuracy and
computational efficiency for data with distributions of varying degrees of
normality and non-linearity on both synthetic and measured data. In addition,
the impact of the objective function on model performance was assessed. In

total, 5674 GRNN models were developed as part of the computational
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experiments conducted. As a way of benchmarking, the predictive
performance and computational efficiency of the GRNN models was also

compared with that of MLP models.

The main results from the synthetic case studies show that:

1. The predictive performance of GRNNs developed using the GRR,
BCV, DPI, BCVDPI, and SCV based methods was generally
influenced by the distribution of the input/output data because of their
dependence on the Gaussian assumption (assuming the underlying
density follows a normal distribution).

2. Compared to the GRNNs developed using the GRR, use of the DPI,
BCVDPI, and SCV based methods did not effectively improve
predictive performance, despite their decreased dependence on the
Gaussian assumption and increased computational cost.

3. The predictive accuracy of GRNNs developed using the SVCA/SVCS
and MVCA/MVCS based methods was relatively insensitive to the
distribution of the input/output data because of their independence of
the Gaussian assumption.

4. There is a distinct trade-off between predictive accuracy and
computational efficiency for the methods investigated, with a
reduction in computational efficiency for the methods that are least
affected by the Gaussian assumption (i.e. SVCA/SVCS and
MVCA/MVCS) by several orders of magnitude.

5. If an appropriate smoothing parameter estimation technique is used,
the predictive performance of the GRNN models is very similar to that
of the MLPANN models, although slightly worse in some instances.
However, the computational cost of developing the GRNN models is
generally significantly less. In addition, there is no uncertainty in

relation to the selection of the most appropriate model structure.

Based on the general observations of the relationship between the
performance of the different GRNN parameter estimation methods and the
properties of the data and modelling objectives, preliminary empirical
guidelines for selecting the GRNN parameter estimation method that
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represents good trade-offs between predictive accuracy and computational

efficiency were developed.

The validity of the guidelines was tested and confirmed for two case studies
with real data, including the forecasting of salinity in the River Murray in
South Australia and a rainfall-runoff study in the Kentucky River basin in the
USA.

While the results of this study provide useful insights and guidance on the
selection of appropriate parameter estimation methods for GRNNs, further
research into the possibility of improving the predictive performance of some
of the methods that rely on the Gaussian assumption to some degree is
warranted, as these methods are much more computationally efficient than the
methods that are found to perform well with extremely non-Gaussian data in
this study. In particular, the stage number used in the DPI, BCVDPI, and
SCV methods may not be sufficient to describe extreme distributions with
data accumulated at the boundary and a long tail. The boundary issue
(Karunamuni and Alberts, 2005b; Scott, 1992), as another critical issue with
the same importance as the bandwidth, needs to be studied further for

problems that contain extreme data distributions.

2.6 Acknowledgments

This research was aided by the suggestions and the original code of GRNN
from Dr. Rob May and Dr. Greer Humphrey. The authors would also like to
thank the three anonymous reviewers, whose input has improved the quality

of this paper significantly.

60



CHAPTER 2 JOURNAL PAPER 1

61



CHAPTER 3 JOURNAL PAPER 2

CHAPTER 3 JOURNAL PAPER 2 -

Improved PMI-Based Input Variable Selection
Approach for Artificial Neural Network and Other
Data Driven Environmental and Water Resource
Models

62



Statement of Authorship

Title of Paper

Improved PMI-based input variable selection approach for artificial neural network and
other data driven environmental and water resource models

Publication Status

® Published, O Accepted for Publication, O Submitted for Publication, © Publication style

Publication Details

Li, X., Maier, H.R., Zecchin, A.C., 2015. Improved PMI-based input variable selection
approach for artificial neural network and other data driven environmental and water
resource models. Environmental Modelling and Software 65 15-29 DOI:
10.1016/j.envsoft.2014.11.028

Author Contributions

By signing the Statement of Authorship, each author certifies that their stated contribution to the publication is accurate and that
permission is granted for the publication to be included in the candidate’s thesis.

Name of Principal Author (Candidate)

Xuyuan Li

Contribution to the Paper

Undertook literature review, developed analytic procedure and numerical models,
developed software, and prepared manuscript

Signature

| Date |

Name of Co-Author

Professor Holger R. Maier

Contribution to the Paper

Supervised manuscript preparation and reviewed draft

Signature

| Date ]

Name of Co-Author

Dr. Aaron C. Zecchin

Contribution to the Paper

Supervised manuscript preparation and reviewed draft

Signature I Date I
Name of Co-Author

Contribution to the Paper

Signature | Date l

63




CHAPTER 3 JOURNAL PAPER 2

Abstract

Input variable selection (IVS) is one of the most important steps in the
development of artificial neural network and other data driven environmental
and water resources models. Partial mutual information (PMI) is one of the
most promising approaches to IVS, but has the disadvantage of requiring
kernel density estimates (KDEs) of the data to be obtained, which can become
problematic when the data are non-normally distributed, as is often the case
for environmental and water resources problems. In order to overcome this
issue, preliminary guidelines for the selection of the most appropriate methods
for obtaining the required KDEs are determined based on the results of 3,780
trials using synthetic data with distributions of varying degrees of non-
normality and six different KDE techniques. The validity of the guidelines is
confirmed for two semi-real case studies developed based on the forecasting

of river salinity and rainfall-runoff modelling problems.
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3.1 Introduction

Artificial neural networks (ANNs) have been applied successfully and
extensively to environmental (Adeloye et al., 2012; Ibarra-Berastegi et al.,
2008; Luccarini et al., 2010; Maier and Dandy, 1997b; Maier et al., 2004;
Millie et al., 2012; Mufioz-Mas et al., 2014; Ozkaya et al., 2007; Pradhan and
Lee, 2010; Young Il et al., 2011) and water resources (Abrahart et al., 2012;
ASCE, 2000a, b; Dawson and Wilby, 2001; Maier and Dandy, 2000b; Maier
et al., 2010; Wolfs and Willems, 2014; Wu et al., 2014b) problems over the
last two decades. One of the most important steps in the ANN model
development process is the selection of appropriate inputs (Galelli et al., 2014;
Humphrey et al., 2014; Maier et al., 2010; May et al., 2011; May et al., 2008b;
Wu et al., 2014b). According to Bowden et al. (2005a), if potential inputs that
have a pronounced relationship with the modelled output are not included in
the model, the performance of the resulting model will be compromised.
Conversely, if redundant or superfluous inputs are included, computational
efficiency is decreased, calibration becomes more difficult and model
parameters are less well defined, potentially making model validation in terms
of physical plausibility, as well as knowledge extraction, problematic
(Dawson et al., 2014; Galelli et al., 2014; Haimi et al., 2013; Humphrey et al.,
2014; Maier et al., 2010; May et al., 2011; Mount et al., 2013).

Given the importance and likely impact of input variable selection (IVS), it is
somewhat surprising that in most studies, ad-hoc approaches are used (Maier
et al., 2010; Wu et al., 2014b). However, a number of quantitative approaches
to IVS for ANN water resources models have already been developed and
utilized, such as sensitivity analysis (Jain et al., 1999; Maier and Dandy,
1997a), the Gamma test (Agalbjorn et al., 1997; Noori et al., 2011), partial
mutual information (PMI) (Bowden et al., 2005a), hybrid independent
component analysis and input variable selection filter (Trappenberg et al.,
2006), principal component analysis (Hu et al., 2007), use of the Box-Jenkins
method (Box et al., 2013), cross-correlation analysis (Chua and Wong, 2010),
distributed evaluation of local sensitivity analysis (Rakovec et al., 2014),

recursive variable selection (RVS) embedded in dynamic emulation models
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(Castelletti et al., 2012a; Castelletti et al., 2012b), and tree-based iterative
input variable selection (Galelli and Castelletti, 2013). Among these, PMI
IVS is one of the most promising approaches, as it has a number of desirable
properties, such as the ability to account for input relevance, the ability to
cater to both linear and non-linear input-output relationships and the ability to
determine the relative contribution (significance) of selected inputs (May,
2010). In addition, it has already been applied successfully to a number of
studies (Bowden et al., 2005a; Bowden et al., 2005b; Fernando et al., 2009;
He et al., 2011; May et al., 2008a; May et al., 2008b; Wu et al., 2013).

However, current implementations of PMI IVS approaches are not without
their limitations. Generally, kernel density estimation (KDE) is used to
approximate the probability density function (PDF) needed for the calculation
of MI (Bowden et al., 2005a; Bowden et al., 2005b; He et al., 2011; May et al.,
2008a; May et al., 2008b; Sharma, 2000a, b). One of the reasons for this is
that simple methods exist for KDE that are a function of only a single
parameter, the kernel bandwidth, otherwise termed the smoothing parameter
(Scott, 1992; Wand and Jones, 1995). While many methods exist for
estimating the bandwidth, in almost all existing PMI 1VS studies dealing with
environmental and water resources problems (e.g. Bowden et al., 2005a,b;
May et al., 2008a,b; He et al., 2011) the Gaussian reference rule (GRR) is
used for this purpose. The inherent limitation of this implementation of the
PMI algorithm is that the input/output data are assumed to follow a Gaussian
distribution. However, this is unlikely to be the case, as the distribution of
most environmental and water resources data is generally far from normal. As
a result, use of the GRR for determining the bandwidth for the KDE needed
for M1 estimation is likely to result in inaccurate IVS for data that are highly
non-Gaussian (Galelli et al., 2014; Humphrey et al.,, 2014), and over-
smoothed bandwidths have been found to result in more accurate MI estimates
for such data (Harrold et al., 2001). Consequently, there is a need to
investigate the effectiveness of alternative approaches to estimating the
bandwidth in PMI IVS so that the performance of this commonly-used

algorithm can be improved for data that follow non-Gaussian distributions.
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In order to overcome the limitations of existing PMI IVS implementations
outlined above, the objectives of the current study are: 1) to assess if, and to
what degree, the performance of PMI IVS can be improved for data with
different degrees of normality by using alternative bandwidth estimators with
reduced reliance on the assumption that the data are normally distributed; and
2) to develop and test a set of preliminary guidelines for selecting the most
appropriate bandwidth estimator for data with different degrees of normality.
Consequently this paper makes a specific contribution in terms of improving
the performance of the PMI algorithm for data that are encountered most

commonly in practice.

The remainder of this paper is organised as follows. A detailed explanation of
PMI IVS is provided in Section 2, followed by the methodology for meeting
the objectives in Section 3. The results are presented and discussed in Section
4. The developed guidelines are validated on the semi-real studies in Section 5,

before a summary and conclusions are given in Section 6.

3.2 PMI IVS

Although PMI IVS has been described in Sharma (2000a), Bowden et al.
(2005a), May et al. (2008b), He et al. (2011), and May et al. (2011), the
implementation of the KDE in 2-D used in this paper has not been explained
clearly thus far in this field of research. Consequently, the overall procedure,
mathematical details, and relevant assumptions of the PMI IVS algorithm
implemented in this paper are discussed in detail below for the sake of
completeness. As illustrated in Fig. 3.1, the first step is to procure candidate
inputs X and output(s) y from the available data in accordance with an

understanding of the system. Let: X = [X; ... X,,]"be the input, where m is

the number of inputs; (X’, /) be the observed pairs of input and output data

. : T
forj = 1,...,n, where n is the number of observations, X/ = [X] ... X;,] are

the observed input data and y/ are the observed output data.
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The second step is to estimate the marginal PDF of each individual input
f(X;)and the output f(y). The PDF is approximated by kernel density

estimation (KDE) in accordance with

f&) = -3 Kn(X; — X)) (3.1)
The kernel type Kjused in Eq. (3.1) is the most commonly used Gaussian
kernel since the selection of kernel type has negligible impact on the accuracy

of KDE (May et al., 2008b; Scott, 1992; Wand and Jones, 1995). The
expression of the 1D Gaussian kernel is

1 Xx?
Kn(X) = iz €XP (— W) (3.2)

In Eq. (3.2), h is the univariate kernel bandwidth, which determines the
accuracy of the KDE (Duong and Hazelton, 2003; Scott, 1992; Wand and
Jones, 1995). This single dimensional bandwidth, used for the marginal PDF
estimation, directly contributes to the bandwidth matrix used for the joint PDF
estimation (as explained later). As mentioned previously, in most studies, the
Gaussian reference rule (GRR) has been used for the estimation of the kernel
bandwidth in PMI IVS due to its high computational efficiency, ease of
implementation, and reasonable stability (Bowden et al., 2005a; He et al.,
2011; Huang and Chow, 2005; May et al., 2008b).

The third step is to calculate the joint PDF f(X;, y) between the i-th input
and the output, which requires the development of a 2-D bandwidth matrix for

the joint KDE. The currently used bivariate bandwidth matrix for standardised

data is
sz S .

H:hgl ot ’“g"l (3.3)
Sxy,i Sy

where S,?'l- is the sample variance of the input X;; S,.; is the covariance

Y,
between input X;and output y, S; is the sample variance of the output y, and
hi(h; = hy; = hy) is the estimated 1-D kernel bandwidth if the data are

standardised, or for non-standardised data
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2
hx,i pxy,i hx,i hy

H =
pxy,ihx,i hy h321

(3.4)

(known as a hybrid class of bandwidth matrix), where p,,,; is the correlation
coefficient between input X;and output y. According to Wand and Jones
(1993), the diagonal terms of the bandwidth matrix adjust the shape of the
joint PDF, while the off-diagonal terms control the orientation. The empirical
joint density of the i-th X; input and the output y can be estimated by the

Gaussian kernel-based estimator as
A 1 X; Xl.j
o) =ik (] - [yj]) @9

where the multivariate kernel is given by

Ky(X) = (

1 _lorpp—1
—(M)mlm)exp[ _XTH X] (3.6)

It should be noted that this approximation is commonly known as the Parzen
window density estimation (Cacoullos, 1966; Parzen, 1962). This is valid,
however, only if the underlying density is continuous and the first partial

derivative at any X is small.

According to Shannon (1948), Ml is then approximated as

r(xiy')

Ly, =~ =" log[———t2 L
x ey

vy T pei=1

] (3.7)

(marginal PDFs f(x/) and f(yy/) are as defined in Eq. (3.1)) in the fourth
step. The input with the greatest MI value is the most significant input among
the candidate inputs. The significant inputs are selected by means of these
four steps during the first run of the algorithm and added to the significant
input set X, that is, the set is updated to include X;- € X; where i* =

ar gmax{lvi,u}.

In order to remove any redundant information, RE is required in the fifth step.
RE is at the core of the ‘partial’ aspect of PMI IVS and the mutual
information shared between the residual inputs and output is called PMI (the
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term used after the 1% iteration of the PMI IVS). Typically, a general
regression neural network (GRNN) (Specht, 1991) is used as the residual
estimator in PMI IVS (e.g. May et al., 2008b; He et al., 2011). The residual
estimator is used to update the inputs and output by removing the influence of
the selected input variables. The updated input is defined as the difference
between the current value of the unselected inputs v; and the estimation of v;

based on the selected input X;- and is given by

J
i

v vl —m, (X)) (3.8)

where mvi(Xij*) is the residual estimate of v; based on X;-which removes the

shared information between the selected input Xl’ and the remaining inputs v;.

Similarly, the updated output is
W e w — i, (X1) (3.9)

where r’ﬁu(Xi’;) is the residual estimate of u based on X;-, which again
eliminates the shared information between the selected inputs X;-and the

output u.

The sixth step is to judge the selected input against the chosen stopping
criterion. Potential stopping criteria include bootstrapping, tabulated critical
values, the Akaike information criterion (AIC), and the Hampel test, as
discussed and tested in May et al. (2008b). After updating the input and output
variables based on the selected input variable, the corresponding PMI is
estimated as

(3.10)

1 (vl
Ly = ~ ;?zllOg[_(__t 12
14

Y
based on Egs. (3.7), (3.8), and (3.9). If the PMI value of the selected input is
still significant according to the applied termination criterion, the above steps
are repeated, as shown in Fig. 3.1, until all significant inputs X, have been
determined. In this way, the algorithm can accommodate a large number of

potential input variables, as demonstrated in Fernando et al. (2009).
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Available data
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(X;+ is insignificant and removed from X,)

Selected all significant inputs X,

Figure 3.1 Procedure of PMI IVS adopted in this study
(The superscript is omitted, as all operations are performed over the input data j = 1,---,n)

3.3 Methodology

The adopted procedure for assessing if, and to what degree, the performance
of PMI IVS can be improved for data with different degrees of normality by
using alternative bandwidth estimators is outlined in Fig. 3.2. This proposed

approach contains three main steps: (i) generation of input/output data for a
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range of distributions (with different degrees of normality); (ii) estimation of
the kernel PDF and MI for these data using a number of different kernel

bandwidth estimators; (iii) assessment of the performance of the IVS process.

1. Synthetically generate input and output data with
different degrees of normality

Generate 500 input data from 7 distinct
distributions

[NORM, LOGN, EXP, GAMMA, PT3, LOGPT3,
EVT1]

v

Generate corresponding output data for
each of the 500 input data with 7
distributions wia 3 functions with different
problem non-linearity

[EAR4, TEAR1O, NL]

+

Obtain 21 sets of 500 synthetically
generated inputs and outputs

!

2. Estimate PDF and Ml using different bandwidth
estimators: GRR, BCV, 2-stage DPI, BCVDPI, SCV, 5VO

1

3. Estimate residuals using different bandwidth
estimators: GRR, SVC5

Iterative process withi =1, 30

!

4. Assess performance of IVS over 30 trials

Accuracy Computational efficiency
Assess accuracy of Assess computational

PDF estimation expense using

and PMI selection: computational time [CT):
CSR CPU time

Figure 3.2 Outline of the proposed experimental approach
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3.3.1 Generation of input/output data with different degrees of

normality

As pointed out by Galelli et al. (2014), the accuracy of IVS algorithms can
only be assessed in an objective and rigorous manner if the correct outputs are
known. Consequently, input data with different degrees of normality were
generated from distributions with differing degrees of normality, and the
corresponding output data were obtained by substituting the generated inputs
into synthetic models. Seven distinct distributions were used for input data
generation, including normal (NORM), log-normal (LOGN), exponential
(EXP), gamma (GAMMA), Pearson type Il (PT3), log-Pearson type IlI
(LOGPT3), and extreme value type | (EVT1), as these are the most commonly
adopted distributions in hydrological modelling (Chow et al., 1988). The
degree of normality of the input/output data was measured using skewness
and kurtosis in accordance with Bennett et al. (2013). The properties of each
distribution are listed in Table 3.1 and 3.2. Although time series of different
lengths (i.e. 500, 1,000, and 2,000) were considered in preliminary tests, their
impact on the results was found to be insignificant. Therefore 500 data points
were generated and the first additional 25 points were rejected in order to

prevent initialisation effects (May et al., 2008b).

Table 3.1 Details of the distributions used to generate values of the exogenous input
variables and the statistical properties of the generated data for all time series models
(EAR4, TEAR10)

Distribution Key Parameters S k Normality
NORM Mean=3.0; sd =1.0 0.000 -0.013 High
GAMMA Shape=2.0; Scale=1.0 1.370 2.638 High
LOGN Mean=0.5; sd=1.0 5.326 53.694 Low

EXP Rate=1.0 2.132 7.219 Moderate
PT3 Shape=2.5; Scale=3.0; Location=2.0 1.251 2.381 High
LOGPT3 Shape=0.5; Scale=0.2; Location=2.0 4.792 43.265 Low
EVT1 Shape=0.0; Scale=0.5; Location=10.0 1.198 2.880 High

(The skewness and kurtosis shown in the table are the averaged values of all input and output
data)
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Table 3.2 Details of the distributions used to generate values of the input variables and
the statistical properties of the generated data for the non-linear model (NL)

Distribution Key Parameters S k Normality
NORM Mean=3.0; sd =1.0 1.826 5.158 High
GAMMA Shape=2.0; Scale=1.0 10.520 192.091 Low
LOGN Mean=0.5; sd=0.4 5.389  47.767 Low
EXP Rate=1.0 14.029 334.408 Low
PT3 Shape=0.5; Scale=1.0; Location=0.5 16.271 514.270 Low
LOGPT3 Shape=0.5; Scale=0.2; Location=0.5 14.261 390.522 Low

EVT1 Shape=0.1; Scale=0.0; Location=10.0 1.788 9.807 Moderate

(The skewness and kurtosis shown in the table are the averaged values of all input and output
data)

The three synthetic models used for generating the known outputs, given a set
of inputs, included a linear exogenous auto-regressive time series model
(EAR4), a threshold exogenous auto-regressive time series model (TEARL10),
and a non-linear input-output function (NL), as they are representative of
general water engineering problem scenarios with increasing degrees of
problem non-linearity and are based on those used for this purpose in previous
studies (Bowden et al., 2005b; Galelli and Castelletti, 2013; Li et al., 2014b;
May et al., 2008b). The equation of the EAR4 model is given by

xt = 0.6xt_1 - 0.4xt_4_ + pt—l + 0.1€t (3.11)

where x;, stands for the output time series; x;_, represents the input time
series with lag n; p,_, is the exogenous input with lag n; and 0.1¢; is the
introduced error term (as explained later). The equation for the TEAR1O

model is given by

_ {_O.Sxt_6 + 0.5xt_10 —_ O'3pt—1 + 0'1€t; xt_6 S 0 (3 12)
Xt 0.8x,_19 — 0.3p;_; + 0.1g;; otherwise '
and the equation for NL is given by
y = (x3)3 + x¢ + 5sin(xy) + 0.1¢, (3.13)

The first two synthetic models (Egs. (3.11) and (3.12)) were modified from
those used May et al. (2008b) through the introduction of an independent

lagged input p;_, into all exogenous AR models, and the p,_, were sampled
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from the distributions outlined in Table 3.1. The third synthetic model (Eq.
(3.13)) was modified from the one used in Bowden et al. (2005a) through a
slight adjustment of the significance (coefficient) of each input, and each
input was sampled based on the distributions outlined in Table 3.2. For all
three synthetic models, the error term 0.1¢, was added to introduce noise
without obscuring the influence of the actual independent variables. The noise
term &, followed a standard normal distribution N(0,1). In addition, for each
synthetic model, 22 redundant or irrelevant input variables of different lags

were included, so that the effectiveness of PMI VS could be tested.

3.3.2 Estimation of PDF and MI using different bandwidth

estimators

The kernel bandwidths used to estimate the PDF and MI for the synthetic and
semi-real data sets were approximated by six different bandwidth estimators,
including the Gaussian reference rule (GRR), biased cross validation (BCV),
2-stage direct plug-in (DPI), a combination of BCV and DPI (BCVDPI),
smoothed cross validation (SCV) and single variable optimisation (SVO) (Fig.
3.2). These bandwidth estimators were selected because they have distinct
dependence on the Gaussian assumption. The mathematical details of each

method are given in the following sections.

Gaussian reference rule (GRR) As the most commonly used bandwidth
estimator, the GRR is applied as the benchmark approach in this study. It
approximates the bandwidth by minimising the asymptotic mean integrated
squared error (AMISE) between the unknown probability function f of the
given data and the KDE £ (- h) under the integrability assumption of f, in
accordance with Scott (1992) and Wand and Jones (1995). The expression of
AMISE is given as

AMISE{f (5 1)} = (M) T'R(K) + - h*u, (K)2R(F") (3.14)

where K is the kernel function; R(K) is the integrated square of the kernel

—_—

function; u,(K) is the second moment of K; and R(f'") is the integrated

squared second derivative of f. According to Wand and Jones (1995),
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although it is ideal to determine the bandwidth by directly investigating the
mean squared error (MSE) (summation of bias and variance), its expression
depends on the bandwidth in a complicated way, which makes it difficult to
interpret the impact of the bandwidth on the performance of the KDE.
Consequently, AMISE was developed with consideration of the bias and the
variance of the approximated kernel density function {f(-; h)} (assuming that
the bandwidth approaches 0 at a rate slower than n= and K has a finite 4"
moment and symmetry about origin) to overcome such issues and the optimal

univariate bandwidth with respect to the AMISE can be derived as

1
~ 3\ -1
Rorri = (3) ons (3.15)

by assuming that the data follow a Gaussian distribution and by adopting a
Gaussian kernel. A detailed derivation of Eq. (3.15) is given in Wand and
Jones (1995) and Scott (1992). The detailed derivation is also given in
APPENDIX-B B.1.

Biased cross validation (BCV) Although the BCV based bandwidth
estimator also minimises the AMISE, and depends on the Gaussian
assumption through minimising the AMISE under the assumption of normally
distributed data, it is a combination of a cross-validation and ‘plug-in’
approach, which is potentially more stable than the GRR (Scott and Terrell,
1987) as its asymptotic variance is considerably lower. The BCV is achieved

via replacing the unknown R(f"") in Eq. (3.14) by a cross-validation kernel
estimator R(f") = n~2 Y YpeqK"*K")(XP —X) and the optimal
bandwidth is then determined by minimising the approximation of the AMISE
with the cross-validation term. Therefore its expression is given as

hacy = argming {(nh) " R(K) + 5 R4 o (K)?*n 2 5 B g (K" + K'Y (XP =
X{’)} (3.16)

where K"’ denotes the second derivative of kernel K and * is the convolution

operation and the golden section search (GSS) method (Press et al., 1992) was
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applied for the purpose of univariate optimisation in the current study. A
detailed derivation of Eq. (3.16) is given in Wand and Jones (1995).

2-stage direct plug-in (DPI) As with the GRR and BCV based approaches,
the DPI estimates the optimal bandwidth by minimising the AMISE. For
univariate KDE, the optimal bandwidth for Eq. (3.14) can be derived as

1
[LK),]S in accordance with Wand and Jones (1995). The DPI is then
n2(K)2R(frm

R(K)

1
5 .
o (K)ZRm)n] by a pilot

established through replacing the unknown R(f"") in [
kernel estimation of the r-th order integrated squared density derivative @,-(g)
(where g is the pilot kernel bandwidth; L is the pilot kernel; and r is the stage
number), according to Park and Marron (1992). Hence the univariate

bandwidth estimator of DPI becomes

1

& RK) T
ori = | oean] (3.17)
where @,(g) is the fourth order integrated squared density derivative, which
is approximated by the pilot kernel L with a pilot bandwidth g (Hall and
Marron, 1987; Jones and Sheather, 1991). Although the pilot kernel L can be
identical to the Gaussian kernel K, the pilot bandwidth g is estimated by

minimising the asymptotic mean squared error (AMSE), resulting in

1
KIL™M(0) ]r+k+1

—U(L)Prir(g)n

g=| (3.18)
where k represents the order of the pilot kernel L (normally k = 2); r is the
stage number of L; and p, (L) is the k-th moment of L. Although the stage
number r determines how many Kkernel estimations are required to
approximate ¢,(g) based upon the higher order integrated squared density
derivative and more stages can result in a better estimation, determination of
the optimal stage number is not trivial and there is a trade-off between an
increase in accuracy and computational efficiency (Wand and Jones, 1995).
Consequently, the stage number used for the current study was two, as
suggested by Aldershof (1991) and Park and Marron (1992), which results in
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a desirable balance between the effectiveness and computational cost of the
pilot kernel. The motivation behind the DPI is that the dependence of the
Gaussian assumption is attenuated by introducing the pilot kernel estimation
with » > 0, which makes the estimation more sensitive to the actual
distribution. In fact, the GRR can be treated as a special case of the DPI with
r = 0 (see APPENDIX-B B.1). A detailed derivation of Egs. (3.17) and (3.18)
can be found in Wand and Jones (1995), which can also be illustrated in
APPENDIX-B B.1.

Combination of BCV and DPI (BCVDPI) The BCVDPI is simply a
combination of the BCV and the DPI based approaches. The motivation
behind this method is to maintain the advantage of low asymptotic variance in
BCV, while adding the feature of reduced Gaussian dependence from the pilot
kernel estimator used in DPI. Hence, the BCVDPI is implemented by
replacing the cross-validation kernel estimator n‘zzzpiq(l(" *K”)(Xip —
X1 in Ay (EQ. (3.16)) with the @,(g) used in hpp;; (EQ. (3.17)), resulting

in the following expression

~ ) _ 1 ~
hgcvppri = argming, {(nh) R(K) + " h* 1, (K)* @, (g)DPI} (3.19)

As such, the BCVDPI inherits the reduced dependence on the Gaussian
assumption from the ‘plug-in’ term @,(g) and the optimal bandwidth is
approximated by minimising the AMISE, which was obtained for the
BCVDPI in this study by optimisation with the GSS.

Smoothed cross validation (SCV) Although the concept behind the SCV
based bandwidth estimator is similar to that underpinning the aforementioned
four approaches, SCV aims to minimise the exact MISE (EMISE), rather than
the AMISE used in the other four methods. The main difference between the
EMISE and AMISE is that the former estimates MISE as a summation of the
exact integrated squared bias and the approximation of the integrated variance
of £(:; h), while the later approximates MISE by integrating MSE (summation
of bias and variance) with the integrability assumption and the asymptotic

feature of the integrated squared bias. The EMISE derived for SCV is given as
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EMISEgcy ;(h) = (nh)"*R(K) + ISB(h) (3.20)
where the integrated squared bias ISB(h) is estimated by

ISB(h)y =n"23p_ Y0 _1(Kn*Kp*Lg*Lyg—2%KyxLy*Lg+Ly*
Lg) (X7 — X{) (3.21)

where K, and L, are the Gaussian kernels with kernel bandwidth h and pilot
kernel bandwidth g, respectively (Hall et al., 1992; Wand and Jones, 1995).
g is a function of a series of pilot kernel bandwidths, each estimated based
upon sequentially higher order integrated squared density derivatives, and up
to the 10™ order was applied in this study based on Wand and Jones (1995).
The SCV based optimal univariate bandwidth is then determined as

BSCV,i = argminh{EMISESCV’i (h)} (322)

A detailed derivation of Eq. (3.22) can be found in Wand and Jones (1995),
which is also given in APPENDIX-B B.1. Although the dependence on the
Gaussian assumption of SCV is also reduced by introducing the pilot kernel
estimation, which is similar to that of the DPI, the predictive accuracy of the
former is expected to be the same as or better than that of the latter due to
minimising EMISE, rather than AMISE.

Single variable optimisation (SVO) Unlike the five estimators mentioned
above, SVO, developed in this paper, determines the best bandwidth by
minimising the Kolmogorov-Smirnov (K-S) statistic (Parsons and Wirsching,
1982) between the empirical and estimated CDFs. This method does not
depend on the Gaussian assumption, nor the approximation of the MISE. The

optimal univariate kernel bandwidth is determined as
ESVO,i = argminh{supjzl...n|Femp(Xij) - Fest(Xij)l} (3-23)

whereF,,,,,(X7) is the empirical CDF of the input variable estimated by a

histogram; Fest(Xij) is the estimated kernel-based CDF of the input variable;

and sup represents the supremum function. The adopted optimiser was the
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GSS. The performance of the empirical histogram is a function of the
histogram bin width, therefore a number of bin widths (from 0.001 to 1.0)
were tested via sensitivity analysis. Although alternative ways can be used to
estimate the histogram bin width for each case, the results of the sensitivity
analysis (as shown in APPENDIX-B Figs. B.2.4 to B.2.6) suggest that a bin
width of 0.01 was adequate for the purposes of this study.

It should be noted that the introduced kernel bandwidth estimators were
implemented directly for the estimation of the univariate marginal PDF, which
then extended to the bivariate joint PDF in conjunction with the bandwidth
matrix, as mentioned in Section 2 (as in Egs. (3.3) to (3.6)).

3.3.3 Performance assessment

As mentioned in the Introduction and described in Fig. 3.2, PMI performance
was assessed based on selection accuracy and computational efficiency.
Selection accuracy was characterised by the correct selection rate (CSR),
which corresponds to the percentage of times the correct inputs are selected in
the 30 independent trials with different instances of a particular data set, as
was done in May et al. (2008b) and Galelli and Castelletti (2013). In addition,
the degree of over- and under-estimation of the correct inputs was also
assessed, in order to provide additional information on selection accuracy (see
Galelli et al., 2014).

Computational efficiency was measured using the average CPU time

(measured by a dual processor 2.6 GHz Intel Machine).
3.3.4 Test regime

The software used for conducting the numerical experiments was coded in
Fortran 90/95 and run on a Linux 2.6.32.2 operating system. As outlined in
Fig. 3.2, 630 synthetic data sets were generated, which consisted of a
combination of 30 replicates, for each of the three synthetic models with input

data generated from the seven distributions. For the 630 data sets, each of the
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6 different kernel bandwidth estimators was used for KDE, resulting in a total

of 3,780 tests for the synthetic case studies.

The residual estimation required for PMI estimation (see Section 2) was
carried out using a GRNN, as was the case in previous studies (e.g. Bowden et
al., 2005a; May et al., 2008b; Fernando et al., 2009). The empirical guidelines
proposed by Li et al. (2014b) for identifying the most appropriate bandwidth
estimation approach based on the distributional properties of the data were
used in order to isolate the impact of different bandwidth estimators for
residual estimation on IVS accuracy as much as possible. Details of the
GRNN bandwidth estimators used for the different datasets resulting from the

application of these empirical guidelines are given in Table 3.3.

Table 3.3 GRNN bandwidth estimation techniques used for residual estimation during
the PMI IVS process (based on the guidelines from Li et al. (2014b))

Synthetic data set 1 EAR4

Data distribution NORM EVT1 PT3 GAMMA  EXP LOGN LOGPT3
Bandwidth estimator ~ GRR GRR  GRR GRR GRR SVCS SVCS

Synthetic data set 2 TEAR10

Data distribution NORM EVT1 PT3 GAMMA  EXP LOGN LOGPT3
Bandwidth estimator ~ GRR GRR  GRR GRR GRR SVCS SVCS

Synthetic data set 3 NL
Data distribution NORM EVT1 LOGN PT3 EXP  LOGPT3 GAMMA
Bandwidth estimator GRR GRR SVCS SVCS SVCS SVCS SVCS

(GRR denotes for Gaussian reference rule; SVCS stands for single variable calibration with
squared error based fitness function)

The Akaike Information Criterion (AIC) (Akaike, 1974) was used as the
stopping criterion (i.e. to decide when to stop adding inputs to the selected set)
because it offers a trade-off between model accuracy and generalisation ability
(Akaike, 1974; Bennett et al., 2013; Dawson et al., 2007; May et al., 2008b),
has been found to perform well compared with alternative stopping criteria
(May et al., 2008b) and has been successfully applied to a number of previous
studies using PMI IVS (e.g. May et al., 2008a,b; He et al., 2011; Wu et al.,
2013). The AIC stopping criterion for PMI VS is computed as
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AIC = n X In[- 37, (y) — 97)?] + 2e (3.24)

where 97 denotes the estimated output and e is the number of effective inputs,
measured by the trace of the n X n hat-matrix in KDE (May et al., 2008Db).
The performance of all 3,780 synthetic tests was assessed against the
performance criteria detailed in Section 3.3.

3.4 Results and discussion

Within the following, Section 4.1 focuses on assessing the selection accuracy
of the PMI- IVS methods with different bandwidth estimators applied to the
synthetic data sets, and Section 4.2 focusses on computational efficiency. The
empirical guidelines for the selection of the most appropriate bandwidth

estimators for PMI IVS are presented in Section 4.3.
3.4.1 Selection accuracy

The accuracy of the PMI algorithm with alternative bandwidth estimators for
the three synthetic models is summarised in Figs. 3.3, 3.4 and 3.5. As can be
seen from Fig. 3.3, for the EAR4 model, the use of alternative bandwidth
estimators did not result in any significant improvement in CSR when the
input/output data followed Gaussian or nearly Gaussian distributions
(average s < 1.3 and k < 3; i.e. NORM, EVT1, and PT3). For instance, the
CSRs when the GRR was used were all above 96.7% for the NORM, EVTL,
and PT3 distributions, indicating very high selection accuracy. This result can
be explained by the fact that the alternative bandwidth estimators did not
provide a significant improvement in KDE accuracy compared with the GRR,
as assessed using the Kolmogorov-Smirnov (K-S) statistic (Parsons and
Wirsching, 1982), as shown in Figs. 3.6(a), 3.6(b) and 3.6(c). This is not
surprising, as the Gaussian assumption used in the KDE is consistent with the
actual input/output data distributions, which resulted in an insignificant
difference between the empirical and estimated CDFs (Figs. 3.6(a), 3.6(b) and

3.6(c)). To better understand the causes for these findings, the predictive
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accuracy of the GRNN models used for residual estimation at each step of the
PMI process was assessed using the coefficient of efficiency (CE) (Fig. 3.7),
which measures the difference in predictive performance of the model and a
model that only contains the mean of the observations (Bennett et al., 2013).
As can be seen, the predictive accuracy of the GRNN models was very high,
as indicated by CE values close to 1. Consequently, errors in residual

estimation were unlikely to contribute to any inaccuracies in PMI IVS.

For data that were moderately non-Gaussian (average 1.3 < s < 5and 3 <
k < 30; i.,e. GAMMA and EXP), the alternative bandwidth estimators (DPI,
BCVDPI, SCV, and SVO) increased the CSR (Fig. 3.3). For example, for data
following the EXP distribution, use of the GRR resulted in a CSR of 86.7%,
whereas the CSRs for the alternative bandwidth estimators were much higher
at 96.7% (SVO), 93.3% (SCV and DPI) and 90.0% (BCVDPI). As can be
seen from Figs. 3.3, 3.6(e), and 3.6(f), the trend in improvement in CSR for
the different bandwidth estimation techniques is matched by a similar trend in
KDE accuracy, suggesting that the improved KDE has a direct impact on CSR.
This is because the DPI, BCVDPI, SCV, and SVO based estimators have a
reduced dependence on the assumption that the data follow a Gaussian
distribution compared with the GRR. As was the case for the data that
followed mildly non-Gaussian distributions, the accuracy of the GRNNs used
for residual estimation was very high (Fig. 3.7), suggesting that the residual
estimation step in the PMI process was unlikely to have any negative impact
on CSR.

When the average distributions of the input/output data were extremely non-
Gaussian (average s > 5 and k > 30; i.e. LOGN and LOGPT3), use of the
alternate bandwidth estimators still resulted in a noticeable improvement in
CSR (Fig. 3.3). However, this improvement was less pronounced for the most
extreme distribution (LOGPT3), increasing CSR from 43.3% when the GRR
was used to just over 60% when the DPI, BCVDPI, SCV and SVO were used.
This is significantly lower than the CSR (over 90%) obtained for all other
distributions. The reason for this is likely to be a combination of inaccuracy

in KDE, as well as residual estimation. As can be seen in Fig. 3.6(Q),
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although the use of SVO resulted in improved KDE, the K-S statistic is still
outside the 95% confidence limits. In addition, there are significant errors in
residual estimation, as shown in Fig. 3.7, even though the bandwidth estimator
was based on the empirical guidelines suggested by Li et al. (2014b). As seen
in the LOGN and LOGPT3 boxplots in Fig. 3.7, despite the relatively high
median, very low CE values were obtained for some of the 30 trials, which is
likely to have a negative impact on CSR. These residual estimation
inaccuracies are most likely caused by boundary issues (Scott, 1992;
Karunamuni and Alberts, 2005), as discussed in Li et al. (2014b), which occur
when a symmetrical kernel is applied at a bounded and unsymmetrical

boundary, resulting in an under-estimated density near the boundary.

It should also be noted that while the results suggest that improved accuracy
in KDE results in improved PMI selection accuracy, consideration of the
average ratio of the bandwidths of the 30 replicates used in the Ml calculation
(see Eq. (3.25)) is also informative.

Ratio of the bandwidths = ~2r% (3.25)

hGrr,i
where ﬁpm,i stands for the estimated bandwidth based on the proposed

bandwidth estimators and EGRR_i is the estimated bandwidth based on the GRR
(Eq. (3.15)). As part of an empirical study on the effect of different bandwidth
ratios on the accuracy of MI estimation, Harrold et al. (2001) found that for
highly non-Gaussian data, an over-smoothed bandwidth performs best, with
an optimal bandwidth ratio of 1.5. This general finding is confirmed by the
results of this study (Table 3.4), which show that bandwidth ratios increase
with the degree of non-Gaussianity for the bandwidth estimators that result in
more accurate KDE. In addition, the GRR based PMI IVS is found to mainly
underestimate the correct number of significant inputs (shown in APPENDIX-
B, Fig. B.2.1) for the non-Gaussian cases (e.g. LOGN and LOGPT3), which is
consistent with the results (i.e. NL and Bank cases) in Galelli et al. (2014).
This can be ascribed to the underestimated bandwidth, as the severity of
underestimating the correct number of significant inputs is proportional to the
bandwidth ratio outline in Table 3.4. However, alternative bandwidth
estimators (i.e. DPI, BCVDPI, SCV, and SVO) tend to correct such
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underestimation with increased bandwidths, which sometimes even result in

slight overestimation.

Table 3.4 Average ratio of different kernel bandwidths under different distribution
scenarios for EAR4 model

NORM EVT1 PT3 GAMMA EXP LOGN LOGPT3
GRR - - - - - - -
BCV 0.964 0.954 0.997 0.984 1.033 1.007 0.997
DPI 0.958 0.886 1.039 0.971 1.265 1.716 1.804
BCVDPI 0.958 0.886 1.039 0.971 1.265 1.716 1.804
SCV 0.971 0.856 1.046 0.967 1.268 1.737 1.804
SVo 0.493 0.418 0.810 0.791 1.190 1.399 1.497

(The average ratio is between each of the alternative kernel bandwidth estimators and the
GRR)

The general trends observed for the EAR4 model were confirmed by those
obtained for the TEAR10 and NL models, except for the comparatively low
accuracy when SVO was used for the NORM and LOGPT3 distributions for
the data generated from the TEAR10 model and the overall reduction in CSR
for the data generated from the NL model. Even the alternative bandwidth
estimators (i.e. DPl, BCVDPI, SCV, and SVO) were found to tend to
underestimate the correct number of significant inputs, as shown in
APPENDIX-B Fig. B.2.3. This observation is likely to be the result of the
combined effect of the reduced KDE and residual estimation accuracy due to
boundary issues, particularly influenced by increased problem non-linearity,
as discussed below. For example, the non-Gaussianity of the NL model, as
measured by skewness and kurtosis, is much more severe than that of the
EAR4 and TEAR10 models (as shown in Tables 3.1 and 3.2), suggesting
increased potential impact of boundary issues on KDE and residual estimation.
For kernel based PDF and MI estimation, the corresponding accuracy of the
KDE of the NL model is generally slightly worse than that of the EAR4 and
TEAR10 models, as indicated by the K-S values in Figs. 3.6 and 3.8. For
residual estimation, the overall accuracy of the NL model was found to be
significantly less than that of the EAR4 model, as shown in Figs. 3.7 and 3.9.
This can be explained by the fact that the univariate GRNN used for residual
estimation is essentially a Nadaraya-Watson regression and therefore the
corresponding bias is a function of the regression function m(X;) and the

probability density function f(X;) with respect to input X;. According to Fan

85



CHAPTER 3 JOURNAL PAPER 2

(1992), Ruppert and Wand (1994), and Masry (1996), this bias increases as
the boundary issue becomes severe. Consequently, the accuracy of residual
and PMI estimation is likely to be compromised as the influence of boundary

Issues increases with increasing problem non-linearity and non-normality.

PMI Selection (EAR4)
ENORM ®mEVT1 mPT3 EGAMMA BEXP mLOGN mLOGPT3
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60% -
40% -
20% -
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GRR BCV DPI BCVDPI ScV SvVOo
Bandwidth Estimator

Figure 3.3 Correct selection rate of EAR4 model with alternative bandwidth estimators

PMI Selection (TEAR10)
ENORM ®EVT1 mPT3 EGAMMA EEXP mLOGN mLOGPT3
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Figure 3.4 Correct selection rate of TEAR10 model with alternative bandwidth
estimators
PMI Selection (NL)
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Figure 3.5 Correct selection rate of NL model with alternative bandwidth estimators
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Figure 3.6 KDE accuracy measured by K-S statistics for EAR4 & TEAR10 models
(The dashed line indicates the 95% confidence interval for kernel density estimation based

on the Kolmogorov-Smirnov (K-S) statistic (Parsons and Wirsching, 1982))
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Figure 3.6 (Continued)
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Figure 3.7 Residual accuracy measured by CE for EAR4 model
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Figure 3.8 KDE accuracy measured by K-S statistics for NL model
(The dashed line indicates the 95% confidence interval for kernel density estimation based

on the Kolmogorov-Smirnov (K-S) statistic (Parsons and Wirsching, 1982))
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Figure 3.8 (Continued)
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Figure 3.9 Residual accuracy measured by CE for NL model
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Figure 3.10 Computational efficiency of EAR4 model with different bandwidth

estimators
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3.4.2 Computational efficiency

The computational efficiency of different bandwidth estimators used for the
EAR4 model is given in Fig. 3.10. The GRR based method was found to be
the most efficient overall. This can be explained by the fact that the only
unknown parameter is the size of the applied data after standardisation (May
et al., 2008b). The computational expense of the BCV approach was close to
that of the GRR because the fitness functions used are identical, although the
BCV requires an additional iterative optimisation process. The average
runtimes for both DPI and BCVDPI were double that required by the GRR.
This is because of the additional time required for the estimation of the pilot
bandwidths during each iteration of the MI estimation (Wand and Jones,
1995). The efficiency of using SVO for bandwidth estimation is significantly
less than that of the methods discussed thus far, with an average runtime of
667s, which is over 110 times greater than that associated with the GRR. The
increased computational requirements of SVO are a result of the need to
estimate the fitness function for each trial bandwidth during the optimisation
process. Use of the SCV method was most inefficient, with an average
runtime of over 160 times greater than that for the GRR. The inefficiency of
SCV can be ascribed to the need to approximate a high order integrated
squared density derivative during each iteration of the MI estimation (Wand
and Jones, 1995), as well as the optimisation searching process. These
findings were supported by the results for the TEAR10 and NL models (See
Figs. B.2.7 and B.2.8 in APPENDIX-B).

3.4.3 Suggested rules and guidelines

The preliminary empirical guidelines for selecting the most appropriate kernel
bandwidth estimation technique based on the degree of normality of the data
(according to the findings of the 3,780 computational experiments with the
synthetically generated data) are given in Fig. 3.11. It should be noted that the
proposed guidelines represent reasonable trade-offs between selection
accuracy and computational efficiency, although it is acknowledged that the
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best trade-off is also a function of case-study dependent features and user

preferences.

As can be seen in Fig. 3.11, the preliminary empirical guidelines can be

categorised into three scenarios, as described below:

Scenario 1: If most of the input/output data follow Gaussian or nearly
Gaussian distributions (average s<1.3 and k<3), the GRR is suggested for
residual estimation and the GRR (or BCV) is recommended for MI estimation,
as these methods are able to provide good selection accuracy at a

comparatively greater computational efficiency.

Scenario 2: If the input/output data are mainly moderately non-Gaussian
(average 1.3<s<5 and 3<k<30), the GRR is suggested for residual estimation
and the DPI (or BCVDPI) is recommended for MI estimation, so that
selection accuracy can be improved with only a small reduction in

computational efficiency, in comparison with using the GRR and BCV.

Scenario 3: If the input/output data are mainly extremely non-Gaussian
(average s>5 and k>30), the SVC is suggested for residual estimation and the
DPI (or BCVDPI) is recommended for MI estimation. While these methods
will decrease computational efficiency significantly, they are also likely to

result in a marked increase in selection accuracy.
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3.5 Testing of proposed rules and guidelines

The rules and guidelines proposed in Section 4.3 were tested on two semi-real
case studies, including the estimation of salinity in the River Murray in South
Australia 14 days in advance (Bowden et al., 2005b; Fernando et al., 2009;
Kingston et al., 2005a; Li et al., 2014b; Maier and Dandy, 1996) and the
prediction of flow in the Kentucky River Basin in the USA one day in
advance (Bowden et al., 2012; Jain and Srinivasulu, 2004; Li et al., 2014b;
Srinivasulu and Jain, 2006; Wu et al., 2013). The case studies are semi-real in
the sense that actual input data are used, but that the corresponding output
data are generated using a trained ANN model. The adoption of semi-real
case studies enabled the benefits of utilising measured input data (i.e. not
generated from a known distribution) to be combined with those of having
known outputs, thereby enabling the performance of 1VS methods to be tested
in an objective and rigorous manner, as suggested by Galelli et al. (2014) and
Humphrey et al. (2014). Details of each semi-real case study are given in the
subsequent sections.

River salinity at Murray Bridge

The study area of the first semi-real case is illustrated in Fig. 3.12. According
to Maier and Dandy (1996), river salinity at Murray Bridge 14 days in
advance (MBS + 13) is a function of the salinity at Mannum, Morgan,
Waikerie and Loxton and the river level at Lock 1, given a specified lag time
(i.e., river salinity: MAS-1, MOS-1, WAS-1, WAS-5, LOS-1 and river level:
L1UL-1 at locations specified in Table 3.5). Consequently, these six inputs
were used to generate the corresponding outputs ( MBS + 13 ). Other
redundant or irrelevant candidate inputs listed in Table 3.5 were also

introduced for the purpose of testing the effectiveness of PMI I1VS.
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Figure 3.12 The River Murray in South Australia (Maier and Dandy, 1996)
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In order to generate the known outputs from the real inputs, standard
multilayer perceptron (MLP) artificial neural networks (ANNSs) were
developed using the approach outlined in Wu et al. (2014). The historical
records from 1987 to 1990 were split into training (60%), testing (20%) and
validating sets (20%) using the DUPLEX method (May et al., 2010), in
accordance with the guidelines suggested by Wu et al. (2013). A single hidden
layer was used and the optimal number of hidden nodes was determined by
trial and error, considering a range of 0 to 6. The optimal model structure was
found to be 6-4-1. The back-propagation algorithm (with learning rate of 0.1
and momentum of 0.1) was used for model calibration. The test inputs were
then re-simulated 30 times based on the real observations in order to obtain
data sets that contained a certain degree of variation, while still maintaining
the major time patterns and data distributions. This enabled VS performance
to be evaluated over 30 independent trials. The corresponding output was
obtained by substituting the simulated inputs into the trained ANN model. The
input/output data contain strongly linear components and follow a mildly non-
Gaussian distribution, according to Bowden (2003), Wu et al. (2013) and Li et
al. (2014b). Consequently, this study corresponds to Scenario 2 in Fig. 3.11.
Given this, the selection performance of the PMI using the DPI (and BCVDPI)
for KDE and the GRR for residual estimation was expected to be superior in
terms of an appropriate trade-off between selection accuracy and

computational efficiency.

Based on the results in Fig. 3.13, this was observed to be the case. The CSR
resulting from the use of the proposed approach was 96.7%, compared with
83.3% when the GRR and BCV approaches were used for KDE. Although
use of the SCV and SVO methods also resulted in a CSR of 96.7%, the
associated computational cost was significantly greater. Consequently, the
DPI/BCVDPI based method provided a good trade-off between selection
accuracy and computational efficiency for this study, as suggested by the

proposed guidelines (Fig. 3.11).
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Figure 3.13 Correct selection rate and efficiency of salinity forecast at Murray Bridge
with proposed and alternative bandwidth estimators

Rainfall-runoff in Kentucky River Basin

The second semi-real data set is concerned with rainfall-runoff modelling in
the Kentucky River Basin in the USA (Fig. 3.14). The output variable for this
case study is the forecast flow at Lock and Dam 10 one day in advance (Jain
and Srinivasulu, 2004). The corresponding inputs, including average daily
effective rainfall and runoff with specific lag time (i.e. average daily effective
rainfall: P(t), P(t-1) and average daily runoff: Q(t-1), Q(t-2) at locations
specified in Table 3.6), together with other redundant or irrelevant candidate
inputs, are summarized in Table 3.6, which are the same as those used by
Bowden (2003), Wu et al. (2013) and Li et al. (2014b).
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KRWTP = Kentucky River Water Treatment Plant
RRWTP = Richmond Road Water Treatment Plant

Figure 3.14 The Kentucky River Basin in USA (Jain et al., 2004)
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The historical rainfall-runoff records from 1960 to 1972 were used for
developing the MLP-ANNSs using the approach described for the salinity case
study. The optimal model structure was determined as 4-4-1. Thirty sets of
inputs and outputs were generated using the procedure described for the
salinity case study. It should be noted that the input/output data contain non-
linear components and follow extremely non-Gaussian distributions, as
discussed by Wu et al. (2013), Li et al. (2014b) , and Galelli et al. (2014).
Consequently, this study corresponds to Scenario 3 in Fig. 3.11. Given this,
the selection performance of the PMI using the DPI (and BCVDPI) for KDE
was expected to be superior in terms of an appropriate trade-off between

selection accuracy and computational efficiency.

As indicated in Fig. 3.15(a), use of the approach suggested in the proposed
guidelines derived from the synthetic data (i.e. DPI with SVC) clearly results
in the best CSR, with an accuracy of 96.7%. This is much higher than the
CSR of 77.8% when the ‘standard’ approach (i.e. GRR with GRR) is used.
While this increased selection accuracy comes at a significant increase in
computational cost (i.e. 68 times more computationally expensive), as shown
in Fig. 3.15(b), this still seems to provide the best trade-off between selection
accuracy and computational efficiency, as suggested by the proposed
guidelines (Fig. 3.11).
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Figure 3.15 Correct selection rate and efficiency of flow forecast at Kentucky River
Basin with proposed and alternative bandwidth estimators

3.6 Summary and conclusions

Input variable selection (IVS), as one of the most important steps in the
development of ANN and other data driven environmental and water
resources models, determines the quality and quantity of information used in
the modelling process. Partial mutual information (PMI) is one of the most
promising approaches to IVS, as it is able to account for the relevance and
redundancy of all candidate inputs and can be used for both linear and non-
linear problems. However, one disadvantage of using PMI is that it requires
kernel density estimates (KDESs) of the data to be obtained, which can become
problematic when the data are non-normally distributed, as is often the case
for environmental and water resources problems. However, this is an issue
that has been ignored in previous studies on the application of PMI IVS, in

which the Gaussian reference rule (GRR) has generally been used to obtain
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the required KDEs. This is likely to result in a reduced CSR for data that are
non-Gaussian, as shown by Galelli et al. (2014) and Humphrey et al. (2014).

In order to develop an improved approach to PMI IVS for data that are non-
normally distributed, the selection performances of PMI with six different
kernel bandwidth estimators for KDE were assessed in terms of selection
accuracy and computational efficiency for input/output data with distinct
degrees of normality on three synthetic data sets. The results from the 3,780
trials with the synthetic data were used to develop empirical guidelines for the
choice of the most appropriate bandwidth estimation techniques for data with
different degrees of non-normality. The validity of these guidelines was then

tested on the two semi-real data sets.

The results of the synthetic case studies suggest that the use of GRR-based
bandwidth estimators only results in good input selection accuracy if the
input/output data follow Gaussian or nearly Gaussian distributions, which is in
line with the results obtained by Galelli et al. (2014) and Humphrey et al.
(2014). As a result of their reduced dependence on the Gaussian assumption,
DPI, BCVDPI, SCV, and SVO based bandwidth estimators generally result in
marked improvements in CSR for problems with data that follow non-
Gaussian distributions. However, there is a distinct trade-off between

selection accuracy and computational efficiency.

One of the major outcomes of this paper is the development of the empirical
guidelines based on the synthetic tests. As shown in Fig. 3.11, the suggested
bandwidth estimators for KDE used in the MI calculation should be used in
conjunction with the bandwidth estimators for residual estimation suggested
by Li et al. (2014b). The results for the two semi-real data sets, which follow
mildly and extremely non-Gaussian distributions, support the validity of the
proposed guidelines for the selection of appropriate bandwidth estimation
methods for data with different degrees of non-normality. It should be noted
that the proposed guidelines are valid for environmental and water resource
applications with data that have distributional properties similar to those

provided in the guidelines, and that the implementation of the guidelines is
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also likely to benefit other data-driven environmental and water resources

models, even though they were only tested on MLPs.

Although the results of this study indicate that the use of alternate bandwidth
estimators can result in significant improvements in PMI input selection
accuracy for data that are non-normally distributed, these improvements were
not as pronounced for extremely non-Gaussian data and the non-linear
synthetic case study. This is likely due to boundary issues associated with
KDE for highly non-Gaussian data (Karunamuni and Alberts, 2005b; Scott,
1992). Consequently, future research should focus on potential improvements
to input variable selection accuracy as a result of the consideration of such
boundary issues. In addition, alternative methods for dealing with non-
Gaussian data in the context of PMI IVS, such as transforming the input data
to normality (Bowden et al., 2003) and estimating the required densities using
histogram-based methods (e.g. Fernando et al., 2009), require further
investigation, as does the impact of the stopping criterion (see May et al.,
2008a) on the results obtained in this study. Finally, there is a need to assess
the performance of the proposed modifications to the implementation of the
PMI algorithm on a broader set of data and against that of other IVS
algorithms (see Galelli et al., 2014).
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Abstract
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Software name: IVS_PMI_ 2014

Developers: Xuyuan Li, Postgraduate Student, the University of Adelaide,
School of Civil, Environmental & Mining Engineering, Adelaide, SA 5005,
Australia

Email: xliadelaide@gmail.com

Hardware requirements: 64-bit AMD64, 64-bit Intel 64 or 32-bit x86 processor-
based workstation or server with one or more single core or multi-core
microprocessors; all versions of Visual Studio 2012, 2010 and 2008 are
supported except Visual Studio Express; 256 MB RAM

Software requirements: PGI Visual Fortran 2003 or later version

Language: English
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Size: 4.55MB

Availability: Free to download for research purposes from the following

website:

https://github.com/xuyuanli/IVS_PMI_2014
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4.1 Introduction

Input variable selection (IVS) plays a vital role in the development of data
driven environmental models, such as artificial neural networks (ANNS), as
the performance of such models can be compromised significantly if either
too few or too many inputs are selected (e.g. Galelli et al., 2014; Maier et al.,
2010; Wu et al., 2014a; Wu et al., 2014b). Although the task of IVS is not
unique to environmental modelling, its application in an environmental
modelling context is complicated by a lack of understanding of the underlying
physical processes, the presence of significant temporal and spatial variation
in potential input variables, the non-Gaussian, correlated and collinear nature
of potential input variables, and the non-linearity and inherent complexity
associated with environmental systems themselves, as emphasised in Galelli
et al. (2014). Given the importance and challenge of the IVS problem, a large
number of approaches, categorised as either model free (on the basis of a
statistical measures of significance between the candidate inputs and the
output) or model based (depending on the adoption of an optimization
algorithm that is used to determine the combination of input variables that
maximizes the performance of a pre-selected data-driven model), have been
developed and refined for the purpose of more accurate 1VS (e.g. Galelli and
Castelletti, 2013; Galelli et al., 2014; Li et al., 2015; May et al., 2011; May et
al., 2008b; Sharma, 2000a), aiming to determine the smallest number of inputs
that best charaterise the input-output relationship with the least amount of
variable irrelvance or redundancy (Galelli et al., 2014; Guyon and Elisseeff,
2003). Among the various IVS techniques, partial mutual information (PMI)
based approaches are among the most promising model free techniques, as
they account for both the significance and independence of potential inputs
and have been successfully and extensively implemented in environmental
modelling (e.g. Bowden et al., 2005a; Galelli et al., 2014; May et al., 2008b;
Wu et al., 2014b; Wu et al., 2013).

The PMI 1VS approach was introduced by Sharma (2000a) and is based on
Shannon’s principle (Shannon, 1948), otherwise termed Shannon’s entropy,

which measures the MI between a random input variable and a random output
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variable. As part of the PMI algorithm, inputs are chosen using a forward
selection approach, during which one input variable is selected at each
iteration, based on the amount of information a potential input provides (in
addition to inputs selected at previous iterations) until certain stopping
criteria are met. The amount of information provided by a potential input is
given as a function of mutual information (M1), which quantifies the reduction
in uncertainty with respect to the output due to observation of an input
variable, and the contribution of already selected inputs is accounted for by
calculating the MI between potential inputs and the residuals of models
between the already selected inputs and the desired output, referred to as
partial mutual information (PMI). Consequently, the performance of different
implementations of the PMI algorithm, in terms of input variable selection
accuracy and computational efficiency, is a function of the methods used for
mutual information (MI) and residual estimation (RE), which is highlighted in
Li et al. (2015) and May et al. (2008b).

In previous studies on the use of PMI for IVS for data-driven environmental
models, the requisite MI estimates have been obtained using kernel density
based methods in order to approximate marginal and joint PDFs and residual
estimates have been obtained using kernel based regression methods for the
estimation of kernel based weights (e.g. Bowden et al., 2005a; Bowden et al.,
2005b; Gibbs et al., 2006; He et al., 2011; Li et al., 2015; May et al., 2008a;
May et al., 2008b). As such, the performance of PMI IVS is heavily
influenced by the accuracy of the kernel density estimates required for M1 and
RE, which are a function of bandwidth (otherwise termed ‘smoothing
parameter’) selection and how well any boundary issues are addressed, as
pointed by Santhosh and Srinivas (2013), Scott (1992), and Wand and Jones
(1995), as discussed below.

The bandwidth selection issue is caused by the fact that although many
methods for bandwidth estimation exist in other disciplines (e.g. mathematics
and statistics (e.g. Hall et al., 1992; Park and Marron, 1990; Rudemo, 1982;
Scott, 1992; Scott and Terrell, 1987)), there is no clear consensus as to which

bandwidth estimator performs best for general cases and in almost all existing
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PMI 1VS studies in environmental modelling the Gaussian reference rule
(GRR) has been used for bandwidth estimation due to its simplicity (e.g.
Bowden et al., 2005a; Bowden et al., 2005b; He et al., 2011; May et al., 2008a;
May et al., 2008b). However, as highlighted by Harrold et al. (2001) and
Galelli et al. (2014), use of the GRR can result in less accurate estimation of
MI and PMI for data that are highly non-Gaussian, which is generally the case

in environmental and water resources modelling problems.

Another potential problem with kernel based methods in environmental and
water resources modelling is the so called ‘boundary issue’, which is
associated with the inaccuracies in density estimation arising from the
extension of symmetrical kernels beyond the feasible bounds of potential
input variable values (e.g. densities associated with negative values of flow
obtained using symmetrical kernels) (Wand and Jones, 1995) and generally
results in an underestimation of MI or residuals near the boundary. This is
commonly encountered in environmental and water resources modelling due
to the fact that data can be bounded in accordance with their physical

feasibility (e.g. rainfall-runoff data are bounded at Omm).

While the impact of different bandwidth estimators for Ml and RE on the
performance of PMI IVS has been assessed recently, and empirical guidelines
proposed for the selection of the optimal bandwidth for MI and residual
estimation for data following different distributions (Li et al., 2015), the
impact of boundary issues associated with MI and residual estimation on the
performance of PMI IVS has not yet been considered, although a number of
potential methods have been proposed within the statistical literature for
addressing this issue (e.g. Cowling and Hall, 1996; Dai and Sperlich, 2010;
Fan, 1992; Fan and Gijbels, 1996; Gasser and Mdller, 1979; Hall and Park,
2002; Marron and Ruppert, 1994; Schuster, 1985; Zhang and Karunamuni,
1998). However, this is likely to be a significant problem, as environmental
data can be highly skewed near variable boundaries. Consequently, there is a
need to establish to what degree the performance of PMI IVS is influenced by
the boundary issue, and which methods are the most effective in addressing
this.
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In order to address the aforementioned research needs, the objectives of the
current study are: (i) to assess if, and to what degree, the performance of PMI
IVS can be improved by various approaches to addressing boundary issues for
data with different properties (i.e. degree of linearity and degree of normality);
and (ii) to develop and test a set of preliminary empirical guidelines for the
selection of the most appropriate methods for bandwidth estimation and
addressing boundary issues for data with different properties. The remainder
of this paper is organised as follows. An explanation of PMI IVS and
boundary issues is provided in Section 2, followed by the methodology for
fulfilling the outlined objectives in Section 3. The results are presented and
analysed in Section 4. The proposed guidelines are validated on the semi-real

studies in Section 5, before a summary and conclusions are given in Section 6.

4.2 Background on PMI 1VS and Boundary Issues
4.2.1 PMI IVS

Although details of the PMI IVS approach are provided in a number of papers
(e.g. Sharma, 2000; Bowden et al., 2005a; May et al., 2008b; He et al., 2011,
May et al. 2011; Li et al., 2015), a brief outline of the main steps in the

process are given below for the sake of completeness:

Let: X = [X; ... X,,]7 be the input, where m is the number of inputs; (X7, y’)

be the observed pairs of input and output data forj = 1, ..., n, where n is the

. . LT .
number of observations, X/ = [X] ... X},] are the observed input data and y’

are the observed output data

Step 1: Procure candidate inputs X and the output y based on an

understanding of the system to be modelled;

Step 2: Estimate the marginal PDF of each candidate input f(X;) and the
output f(y) through univariate kernel density estimation (KDE) (i.e. Kj, (X;)
and Khy(y)) (May et al., 2008b; Scott, 2004; Wand and Jones, 1995), where
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h, and h,, are the univariate kernel bandwidths, which determine the accuracy

of the KDE and the marginal PDF (Duong and Hazelton, 2003; Scott, 1992;
Wand and Jones, 1995);

Step 3: Calculate the joint PDF f(X;, y) between each candidate input and the
output through bivariate KDE (Cacoullos, 1966; Parzen, 1962). Calculation of
the bivariate KDE requires the determination of a bandwidth matrix, which is

formed by the univariate kernel bandwidths h, and h,;

Step 4: Approximate the MI Ix, , between each candidate input X; and the
output y based on the estimated marginal (f(X;) and f(y)) and joint f(X;,y)
PDFs in accordance with Shannon’s entropy (Shannon, 1948), which
measures the reduction in uncertainty with respect to y due to observation
of X;;

Step 5: Select the candidate input with the highest Ml;

Step 6: Remove the redundant information provided by the selected input(s)
through (i) development of input-output model(s) 7, (X;«) between the
selected input(s) X;- and the output y and (ii) obtaining the residuals (y —
m,, (X;+)) of these models (i.e. the components of the remaining input and
output that are not captured by a conditional prediction by the selected input).
In past studies, kernel regression models, such as generalised regression
neural networks (GRNNSs) (Specht, 1991), have been used for this purpose;

Step 7: Determine if the selected stopping criterion has been satisfied.
Potential stopping criteria include bootstrapping, tabulated critical values,
Akaike information criterion (AIC), and the Hampel test, as discussed and
tested in May et al. (2008b). If the stopping criterion has been satisfied, stop
the process. If the stopping criterion has not been satisfied, proceed to step 8;

Step 8: Estimate the marginal PDF (i.e. f(v;) and f(u)) of each remaining
candidate input v; = X; — My, (X;-) and output residual u =y — m, (X;+)
obtained in Step 6 through univariate kernel density estimation (Wand and
Jones, 1995; Scott, 1992; May et al., 2008Db);
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Step 9: Calculate the joint PDF f(v;,u ) between each remaining candidate
input v; and the output residuals u through bivariate kernel density estimation
(Cacoullos, 1966; Parzen, 1962);

Step 10: Approximate the MI I, ,, between each remaining candidate input v;
and the output residuals u based on the estimated marginal and joint PDFs in
accordance with Shannon’s entropy (Shannon, 1948). This is the PMI

between the candidate input and output;
Step 11: Select the candidate input with highest PMI,

Step 12: Repeat Steps 7 to 12.

As can be seen, the performance of PMI IVS is a function of MI
approximation (Steps 2 to 4 and 7 to 9) and residual estimation (Step 5). As
discussed previously, the accuracy of MI approximation is a function of the
way the kernel density is estimated (KDE in Step 2 and Step 3), which is
likely to be affected by boundary issues. In addition, based on the way
residual have been estimated in previous studies (i.e. using kernel regression
models in Step 6), the accuracy of RE is also affected by boundary issues.
However, it should be noted that there is the possibility of avoiding any
potential boundary issues associated with residual estimation by using
modelling approaches that are not reliant on kernel regression methods.
Background information of the boundary issue and of its relevance to PMI

IVS are given in the following subsection.
4.2.2 Boundary issues in PMI VS

Let f indicate a non-parametric estimation of the PDF of the input X with

support [—a,a], and X = [X; ... X,,]T be the input vector, where m is the

number of inputs; X/ = [le X, ]T are the observed input data from which
the non-parametric estimation is undertaken, forj =1, ...,n, where n is the
number of observations. The conventional KDE (used in Steps 2, 3, and 6 in
PMI IVS) is given by

f&Xs H) = =37 Ky (X; — X]) (4.1)
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where X; represents the ith input vector and Ky denotes the kernel type,
commonly selected as the Gaussian kernel (May et al., 2008b; Scott, 1992;

Wand and Jones, 1995), which is expressed as

Ky (X) = —2X"HX| (4.2)

Wexp[
In Eq. (4.2), H is the kernel bandwidth matrix (or kernel bandwidth for
univariate problems). The commonly used Ky is symmetric, satisfies the
following integral and moment conditions [ K, (X)dX = 1, [ XKy (X)dX =
0, [XX"Ky(X)dX =m, and has at least two continuous derivatives.
According to Dai and Sperlich (2010), if the support of f is bounded, and in
the absence of exponentially falling tails (e.g. support [0, a]), strong under-
estimation occurs for all data points in the boundary region (which are within
a distance of the bandwidth h from the boundary) because of the nonzero
kernel density estimation outside the support of f. As a consequence, the
corresponding bias of £ is larger than expected. For example, the bias of f is
of order O(h), rather than 0 (h?), at the boundary point for the univariate case
in accordance with Dai and Sperlich (2010), Karunamuni and Alberts (2005a),
and Wand and Jones (1995). These are the so-called ‘boundary issues’

associated with non-parametric kernel-based estimations.

A graphical representation of boundary issue in 2D is also provided in Fig. 4.1
in accordance with Hazelton and Marshall (2009). In Fig. 4.1, the kernel
density estimates are an approximation of data on the location of childhood
leukaemia and lymphoma in North Humberside, England. It can be seen that
the left-hand estimate without boundary correction has a smoothed edge,
while the right hand estimate with boundary correction has a sharper and
significantly higher edge at the same point. This indicates strong under-

estimates for all data points in the boundary region, as mentioned above.
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Figure 4.1 Graphical representation of the boundary issue in 2D (Hazelton and Marshall,
2009)

As mentioned previously, for PMI IVS in environmental modelling, boundary
issues can potentially be encountered in both M1 (through KDE, in steps 2 and
3) and RE (through kernel regression estimation, in step 6) when the
observations are bounded and/or follow non-Gaussian distributions (e.g. with

high skewness and kurtosis).
4.2.3 Potential solutions to solve boundary issues in PMI IVS

In order to address the impact of boundary issues, a number of methods have
been suggested in the literature (e.g. Dai and Sperlich, 2010; Karunamuni and
Alberts, 2005; Wand and Jones, 1995; Fan and Gijbels, 1996), which have
been categorised in accordance with whether they can be used during Ml
estimation, RE, or both, as outlined in Fig. 4.2. Methods used to correct the
boundary issue in M1 estimation can be further divided into two groups based
on whether they modify kernel functions or bandwidths. As can be seen from
Fig. 4.2:

1. Methods that consider modification of the kernel functions include:

e Reflection correction (RC) (Schuster, 1985; Silverman, 1986), which
‘reflects’ the data at the boundary and adds the density outside the
support of £ back to the boundary region;
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Boundary kernel (BK) (Gasser and Muller, 1979; Marshall and
Hazelton, 2010; Zhang and Karunamuni, 2000), which replaces the
conventional Gaussian kernel with a more adaptive kernel that is able
to capture any shape of the density, although negative densities can be
generated near the boundary;

Pseudo-data approach (PA) (Cowling and Hall, 1996), which
generates additional data based on the ‘three-point-rule’ and combines
them with the original data before implementing kernel estimation;
Kernel transformation (KT) (Marron and Ruppert, 1994), which
requires (i) a transformation function g so that g(X;) has a first
derivative as 0 at the boundary; (ii) a kernel estimator with reflection
on g(X;); and (iii) a back-conversion through the change-of-variables
formula to achieve f;

Local linear method (LLM) (Zhang and Karunamuni, 1998), which
plugs a special case of the boundary kernel (with fixed bandwidth) into
a local linear fitting function;

Empirical translation correction (Hall and Park, 2002; Jakeman et al.,
2006), which removes boundary issues by introducing an additional
empirical data perturbation term @, constructed specifically to adjust
the bias of density estimate within the boundary region, inside the

kernel.

2. Methods that consider modification of the bandwidth include:

Local bandwidth (reducing) (LBR) (Dai and Sperlich, 2010), which
adopts a reduced local bandwidth within the boundary region;

Local bandwidth (enlarging) (LBE) (Gasser et al., 1985; Hall and
Wehrly, 1991; John, 1984), which uses a larger local bandwidth within

the boundary region.

As can be seen from Fig. 4.2, all of the methods used to correct the boundary

issue in MI estimation are theoretically also applicable to RE in cases where

kernel regression models are used for this purpose. However, in the case of

RE, there are also other alternatives for addressing boundary issues, including
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modification of the kernel regression type and the use of kernel free modelling
approaches. In relation to different kernel regression types, typical options
include local linear, quadratic, and high order polynomial regression (LLP,
LQP, and LHOP), all of which belong to the local polynomial family.
Compared to the most commonly used univariate general regression neural
network (GRNN) (which is equivalent to the Nadaraya-Watson estimator), the
LLP (also known as the linear smoother), LQP, and LHOP regression types
are much less influenced by boundary issues (Dai and Sperlich, 2010; Fan,
1992; Fan and Gijbels, 1996) because the weighted average of each estimating
point is more adaptive to the actual observations. In relation to kernel free
modelling approaches, multi-layer perceptron artificial neural networks
(MLPANNS) provide an attractive option, as they are universal function
approximators and have been applied successfully and extensively to
environmental (Adeloye et al., 2012; Ibarra-Berastegi et al., 2008; Luccarini
et al., 2010; Maier and Dandy, 1997b; Maier et al., 2004; Millie et al., 2012;
Mufioz-Mas et al., 2014; Ozkaya et al., 2007; Pradhan and Lee, 2010; Young
Il et al., 2011) and water resources (Abrahart et al., 2007; Abrahart et al.,
2012; ASCE, 2000a, b; Dawson and Wilby, 2001; Maier and Dandy, 2000b;
Maier et al., 2010; Wolfs and Willems, 2014; Wu et al., 2014a; Wu et al.,
2014b) problems. In addition, they are independent from boundary issues due
to their kernel free features (Maier et al., 2010; Wu et al., 2014b), although a
major drawback of MLPANNs is their generally high computational
requirements. In this paper, only selected and appropriate approaches from the
aforementioned methods in Fig. 4.2 are implemented to fulfil the required
objectives. Details of the analytical processes associated with the different

approaches are described in the subsequent section.
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Mi RE
Kernel based Kernel free

Modification of Modification of Modification of kernel Boundary issue free

kernel function kernel bandwidth regression type method
a.g. e.g. e.g. e.g.
Reflection correction (RC) Local bandwidths Local linear Multi-layer
Boundary kernel (BK) (reducing) (LBR) polynomial (LLP) perceptrons
Pseudo-data approach (PA) Local bandwidths Local quadratic artificial neural
Kernel transformation (KT)  (enlarging) (LBE) polynomial (LQP) networks
Local linear method (LLM) Local high order (MLPANNS)
Empirical transformation polynomial (LHOP)

correction (ETC)

Figure 4.2 Taxonomy of methods for dealing with boundary issues in mutual
information and residual estimation

4.3 Methodology

The approach adopted for the systematic assessment of methods for
addressing boundary issues on the performance of PMI IVS is outlined in Fig.
4.3. As can be seen, the approach consists of four main steps, including: (i)
generation of input/output data that follow a range of distributions (with
different degrees of normality used to indicate different severities of boundary
issues); (ii) estimation of MI using different approaches for dealing with
boundary issues; (iii) estimation of residuals using different approaches for
dealing with boundary issues; (iv) assessment of the performance of PMI IVS
in terms of input variable selection accuracy and computational efficiency for
different combinations of approaches for dealing with boundary issues for Ml
and residual estimation. Details of each of these steps are given in the

subsequent sections.
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1. Generate input/output data with different degrees of normality

Generate 500 input data from 7 distinct distributions
[MORM, LOGN, EXP, GAMMA, PT3, LOGPT3, EVTL1]

-

Generate corresponding output data for each of the 500 input data
with 7 distributions via 3 functions with different problem non-linearity
[EAR4, TEARLO, ML]

¥

Obtain 21 sets of 500 synthetically generated inputs and outputs

F

2. Estimate MI using different boundary correctors and suggested
bandwidth estimators

Boundary options: 1). Benchmark: CK; 2). Modification of kernel function: BC,
BK;

Bandwidth options: GRR, DPI

b

3. Estimate residuals using alternative approaches and suggested bandwidth
estimators

Boundary options: 1). Benchmark: CK; 2). Modification of kernel function: BC,
BK, PA; 3). Modification of kernel bandwidth: LBR; 4). Modification of kernel
regression type: LLP, LQF; 3). Kernel-free approach: MLPANN (0 to 3HN)
Bandwidth options: GRR, 5VO

h

Iterative process withi=1,30

w

4. Assess performance of IVS over 30 trials

Accuracy Computational efficiency
Assess accuracy of PMIIVS: CSR Assess computational
Assess change of Ml estimation: expense using computational
variation of K5 statistics and Mis time: CPU time

Assess accuracy of residual
estimation: CE

Figure 4.3 Overview of the proposed analysis for the PMI VS influenced by bandwidth
and boundary issues
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4.3.1 Generate input/output data with different degrees of

normality

As pointed out by Galelli et al. (2014), the accuracy of IVS algorithms can
only be assessed in an objective and rigorous manner if the correct outputs are
known. Consequently, input data are generated from distributions with
differing degrees of normality, and the corresponding output data are obtained
by substituting the generated inputs into mathematical models. The synthetic
data are generated from seven distributions with different degrees of
normality, including normal (NORM), log-normal (LOGN), exponential
(EXP), gamma (GAMMA), Pearson type Il (PT3), log-Pearson type IlI
(LOGPT3), and extreme value type | (EVT1), as these are the most commonly
adopted distributions in hydrological modelling (Chow et al., 1988) and result
in boundary issues of varying severity. The degree of normality of the
input/output data is measured using skewness and kurtosis based on Bennett et
al. (2013). The properties of each distribution are listed in Tables 4.1 and 4.2.
In total, 525 data points are generated for each of the exogenous inputs for the
three functions considered (details given below) and the first 25 points are
rejected in order to prevent initialisation effects (May et al., 2008b), resulting

in 500 data points to be used in the analysis.

Table 4.1 Details of the distributions used to generate values of the exogenous input
variables and the statistical properties of the generated data for all time series models
(EAR4, TEAR10)

Distribution Key Parameters S k Normality
NORM Mean=3.0; sd =1.0 0.000 -0.013 High
GAMMA Shape=2.0; Scale=1.0 1.370 2.638 High
LOGN Mean=0.5; sd=1.0 5.326 53.694 Low

EXP Rate=1.0 2.132 7.219 Moderate
PT3 Shape=2.5; Scale=3.0; Location=2.0 1.251 2.381 High
LOGPT3 Shape=0.5; Scale=0.2; Location=2.0 4.792 43.265 Low
EVT1 Shape=0.0; Scale=0.5; Location=10.0 1.198 2.880 High

(The skewness and kurtosis shown in the table are the averaged values of all input and output
data)
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Table 4.2 Details of the distributions used to generate values of the input variables and
the statistical properties of the generated data for the non-linear model (NL)

Distribution Key Parameters s k Normality
NORM Mean=3.0; sd =1.0 1.826 5.158 High
GAMMA Shape=2.0; Scale=1.0 10.520 192.091 Low
LOGN Mean=0.5; sd=0.4 5.389  47.767 Low
EXP Rate=1.0 14.029 334.408 Low
PT3 Shape=0.5; Scale=1.0; Location=0.5 16.271 514.270 Low
LOGPT3 Shape=0.5; Scale=0.2; Location=0.5 14.261 390.522 Low

EVT1 Shape=0.1; Scale=0.0; Location=10.0 1.788 9.807 Moderate

(The skewness and kurtosis shown in the table are the averaged values of all input and output
data)

The output data are generated by substituting the generated input data into
three synthetic models, including one linear exogenous auto-regressive time
series model (EAR4), one threshold exogenous auto-regressive time series
model (TEAR10), and one non-linear input-output function (NL), as they are
representative of general water resource problem scenarios with increasing
degrees of problem non-linearity. Similar models have also been used in
previous IVS algorithm evaluation studies (Bowden et al., 2005b; Galelli and
Castelletti, 2013; Li et al., 2014b; May et al., 2008b).

The equation of the EAR4 model is given by
xt = 0.6xt_1 - 0.4xt_4_ + pt—l + 0.1€t (4.3)

where x; denotes the output time series; x;_,, stands for the input time series
with lag n; p;_,, represents the exogenous input with lag n; and 0.1¢, is the

introduced error term (explained shortly).

The equation for the TEAR10 model is given by

_ {_O.Sxt_6 + 0.5Xt_10 - O'3pt—1 + 0.1€t; Xt—6 <0 (4 4)
Xt = 0.8x;_10 — 0.3p;_1 + 0.1&;; otherwise '
The equation for NL is given by
y = (%)% + x¢ + 5sin(xg) + 0.1, (4.5)
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The first two time series models are modified from May et al. (2008b) by
introducing an additional independent lagged input p,_, into exogenous AR
models, and the third synthetic model is modified from the one used by
Bowden et al. (2005a) through the slight adjustment of the significance
(coefficient) of each input. All three synthetic models have also been studied
in Li et al. (2014b, 2015). The error term &, follows a standard normal
distribution N(0,1), which introduces noise without obscuring the influence
of the actual independent variables. In the present study, all data are scaled

between 0 and 1.

4.3.2 Estimate MI using different boundary correctors and

suggested bandwidth estimators

Although a number of potential methods aiming to ameliorate boundary issues
by means of modification of the kernel function have been introduced in
Section 2.2, not all are suited to MI estimation from a practical perspective.
This is because MI estimation requires application of these methods in a
bivariate setting, but the performance of a number of the methods has not
been verified under these conditions. Consequently, three methods, including
the conventional kernel (CK) (Bowden et al., 2005a; He et al., 2011; May et
al., 2008b) without boundary correction, the reflection correction (RC)
(Schuster, 1985; Silverman, 1986), and the boundary kernel (BK) (Gasser and
Muiller, 1979; Marshall and Hazelton, 2010; Zhang and Karunamuni, 2000)
are applied in this study. The CK is selected as a benchmark model against
which the performance of the other approaches can be compared; the RC is
adopted because it can be extended into a bivariate setting with relative ease;
while the BK is implemented because it has theoretically amenable
derivations and successful applications to both univariate and bivariate cases.
Details of these estimators are given in the following subsections. It should be
noted that in each case, in order to minimise any impact due to bandwidth
selection, the bandwidths are estimated based on the GRR (for data with
Gaussian or nearly Gaussian distributions; e.g. NORM and EVT1 synthetic
cases) and 2-stage direct plug-in (DPI) (for data with non-Gaussian
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distributions; e.g. LOGN and LOGPT3 synthetic cases), according to the
empirical guidelines proposed by Li et al. (2015).

Conventional kernel (CK) The CK is the most commonly used approach for
the estimation of the PDF and its expression is given in Egs. (4.1) and (4.2).
As mentioned in Section 2, this method does not provide any boundary

correction, and is therefore used as a benchmark approach.

Refection correction (RC) As described in Section 2, the motivation behind

the RC approach is to ‘reflect’ data (add —Xl.j,j = 1,---,nto the original data
set) so that the underestimated density within the boundary region can be

added back based on these reflected data. The more adaptive approach is to

only reflect the data within the boundary region (add —X; if h, > X; = 0)
(Dai and Sperlich, 2010; Silverman, 1986) and the corresponding expression
for the univariate RC becomes

=3 [Kn, (X — X)) + Kn, (Xi + XD)]; he 2 X, 20
fXihy) = % T Kn (X —Xij)]; X; > hy (4.6)
where h, is the bandwidth for input X; and the expression for the bivariate RC

[ [3] - [;)MH([XL-]_[—XJ])];M&

o B[ B[ 200,

g (5] - [4]) + 0 (5] - [Xf])]x s o By >y >0
1 ,1lKH<[ |- [ij X; >hey>h,

L 0;X, <0,y<0

A

(4.7)

where H is the bandwidth matrix, defined as
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hazc Pxy hx hy

_ (4.8)
peyhch,  hZ

(known as a hybrid class of bandwidth matrix), where h,, is the bandwidth for
output y and p,,, is the correlation coefficient between input X; and output y,
in accordance with Li et al. (2015). The detailed explanation of the bivariate
RC can be found in the APPENDIX-C C.1 and it should be noted that the
conditional terms all correspond to different regions in the data space, as

influenced by both boundaries, just x, just y, and neither.

Boundary kernel (BK) Compared to RC, BK is more flexible, as it is
designed to automatically adapt to any shape of density within the boundary
region. The motivation behind BK is that it is a type of linear boundary kernel
for use with an adaptive density estimator (Abramson, 1982) and the adaptive
density estimator adjusts the weight of each of the kernel functions in
accordance with the actual distribution of the data. Consequently, no
assumption is required about the distribution of the data (Marshall and
Hazelton, 2010).

The expression of the univariate BK is given by

aél) +4a2)—(a§1) +3a1)u]Khx (w)

(agl)+4a2)ao—(agl) +3a1)a1

B(u; hy) = ( (4.9)

where a((x’/) = [u*DYKy,(u) du; DYK,(uw) = (E)quh(“)d“/a uf”Kh(“)d”) .

Ky(uw); and u = (X; —Xij)/hx. This adaptive kernel estimator B(u; hy)
results from a linear combination of kernel terms, combined with an adaptive
bandwidth, dependent on the density function f(x). This maintains the bias as
0(h?) for the density estimation function f regardless of the boundary issue.
The scaled data result in two regions, including the boundary region (u,,iy, 1)
and the boundary free region (1, u,,4,). The univariate BK B(u; h,) has an
adaptive form for the scaled data within (u,,;,, 1) and a fixed form for the
scaled data within (1, u,,4,), thereby being able to add the underestimated
density back within the boundary region while keeping the density unchanged

in the free region.
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By extending this concept into two dimensions, the expression of the bivariate

BK is given as

boKy(u,v)+biuKy(u,v)+b,vKy(u,v)
B(u,v;H) = 4.1
( L ) boago+biaio+bzags ( O)

where

10 01 10 01 10 01 10
by = (ago )+ agl )+ 5a20) (aiz )+ a(()3 )+ 5a02) — (ag1 )+ aiz )+ 5a11) (ag1 )+

01 )
aiz )+ 5a11),

(01)

10 01 10 01 10 10
b, = (ag1 )+ a(()2 )+ 4a01) (ag1 ) 4+ agz )+ 5a11) - (ag0 )+ a;;’ + 4a10) (ag2 )+

01 )
a(()3 )+ 5a02),

10 01 10 01 10 01 10
b, = (ago )+ ail )+ 4a10) (ag1 )+ aiz )+ 5a11) - (ag1 )+ a((,z )+ 4a01) (ago )+

andv = (y —yf)/hy. This results in a linear combination of three kernels,
which is able to eliminate the O(h) extra bias term that is present in the
bivariate case when compared with the univariate one (Eq. 4.9). Similar to the
univariate BK B(u; h,), the bivariate BK B(u, v; H) is again adaptive for the
scaled data within the boundary region (i.e. u € (U, 1) and/or v €
(Ymin, 1)), however, it becomes constant when the scaled data are within the
boundary free region (i.e. (1, Uyqay) @nd (1, vy,4,))- The detailed mathematic
derivations and explanations of Eqgs. (4.9) and (4.10) can be found in Marshall
and Hazelton (2010).

4.3.3 Estimate residuals using alternative approaches and

suggested bandwidth estimators

In order to assess the effectiveness of different approaches to minimising the
impact of any boundary issues in RE, selected approaches from those shown
in Fig. 4.3 are implemented. In addition to the most commonly used GRNN
with the CK (as a benchmark), seven alternative residual estimators are
implemented. Of these, three are based on the modification of the kernel

function (i.e. BC, BK, and PA); one is based on the modification of the kernel
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bandwidth (i.e. LBR); two are based on the modification of the regression
type (i.e. LLP and LQP); and one is a kernel free approach (i.e. MLPANN).
The selected approaches are not only representative of the different categories
outlined in Fig. 4.3, but are also theoretically applicable to univariate
approaches to residual estimation. Details of these methods are given in the

following subsections.

It should be noted that in each case, in order to minimise any impact due to
bandwidth selection, where applicable, the bandwidths are estimated based on

the empirical guidelines proposed by Li et al. (2014a), as outlined in Table 4.3.

Table 4.3 GRNN bandwidth estimation techniques used for residual estimation during
the PMI IVS

Synthetic data set 1 EAR4

Data distribution NORM EVT1 PT3 GAMMA EXP LOGN LOGPT3
Bandwidth estimator GRR GRR GRR SVO Svo SVO SvVo
Synthetic data set 2 TEAR10

Data distribution NORM  EVT1 PT3 GAMMA  EXP LOGN LOGPT3
Bandwidth estimator GRR GRR GRR SVO Svo SVO Svo
Synthetic data set 3 NL

Data distribution NORM  EVT1 LOGN PT3 EXP LOGPT3 GAMMA
Bandwidth estimator GRR GRR SVO SVO SVO SVO SVO

(GRR stands for the Gaussian reference rule; SVO denotes single variable optimisation)

GRNN with CK The GRNN with CK, developed by Specht (1991), is the
univariate regression approach used for residual approximation in all previous
studies of PMI IVS in environmental modelling. Its expression is given by (Li
etal., 2014a)

n j
Z]=1y exp ZhJZC

2
Z}l=1 eJCPI_—(Xi_X{> ]

(xi—xf;f]

}A’GRNN (Xi: h) = (4-11)

2
2hZ

This method does not involve any boundary correction, therefore it is
expected to be significantly influenced by boundary issues and is used as a

benchmark approach.

GRNN with RC The motivation behind RC (Silverman, 1986) has been
explained in Section 2.2 and Section 3.2. The RC method is implemented by
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N2
xi-x/) |.
replacing the symmetric kernel estimation part exp [— %‘ in Eq. (4.11)

with the RC in Eq. (4.6). The expression for the estimator then becomes

, (x-x)’ (xpex)’

Yi=1¥'|exp — o Jre|
shy 22X, =20
(xp-xl)’ e\ T
2?:1 exp| — Ty +exp| — o2
Yre(Xi h) = S (Xi—X{)z (4.12)
2:71'1=1y1 exp| - 2h%
;Xi > hx

GRNN with BK The motivation behind BK has also been explained in
Section 2.2 and Section 3.2. Similar to the approach taken with the RC
method, the boundary kernel (Eq. (4.9)) is plugged into Eq. (4.11), resulting

in the following expression

Zn j{[(agl)+4a2>—(ag1)+3a1)u]Kh(u)}
j=1Y

(agl)+4a2)ao—(agl)+3a1)a1

(4.13)

yBK(XiJ h) = - {[(agl)+4az)—(agl)+3a1)u]Kh(u)}
j=1

(a:(,,l) +4a2)a0—(agl)+3a1)a1

GRNN with PA The implementation of PA is different from the above three
methods. According to Cowling and Hall (1996), the motivation behind this
approach is to generate pseudo-data beyond the boundary based on the
existing data, so that the under-estimated kernel density near the boundary can
be compensated by these additional data that contain the same trend. By using
the PA, the bias does not increase significantly at the boundary, nor does the
variance. The PA was implemented in three steps. Firstly, two additional data
points are linearly interpolated in-between every two adjacent original data
points and the pseudo-data are then generated by the ‘three-point rule’, which
is
2

xh = —5x3) _ 4x(3) +2X0D,j=1,n (4.14)
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(l) (2—1) J 2j .
where X\s/ and X\s/ refer to the gth and ?th data points formed by the
interpolated and original data points (Cowling and Hall, 1996), which
effectively capture the features of the original data. Secondly, the

corresponding density estimation is approximated as

FO) = {5 K[ O = xD/n] + B Ka| G = xT0/m]} (aa5)
where [ is an integer less than n. When Xij is within the boundary region, the

pseudo-data Xi(_j) contribute to the estimation of f by rendering the bias and
variance to the minimal possible values 0(h™) and O[(nh)~1] if Lis a large

integer. However, when Xij is not in the vicinity of the boundary region, the

correction due to the pseudo-data Xi(_j) is negligible with small [, as
explained by Cowling and Hall (1996). Although I can significantly affect
the performance of boundary correction, determination of this parameter is
not trivial. In the present study, [ is estimated through the golden section
search (GSS) optimisation algorithm (Press et al., 1992) and the search is
truncated using the ceiling function. Finally, by combining Eqg. (4.11) and Eq.
(4.15), the expression for GRNN(PA) is given by

S VB Kn[=xD ]+ By K[ 06-xT)/m])
S K| (-x))/n]+ 5h_, ki 0-xT7) /m]

Ypa(Xi, h) = (4.16)

GRNN with LBR The concept behind the LBR is to adjust the bandwidth
within the boundary region, rather than modifying the kernel. It is found that
use of a smaller bandwidth within the boundary region can correct the density
estimation affected by the boundary issue, therefore, according to Dai and
Sperlich (2010), the bandwidth h used for a < Xij < ¢, where a and c are left
and right boundaries, is defined by

max(Xij —a,s);ifa SXij <(h+a)
hxif = max(c —Xij,s) ;if (c—h)< Xl.j <c (4.17)
h; otherwise

and € = 0.001 is added to avoid zero bandwidth values and the regression

model used is identical to Eq. (4.11).
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Local linear polynomial regression (LLP) As mentioned in Section 2.2, the
LLP regression model is theoretically more advanced than the GRNN in terms
of its resistance to boundary issues (Dai and Sperlich, 2010; Fan, 1992; Fan
and Gijbels, 1996). This is due to the fact that the LLP is a linear order
polynomial regression, while the GRNN is a zero-order polynomial regression.
Consequently, the estimates obtained from the former are more driven by the
actual distribution of the data than those obtained from the latter since the
estimated weight of each point is more sensitive to the actual data. As a result,
the bias and variance of the estimates from the former are smaller than those
from the latter. The general expression for models belonging to the local

polynomial family is given by
ypXp k) =ef| i - : (4.18)

Where e, is a vector having 1 in the first entry and O elsewhere, §, =
UYL (X - X)) Ky (X! - X)) and & =nTt X0 (X — X)" K (X] -
Xi)yj (Cigizoglu and Alp, 2006). The univariate LLP is obtained by
substituting p = 1 into Eq. (4.18), giving

S, —51(X) - X; v Vi
PpXi; 1L,h) =n~t ,]_1=1 {52 $1(X] Xl)}Kh(Xl Xl)y]

$280—8151 (4.19)
Local quadratic polynomial regression (LQP) Although the general
expression for the LQP and LLP is identical (Eq. (4.18)), the former is more
flexible and adaptive than the latter because 3, and £, are approximated based
on a quadratic relationship (p = 2), rather than a linear relationship (p = 1).
As a result, the LQP is theoretically more resistant to the boundary issue than
the LLP because the density depends more on the actual distribution of the
data, resulting in smaller values of bias and variance. By substituting p = 2

into Eq. (4.18), the univariate equation for the LQP is given as

37LQP (Xii 2,h) =

[(S2848385)— (8184 -8,89) (X] =X )+ (8183 =828 (X =X) [ (X - %, )"

[30(8284—38333) =51 (8451 —3382)+52(8183-528,)]

—1\ym
j=1

n (4.20)
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MLPANN The MLP models are developed using the systematic approach
proposed by Wu et al. (2014b). A single hidden layer is used and the optimal
number of hidden nodes is obtained by trial and error, considering a range of 0
to 4. The optimal number of hidden nodes for the different models is 2
(EAR4), 2 (TEAR10), and 3 (NL). The back-propagation (BP) algorithm
(with learning rate of 0.1 and momentum of 0.1) is used for calibration. This

Is consistent with the procedure implemented by Li et al. (2015).
4.3.4 Test regime

As outlined in Fig. 4.3, 630 synthetic data sets are simulated, which include
30 replicates for each of the three synthetic models, for each of the seven
distributions. For each of the 630 synthetic data sets, 16 distinct PMI IVS
approaches are applied, consisting of a combination of the 3 methods used for
MI estimation and the 8 regression approaches used for residual estimation (as

shown in Table 4.4), resulting in a total of 10,080 tests.

Of these 16 approaches, three are benchmark approaches without
consideration of the boundary issue (B1 to B3), two aim to improve the
boundary issue in MI estimation (M1 to M2), seven aim to minimise the effect
of the boundary issue in residual estimation (R1 to R7), and four take into
account the boundary issue in both MI and residual estimations (C1 to C4).
The benchmark studies represent the most commonly used approach applied
in previous studies (B1) and the proposed approaches for data with non-
Gaussian distributions, in accordance with Li et al. (2014b, 2015) (B2 and B3).
The methods that only address the boundary issue in MI estimation include
the RC and BK based MI estimations, as mentioned in Section 3.2. The
approaches that only investigate the boundary issue in residual estimation
contain kernel based (modification of kernel function, kernel bandwidth, and
kernel type) and kernel free methods, as detailed in Section 3.3. The
techniques that consider the boundary issue in both MI and residual
estimations are a combination of one boundary corrector used in Ml (RK) and
four boundary resistant algorithms from each category outlined in Sections 2.2
and 3.3. These 16 approaches cover the different combinations of approaches
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for dealing with the boundary issue in PMI IVS, although there are other
combinations of methods that are likely to result in similar outcomes. In
addition, the influence of the bandwidth selection issue in both MI and
residual estimations is minimised by following the guidelines proposed by Li
et al. (2014b, 2015), as specified in Sections 3.2 and 3.3, respectively.

Table 4.4 Different approaches used for PMI 1VS by considering bandwidth and
boundary issues

Ml RE

Bandwidth Kernel Bandwidth Kernel Regression

B1 GRR CK GRR CK GRNN
B2 DPI CK GRR CK GRNN
B3 DPI CK SVO CK GRNN
M1 DPI RC SVO CK GRNN
M2 DPI BK SVO CK GRNN
R1 DPI CK SVO RK GRNN
R2 DPI CK SVO BK GRNN
R3 DPI CK SVO PA GRNN
R4 DPI CK SVO CK LBR
R5 DPI CK SVO CK LLP
R6 DPI CK SVO CK LQP
R7 DPI CK - - MLPANN
C1 DPI RK SVO RC GRNN
Cc2 DPI RK SVO CK LBR
Cc3 DPI RK SVO CK LLP
c4 DPI RK - - MLPANN

(B: benchmark approach; M: boundary correction in Ml estimation; R: reducing boundary impact in
residual estimation; C: combination of methods resistant to boundary issue, used in both MI and residual

estimations)

The Akaike Information Criterion (AIC) (Akaike, 1974) is used as the PMI
IVS algorithm stopping criterion because it provides a good balance between
model accuracy and generalisation ability (Akaike, 1974; Bennett et al., 2013;
Dawson et al., 2007; May et al., 2008b) and has been found to perform
comparatively well with alternative criteria (May et al., 2008b). It has also
been successfully applied by May et al. (2008a, b), He et al. (2011), Wu et al.
(2013), and Li et al. (2015).
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The software developed for conducting the numerical experiments is open for
use by others (see Software Availability at the beginning of this paper), is
coded in FORTRAN 90/95 and run on a Linux 2.6.32.2 operating system.

4.3.5 Assess performance of 1VS over 30 trials

The performance of the PMI variants used in the tests is assessed in terms of

selection accuracy and computational efficiency, as detailed below.

Selection Accuracy As shown in Fig. 4.3, the accuracy of PMI IVS is
assessed by the correct selection rate (CSR) (Galelli and Castelletti, 2013; Li
et al., 2015; May et al., 2008b), which measures the percentage of times the
correct inputs are selected in the 30 independent trials (i.e. replicates). In order
to better understand the relative impact of the different approaches to
addressing the boundary issue on CSR, their impact on MI and residual

estimation is also assessed, as detailed below.

The impact of the different approaches to addressing the boundary issue on
MI estimation is assessed by comparing both the variation of the
Kolmogorov-Smirnov (KS) statistic (Parsons and Wirsching, 1982) and the
corresponding change in MI between two approaches, which is able to detect
whether MI can be better estimated as a result of boundary correction in
marginal or joint PDF estimates or not. The variation of the KS is expressed

as follows

KSa1—KSa2

KS variation (%) = P X 100% (4.21)
Al

where the KS statistic measures the supremum distance between the empirical
and estimated CDFs and the subscripts (Al, A2) refer to different approaches
to addressing the boundary issue (see Table 4.4). A positive KS variation
indicates improvement of accuracy, and vice versa. It should be noted that the
performance of the empirical kernel based CDF is a function of the bin width,
therefore a number of bin widths (from 0.001 to 1.0) have been tested through
a sensitivity analysis. Bin widths of 0.01 were found to be adequate for the
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purposes of this study, which is consistent with the tests conducted in Li et al.
(2015). The corresponding expression measuring the change in Ml is given by

MIAI_MIAZ

MI variation (%) = v
Al

x 100% (4.22)

and indicates to what extent the improvement or deterioration in Kkernel
density estimation can be propagated to the estimation of MI. When
considering Egs. (4.21) and (4.22), high KS and MI variations indicate
effective improvement of boundary issue in MI estimates as a result of
boundary correction in the estimation of marginal PDFs. High MI variation
but low KS variation corresponds to effective improvement of the boundary
issue in MI estimates due to boundary correction in the estimation of joint
PDFs, while low MI variation suggests insignificant impact of boundary issue
in MI estimates, regardless of the KS variation.

The impact of the different approaches to addressing the boundary issue on
RE is assessed by using the coefficient of efficiency (CE) of the models from
which the residuals are extracted. CE measures the difference in predictive
performance of the model and a model that only contains the mean of the
observations (Bennett et al., 2013) and ranges between O (poorest) and 1
(Ozkaya et al., 2007).

Computational efficiency The computational efficiency of PMI IVS is
evaluated by the computational time (CT), as measured by the average CPU

time (measured on a dual processor 2.6 GHz Intel Machine).

4.4 Results and Discussion

Within this section, the selection accuracy of the PMI IVS method with
different approaches to addressing the boundary issue (see Table 4.4) and
their corresponding computational efficiency are discussed in Sections 4.1 and
4.2, respectively. The resulting empirical guidelines for selecting the
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appropriate techniques for dealing with boundary and bandwidth issues are

then summarised in Section 4.3.
4.4.1 Selection accuracy

The selection accuracy of the PMI IVS methods with the different approaches
to addressing the boundary issue for the EAR4 model is summarised in Fig.
4.4. As can be seen, the benchmark approaches following the guidelines
suggested by Li et al. (2015) (i.e. B2 and B3) have a CSR of 100% for the
data that follow a Gaussian or nearly Gaussian distribution (i.e. NORM and
EVTL), as these data are not expected to be impacted by any boundary issues.

Consequently, there is no need for addressing boundary issues in these cases.

For the data that follow a moderately (i.e. PT3, GAMMA, EXP) or severely
(i.,e. LOGPT3, LOGN) non-Gaussian distribution and are therefore expected
to be impacted by boundary issues, some improvement is observed when the
benchmark approaches that utilise the guidelines proposed by Li et al. (2015)
are implemented for MI estimation (B2) and both MI and residual estimation
(B3), compared with the most commonly used approach (B1), but generally
CSRs do not exceed 90% (Fig. 4.4). However, these CSRs can be improved
to 100% when some of the proposed approaches to addressing the boundary
issue are used, including methods R5, R6, R7, C3 and C4, although not all of
the approaches investigated exhibit the same level of success (i.e. methods M1,
M2, R1, R2, R3, R4, C1, C2). Potential reasons for these differences in

performance are discussed below.

The methods that only address boundary issues in Ml estimation (i.e. methods
M1 and M2) are not successful in improving CSR compared with the best-
performing benchmark approach (i.e. B3). This is despite the fact that these
methods are able to improve the accuracy with which the underlying
distribution is estimated, as measured by changes in the K-S statistic between
methods B3 and M1 (Fig 4.5(a)). The reason for this is that the improvements
in the estimates in the underlying distributions do not translate into changes in
MI estimates (e.g. an approximately 50% increase in the K-S statistic between
methods B3 and M1 for the EXP distribution translates into a change in Ml
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estimation that is close to 0%) (Figs. 4.5(a) and 4.5(b)). This can be explained

by considering the expression of MI (Shannon, 1948), which is given as

1 f (Xf v )
I,y = - Xj= log[w] (4.23)

When applying the boundary correction (e.g. RC in M1), estimation of I ,,

becomes

~ 1ymn f(Xij’yj )Axijyj
e R i 424

where AX’yf AX , and Ay’ indicate variations in the marginal and joint

densities due to the boundary correction. This equation is equivalent to

G

Ixi,y“% n_ log ( SJ ) 1+ {log(8x!y7) — log(ax]) — log(by’)}(4.25)

In Eq. (4.25), the log terms (i.e. log(AX/y7),log(aX]),and log(Ay/)) can
diminish the overall improvement of boundary correction (e.g. a change up to
50% in f(X/,y/ ) only results in variation of 0.4 in log(AX/y/)) and the
overall sum of the term {log(AX/y’) — log(Ax]) — log(Ay’)} can be very

small (close to zero), which yields a near negligible change in the resulting MI.

In contrast, the accuracy of the models from which the residuals are obtained
has a significant impact on Ml values. For example, the improved CSRs for
methods R5, R6 and R7 (Fig. 4.4) correspond to higher values of the
Coefficients of Efficiency of these models compared with that for method B3
(Fig. 4.6). In contrast, there reverse applies for method R2. Similar results
can also be found in APPENDIX-C Fig. C.2.3. The effectiveness of R5 and
R6 can be explained by the fact that the bias of the Nadaraya-Watson
Regression (equivalent to the univariate GRNN used in all three benchmark

m’ (Of, %)
fx(x)

function; £, (x) is the probability density function with respect to x) than the

models) has an additional error term (m(x) is the regression

local polynomial regression (e.g. LLP and LQP) used in R5 and R6, and this

term increases as the boundary issue becomes severe (Fan, 1992; Masry, 1996;
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Ruppert and Wand, 1994). In contrast, the effectiveness of R7 can be
ascribed to the kernel free feature of the MLPANN used for RE. Therefore,
CSR is improved mainly through the adoption of boundary resistant methods
in RE, rather than methods that focus on boundary correction.
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(a) EAR4 K-S Variation (M1 vs. B3)
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Figure 4.5 Relative change of K-S and M1 in-between M1 and B3 for EAR4 model
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(a) EAR4 NORM

¢ Q1 ®mMin Med X Max X Q3

0.8 -
0.6
0.4
0.2

CE

B3 R1 R2 R3 R4 R5 R6 R7
Methods

(b) EAR4 EXP

¢ Q1 ®mMin Med X Max X Q3

0.8 L
0.6
0.4
0.2

1 fi

CE

B3 R1 R2 R3 R4 R5 R6 R7
Methods

(c) EAR4 LOGN

¢ Q1 ®mMin Med X Max X Q3

NI I N I L
0.64.J.L0J l

0.4
0.2

CE
[

B3 R1 R2 R3 R4 R5 R6 R7
Methods

Figure 4.6 Accuracy of residual estimation with alternative estimators for EAR4 model
(3 cases)
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The above results suggest that addressing boundary issues in RE is much
more important than addressing these issues in MI estimation. This is also
confirmed by the results for the combined methods, as the combined methods
that resulted in a marked increase in CSR (i.e. C3 and C4) are those that used
the most successful methods for addressing the boundary issue in RE (i.e. R5
and R7), and the methods that did not result in an increase in CSR (i.e. M1
and M2) are those that used methods for addressing the boundary issue in RE
that are not successful (i.e. R1 and R4), irrespective of which methods are

used for addressing the boundary issue in MI estimation.

The general findings for the EAR4 model (addressing boundary issues in RE
is more important than addressing boundary issues in MI estimation and that
the use of boundary resistant methods is more effective than the use of
boundary correction methods) are confirmed by the results for the TEAR10
(Fig. 4.7) and NL (Fig. 4.8) models, with additional supporting information
provided in APPENDIX-C Figs. C.2.1 to C.2.5. However, it should be noted
that compared with the results for the EAR4 model, the differences between
the different methods are less pronounced for the TEAR10 and more
pronounced for the NL model. This can be attributed to the relative predictive
performance of the models from which the residuals are obtained for these
two datasets, with much higher coefficients of efficiency for the TEAR10
model (Fig. 4.9) than the NL model (Fig. 4.10). This is most likely due the
different degrees of non-linearity of the datasets. In addition, benchmark
method B1 is found to underestimate the correct number of significant inputs
for the non-Gaussian cases (e.g. LOGN and LOGPT3), which can be ascribed
to the underestimated bandwidth, as the severity of underestimating the
correct number of significant inputs is proportional to the bandwidth ratio.
Nevertheless, methods with effective improvement (e.g. R5, R6, R7, C3, and
C4) tend to correct such error with increased bandwidths, which is consistent
with the finding in Harrold et al. (2001) and Li et al. (2015).
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Figure 4.9 Accuracy of residual estimation with alternative estimators for TEAR10

model (3 cases)
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(a) NL NORM
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While the TEAR10 model is a threshold function, and would therefore be
expected to be more difficult to approximate than the EAR4 model, analysis
of the data generated from the TEAR10 model indicates that the threshold
function is not activated very often, thereby resulting in quasi-linear model
behaviour. In contrast, the high degree of non-linearity of the NL model
makes it more difficult to develop the single-input, single-output models from
which the residuals are obtained, reducing the effectiveness of some of the
methods for dealing with the boundary issue.

This effect is particularly marked for the local polynomial regression based
approaches (R5 and R6), which are very effective for the EAR4 and TEAR10
models, with a 100% CSR for all distributions (Figs. 4.4 and 4.7), but much
less effective for the NL model, for data that are moderately or severely non-
Gaussian. This can be attributed to the fact that the residual estimation of non-
linear problems, as influenced by both the boundary issue and problem
nonlinearity, cannot be effectively improved by using local linear (1% order)
or quadratic (2" order) regression. It should be noted that higher order
polynomials (p > 2) could be introduced to potentially overcome these issues.
The effectiveness of using models that are better able to deal with higher
degrees of nonlinearity is confirmed by the 100% CSRs for almost all cases
when approach R7 is used (Fig. 4.8), which uses a MLPANN as the RE model.
In this setting, the use of MLPANNS might prove advantageous over using
higher-order polynomials, as they are universal function approximators and do

not require the functional form of the model to be selected a priori.
4.4.2 Computational efficiency

The computational efficiency of the different PMI VS approaches
investigated is displayed in Fig. 4.11. As can be seen, the conventional
benchmark approach (B1) is most efficient overall due to the simplicity of the
GRR and GRNNs. B2 was the second most efficient approach, as the
additional computational cost associated with improving the bandwidth (i.e.
DPI) in MI estimation is minimal, followed by B3, which uses a more

computationally expensive bandwidth estimator (i.e. SVO) in residual
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estimation than B2. The efficiency of M1, M2 and C1 is similar to that of B3,
indicating an insignificant increase in computational effort when applying
boundary correction in MI estimation. On the contrary, the methods for
addressing the boundary issue in residual estimation (i.e. R1, R2, R3, R5, R6,
R7, C3 and C4) have a marked negative impact on computational efficiency
(please note the log-scale on the y-axis of Fig. 4.11), except for the
modification of kernel bandwidth (R4 and C2), as these methods require the
implementation of optimisation procedures. This reduction in computational
efficiency is particularly prominent for the two approaches that performed
best in terms of CSE (i.e. approaches R7 and C4), with an average runtime of
1122s, which is over 227 times greater than that of the most efficient approach
(B1). This is mainly due to the time taken for the development of the
MLPANNS.

148



CHAPTER 4 JOURNAL PAPER 3

S1apOW Y3 40} SPOUIBL Palsal UMM SAI 1IAI 343 JO AOURIDIYS UOINIBIaS TT' 4nbiy

S LINET
T JA. | L S 14:] €Y [4.] Td <IN TIN €4 [4:] 14: ]

12 €J a0

NO9OT1E €1d90T1HE dXiE VININYVOE €l1d® TIANIE |NHONE
[9POIN YHV3 ()

1
ot
=t
oot 3
D
0001
0000T

149



CHAPTER 4 JOURNAL PAPER 3

(panunuod) 1T 34nbi4

SPOYISN
1A € O |0 LY 9% S 14:] €Y ad Td <N TN €4 cd Td

NDO1E €1dDOTHE dXIE VININVOE €ldE TIANIE NUYONE

[9POIN 0TYHVAL (q)

T
0T
=
oot
D
0001
00001

150



CHAPTER 4 JOURNAL PAPER 3

(panunuod) 1T 34nbi4

SPOYdN
1A € a T JA. L | S 12:] €Y [4.] Td <IN TIN €4 [4:] 14d

ot

00t

000T

00001

€ld® €1d9071E dXIE VININVOE NOOTE TIAIE NYONE
[9POIAI IN ()

(s) swny

151



CHAPTER 4 JOURNAL PAPER 3

4.4.3 Suggested rules and guidelines

Based on the results presented in Sections 4.1 and 4.2, as well as the findings
of previous studies by Li et al. (2014b, 2015), a set of empirical guidelines for
determining the best composition of the PMI VS approaches for a range of
data distribution types and system input/output mappings have been
developed, as shown in Fig. 4.12. It should be noted that reasonable trade-offs
between selection accuracy and efficiency are considered in the development
of these guidelines. However, it is acknowledged that the relative importance
of CSR and computational efficiency is also a function of case-study

dependent features and user preferences.
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Overall, four distinct scenarios are identified, as described below:

Scenario 1: If the input/output data are mainly, or nearly, Gaussian (average
s < 1.3and k < 3), approach Bl (with the GRR based GRNN for residual
estimation and the GRR for MI estimation) is recommended, as this
combination is able to provide good selection accuracy at the best possible
computational efficiency.

Scenario 2: If the input/output data follow moderately non-Gaussian (average
1.3< s<5and 3 < k <30) distributions, approach B2 (with the GRR
based GRNN for residual estimation and the DPI for MI estimation) is
suggested, so that CSR can be improved with only a very small reduction in
computational efficiency. In addition, if the boundary issue is anticipated to be
significant (i.e. for cases where the input/output data are clustered near the
physical bounds of the data variables), approach R5 (with the SVO based LLP
for residual estimation and the DPI for MI estimation) is proposed for IVS.

Scenario 3: If most of the input/output data follow extremely non-Gaussian
(average s > 5 and k > 30) distributions and the problem is linear or slightly
non-linear, approach R5 (with the SVO based LLP for residual estimation and
the DPI for M1 estimation) should be implemented, as the combined impact of
bandwidth and boundary issues can be effectively overcome at a good trade-
off between selection accuracy and efficiency when this approach is

implemented.

Scenario 4: If the same conditions as in Scenario 3 apply, except that the
problem becomes moderately to extremely non-linear, approach R7 (with the
MLPANN for residual estimation and the DPI for MI estimation) is proposed.
Although this PMI IVS approach will decrease computational efficiency
significantly, it is the only approach that results in reliable selection accuracy

under these conditions.
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4.5 Validation on Murray Bridge and Kentucky River

Basin case studies

4.5.1 Background

The rules and guidelines proposed in Section 4.4.3 are tested on two semi-real
case studies, including the estimation of salinity in the River Murray in South
Australia 14 days in advance (Bowden et al., 2005b; Fernando et al., 2009;
Kingston et al., 2005a; Li et al., 2014b; Li et al., 2015; Maier and Dandy,
1996) and the prediction of flow in the Kentucky River Basin in the USA one
day in advance (Bowden et al., 2012; Jain and Srinivasulu, 2004; Li et al.,
2014b; Li et al., 2015; Srinivasulu and Jain, 2006; Wu et al., 2013).

River salinity at Murray Bridge 14 days in advance (MBS+13) is a function of
the salinity at Mannum, Morgan, Waikerie and Loxton, and the river level at
Lock 1, given a specified lag time (i.e. river salinity: MAS-1, MOS-1, WAS-1,
WAS-5, LOS-1 and river level: L1UL-1) (Galelli et al., 2014; Maier and
Dandy, 1996), However, for the purposes of assessing the effectiveness of
PMI IVS, an additional 24 redundant or irrelevant candidate inputs are

introduced, as shown in Table 4.5.

The average daily runoff in the Kentucky River Basin one day in advance is
influenced by previous values of average daily effective rainfall and runoff
(i.e. average daily effective rainfall: P(t), P(t-1) and average daily runoff: Q(t-
1), Q(t-2)) (Galelli et al., 2014; Jain and Srinivasulu, 2004). For this case
study, the effectiveness of PMI IVS is investigated by introducing another 17

redundant or irrelevant candidate inputs, as shown in Table 4.6.
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4.5.2 Experimental Procedure

Both case studies are semi-real in the sense that actual input data are used, but
that the corresponding output data are generated using a trained ANN model.
The adoption of semi-real case studies enabled the benefits of utilising
measured input data (i.e. not generated from a known distribution) to be
combined with those of having known outputs, thereby enabling the
performance of 1VS methods to be tested in an objective and rigorous manner,
as suggested by Galelli et al., (2014) and Humphrey et al. (2014).

For both case studies, standard MLPs are developed using the approach
proposed by Wu et al. (2014b). The DUPLEX method (May et al., 2010) is
implemented to split the historical records into training (60%), testing (20%)
and validating (20%) sets. By using a single hidden layer and empirically
trying between 0 and 6 hidden nodes (in increments of 1), the optimal model
structures are found to be 6-4-1 and 4-4-1 for the salinity and rainfall-runoff
cases respectively. Model calibration is conducted using the back-propagation
algorithm (with learning rate of 0.1 and momentum of 0.1). The input data
used in the PMI 1VS are re-simulated 30 times based on the observations, so
that the data sets contain random variations while maintaining the major time
patterns. Finally, the corresponding output data are obtained by substituting
the re-simulated inputs into the trained ANN model. This procedure has also

been successfully applied in Li et al. (2015).
4.5.3 Results and discussion

The salinity case study is categorised as a strong linear problem with mildly
non-Gaussian input and output distributions (not significantly affected by
bandwidth and boundary issues) (Bowden, 2003; Galelli et al., 2014; Li et al.,
2014b; Li et al., 2015; Wu et al., 2013). Consequently, these data correspond
to Scenario 2 in Fig. 4.12. Given this, the performance of PMI IVS using
approach B2 is expected to be superior in terms of a desirable trade-off

between selection accuracy and efficiency.
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The results presented in Fig. 4.13 are consistent with this expectation. The
CSR associated with using approach B2 is 100% (estimated in 107s),
compared with a CSR of less than 84% (estimated in 47s) when approach B1
is used. CSRs of 100% are also achieved by the alternative approaches (except
R2), however, at additional computational cost (487s to 7565s). Consequently,
the best trade-off between selection accuracy and efficiency is given by

approach B2, as suggested by the proposed guidelines (Fig. 4.12).

(a) River Salinity at Murray Bridge
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Figure 4.13 Selection accuracy and efficiency of the PMI VS with suggested settings for
Murray Bridge case

As the rainfall-runoff case is categorised as a strong non-linear problem with
extremely non-Gaussian distributions (significantly influenced by bandwidth
and boundary issues) (Galelli et al., 2014; Li et al., 2014b; Li et al., 2015; Wu
et al., 2013), it corresponds to Scenario 4 in Fig. 4.12. Given this, the
performance of PMI IVS using approach R7 is expected to be superior in

terms of a balance between selection accuracy and efficiency.

Based on the results in Figs. 4.14 (a) and 4.14 (b), this is indeed the case. The
CSRs associated with using approaches R7 and C4 are 100%, followed by
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those of approaches B3, M1, M2, R1, R4, C1, C2 (all around 93%), B2, R3
(both approximately 87%), R2 (83%), R6, B1 (both near 77%), R5 and C3
(both about 73%). While the use of approach R7 increased CSR at significant
computational cost (at around 45856s; over 162 times B1’s runtime), as
shown in Fig. 4.14 (b), this provide the most robust selection accuracy, as

suggested by the proposed guidelines (Fig. 4.12).

(a) Rainfall-runoff at Kentucky River Basin
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(b) Rainfall-runoff at Kentucky River Basin
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Figure 4.14 Selection accuracy and efficiency of the PMI 1VS with suggested settings for
Kentucky River basin case

4.6 Summary and Conclusions

Partial mutual information (PMI) has been successfully and extensively
implemented in environmental and water resources modelling, as it considers
both the significance and independence of candidate inputs. Given that PMI
input variable selection (IVS) is a function of kernel based MI and residual
estimation (RE), the performance of PMI IVS is influenced by the
determination of an appropriate bandwidth (otherwise termed the smoothing
parameter) and boundary issues. Although the impact of bandwidth selection

on correct selection rate (CSR) and computational efficiency of PMI IVS has
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been studied previously, the impact of the boundary issue has not yet been
addressed, making it difficult to know to what degree the performance of PMI
IVS can be compromised by such issues and which methods can effectively
address this impact.

In order to develop a more reliable PMI IVS algorithm for problems with
boundary issues, in conjunction with bandwidth issues, the CSR and
computational efficiency of PMI IVS were assessed for 16 different
approaches to addressing these issues on synthetic data sets with different
degrees of normality and non-linearity. Of these 16 methods, three are
benchmark approaches without explicitly considering the boundary issue (B1
to B3), two aim to improve the boundary issue in Ml estimation (M1, M2),
seven ameliorate the boundary issue in RE (R1 to R7), and four are combined
approaches that take into account the boundary issue in both Ml and RE (C1
to C4). The results from 10,080 trials with the synthetic data contributed to the
establishment of preliminary empirical guidelines for the selection of the most
appropriate PMI IVS approach, for data with different degrees of normality
and non-linearity. The validity of the developed guidelines was then tested on

two semi-real data sets.

Results of the synthetic studies suggest that methods that address boundary
issues in MI estimation do not result in improvements in CSR. In contrast,
methods that address boundary issues in RE are able to increase CSR to 100%
(or very close to 100%) for even the most non-Gaussian and non-linear
datasets tested. However, this is not the case for all methods, with boundary
resistant methods exhibiting greater success than methods focussed on
boundary correction. In particular, the use of MLPANNS for RE results in the
most robust selection accuracy, although at a significant decrease in

computational efficiency.

Based on the empirical guidelines for the selection of the most appropriate
PMI VS approaches developed (Fig. 4.12), the most commonly used
combination of GRR-based kernel bandwidth selection and GRNN-based RE
only results in reliable 1VS if the input/output data follow Gaussian or nearly
Gaussian distributions and do not have any boundary issues. If the data are
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moderately or highly non-Gaussian, the DPI should be used for MI bandwidth
estimation, regardless of the degree of non-linearity in the data. However, as
the data become more non-Gaussian and non-linear, RE approaches should
move from GRNNs to LLPs to MLPANNSs in order to achieve CSRs near

100%, with associated decreases in computational efficiency.

The accuracy of the proposed guidelines was supported by the results of the
two semi-real case studies. For the salinity case study, for which the data
were close to linear and followed a mildly non-Gaussian distribution, method
B2 (Table 4.4), which used the DPI for MI bandwidth estimation and the
GRNN with the GRR for bandwidth estimation, resulted in 100% CSR while
being very computationally efficient. For the rainfall runoff case study, for
which the data were highly nonlinear and followed an extremely non-
Gaussian distribution, MLPANNSs had to be used for RE in order to achieve
100% CSRs.

Overall, the results show that by using methods for MI and RE that are
tailored to the input-output data under consideration, CSRs of 100% (or close
to 100%) can be achieved when using PMI IVS, even for data that are highly
non-linear and highly non-Gaussian. This is in contrast to PMI IVS methods
that use “standard” approaches to MI and RE, which have been shown to
perform poorly under such circumstances in this and previous studies (e.g. Li
et al., 2015; Galelli et al., 2014). However, alternative methods for dealing
with non-Gaussian data in the context of PMI VS, such as transforming the
input data to normality (e.g. Bowden et al., 2003) and estimating the required
densities using histogram-based methods (e.g. Fernando et al., 2009), require
further investigation, as does the impact of the stopping criterion (see May et
al., 2008a) on the results obtained in this study. In addition, the findings of
this work should be tested more broadly, including for data sets with a wider
range of attributes, such as different degrees of noise, collinearity and

interdependency, as well as incomplete information (see Galelli et al., 2014).
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CHAPTER 5 CONCLUSIONS

5.1 Thesis summary

Anrtificial neural networks (ANNSs) are one of the most commonly used data
driven models for addressing environmental and water resources problems
and they have been applied successfully and extensively over the last two
decades. The performance of ANNS is essentially determined by the quality of
the methods used in the various steps of their development, which consist of
data collection, data processing, input variable selection (IVS), data division,
calibration, validation, and application to real problems. IVS, as one of the
most important steps in the development of ANNs and other data driven
environmental and water resources models, as it determines the quality and

quantity of information used in the modelling process.

Despite the existence of a large number of IVS techniques, partial mutual
information (PMI) is one of the most promising approaches to 1VS, as it is
able to account for the relevance and redundancy of all candidate inputs and
can be used for both linear and non-linear problems. However, current
implementations of PMI IVS are not without their limitations. To the best of
the author’s knowledge, on one hand, the Gaussian reference rule (GRR),
which assumes that the input/output data follow a Gaussian distribution, is
still predominately used for the estimation of the kernel bandwidth within
PMI 1VS, even though the distribution of most water resources data is
generally far from normal (this is known as bandwidth selection issue). On the
other hand, the impact of the boundary issue, which is a result of the use of a
symmetrical kernel at boundary, has not been addressed in environmental and
water resources applications, although this contributes to an under-estimation
of the kernel density near the boundary. As a result, the performance of
current implementations of PMI 1VS is compromised by both bandwidth
selection and boundary issues. Consequently, the corresponding ultimate
objective of this thesis is to improve the performance of PMI IVS by

165



CONCLUSIONS

investigating the impact of bandwidth selection and boundary issues for

ANNSs and other data driven environmental and water resources models.

In order to achieve the ultimate objective of this research, three detailed
objectives and papers are established. Firstly, the performance of GRNN
based residual estimation (RE), as part of PMI IVS, is assessed through the
investigation of nine bandwidth estimators with various Gaussian dependence.
Secondly, the performance of PMI IVS is studied through five bandwidth
estimators with varying Gaussian dependence, as well as the proposed
suggestions of bandwidth estimation of GRNN based RE. Thirdly, the
performance of PMI IVS is further investigated by introducing sixteen
methods that attenuate boundary issues associated with the guidelines of
bandwidth selection with distinct data properties, obtained through the studies
of the first two objectives. All the methods are assessed on synthetic models
with distinct problem non-linearity. As pointed out by Galelli et al. (2014), the
accuracy of IVS algorithms can only be assessed in an objective and rigorous
manner if the correct outputs are known. Consequently, input data with
different degrees of normality are generated from distributions with differing
degrees of normality, and the corresponding output data are obtained by

substituting the generated inputs into synthetic models.

Based on the findings of the research presented in this thesis, it is suggested
that:

1. The performance of PMI IVS is influenced by both bandwidth

selection and boundary issues.

2. Currently implemented PMI VS methods (i.e. depending on the
Gaussian assumption without boundary correction) only result in
reliable IVS if the input/output data follow Gaussian or nearly

Gaussian distributions.

3. Bandwidths with reduced dependence on the Gaussian assumption can

effectively improve selection accuracy for data that are non-Gaussian.
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4. The proposed methods are very effective in addressing the boundary

issue

5. It is vital to consider both bandwidth selection and boundary issues

simultaneously.

The guidelines for selecting appropriate methods for MI/PMI and RE based
on the properties of the available data appear to be very effective when tested
on the semi-real validation data. The case studies are semi-real in the sense
that actual input data are used, but that the corresponding output data are
generated using a trained ANN model. The adoption of semi-real case studies
enable the benefits of utilising measured input data (i.e. not generated from a
known distribution) to be combined with those of having known outputs,
thereby enabling the performance of IVS methods to be tested in an objective
and rigorous manner, as suggested by Galelli et al., (2014) and Humphrey et
al. (2014). Although the developed guidelines are applied to datasets in which
variables have similar distributions in Chapters 2, 3, and 4, this does not limit
the methodological contribution of this research. As such, it is expected that
this research is able to provide more robust and rigorous applications of PMI
IVS for ANNs and other data driven environmental and water resources

models.

5.2 Research contributions

The overall contribution of the present research is the effective improvement
of PMI IVS, by considering a balance between accuracy and efficiency,
through the investigation of both bandwidth selection and boundary issues.
Based on the research presented in Chapters 2 to 4 of this thesis, details of

critical contributions are summarised as follows:

1. The first contribution of this research is that it proposes rigorous and novel
analytical procedures for assessing if, and to what degree, the performance of

residuals and MI/PMI is affected by bandwidth selection and boundary issues.
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For each study, a rigorous and novel analytical framework, including
simulation of synthetic cases, adoption of investigated methods, application to
semi-real problem based cases, and examination of modelling performance, is

designed and implemented.

2. The second contribution of this research is that it provides an explanation
for the suboptimal performance of conventional PMI 1S under the influence
of the bandwidth selection and boundary issues. It is confirmed that use of
GRR based bandwidth estimator only results in good input selection accuracy
if the input/output data follow Gaussian or nearly Gaussian distributions. In
contrast, 2-stage direct plug-in (DPI), combination of biased cross validation
and DPI (BCVDPI), smoothed cross validation (SCV), and single variable
optimisation (SVO) based bandwidth estimators, as a result of their reduced
dependence on the Gaussian assumption, generally result in pronounced
improvements in selection accuracy. The use of local linear polynomial (LLP)
regression and multi-layer perceptron artificial neural network (MLPANN)
models for RE is found to result in marked improvement when dealing with
boundary issues, as a result of their increased resistance to the boundary issue

for problems with data bounded at certain point(s).

3. The third contribution of this research is the development of effective
preliminary guidelines based on the results of extensive controllable synthetic
studies to deal with bandwidth selection and boundary issues under different
scenarios categorised by data normality and problem linearity. By
consolidating the established preliminary guidelines within all three papers

and recalling Fig. 4.12, it is suggested that

(1) If the input/output data are mainly, or nearly, Gaussian (average
s < 1.3 and k < 3), a PMI approach with the GRR based GRNN for
RE and the GRR for MI estimation (B1) is recommended, as this
combination is able to provide good selection accuracy at the best

possible computational efficiency.

(2) If the input/output data follow moderately non-Gaussian (average
1.3 < s<5and 3 < k < 30) distributions, a PMI approach with
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the GRR based GRNN for RE and the DPI for MI estimation (B2) is
suggested, so that correct selection rate (CSR) can be improved with
only a very small reduction in computational efficiency. In addition,
if the boundary issue is anticipated to be significant (i.e. for cases
where the input/output data are clustered near the physical bounds of
the data variables), a PMI approach with the SVO based LLP for RE
and the DPI for M1 estimation (R5) is proposed for IVS. It should be
noted that increasing computational challenges are expected when
introducing the DPI and the SVO based LLP.

(3) If most of the input/output data follow extremely non-Gaussian
(average s > 5 and k > 30) distributions and the problem is linear or
slightly non-linear, a PMI approach with the SVO based LLP for RE
and the DPI for MI estimation (R5) should be implemented, as the
combined impact of bandwidth and boundary issues can be
effectively overcome at a good trade-off between selection accuracy
and efficiency when this approach is implemented. The additional

computational expense is mainly contributed to the SVO based LLP.

(4) If the same conditions as in Scenario 3 apply, except that the
problem becomes moderately to extremely non-linear, a PMI
approach with the MLPANN for RE and the DPI for MI estimation
(R7) is proposed. Although this PMI IVS approach will decrease
computational efficiency significantly, it is the only approach that

results in reliable selection accuracy under these conditions.

It should be noted that reasonable trade-offs between selection accuracy and
efficiency are considered in the development of these guidelines. However, it
is acknowledged that the relative importance of CSR and computational
efficiency is also a function of case-study dependent features and user

preferences.

When applying the proposed guidelines to different water resources and
environmental modelling problems, it is recommended to check the average

distributions (skewness and kurtosis) of input and output variables first and to
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then categorise the problem into the most suitable scenario. In general, most
water quantity models contain input and output variables that are bounded by
their physical meaning and form highly skewed distributions (e.g. average
daily rainfall-runoff data), thereby selection of bandwidth and boundary issue
should be considered in accordance with scenarios 3 and 4 in Fig. 4.12. While
most water quality models mainly include input and output variables that
follow Gaussian or nearly Gaussian distributions (e.g. concentration of
dissolved oxygen in the river), therefore scenarios 1 and 2 in Fig. 4.12 should
be implemented for the sake of good selection accuracy at the best possible
computational efficiency. However, it is also acknowledged that the
application of the proposed guidelines is also a function of case-study

dependent features and user preferences.
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4. The fourth contribution of this research is more robust and reliable software
based applications of the proposed PMI IVS for realistic environmental and
water resources problems. A number of programs have been developed in
accordance with the preliminary guidelines discussed in each of the journal
papers and they are free to download for research purposes from the following

website:

http://www.ecms.adelaide.edu.au/civeng/research/water/software/generalised-
regression-neural-network/

https://github.com/xuyuanli/GRNNs
https://github.com/xuyuanli/IVS_PMI_2014

5.3 Publications

List of works contained within this thesis:

Paper 1 presented in Chapter 2 (Li et al., 2014b): Li, X., Zecchin, A.C.,
Maier, H.R., 2014b. Selection of smoothing parameter estimators for general
regression neural networks - Applications to hydrological and water resources
modelling. Environmental Modelling and Software 59 162-186 DOI:
110.1016/j.envsoft. 2014.1005.1010.

Paper 2 presented in Chapter 3 (Li et al., 2015): Li, X., Maier, H.R.,
Zecchin, A.C., 2015. Improved PMI-based input variable selection approach
for artificial neural network and other data driven environmental and water
resource models. Environmental Modelling and Software 65 15-29 DOI:
10.1016/j.envsoft.2014.11.028

Paper 3 presented in Chapter 4 (Li et al., 2014a): Li, X., Zecchin, A.C.,
Maier, H.R., 2014a. Improving partial mutual information-based input
variable selection by consideration of boundary issues associated with
bandwidth estimation. Environmental Modelling and Software, submitted on
04/12/2014.
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List of works resulting from research associated with thesis but not contained

within:

Li, X., Maier, H.R., Zecchin, A.C., 2013. Improving PMI based input
selection by using different kernel bandwidths for artificial neural network
models (extended abstract), 20th International Congress on Modelling and
Simulation (MODSIM2013): Adelaide, Australia.

5.4 Recommendations for future research

Overall, the results show that by using methods for MI and RE that are
tailored to the input-output data under consideration, CSRs of 100% (or close
to 100%) can be achieved when using PMI 1VS, even for data that are highly
non-linear and highly non-Gaussian. This is in contrast to PMI IVS methods
that use “standard” approaches to MI and RE, which have been shown to
perform poorly under such circumstances in this and previous studies (e.g. Li
et al., 2014a; Galelli et al., 2014). However, the computational expense of
some methods described in the proposed guidelines is of concern and the
development of alternative methods with equivalent selection accuracy but
better computational efficiency is suggested for future research. Alternative
methods for dealing with non-Gaussian data in the context of PMI IVS that

deserve consideration in this context include:

1) transforming the input data to normality (e.g. Bowden et al., 2003),
which requires a combination of normalising the data and transforming the
kernel. As such, the computational efficiency can be improved by
applying the Gaussian assumption to the normalised data, while the
bandwidth and boundary issues are addressed simultaneously. The major
challenges of this approach are to determine the most effective data
transformation method(s) and to derive the corresponding transformation
kernel(s) in 1D and 2D.

2) estimating the required densities using histogram-based methods (e.g.

Fernando et al., 2009), which could potentially perform as well as the
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proposed guidelines, but with better efficiency due to the fact that such
methods are not affected by the boundary issue, which is only associated
with kernel based approaches. However, the major challenge of this
histogram-based method is to approximate the optimal histogram bin
width, so that it is neither too large nor too small for general cases. This

challenge is, in fact, technically similar to the bandwidth selection issue.

As part of the PMI IVS approach, the stopping criterion can also affect the
stability of selection accuracy, which has been mentioned before in this
research (Section 3.2 and 4.2.1 PMI IVS). However, in this research only AIC,
suggested by May et al. (2008b), is used. As a consequence, the impact of the
stopping criterion also requires further investigation to secure the robustness
of the proposed guidelines. Alternative stopping criteria that could be
considered for this purpose include bootstrapping, tabulated critical values,
and the Hampel test, as discussed and tested in May et al. (2008b).

In addition, the data used for the synthetic tests are pre-determined and
controllable with low degree of noise, collinearity and interdependency. In
contrast, the data for realistic water resources and environmental problems can
be far more complicated. Consequently, the findings of this work should be
tested more broadly, including for data sets with a wider range of attributes,
such as different degrees of noise, collinearity and interdependency, as well as
incomplete information (see Galelli et al., 2014). All future analysis and tests
of IVS are also strongly recommended to follow the systematic approach
proposed by Galelli et al. (2014).
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Figure A.2 Standardised residuals for the training data of MLPs and GRNNSs with
different smoothing parameters for EAR4 model with different distributions
(performance of the BCV was similar to that of the GRR; performance of the BCVDPI and
SCV was similar to that of the DPI; similar plots were also observed for TEAR10 & NL

models)

196



Supplementary Material from Paper 1 (Chapter 2)

Standardised Residuals Sstandardised Residuals

Standardised Residuals

EAR4 EVT1 GRR

+ Standardised Residuals = -=+95%C.|. = -=-95%C.I.

8

6 &

4 .
< v

2 | : $

0

2

a1l ¢ ** T e

-6 ? 3

Trainihg data

EAR4 EXP GRR

¢+ Standardised Residuals =-=+95%C.|. = -=-95%C.I.

6
5 | i E * I *
2
-6
*
-10
*
-14

Training data

EAR4 LOGPT3 GRR

+ Standardised Residuals = -=+95%C.l. = -=-95%C.I.

14 1 *
10 *
6
. SRR AR
-2 A
-6

Training data

Figure A.2 (Continued)

197



Supplementary Material from Paper 1 (Chapter 2)

Standardised Residuals Standardised Residuals

Standardised Residuals

EAR4 LOGN GRR

¢+ Standardised Residuals = -=+95%C.l. = -=-95%C.l.

&
b

14
10
¢ S
6
. S

2 T ’ ’

-2 IM)O
6

Training data

EAR4 NORM DPI

+ Standardised Residuals =-=+95%C.l. = -=-95%C.I.

6
4
2
0

-2

Training data

EAR4 PT3 DPI

+ Standardised Residuals = -=+95%C.|. = -=-95%C.I.

Training data

Figure A.2 (Continued)

198



Supplementary Material from Paper 1 (Chapter 2)

standardised Residuals Standardised Residuals

Standardised Residuals

EAR4 GAMMA DPI

¢+ Standardised Residuals == -=+95%C.|. = -=-95%C.I.
16

Training data

EAR4 EVT1 DPI

¢+ Standardised Residuals == -=+95%C.|. = -=-95%C.|.
16

12

L 2

Training data

EAR4 EXP DPI

¢ Standardised Residuals == -=+95%C.|. = -=-95%C.I.

Training data

Figure A.2 (Continued)

199



Supplementary Material from Paper 1 (Chapter 2)

Standardised Residuals standardised Residuals

Standardised Residuals

EAR4 LOGPT3 DPI

+ Standardised Residuals = -=+95%C.]. = -=-95%C.].

14
’
10 +
*
6 . £ ry
“ -

2 oK 3 03

-2 E -
-6 0 -

Training data
EAR4 LOGN DPI
¢ Standardised Residuals === +95%C.|. = -=-95%C.].
14
10 *
. .
6 + L 4 L 2 A 4 L3
: *
2
-2 - > 4
*
-6

Training data

EAR4 NORM sSVCs

+ Standardised Residuals = = +95%C.|. = -=-95%C.I.

6
4
2
0

Training data

Figure A.2 (Continued)

200



Supplementary Material from Paper 1 (Chapter 2)

Standardised Residuals Standardised Residuals

Standardised Residuals

EAR4 PT3 SVCS

¢+ Standardised Residuals = -=+95%C.l. = -=-95%C.l.

-6
Training data
EAR4 GAMMA SVCS
+ Standardised Residuals == -=+95%C.|. = -=-95%C.I.
6 L d
4 * .
¢ ¢ v
o
2 A
0
-2
-4
-6 0 -
Training data
EAR4 EVT1 SVCS
¢+ Standardised Residuals = -=+95%C.]. = -=-95%C.I.
-8

Training data

Figure A.2 (Continued)

201



Supplementary Material from Paper 1 (Chapter 2)

EAR4 EXP SVCS

¢+ Standardised Residuals = -=+95%C.|. = -=-95%C.I.

W 8
©
E
)
w
o
-3
-]
@
2
2
S
-]
c
o
&a -12 _
Training data
EAR4 LOGPT3 SVCS
+ Standardised Residuals = -=+95%C.|. = -=-95%C.I.
> 10
©
S
=
"
o
=3
-]
@
]
T
S
-]
c
S
h 6 -
Training data
EAR4 LOGN SVCS
+ Standardised Residuals = -=+95%C.|. = -=-95%C.|.
@ 10
] *
S
T
vy
o
[~
-]
o
K]
=
o
-]
<
[
& 6

Training data

Figure A.2 (Continued)

202



Supplementary Material from Paper 1 (Chapter 2)

EAR4 NORM SVCA

+ Standardised Residuals = -=+95%C.|. = -=-95%C.I.

@ 6
S a
3
v 2
[
T 0
-]
(7]
5 -2
T
T -4
c
[1]
o -6 -
Training data
EAR4 PT3 SVCA
+ Standardised Residuals = -=+95%C.l. = -=-95%C.I.
» 6
S 4
b=}
2 2
-3
T 0
[-1]
v
T -2
g
S -4
(1]
6 — <
Training data
EAR4 GAMMA SVCA
+ Standardised Residuals == -=+95%C.|. = -=-95%C.I.
2 ® ¢
a5 * s
-]
2 ¢
g 0
R
- -2
3
S -4
(1]
&h 6

Training data

Figure A.2 (Continued)

203



Supplementary Material from Paper 1 (Chapter 2)

Standardised Residuals Standardised Residuals

Standardised Residuals

EAR4 EVT1 SVCA

+ Standardised Residuals = -=+95%C.|. = -=-95%C.|.

Training data

EAR4 EXP SVCA

¢ Standardised Residuals == -=+95%C.|. = -=-95%C.|.

6
iy
-6
’
-10
-14 &
-18

Training data

EAR4 LOGPT3 SVCA

+ Standardised Residuals = = +95%C.|. = -=-95%C.I.
18

14 ¢

10

Training data

Figure A.2 (Continued)

204



Supplementary Material from Paper 1 (Chapter 2)

EAR4 LOGN SVCA

+ Standardised Residuals = -=+95%C.|. = -=-95%C.I.

@ 18
S 14 ¢
]
v 10 &
& N
T 6
$ * L
T 2 < ,
3 | St sy Gmrsnoe;
2 -2
o
h 6 ..

Training data

EAR4 NORM MVCS
+ Standardised Residuals = = +95%C.l. = -=-95%C.I.

@ 6
S 4
)
g 2
[
T 0
@
(7]
T -2
T
T -4
<
[
n © .

Training data

EAR4 PT3 MVCS
+ Standardised Residuals = -=+95%C.|. = -=-95%C.I.

@ 6
S a
)
a2
o ¢
S 0 o~
@
(7]
5 -2
5
S -4
[3-]
& -6

Training data

Figure A.2 (Continued)

205



Supplementary Material from Paper 1 (Chapter 2)

EAR4 GAMMA MVCS

+ Standardised Residuals = -=+95%C.|. = -=-95%C.|.

2 ® *

T *»

4
:E *
&7
- 0
g, ]
T ¢ .
S -4 *
E M s
m -6 —
a Training data
EAR4 EVT1 MVCS
¢+ Standardised Residuals = = +95%C.|. = -=-95%C.|.

“» 6

S 4

=

22

-3

g 0

R

B2

3

S -4

(1]

h -6 .

Training data
EAR4 EXP MVCS
¢+ Standardised Residuals = -=+95%C.|. = -=-95%C.I.

[%4]

©

=]

=

"

-]

-3

-

-]

R

-

& -6

-

c

(1]

& -10

Training data

Figure A.2 (Continued)

206



Supplementary Material from Paper 1 (Chapter 2)

EAR4 LOGPT3 MVCS

+ Standardised Residuals = -=+95%C.]. = -=-95%C.I.

=
o

[«)]
&

]
Il

'
]
Il

Standardised Residuals

)

Training data

EAR4 LOGN MVCS

+ Standardised Residuals = = +95%C.|. = -=-95%C.I.

» 10
S R
S 6
g te ¢
-3
-
-]
]
2
T
-
c
(1]
h 6 . .
Training data
EAR4 NORM MVCA
+ Standardised Residuals == -=+95%C.|. = -=-95%C.|.
@ 6
S a
T
22
[
g 0
2
T -2
<
T -4
[1+]
& -6

Training data

Figure A.2 (Continued)

207



Supplementary Material from Paper 1 (Chapter 2)

Standardised Residuals Standardised Residuals

Standardised Residuals

EAR4 PT3 MVCA

+ Standardised Residuals = -=+95%C.|. = -=-95%C.I.

6
A .
2
0
-2
-4
-6
Training data
EAR4 GAMMA MVCA
+ Standardised Residuals = -=+95%C.l. = -=-95%C.I.
6
4
2
0
-2
-4
-6
-8
Training data
EAR4 EVT1 MVCA
¢ Standardised Residuals = -=+95%C.l. = -=-95%C.I.
6
4
2 =
0
2
4 * Py
-6 *
-8

Training data

Figure A.2 (Continued)

208



Supplementary Material from Paper 1 (Chapter 2)

EAR4 EXP MVCA

¢ Standardised Residuals == -=+95%C.|. = -=-95%C.|.

@ 6
1]
*
v
g 2 =
=]
2 6
T >
3 -10
£ *
i -14 —
Training data
EAR4 LOGPT3 MVCA
+ Standardised Residuals = -=+95%C.|. = -=-95%C.l.
@ 22
18 |«
14
-]
&€ 10
2 6
(7]
o $
g 2. '
)
(1]
h 6 . .
Training data
EAR4 LOGN MVCA
+ Standardised Residuals == -=+95%C.|. = -=-95%C.I.

“* 14
s
310 +
‘n L 4
€ 6
E * * *
0 2 - L 2
E
82 ! g g ' I I o
c
[1]
&h 6

Training data

Figure A.2 (Continued)
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Figure A.2 (Continued)
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Figure A.2 (Continued)
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Figure A.3. Predictive accuracy for the validation data of MLPs and GRNNs with
different smoothing parameters for river salinity at Murray Bridge 1 day in advance
(similar plots were also observed for 5 days & 14 days in advance)
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Figure A.4 Standardised residuals for the training data of MLPs and GRNNSs with
different smoothing parameters for river salinity at Murray Bridge 1 day in advance
(plots of the BCV were similar to those of the GRR; plots of the BCVDPI and SCV were

similar to those of the DPI; similar plots were also observed for 5 days & 14 days in advance)
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Figure A.4 (Continued)

214



Supplementary Material from Paper 1 (Chapter 2)

RSMB 1day MLPANNSs
+ Standardised Residuals = -=+95%C.|. = -=-95%C.|.

6
K%
1]
S 4
T o o, *
* * 0.
Q 2 '3 b 4
= X XWX 244
R S G 2T e W ¢
B, Lo S0p RSS2 pAs
3 JUCY S
w -6 0 0
Training data
Figure A.4 (Continued)
(a) RRKRB 1day
1.00
0.80
0.60
S
o EI I
0.20
GRR (or DPI (or SVCS MVCS MLPANNs
BCV)  BCVDPI)
Smoothing Parameter Estimator
(b) RRKRB 1day
1.00
0.80
0.60
a
0.40 -
0.20 1
0.00 - | - ;
GRR (or  DPI (or SVCS MVCS  MLPANNs
BCV)  BCVDPI)

Smoothing Parameter Estimator

Figure A.5. Predictive accuracy for the validation data of MLPs and GRNNs with
different smoothing parameters for runoff at Lock and Dam 10 in the Kentucky River

basinl day in advance
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Fig. A.6 Standardised residuals for the training data of MLPs and GRNNs with
different smoothing parameters for runoff at Lock and Dam 10 in the Kentucky River
basinl day in advance(plots of the BCV were similar to those of the GRR; plots of the
BCVDPI and SCV were similar to those of the DPI)
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Figure A.6 (Continued)
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Figure A.6 (Continued)

218



Supplementary Material from Paper 1 (Chapter 2)

219



Supplementary Material from Paper 2 (Chapter 3)

APPENDIX-B Supplementary Material from Paper 2
(Chapter 3)

B.1 Mathematical derivations

Derivation of Gaussian reference rule

Letf be the Gaussian density function N(u, o), K be the Gaussian kernel, and

1
_ R(K) 5 — . . . .
=werg be the optimal bandwidth with respect to asymptotic

mean integrated squared error (AMISE), then

; 1 —(x—ét)z
= e 20
oV2m
S N T =
r= 0\/211 207 xe oF
_ G- e
—  Zo 207
a3v2n
-1 =G=w?  —2(x —p)? —Gx=w?
f”: N e 202 4 —m 55 e 202
o3\2m o°\2m
-1 ==w? x — u)?
— e 202 X M +1
o3\V2m o?
iz L ‘(" ”)2 (?C—ll)4 2(x — p)? .
F7 = 0'627Te o2

y _ dx _
Let\/—E = x, then 5= dy

o 1 —G=w?
f(f) dx=f062ne oz X

o* o2

(x=w* 2(x—w? N 1] i

+1|x—=
go2m ot a? V2

&) [E-wt 2w
=j 1 V—ix V2 N2 dy
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1 0=’ (-2t (v — uv2)? dy
f xl P — +1l><\/7

e 202
021 o2

(1 e a2yt (- 2
O e s

0,if pisodd
oP(p— D if piseven

2 1 ot x 3l g% x 1N
f(f)dx=20—5\/ﬁx P +1

for Gaussian distribution, E (x — u)p{
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for standard normal distribution o (K) = 1, u,(K) = [ x?K(x)dx ~ o(K)?* =
1, then

1
- RGOS -1

GRR)i = m n

1
i _ JK?dx 5 =l
GRR,i — f(f”)z dx n

1 5
~ 2\ -1
herr,i = 3 ns
805VT

1
- 3\5 -1
herr,i = (Z) ons

which results in Egs. (3.15). This also consists with Wand and Jones (1995)
and Scott (1992).

Derivation of 2-stage direct plug-in

(=1)"/27

Let ¢, = (20) 1 (r/2) /2

be the normal scale (NS), o be the standard

deviation of the sample, then

s (D
Y = 20)0a1 1172

B 27 %x3%2x5%x7
T 212 % 3% g9 X l/2

105

= 3209771/2

Let K be the Gaussian kernel withu,(K) = [x?K(x)dx =n"1 ’]?zl(Xij -
X)?Kn(X/ — X;) = 1 for Gaussian kernel, K be the nth derivative of

Kthen,
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For standard normal case, o(K) = 1
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recall Eq. (3.18)
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Derivation of the linkage in between GRR and DPI

1

(—1)T/27'! R(K) -1 1 "
= Sns,R(K)=ﬁ,R(f)=

Qo)r+i(r/2)mt/2" T T w(K)2R(f')

Recall ¢, =

3
aosy= and i, (K) = 1 for standard normal case then

P ~ R(F")

(-1
"~ (20)521 w1/2

23 x3
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_ 3
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1
1 5
~ _ 2\
hppri = - 3
8gS1/2 "
1
3\5 -1
= (- 5
(4) on
= EGRR,L'

hence, GRR is equivalent to 0-stage DPI, which is a special case in the DPI

family.

Derivation of smoothed cross validation

(=172
(a)T+1(r/2)inl/2

Let @, = be the normal scale (NS), o be the standard

deviation of the sample, then

6
s (-1°121
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Let K be the Gaussian kernel and u,(K) = [ x?K(x)dx =n"1!
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For standard normal case, 0(K) = 1

—15
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0) Ner
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15 1/9
V2m

{32;‘?751/2 ”}

= [2/(7T)]/°2"%0

=12X

2 = [~2K000)/{u, (K)pNsn}]

945 1/13

V21
945 x 11
27 g1371/2

=12X

= [2/(11n)]Y/132%/2¢
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i=1 j=1
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recall Eq. (3.22),
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and

. 441 yi8 1 2 -1
={m} (47) 594(g3) 5Pg(gs)

5 et eSS 0 - )
{(6471) : s

=1 j=1

n -1/9

m
n? Z Z LOx! - x)

i=1j=1

The derived formulas have been compiled in the Software. Further details can
also be referred to Wand and Jones (1995) and Scott (1992).
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B.2 Supplementary figures and tables

(a) K-S (EAR4-NORM)

Q1 ®mMin Median X Max x Q3
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I
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Additional Selection No.
D N o N > [e)] (o]

Bandwidth Estimator

(b) K-S (EAR4-EVT1)
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Bandwidth Estimator

(c) K-S (EAR4-PT3)
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Bandwidth Estimator

Figure.B.2.1 Number of selected additional inputs of EAR4 model with alternative
bandwidth estimators (0 indicates correct number of significant inputs; overestimation

occurs if above 0; and underestimation appears if below 0)
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Figure B.2.1 (Continued)
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(a) K-S (TEAR10-NORM)
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Figure.B.2.2 Number of selected additional inputs of TEAR10 model with alternative
bandwidth estimators (0 indicates correct number of significant inputs; overestimation

occurs if above 0; and underestimation appears if below 0)
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(e) K-S (TEAR10-EXP)
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Figure B.2.2 (Continued)
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(a) K-S (NL-NORM)
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Figure.B.2.3 Number of selected additional inputs of NL model with alternative
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(e) K-S (NL-EXP)
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Figure B.2.3 (Continued)
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Figure.B.2.4 Sensitivity analysis of univariate histogram bin width for EAR4 model
(LOGN and LOGPT3 cases; x¢_g, Pt—1 and x;)
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(e) EAR4 LOGPT3 (Pt-1)
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Figure.B.2.5 Sensitivity analysis of univariate histogram bin width for TEAR10 model
(LOGN and LOGPT3 cases; x;_1, Pr—1 and x;)
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Figure B.2.5 (Continued)
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(a) NLPT3 (X2)
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Figure.B.2.6 Sensitivity analysis of univariate histogram bin width for NL model (PT3
and LOGPT3 cases; x,and y)
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Figure. B.2.7 Computational efficiency of TEAR10 model with different bandwidth
estimators
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Figure. B.2.8 Computational efficiency of NL model with different bandwidth estimators
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APPENDIX-C Supplementary Material from Paper 3
(Chapter 4)

C.1 Mathematical explanation and derivations

Explanation of Bivariate Reflection Correction

AY-axis :
Quadrant Il : Quadrant |
('1+) i (+!+)
s2 ' S1
(O' hy) i (hJCJ hy)
S3 i S4
0|(0.0) | (h,0) X-axis
Quadrant llI | Quadrant IV
(-’-) i (+!')

Figure. C.1.1 Quadrants of Bivariate Reflection Correction

As mentioned in Section 2, let: X = [X; ... X,,,]7 be the input, where m is the

number of inputs; (Xj,yj) be the observed pairs of input and output data

, ; .o T
forj = 1,...,n, where n is the number of observations, X/ = [X] ... X}, | are
the observed input data and y’ are the observed output data. H is the

hazc Pxy hx hy

bandwidth matrix, defined as H =
Pxyhxhy hy

, where h, and

h, are the estimated bandwidths for input X; and output y, respectively, and
Pxy IS the correlation coefficient between input X; and output y . Four

quadrants are created by the x-axis and y-axis, as shown in Fig. C.1.1. Within
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Quadrant I, four regions (S1 to S4) are further generated by the lines passing

through x = hyand y = h,,.

After scaling all data within [0,1] in both x-axis and y-axis, all points fall into
Quadrant 1. Points falling into S1 (Xl.j > h,,y’ > h,) are not influenced by the
boundary issue, therefore the density can be estimated based on Egs. (4.1) and

(4.2), as outlined in Section 2, which is expressed as
. X1 [x!
ey ) =257, [KH ([y] - [y]])] Xe > ey > hy

Points falling into S2 (h, ZXij >0,y/ > h,) are only influenced by the
boundary issue on the x-axis, therefore reflection correction is required only
on the x-axis. By implementing the reflection kernel on the x-axis, the kernel

density is given as

o= -1 o (1L e =

> hy,

where points in S2 are ‘reflected’ into Quadrant 11, so that the underestimated

density near the boundary (y-axis) can be compensated for.

Points falling into S3 (h, = Xij > 0,h, >y’ > 0) are affected by the boundary
issue in both x-axis and y-axis, consequently, reflection correction is required

in both dimensions, which then results in

f&Xy ) = %Z [KH <[)§,‘] - [ﬁ]) + Ky <[)§,‘] - [:ﬁ])] Shy>=X; =0,h,
=y =

0

Where points in S3 are ‘reflected’” into Quadrant III, and hence the problem
associated with underestimated density near the boundary (x-axis and y-axis)

can be addressed.
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Points falling into S4 (Xl.j > hy, hy, = y’J > 0) have identical circumstances
to those in S2, however, the impact due to the boundary issue is only on the y-

axis, therefore the corresponding expression is

X (o A A [

y=0
where points in S4 are ‘reflected” into Quadrant IV, so that the underestimated

density near the boundary (x-axis) can be ameliorated.

In addition, any points outside of Quadrant I result in a density of zero. By
summarising all scenarios described above, the bivariate reflection correction

can be derived as shown in Eq. (4.7).

Derivation of local linear polynomial regression

Let 8, =n~" B7, (%] — X)" Kn(X] = X.), & =n BT, (] ~

A

>

' . 0 cee p AO
X) Kn(X! = X.)y/ and 9(X;p,h)p = €] | 1 } l

Then for §(X; 1, h) ;1p,

el =[1,0]

8o =n"1X Kn(X! - X))
§=n"1 Y (x] — XD K (X! — X))
S =n I (X! — X)? K (X! - X))
bo = I Kn (X — X))y

~

t1=n nt n1(XJ Xi)lKh(X']_Xi)yj

P(X;1,R)p = [1,0] X [fo j: ] [to]

S1
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_ sn BT Kn(X] X )y —sim BT (] —x ) K (X - )y

$082-38,°

on s8] =xp]Ka(x]-x;)y!
j=1

=n S
525075151

which results in Eq. (4.19).

Derivation of local quadratic polynomial regression

Let$, = n~" Tio1(X] — X)" Kn(X! = Xi), & = n " T, (X —

. S %] [k
X)" Kn(X! = X))y, and 9(X;p, R) 1p = €] o ] [
Sp SZp tp
Then for $(X; 2, h) gp,
el =[1,0,0]
So = X Kn(X! = X;)
§=n"" ?:1(Xij _Xi)l Kh(Xij _Xi)
8 =n" I (X] — X2 Kn (X! - X))
8 =0 YL () - XD K (X! - X))
8 =n7 Y (X — XD K (X! — X))
By =t X7y Kn(X] = X)y/
tp=nt ?:1(Xij - X)* Kh(Xij - Xi)yj

t, =n 30X = X)? Kn(X] — X)y?

Jj=1
S0 51 %1 [
y(X, 1, h)LQP = [1, 0, O] X §1 §2 §3 X fl
S, 83 8, t,

_ (8284—38383)E0—(8184—5283)E1+(8183-5828,)1,

- S0 81 32
det §1 §2 §3

$2 83 8

(8284—38383)n7 " ?:1Kh(Xi]—Xi)yj—(§1§4—§2§3)7l_1
3P O X K (X)X )T+ (81838280 T, (X X 2K (X)X, )y

(8284—3383)80—(8184—8233)81+(8183—3257)3,

246



Supplementary Material from Paper 3 (Chapter 4)

. (5,54 — $383) — (5,5, — §2§3)(X]i' - Xi) +
R Z (5,55 — 5,5,) (X' = X)*
[

S0(5284 — 8583) = 51(5,81 = 358,) + 5,(5,55 - 5,5,)]

K, (x, - x.)y'

j=1

which results in Eq. (4.20).
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C.2 Supplementary figures and tables

Relative K-S % change Relative Ml % change Relative K-S % change

Relative MI % change

Figure. C.2.1. Relative change of K-S and M1 in-between M1 and B3 (TEAR10 and NL)
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(c) NL K-S Variation (M1 vs. B3)
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(a) EAR4 K-S Variation (M2 vs. B3)
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Figure. C.2.2. Relative change of K-S and M1 in-between M2 and B3 for EAR4,
TEAR10 and NL models
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Relative K-S % change

Relative Ml % change

Figure. C.2.3. Accuracy of residual estimation with alternative estimators for EAR4
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(b) EAR4 GAMMA
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Figure. C.2.3. (Continued)
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(a) TEAR10 EVT1
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Figure. C.2.4. Accuracy of residual estimation with alternative estimators for TEAR10

model (other 4 cases)
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(d) TEAR10 EXP
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Figure. C.2.5. Accuracy of residual estimation with alternative estimators for NL model
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(d) NLPT3
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Multi-layer perceptron artificial neural networks are used extensively in hydrological and water re-
sources modelling. However, a significant limitation with their application is that it is difficult to
determine the optimal model structure. General regression neural networks (GRNNs) overcome this
limitation, as their model structure is fixed. However, there has been limited investigation into the best
way to estimate the parameters of GRNNs within water resources applications. In order to address this
shortcoming, the performance of nine different estimation methods for the GRNN smoothing parameter
is assessed in terms of accuracy and computational efficiency for a number of synthetic and measured
data sets with distinct properties. Of these methods, five are based on bandwidth estimators used in
kernel density estimation, and four are based on single and multivariable calibration strategies. In total,
5674 GRNN models are developed and preliminary guidelines for the selection of GRNN parameter
estimation methods are provided and tested.

© 2014 Elsevier Ltd. All rights reserved.

Software availability

Software name: GRNNs

Developer: Xuyuan Li, Postgraduate Student, the University of

Availability: Free to download for research purposes from the
following website:http://www.ecms.adelaide.edu.au/
civeng/research/water/software/generalised-regression-
neural-network/

Adelaide, School of Civil, Environmental & Mining

Engineering, Adelaide, SA 5005, Australia

Phone: +61 8 8313 1575
Fax: +61 8 8303 4359

Email: xli@civeng.adelaide.edu.au
Hardware requirements: 64-bit AMD64, 64-bit Intel 64 or 32-

1. Introduction

Over the last two decades, artificial neural networks (ANNs)
have been used extensively in the field of hydrological and water
resources modelling, and their popularity is still increasing (Maier

bit x86 processor-based workstation or server with one et al,, 2010; Abrahart et al., 2012; Wu et al., 2014). In the vast ma-

or more single core or multi-core microprocessors; all

versions of Visual Studio 2012, 2010 and 2008 are

supported except Visual Studio Express; 256 MB RAM
Software requirements: PGI Visual Fortran 2003 or later version

Language: English
Size: 4.74 MB

jority of these applications, multi-layer perceptrons (MLPs) have
been used as the most common model architecture (Maier et al,,
2010; Wu et al.,, 2014). While the use of MLPs has generally resul-
ted in good model performance, their development is complicated
by the fact that there are no rigorous methods for determining an
appropriate model structure, Determination of the optimal number
of hidden nodes is especially difficult, unless sophisticated Bayesian
approaches are used (Kingston et al., 2008; Zhang et al., 2011),

* Corresponding author. Tel.: +61 8 8313 1575; fax: +61 8 8303 4359.
E-mail addresses: xli@civeng.adelaide.edu.au, xliadelaide@gmail.com, li-xu-
yuan@163.com (X. Li), aaron.zecchin@adelaide.edu.au (A.C. Zecchin), holger.
maier@adelaide.edu.au (H.R. Maier).

http://dx.doi.org/10.1016/j.envsoft.2014.05.010
1364-8152/© 2014 Elsevier Ltd. All rights reserved.

which are computationally demanding and require substantial
technical expertise to implement. Therefore, the optimal model
structure is generally determined by trial and error (Maier et al,,
2010; Wu et al., 2014). This process usually involves a number of
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steps, including (i) selection of a trial model structure, (ii) calibra-
tion of the model with the selected structure, and (iii) evaluation of
the predictive performance of the calibrated model. These steps are
repeated for models with different trial structures and the model
structure that results in the best predictive performance is selected.
Consequently, the model structure that is found to be optimal is a
function of a number of factors, including:

(i) The trial model structures selected for evaluation: As the po-
tential number of different model structures is generally
large, the performance of a subset of all possible structures is
usually evaluated. This can be achieved using different ap-
proaches, including ad-hoc, stepwise (e.g. constructive,
pruning) or global approaches (Maier et al., 2010). Conse-
quently, as different approaches generally result in the
evaluation of different model structures, the structure ob-
tained is a function of the adopted approach.

(ii) The calibration method used: The predictive performance of a
model with a particular structure is a function of the quality
of the calibration (training) process. Finding the combination
of model parameters (connection weights) that gives the best
predictive performance for a given network structure is
complicated by the presence of a large number of local op-
tima in the error surface (Kingston et al, 2005a). This is
particularly the case if gradient-based calibration (training)
methods are used (Maier and Dandy, 1999), such as the most
commonly used back-propagation algorithm (Maier et al,,
2010; Wu et al,, 2014). In addition to the choice of calibra-
tion (training) methods, the parameters that control the
searching behaviour of these methods (e.g. learning rate and
momentum when the back-propagation algorithm is used)
can also have a significant impact on the best predictive
model performance obtained for a particular model structure
(Maier and Dandy, 1998a,b). Consequently, unless the pre-
dictive performance that corresponds to the global optimum
in the error surface can be identified for all models with
different structures, it is not possible to identify which model
structure results in the best predictive performance with
certainty. As a result, the optimal model structure obtained is
a function of the quality of the model calibration process.

(iii) The calibration data used: The available data are generally
split into different subsets for calibration (training) and
validation, which can be done using a number of different
methods (see Maier et al,, 2010). Consequently, which data
points are included in the different subsets can vary,
depending on which data division method is used (Bowden
et al,, 2002; May et al,, 2010; Wu et al., 2012, 2013). This
can also have an impact on which model structure is found to
result in the best predictive performance. This is because
different data points will result in different error surfaces
during calibration, thereby potentially affecting calibration
difficulty [see (ii)] and producing different global and local
optima, which is likely to change which model structure
results in the lowest error.

Given the factors described above, it is generally not possible to
isolate the impact of model structure on the predictive perfor-
mance of MLPs, making it difficult to know which model structure
should be used. In addition, the trial-and-error process generally
used to determine the optimal structure of MLPs is computationally
expensive, as it necessitates the development of a potentially large
number of models.

Although there are other alternative ANN based approaches,
including Radial Basis Functions (RBFs) (Buhmann, 2003),
Recurrent Neural Networks (RNNs) (Williams and Zipser, 1989)
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and Probabilistic Neural Networks (PNNs) (Specht, 1990), Gen-
eral regression neural networks (GRNNs) (Specht, 1991) provide
an alternative ANN model structure that has been shown to
perform well in a number of studies in water resources appli-
cations (e.g. Bowden et al., 2005b, 2006; Gibbs et al., 2006;
Cigizoglu and Alp, 2006) and overcomes the shortcomings
associated with MLPs discussed above, as the structure of GRNNs
is fixed (Bowden et al., 2005a). This removes the ambiguity
associated with determining which model structure is optimal.
In addition, it increases the computational efficiency of the
model development process, as there is no need to develop a
number of models with different structures in order to deter-
mine which is optimal.

However, a potential issue with the application of GRNNs to
hydrological and water resources problems is that there has been
limited work on determining which smoothing parameter esti-
mation methods should be adopted. As GRNNs are essentially a
Nadaraya-Watson kernel regression method (Cai, 2001),
parameter estimation only involves the determination of optimal
values of one or more smoothing parameters, also known as
kernel bandwidths. However, this is not a trivial issue, as illus-
trated by the vast amount of literature on kernel bandwidth
estimation as applied to density estimation (e.g. Rudemo, 1982;
Bowman, 1984; Scott and Terrell, 1987; Park and Marron, 1990;
Hall et al,, 1992; Wand and Jones, 1995). Overestimating the
smoothing parameter can result in over-smoothing of the esti-
mated density (i.e. kernel based probability density function
(PDF)). In this case, the detailed local information (for instance
the variation of daily rainfall in hydrological applications) will
not be captured in the estimated density. In contrast, if values of
the smoothing parameter are underestimated, the general trend
of the estimated density (for instance the overall rainfall trend
within a given time period) can be disturbed by localised fea-
tures or noise.

Among the extensive literature on smoothing parameter (or
kernel bandwidth) estimation in other areas of research, such as
mathematics and statistics, there are a number of different ap-
proaches to obtaining optimal estimates of kernel density, which
are based on assumptions about the form of the PDF and
different fitness function types (i.e. the objective function on
which the estimator is based). Consequently, their relative
merits for determining the optimal values of the smoothing
parameters for water resources GRNN models are likely to vary
from case study to case study, depending on the distribution of
the data and the modelling objective function used. However,
the relationship between the performance of GRNNs with
smoothing parameters obtained using different kernel density
estimation methods and the properties of the water resources
data used to develop them has not been considered previously,
making it difficult to know which methods to use for particular
case studies.

Therefore, the objectives of the current study are: (i) to
compare the performance, in terms of both predictive accuracy
and computational cost, of GRNN models for which smoothing
parameters have been estimated using a range of methods, as
well as that of a benchmark MLP model, for case studies with data
that have varying degrees of normality, linearity and different
modelling objectives (e.g. matching average or extreme events);
and (ii) to develop and test empirical guidelines for the selection
of the most appropriate methods for GRNN smoothing parameter
estimation based on the properties of the available data (i.e.
degree of normality and non-linearity) and the modelling
objective.

The remainder of this paper is organised as follows. A brief
introduction to GRNNs is provided in Section 2, followed by the
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Input Units Summation Units

Pattern Units

Output Units

Fig. 1. General architecture of a GRNN [based upon Gibbs et al. (2006)].

Methodology in Section 3. Results and discussion are given in
Section 4, and conclusion and recommendations are provided in
Section 5.

2. General regression neural networks

According to Bowden et al. (2005a), GRNNs can be treated as
supervised feedforward ANNs with a fixed model architecture. The
general architecture of GRNNs is illustrated in Fig. 1.

Let: X = [X;... Xm]T be the input, where m is the number of in-
puts; (X,y’) be the observed pairs of input and output data (the
patterns) for j=1,...,n, where n is the number of observations, X/ =
[X,...X}," are the observed input data and y' are the observed
output data; and y be the GRNN estimate of the actual output y. If
the joint density fiX,y) is known, the conditional expectation of
output y given input X is given as

/w yf(X,y)dy
ElylX] = —=%—— (1)
[ fX,y)dy

The joint density f{X\y) in Eq. (1) is generally unknown, however,
the empirical joint density of the observed input/output pairs
(X7, j =1, ..., n can be estimated by the Gaussian kernel-based
estimator as

(x 4 XJZ; 2(x = xf)

A 1 1y
P~ 2o
J_

(2)
2h2

where h is the kernel smoothing parameter (Parzen, 1962;
Cacoullos, 1966). Note that this approximation is commonly
known as Parzen window density estimation. It is valid, however,
only if the underlying density is continuous and the first partial
derivative at any X is small. Specht (1991) combined the
conditional expectation of y [Eq. (1)] with the Parzen window
density estimationf(X,y) [Eq. (2)] to obtain the following esti-
mator for y

: D?(X)
3 yJexp< - Tf,r>
y(X,h)= - (3)
D(X)
ST
where Dj2 is the scalar function
ST r

D? = (x . Xf) (x N Xf) (4)

which measures the Euclidian distance between the input X and
the observed data points X. Within this equation, the smoothing
parameter h is the only unknown parameter that needs to be ob-
tained by training (calibration).

With respect the GRNN formulation, the expression in Eq. (3)
can be implemented by the four-unit (or layer) parallel network
shown in Fig. 1. The GRNN consists of input, pattern, summation
and output units that are fully connected. According to Specht
(1991), the input units are formed by the elements of the input
vector X, and these then feed into each of the pattern units. The
pattern units record Djz. the sum of squared (or absolute) difference
between an input vector X and the observed data X, and then feed
into a nonlinear activation function [e.g. the exponential function as
in Eq. (3)] before passing into the summation units. The summation
units contain two parts, A and B, which correspond to the numer-
ator and denominator in Eq. (3), respectively. Part A (the numer-
ator) contains a dot product between the observed output
records y' and the weights exp(fDJ?(X)/th) from the pattern
units, while part B (the denominator) only includes the weights
from the pattern units, The quotient of parts A and B is the pre-
dicted output y.

In Fig. 1, the model architecture of GRNNs is fixed by the fact
that the number of input nodes is determined by the number of
inputs m; the number of pattern nodes depends on the size of
the observed input data n; and the nodes in the summation
units always consist of a denominator node and a numerator
node.

Within this study, a slightly generalised version of the GRNN
estimator in Eq. (3) is considered, namely

; Xi-X)’
Yy exp| -3 Y0, ﬁﬁh_)

y(X,h) = (5)

2
n 1 m (Xi-X)
Yjm18Xp| =3 Yt

where the primary difference between Egs. (3) and (5) is the
adoption of a unique smoothing parameter h; for each dimension of
the input space i = 1, ..., m. The advantage of this form of the GRNN
is that it enables an independent scaling of the kernel smoothing, as
opposed to a common smoothing, along each dimension of the
input space.

3. Methodology

The approach to the systematic assessment of the performance
of GRNNs with different bandwidth estimators is illustrated in
Fig. 2. As can be seen, there are four main steps: (i) procurement of
input and output data with different degrees of normality and non-
linearity; (ii) estimation of the optimal GRNN smoothing parameter
(bandwidth) for these different input or output data using a num-
ber of different smoothing parameter estimators; (iii) development
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1. Procure input and output data with different degree of normality and non-linearity

Generated synthetic data

Generate 2500 input data samples from 7
distinct distributions

[NORM, LOGN, EXP, GAMMA, PT3, LOGPT3,
EVT1]

>

Generate corresponding output data
samples for each of the 2500 input data with
7 distributions via 3 functions with different
degrees of non-linearity

[EAR4, TEAR10, NL]

-

Obtain 21 sets of 2500 synthetically
generated inputs and outputs
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Measured data with different degree of

normality and non-linearity
River Salinity Rainfall-runoff
{water quality) (water quantity)
3 cases with 1 case with
forecasting period forecasting period
of 1, 5 & 14 days of 1 day
Measured data Measured data
follow follow extremely
approximately non-Gaussian
Gaussian distributions
distributions

Non-linear

Strong linear relationships
relationships

+

Iterative process with i = 1, 30 (only
for synthetic data)

!

2. Estimate optimal smoothing parameters of GRNN models for each input and output data set using 9
methods with different fitness functions and assumptions on normality, non-linearity and error basis
[GRR, BCV, 2-stage DPI, BCVDPI, SCV, SVCS, SVCA, MVCS, MVCA]

L

3. Develop benchmark MLP model

4, Assess performance

Predictive accuracy

Assess predictive accuracy using criteria with
different sensitivity on average and extreme
events

[CE, loAd, PI, MCE, MloAd, MPI]

Computational efficiency

Assess computational expense using
computational time

[CPU clock speed]

'

|

Synthetic tests
Assess average performance over 30 trials

Real tests
Assess performance over 1 trial

Fig. 2. Overview of proposed assessment approach.

of benchmark MLP models; and (iv) assessment of model perfor-
mance. Details of each of these steps are given in the subsequent
sections.

3.1. Procurement of input/output data with different degrees of
normality and non-linearity

As can be seen from Fig. 2, two different approaches to pro-
curing input and output data with different degrees of normality
and non-linearity were used, including the generation of synthetic
data and the use of measured data, as outlined below.

3.1.1. Synthetically generated data
Procurement of the synthetic data involved the generation of
input data from distributions with differing degrees of normality,
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and the subsequent generation of the corresponding output data
using synthetic models with different degrees of non-linearity.
Data were generated from seven distinct distributions,
including normal (NORM), log-normal (LOGN), exponential
(EXP), gamma (GAMMA), Pearson type III (PT3), log-Pearson type
11 (LOGPT3), and extreme value type I (EVT1) (see Fig. 2). These
distributions were used because they are the most commonly
adopted distributions in hydrological problems (Chow et al.,
1988), and have the ability to generate data with a large range
of skewness and kurtosis, which are measures of the degree of
non-normality (Bennett et al., 2013). The properties of each dis-
tribution are given in Tables 1 and 2. For each distribution, an
additional 25 data points were generated for each of the exoge-
nous inputs in the time series models, as the first 25 points were
rejected in order to prevent initialisation effects (May et al,,
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Table 1
Details of the simulated input distributions for the time series models (EAR4,
TEAR10).

Distribution Key parameters s k Normality

NORM Mean = 3.0;sd = 1.0 0.000 -0.013 High

GAMMA Shape = 2.0; scale = 1.0 1.370 2.638 High

LOGN Mean = 0.5; sd = 1.0 5.326 53.694 Low

EXP Rate = 1.0 2132 7.219 Moderate

PT3 Shape = 2.5; scale = 3.0; 1.251 2.381 High
location = 2.0

LOGPT3 Shape = 0.5; scale = 0.2; 4.792 43.265 Low
location = 2.0

EVT1 Shape = 0.0; scale = 0.5; 1.198 2.880 High

location = 10.0

(Key parameters in the table are used to simulate the exogenous input variable; the
skewness and kurtosis shown in the table are the averaged values of all input and
output data).

Table 2
Details of the simulated input distributions for the nonlinear model (NL).
Distribution Key parameters s k Normality
NORM Mean = 3.0; sd = 1.0 1.826 5.158  High
GAMMA Shape = 2.0; scale = 1.0 10.520 192.091 Low
LOGN Mean = 0.5; sd = 04 5.389 47.767 Low
EXP Rate = 1.0 14.029 334.408 Low
PT3 Shape = 0.5; scale = 1.0; 16.271 514270 Low
location = 0.5
LOGPT3 Shape = 0.5; scale = 0.2; 14.261 390522  Low
location = 0.5
EVT1 Shape = 0.1; scale = 0.0; 1.788 9.807 Moderate

location = 10.0

(Key parameters in the table are used to simulate each of the input variables; the
skewness and kurtosis shown in the table are the averaged values of all input and
output data).

2008). All data sets were split into training (60%), testing (20%)
and validating sets (20%) using the DUPLEX method (see May
et al, 2010), in accordance with the guidelines suggested by
Wau et al. (2013).

The synthetic models used to produce the output data included
a linear exogenous auto-regressive time series model (EAR4), a
threshold exogenous auto-regressive time series model (TEAR10),
and a nonlinear input—output function (NL) (see Fig. 2), as they
represent relationships with increasing degrees of non-linearity
and are based on synthetic models used in previous studies (May
et al., 2008; Bowden et al.,, 2005a; Galelli and Castelletti, 2013).
The equation for the linear exogenous auto-regressive time series of
order four (EAR4) is given by

Xy = 0.6x;,_1 —0.4x;_4+ pe_q +0.1g (6)

where x; is the output time series; x;_, is the input time series with
lag n; p;n is the exogenous input with lag n; and 0.1e is the
introduced error term. The equation for the nonlinear exogenous
auto-regressive time series model of order ten (TEAR10) is given by

X = { 70.5X[,6 + 0.57([,10 = O.3pt,1 + 0.]6‘[; X6 < 0 (7)

0.8x; 10 — 0.3p; 1 +0.1¢;; otherwise
and the equation for the nonlinear input—output function (NL) is
given by

y = (%2)> + Xg + 5 sin(Xg) + 0.1¢; (8)

The first two synthetic models [Egs. (6) and (7)] were modi-
fied versions of the synthetic models used in May et al. (2008)
and the third synthetic model [Eq. (8)] was modified from the
one used in Bowden et al. (2005a). For the first two synthetic
models, the modifications include the introduction of an inde-
pendent lagged input p,_; into all exogenous AR models, and the
pi—1 were sampled from the distributions outlined in Table 1. For
the third synthetic model, the significance (coefficient) of each
input was slightly modified and each input was sampled based on
the distributions outlined in Table 2. In addition, the error term
0.1¢ was added to all models to introduce noise into the models
without obscuring the influence of the actual independent vari-
ables. The noise term & followed the standard normal distribu-
tion N(0,1).

3.1.2. Real case studies

In order to further test the impact of the degree of normality
and non-linearity of the data on the predictive performance and
computational efficiency of the different GRNN parameter esti-
mation methods investigated, as well as the performance of the
empirical guidelines for the selection of the most appropriate
methods for GRNN smoothing parameter estimation developed
based on the results from the synthetic data, two case studies
with data with different degrees of normality and non-linearity
were selected. The first case study was concerned with fore-
casting salinity in the River Murray in South Australia one, five
and 14 days in advance and the second with the prediction of
runoff in the Kentucky River basin in the USA one day in advance.
The data division procedure used for both real case studies was
identical to the one used for the synthetic case studies (see Sec-
tion 3.1.1).

The salinity case has been studied extensively in the context of
ANN modelling (e.g. Maier and Dandy, 1996; Maier and Dandy,

Table 3
Inputs and outputs used to forecast salinity at Murray Bridge 1, 5, & 14 days in advance.
Case no. Inputs Output
Location Variable Abbreviation Lags Location Variable Abbreviation Forecasting period
1 Murray Bridge Salinity MBS 1 Murray Bridge Salinity MBS 1
Mannum Salinity MAS 1
2 Murray Bridge Salinity MBS 1 Murray Bridge Salinity MBS 5
Mannum Salinity MAS 1
3 Mannum Salinity MAS 1 Murray Bridge Salinity MBS 14
Morgan Salinity MOS 1
Waikerie Salinity WAS 1,5
Loxton Salinity LOS 1
Lock 7 Lower Flow rate L7F 1
Lock 1 Upper River level L1UL 1
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Table 4
Inputs and output used to model rainfall-runoff from the Kentucky River basin.
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Inputs

Output

Location Variable Abbreviation Lags

Location Variable Abbreviation Forecasting period

Manchester
Hyden

Jackson
Heidelberg
Lexington Airport
Lock & Dam 10

Mean daily effective rainfall P 0,12

Mean daily runoff Q

Lock & Dam 10 Mean daily runoff Q 1

2000; Bowden et al., 2005b; Kingston et al., 2005b; Fernando et al.,
2009). According to Maier and Dandy (1996), salinity in the River
Murray is a function of upstream inflows of salinity, flow, river level
and groundwater level. Maier and Dandy (2000) also found that
different combinations of inputs contribute to the output during
different forecasting periods. In line with this finding, different
GRNNs were developed in this study to predict salinity at Murray
Bridge one, five and 14 days in advance (Table 3). Different input
variables with different lags (Table 3) were associated with each
output in a given forecasting period, where the inputs were
selected from previous studies (e.g. Maier and Dandy, 1996; Maier
and Dandy, 2000; Kingston et al,, 2005b). All data covered the
period 1987—1990, and were the same as the data used by Maier
and Dandy (1996, 2000).

Analysis of the input data shows that the salinity based inputs
are approximately normally distributed (average s = —1.11 &
k = 0.319), although distributions of some lagged inputs have
multiple peaks and the distribution of the water level based input is
mildly non-Gaussian (average s = 5.96 & k = 2.57). According to
Bowden (2003), the input and output data contain strongly linear
components. Consequently, the data for this case study are close to
mildly non-normal and the relationship to be modelled is close to
linear.

The rainfall-runoff problem from the Kentucky River basin has
also been extensively studied in the ANN literature (e.g. Jain and
Srinivasulu, 2004; Srinivasulu and Jain, 2006; Bowden et al.,
2012; Wu et al, 2013). The catchment area is approximately
10240 km? and the average daily total rainfall measurements come
from five rain gauges located at Manchester, Hyden, Jackson, Hei-
delberg, and Lexington Airport. The average daily streamflow at
Lock and Dam 10 are used as the output. Jain and Srinivasulu (2004)
suggested five significant inputs [i.e. lagged effective rainfall P(t),
P(t — 1), P(t — 2) and lagged runoff Q(t — 1), Q(t — 2)]. Therefore, the
effective rainfall, with lags from the present day to two days prior,
and the flow with lags of the first two days, were adopted as inputs
(Table 4). The data used in this paper were identical to the 13 years
of training data (1960—1972) utilised by Jain and Srinivasulu
(2004).

Analysis of the input and output data shows that the distribu-
tions of lagged effective rainfall and flow are extremely non-
Gaussian (averaged s = 5.11 & k = 34.8). Although the linearity of
the rainfall-runoff problem in the Kentucky River basin has not
previously been analysed, the general rainfall-runoff problem is
well recognised as being highly nonlinear (e.g. Hu et al,, 2001;
Coulibaly et al., 2001; Dawson et al., 2002; Jain and Indurthy,
2003), and therefore the data are likely to contain a strong
nonlinear structure, Consequently, the data for this case study are
considered to be highly non-normal and the relationship to be
modelled is likely to be highly non-linear.

3.2. Estimation of GRNN smoothing parameters using different
estimation methods

The parameters for all of the GRNN models for the synthetic
tests and real case studies were estimated using nine methods. Of
these methods, five are adopted from the literature on kernel
bandwidth selection for kernel density estimation, and four are
based on single and multivariable calibration optimisation strate-
gies. The methods adopted from the kernel density estimation
literature are: the Gaussian reference rule (GRR); biased cross
validation (BCV); 2-stage direct plug-in (DPI); a combination of BCV
and DPI (BCVDPI); smoothed cross validation (SCV). The methods
based on calibration optimisation strategies are as follows: single
variable calibration with squared error as the objective function
(SVCS); single variable calibration with mean absolute error as the
objective function (SVCA); multi-variable calibration with squared
error as the objective function (MVCS); and multi-variable cali-
bration with mean absolute error as the objective function (MVCA)
(Fig. 2). These methods were selected as they are based on different
fitness functions and assumptions of normality and error basis, as
shown in Table 5. Details of these smoothing parameter estimators
are given in the following subsections.

3.2.1. Gaussian reference rule (GRR)
The GRR based smoothing parameter estimator is the most
commonly used estimator. It is based on minimising the asymptotic

Table 5
Selected smoothing parameter estimators with different fitness functions and assumptions of normality and error basis.
Applied method Fitness function Dependence on Sensitive to event No. of smoothing parameters Optimizer
Normality Error basis
GRR AMISE High Mean Average Single None
BCV AMISE High Mean Average Multiple GSS
2-stage DPI AMISE Low Mean Average Multiple None
BCVDPI AMISE Low Mean Average Multiple GSS
NaY EMISE Low Mean Average Multiple GSS
SvC MAE/RMSE None Mean/squared Average/Extreme Single GSS
MvVC MAE/RMSE None Mean/squared Average/Extreme Multiple PSO

(GSS refers to the golden section search algorithm (Press et al., 1992); PSO stands for the particle swarm optimisation algorithm (Poli et al., 2007); MAE is the mean absolute

error; RMSE denotes the root mean squared error).
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mean integrated squared error (AMISE) under the integrability
assumption of an unknown probability function f of the given data
(Scott, 1992; Wand and Jones, 1995). Under these assumptions, the
derived AMISE has the expression

AMISE{f(~:h)} — (nh)"'R(K) + %h“#z (K)2R(f") (9)

where K is the kernel function; R(K) = f[K(x)]de is the integrated
square of the kernel function; uy(K) = [x?K(x)dx is the second

moment of K; and R(?’) represents the approximation of the inte-
grated squared second derivative of f. By assuming that the data
follow a Gaussian distribution, and adopting a Gaussian kernel, the
GRR based smoothing parameter estimator that minimises the
AMISE is derived as

. 4 1/(m+4) . -
hegrri = (m_+2) oin~1/m (10)

where o¢; is the sample standard deviation of the X{ (usually
standardised first). As outlined in Table 5, this approach depends
heavily on the Gaussian assumption.

3.2.2. Biased cross validation (BCV)

As with the GRR, the BCV (Scott and Terrell, 1987) based
smoothing parameter estimation method aims to minimise the
AMISE, and is based on the assumption that the data are nor-
mally distributed. However, as the BCV is a combination of
cross-validation and ‘plug-in’ bandwidth selection described by
Wand and Jones (1995), it is potentially more robust than the
GRR based approach through optimisation. The AMISE is
expressed as follows by substituting the estimated R(f") into Eq.

9

AMISEgcy ;(h) =(nh) "R(K) + %h“ﬂz(x)zn—z 5.
P#q (11)
x (K x K" (XP - X7)

where * indicates the convolution operation. The BCV smoothing
parameter is then given as

hpcy,; = arg miny, { AMISEgcy ;(h)} (12)

As illustrated in Table 5, the underlying assumptions for the
estimator hpcy; are similar to hggg i [Eq. (10)], however hpey; is
determined by minimising the AMISEpcyi(h) through an optimi-
sation process [in the current study, the golden section search (GSS)
(Press et al., 1992) was used].

3.2.3. Two-stage direct plug-in (DPI)

The motivating idea behind the DPI(Park and Marron, 1992) is to
approximate the unknown term R(f") with @,(g) [which is a pilot
kernel estimation of the r-th order integrated squared density de-
rivative; g is the pilot kernel bandwidth; L is the pilot kernel; and r
is the stage number into Eq. (9)] to obtain a computable form for
the asymptotically optimal bandwidth. By minimising AMISE [Eq.
(9)] and replacing R(f") with a pilot kernel bandwidth estimation
94(g), the DPI based smoothing parameter expression, for each
input dimension i, becomes

R(K) 1/5
hppy; = [ }

e . 13
[ (K)*B4(g)n e

where §4(g) =n"! ?:12‘4)(Xi;g) represents the fourth order in-
tegrated squared density derivative, which is approximated by the
pilot kernel L, with the corresponding pilot bandwidth as g (Hall
and Marron, 1987; Jones and Sheather, 1991). The asymptotic
mean squared error (AMSE) based optimal overall pilot bandwidth

gis

[ kIL™) (0) (1)

1/(r+k+1)
uk(L>ar+kn]
where k is the order of the pilot kernel L; r is the stage number
of L; w(l) = [ukL(u)du is the k-th moment of L. The stage
number r determines how many kernel estimations are required
to approximate ¢4(g) based upon the higher order integrated
squared density derivative. Although it has been found that
more stages can result in a better estimation when using the
DPI, the improvement comes at a significant cost in terms of
computational efficiency (Wand and Jones, 1995). The
commonly suggested number of stages is r = 2 (Park and
Marron, 1992), which was adopted in this study. For a 2-stage
DPI based estimator, the corresponding fitness function and
assumptions on linearity and error basis are identical to those
for the GRR and BCV based approaches, while the dependence
on the Gaussian assumption is effectively reduced by the pilot
kernel based fourth order integrated squared density derivative,
as shown in Table 5.

3.2.4. Combination of biased cross validation and two-stage direct
plug-in (BCVDPI)

The BCVDPI estimator is a combination of the BCV and 2-stage
DPI, and is achieved by replacing the estimated term R(f") in Eq.
(8) with the 2-stage DPI based ¢4(g) as follows

» 1
AMISEgcyppyi(h) = (nh)'R(K) +Zh4#2(K)2¢4(g)DP1 (15)

Although the BCVDPI has no closed form (it requires the solution
of an optimisation problem), it inherits the positive attributes of a
reduced dependence on the Gaussian assumption in comparison to
the DPI The optimal smoothing parameter by minimising AIM-
SEgcvppii(h) can be expressed, for each input dimension i, as

hgcyppi; = arg miny { AMISEgeyppri(h) } (16)

The fitness function and assumptions of the BCVDPI based
approach are identical to those of the 2-stage DPI approach. The
main difference between these two approaches is that the former
uses GSS based optimisation due to the biased cross-validation
procedure, while the latter does not.

3.2.5. Smoothed cross validation (SCV)

The concept behind SCV is very similar to that underpinning the
DPI approach, except that SCV attempts to minimise the exact MISE,
rather than the AMISE [Eq. (9)] used in the DPI method. The MISE
can also be approximated as

MISE{f(-; h)}: (nh) 'RK) + /(K,,  f — f)(x)%dx (17)

By replacing [(Ky, x f — f)(x)2dx with ISB(h), where ISB(h) is an
estimation of the integrated squared bias, Eq. (16) can be re-written
as

EMISEscy,i(h) = (nh)~"R(K) + ISB(h) (18)

where r§§(h) is given by
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o p=1 n
ISB(h)=n"2 (KpxKpxLgxLg—2xKpxLgxLg+LgxLg)

p=1g=1

<00 X)

(19)

where Kj, and Lg are Gaussian kernels with kernel bandwidth h and
pilot kernel bandwidth g, respectively (Hall et al., 1992; Wand and
Jones, 1995). The pilot kernel bandwidth g is a function of a series of
pilot kernel bandwidths, each estimated based upon sequentially
higher order integrated squared density derivatives (Wand and
Jones, 1995). The optimal smoothing parameter is determined by
finding the parameter stv,’, which minimises EMISEgq ;(h)
through optimisation (GSS), as shown in Eq. (20) for the i-th input

hgcy; = arg ming { EMISEscy ;(h)} (20)

Although the assumptions with regard to normality, linearity,
and error basis of the SCV based method are very similar to those of
the 2-stage DPI based approach (Table 5), the fitness function of the
SCV method is based upon an exact, rather than asymptotic, esti-
mation of MISE. Therefore, the predictive accuracy of SCV is ex-
pected to be the same as or better than that of the DPI approach
(Wand and Jones, 1995).

3.2.6. Single variable calibration (SVC) and multi-variable
calibration (MVC)

The most commonly applied trial and error approaches to
bandwidth estimation can be classified as single variable calibra-
tion (SVC) and multi-variable calibration (MVC). The SVC estimator
assumes that a common smoothing parameter is applicable to all
input vectors, which increases computational efficiency compared
with the MVC estimator, for which smoothing parameter estimates
have to be obtained for each input vector, but at the cost of potential
reductions in modelling accuracy and flexibility (Gibbs et al., 2006).
The fitness function used to define the SVC and MVC estimators can
be either extreme event oriented (e.g. squared error) or average
event oriented (e.g. mean absolute error) (Dawson et al., 2007). The
combination of different optimisation algorithms and modelling
objectives results in four smoothing parameter estimators, namely
SVCS, SVCA, MVCS, and MVCA. The mathematical formulations of
these four estimators can be written as

n

hsyes = arg minh{z [y’ —?(Xj, h)]z} (21)

J=1
} (22)

hyves = arg min,,{i: [y’ —?(Xf,h)]z} (23)
=

} (24)

where y X/ 1) is the GRNN prediction based upon the band-
width vector’ h=[h;...hy]". The optimal single smoothing
parameter in Eqgs. (21) and (22) is achieved by minimising the

—~ n > .
hsyea = argmmh{z W — 9()(1, h)

Jj=1

=

Sl (v

Jj=

ﬁMVCA = alrg minh{z

-
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errors (either squared errors or mean absolute errors) between
the observed data y' and the predictions y (X', h). In contrast, the
optimal bandwidth matrix in Eqs. (23) and (24) is obtained by
minimising the errors (either squared errors or mean absolute
errors) between the observed records y' and the predictions
y Xj,hg. Unlike the previous methods, the fitness functions of
the SVC and MVC based approaches depend only upon the cali-
bration error between observed and predicted output data.
Consequently, these approaches are independent of Gaussian
assumptions (Table 5). In this research, GSS was used to obtain
the bandwidths of the SVC estimators, while the evolutionary
strategy particle swarm optimisation (PSO) algorithm (Poli et al.,
2007), which was written in Fortran, was used for this purpose
for the MVC approaches.

3.3. Development of benchmark MLP model

In order to assess the performance of the different GRNN
models in absolute terms, standard MLPs were developed as
benchmarks using the systematic approach outlined in Wu et al.
(2014). The model inputs/outputs and training, testing and vali-
dation data were identical to those used in the development of the
GRNN models. A single hidden layer was used and the optimal
number of hidden nodes was determined by trial and error,
considering a range of 0—5. The optimal number of hidden nodes
for the different models was as follows: 2 (EAR4), 2 (TEAR10), 3
(NL), 3 (river salinity 1 day), 3 (river salinity 5 day), 4 (river salinity
14 day), and 4 (flow 1 day), respectively. The back-propagation (BP)
algorithm (with learning rate of 0.1 and momentum of 0.1) was
used for calibration.

3.4. Model performance assessment

As mentioned in the Introduction and shown in Fig. 2, model
performance criteria included predictive accuracy and computa-
tional efficiency. The specific measures adopted to assess these
two aspects of performance are outlined in the subsequent
sections.

3.4.1. Predictive accuracy

As discussed in Bennett et al. (2013), careful selection of
appropriate predictive performance measures is extremely
important. In this study, predictive accuracy was characterised
by six dimensionless criteria (listed in Fig. 2), commonly used as
evaluation metrics for hydrological prediction problems
(Dawson et al., 2007; Krause et al., 2005; Bennett et al., 2013).
These criteria include the coefficient of efficiency (CE), the index
of agreement (loAd), the persistence index (PI), and modified
forms of CE, IoAd, and PI. These measures were chosen because:
they are commonly used in hydrology; they have clear cut-off
points to distinguish different extents of accuracy (good, satis-
factory, or poor); and they are sensitive to different types of
events, which assists performance characterisation with respect
to the modelling objective. Particularly, CE compares the per-
formance of the model to a model that only contains the mean
of the observations; [oAd compares the sum of squared error to
the potential error; and PI compares the sum of squared error to
the error based on the predictions of previous observations
(Bennett et al., 2013). In order to be able to assess the impact of
the modelling objective on model performance, modified ver-
sions of these metrics were also used, in which squared error
terms are replaced with absolute error terms (see Krause et al,,
2005).

Although predictive accuracy was assessed using all of the six
performance metrics mentioned above, only the performance
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based on the averaged loAd and modified loAd (MIoAd) is pre-
sented in the body of the paper, while the performance based on
the other metrics can be found in the Appendix (Figs. A.1, A.3, &
A.5). loAd is a measure of the overall agreement between the
observed and modelled records, and is expressed as

s (- 7)°

loAd =1 - ' >
i (B3] 7))

(25)

where yi is the individual observation, y’ is the corresponding
approximation and ¥ is the sample mean of the observations. loAd
is sensitive to the mean and variance differences between the
observed and modelled records; however, it is insensitive to sys-
tematic positive or negative errors. Good performance corresponds
to loAd values greater than or equal to 0.9, and model performance
with an IoAd less than 0.8 is considered to be poor (Dawson et al.,
2007).

The adopted MIoAd is very similar to Eq. (25), except that the
squared error terms are replaced by the absolute value in both the
numerator and denominator, so that performance becomes average
event, rather than extreme event, sensitive. Details of the deriva-
tions and applications of the MIoAd can be found in Krause et al.
(2005).

The reason for detailing the sensitivity of the performance
criteria to the average trends and extreme events is so that an
assessment of the impact of the error basis of the fitness functions
used by the different smoothing parameter estimators on the per-
formance of the GRNN models with different modelling objectives
can be made.

3.4.2. Computational efficiency

Computational efficiency was measured by computational time
(CT) (measured by a dual processor 2.6 GHz Intel Machine), which
was based on the average CPU clock speed (in seconds), as shown in
Fig. 2.

3.5. Test regime

The test regime was implemented in accordance with Fig. 2.
Overall, 630 synthetic data sets with 1,575,000 data points were
generated, which consisted of 30 replicates of time series
generated using 3 different models, for each of which input data
were generated from 7 different distributions. Each of the 630
data sets was then divided into training, testing and validation
sets and used to calibrate and validate 9 GRNN models, each
using 1 of 9 different smoothing parameter estimation tech-
niques, resulting in a total of 5670 GRNN models for the syn-
thetic data. In addition to the experiments with the synthetic
data, 4 experiments were conducted with the real data, 3 for the
salinity data with different forecasting periods and 1 for the
rainfall runoff data. MLPANNs were also developed for each of
the 30 replicates of the synthetic data sets and for the 4 ex-
periments with real data. As part of the model development
process, the residuals of the training data of all GRNNs and MLPs
were checked for replicative validity [see Appendix Figs. A.2, A.4
& A.6] in accordance with the recommendations of Wu et al.
(2014). The residuals were generally ‘white noise’, indicating
that all models can be considered replicatively valid. The per-
formance of all 5674 models was assessed using the 6 selected
predictive accuracy criteria, as well as computational time.
Because of the large computational requirements, all tests were

coded in PGI Visual Fortran 2008 and run on a Linux 2.6.32.2
operating system. The software used for conducting the nu-
merical experiments is available for others to use, as per the
details in the Software Availability at the beginning of this
paper.

4. Results and discussion
4.1. Synthetic case studies

The predictive accuracy for the validation data and computa-
tional efficiency of all GRNN models for the synthetic data are
summarised in Figs. 3 and 4, respectively. The key findings in
relation to the impact of the degree of normality, the degree of
non-linearity and the modelling objective on GRNN performance
(predictive accuracy and computational efficiency) for the
different smoothing parameter estimators are presented in Sec-
tion 4.1.1, with the results of the comparison with the MLP
benchmark models summarised in Section 4.1.2. Preliminary
empirical guidelines for the selection of the most appropriate
GRNN smoothing parameter estimator based on the properties of
the data and the modelling objective derived from the results of
the experiments on the synthetic data sets are presented in Sec-
tion 4.1.3.

4.1.1. Performance of different smoothing parameter estimation
methods

Overall, the results indicate that the predictive performance
of the GRNN models reduces as the degree of non-Gaussianity in
the data increases, especially when the GRR, BCV, DPI, BCDPI and
SCV methods were used for smoothing parameter estimation.
This suggests that the DPI (or BCVDPI) and SCV methods are not
consistently effective in improving the predictive performance of
GRNN models for non-Gaussian data compared with using the
GRR, despite their reduced reliance on the normality assumption
and their increased computational cost. In fact, in many in-
stances, use of these parameter estimation methods resulted in a
decrease in predictive performance compared with that obtained
using the GRR, particularly for the more extreme distributions
(i.e. LOGPT3, EXP, LOGN in Fig. 3).

In contrast, use of the SVCS/SVCA and MVCS/MVCA methods
was generally successful in terms of improving the predictive per-
formance of the GRNN models for data with high degrees of non-
normality compared with the models for which the GRR was
used for smoothing parameter estimation. In fact, when the SVCS/
SVCA and MVCS/MVCA methods are used, there is very little
degradation in predictive performance with an increase in the non-
normality of the data. This is most likely because these smoothing
parameter estimation techniques do not rely on any Gaussian as-
sumptions. This makes use of the SVCS/SVCA approaches a partic-
ularly attractive option for highly non-Gaussian data, on account of
their much smaller computational cost compared with the MVCS/
MVCA methods.

While the trends described above apply to all three synthetic
data sets, they manifest themselves more strongly for the non-
linear (NL) case. This suggests that the combination of non-
linear and non-Gaussian data has the potential to result in a
marked degradation in the predictive performance of GRNNs,
unless the SVCS/SVCA or MVCS/MVCA methods are used. It should
also be noted that for the NL case, there was a noticeable
improvement in predictive performance when the MVCS/MVCA
approach was used instead of the SVCS/SVCA method. However,
this improvement was achieved at a significantly increased
computational cost.
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Fig. 3. Predictive accuracy for the validation data of MLPs and GRNNs for different synthetic data-generating models and distributions for which optimal parameters have been
obtained using different methods.
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Fig. 3. (continued).

4.1.2. Comparison with MLP

In the vast majority of cases, the predictive performance of the
MLP models was similar to that of the GRNN models for which the
SVCS/SVCA and MVCS/MVCA methods were used for smoothing
parameter estimation, although the MLPs performed slightly
better than the best-performing GRNNs in some instances. In
addition, for Gaussian or nearly Gaussian data, the predictive
performance of the GRNNs for which the GRR was used for
smoothing parameter estimation was very similar to that of the
MLPs. Consequently, the results suggest that if a bandwidth esti-
mation technique is used that is appropriate for the distribution of
the data, the predictive performance of GRNNs is very similar to
that of MLPs. In addition, this can generally be achieved at a much
reduced computational cost, unless the MVCS/MVCA bandwidth
estimation technique is used. Furthermore, use of GRNNs elimi-
nates the uncertainty associated with the selection of an appro-
priate MLP model geometry.

4.1.3. Suggested rules and guidelines for use

Based on the findings of the 5670 computational experiments
with the synthetically generated data, a set of preliminary empirical
guidelines has been developed for selecting the most appropriate
smoothing parameter estimation technique based on the degree of
normality and degree of non-linearity of the data, as well as the
modelling objective (Fig. 5). It should be noted that the smoothing
parameter estimation techniques included in the suggested
guidelines represent reasonable trade-offs between predictive ac-
curacy and computational efficiency, although it is acknowledged
that which trade-offs are optimal is also a function of case-study
dependent circumstances and/or user preferences.

Based on Fig. 5, the preliminary empirical guidelines for
selecting an appropriate method for estimating the parameter(s) of
GRNNs can be grouped into a number of scenarios, as explained
below:

Scenario 1: If the problem has input/output data that are mainly
mildly non-Gaussian (average s < 5 & k < 30), the GRR (or BCV)
smoothing parameter estimator is recommended, irrespective
of linearity and model objective, as these methods are observed
to provide good accuracy for these cases at a comparatively high
computational efficiency.

Scenario 2: If (i) inputs and outputs are extremely non-
Gaussian (average s > 5 & k > 30) and (ii) the modelling
objective is to capture extreme events for a linear or non-linear
problem, the use of SVCS or MVCS is suggested. However, this
observed increase in predictive accuracy comes at the cost of
significantly decreased computational efficiency (particularly
for the MVCS).

Scenario 3: If the problem is as in Scenario 2 (extremely non-
Gaussian data & linear or non-linear problem), but with a
modelling objective that is average magnitude event sensitive,
SVCA or MVCA should be adopted.

4.2. Real case studies

The results for the two real case studies are given in Figs. 6
and 7. Fig. 6 (a), (b), and (c) shows the predictive accuracy for
the validation data of river salinity at Murray Bridge 1, 5, and 14
days in advance and the corresponding computational efficiency
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Fig. 4. Computational efficiency of MLPs and GRNNs for different synthetic data-generating models and distributions for which optimal parameters have been obtained using
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Fig. 6. Predictive accuracy of MLPs and GRNNs with different smoothing parameter estimators for the validation data for the real case studies ((a), (b), and (c): river salinity at
Murray Bridge 1, 5, and 14 days in advance; (d): runoff at Lock and Dam 10 in the Kentucky River basin 1 day in advance).

is illustrated in Fig. 7 (a), (b), (c). Fig. 6 (d) displays the predictive
accuracy for the validation data of runoff at Lock and Dam 10 in
the Kentucky River basin 1 day in advance and the corre-
sponding computational efficiency is given in Fig. 7 (d).
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4.3. River salinity at Murray Bridge

By considering the properties of the data for the salinity case
study (Table 3), and the modelling objective of capturing the
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Fig. 7. Predictive efficiency of MLPs and GRNNs with different smoothing parameters for the validation data for the real case studies ((a), (b), and (c): river salinity at Murray Bridge
1, 5, and 14 days in advance; (d): runoff at Lock and Dam 10 in the Kentucky River basin 1 day in advance).
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averaged salinity trends, this case study corresponds to Scenario
1 in Fig. 5. Given this, the predictive performance of the GRNNs
developed using the GRR or BCV based methods was expected to
be superior in terms of an appropriate trade-off between pre-
dictive accuracy and computational efficiency. This is confirmed
by the results, which indicate that predictive performance was
not affected significantly by using the different smoothing
parameter estimation methods. Although the methods that have
reduced reliance on the Gaussian assumption result in a slight
increase in predictive performance, this is probably not out-
weighed by the additional computational costs incurred. How-
ever, as mentioned previously, the method that is considered
most appropriate is case study and user dependent. For example,
if high predictive accuracy was critical in this case and compu-
tational efficiency was not an issue, the MVCA based approach
would be preferable. As was the case for the synthetic case
studies, the predictive performance of the GRNNs is very similar
to that of the MLPs, but at a significantly reduced computational
cost.

4.4. Rainfall-runoff in Kentucky River basin

By considering the properties of the data for the rainfall-runoff
case study (Table 4), and the modelling objective of capturing
extreme events, this case study corresponds to Scenario 2 in Fig. 5.
Given this, the predictive performance of the GRNNs developed
using the SVCS and MVCS based methods was expected to be
superior.

As shown in Fig. 6(d), the predictive performance of the GRNNs
developed using the SVCS and MVCS based methods was indeed
significantly better than that of the GRNNs developed using the
other parameter estimation methods and was as good as that of the
MLPs. In this case, the SVCS method provided the best trade-off
between predictive accuracy and computational efficiency. How-
ever, if predictive accuracy was critical, the large increase in
computational cost incurred [Fig. 7 (d)] for a small increase in
predictive accuracy [Fig. 6 (d)] when using the MVCS method might
be warranted.

5. Summary and conclusions

Artificial neural networks (ANNs) have been used extensively
for hydrological and water resources modelling over the last two
decades. In the vast majority of studies, multi-layer perceptrons
(MLPs) have been used as the ANN model architecture. However,
obtaining the optimal structure of such models is not an easy
task. By using general regression neural networks (GRNNs) as the
ANN model architecture, this problem can be overcome, as
GRNNs have a fixed model structure. However, there has been
limited investigation into the best way to estimate the parameters
of GRNNSs. In order to address this shortcoming, the performance
of nine different GRNN parameter estimation methods was
assessed in terms of accuracy and computational efficiency for
data with distributions of varying degrees of normality and non-
linearity on both synthetic and measured data. In addition, the
impact of the objective function on model performance was
assessed. In total, 5674 GRNN models were developed as part of
the computational experiments conducted. As a way of bench-
marking, the predictive performance and computational effi-
ciency of the GRNN models was also compared with that of MLP
models.
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The main results from the synthetic case studies show that:

1. The predictive performance of GRNNs developed using the
GRR, BCV, DPI, BCVDPI, and SCV based methods was generally
influenced by the distribution of the input/output data
because of their dependence on the Gaussian assumption
(assuming the wunderlying density follows a normal
distribution).

2. Compared to the GRNNs developed using the GRR, use of the
DPI, BCVDPI, and SCV based methods did not effectively
improve predictive performance, despite their decreased
dependence on the Gaussian assumption and increased
computational cost.

3. The predictive accuracy of GRNNs developed using the SVCA/
SVCS and MVCA/MVCS based methods was relatively insen-
sitive to the distribution of the input/output data because of
their independence of the Gaussian assumption.

4. There is a distinct trade-off between predictive accuracy
and computational efficiency for the methods investigated,
with a reduction in computational efficiency for the methods
that are least affected by the Gaussian assumption
(i.e. SVCA/SVCS and MVCA/MVCS) by several orders of
magnitude.

5. If an appropriate smoothing parameter estimation technique
is used, the predictive performance of the GRNN models is
very similar to that of the MLPANN models, although slightly
worse in some instances. However, the computational cost of
developing the GRNN models is generally significantly less. In
addition, there is no uncertainty in relation to the selection of
the most appropriate model structure.

Based on the general observations of the relationship between
the performance of the different GRNN parameter estimation
methods and the properties of the data and modelling objectives,
preliminary empirical guidelines for selecting the GRNN param-
eter estimation method that represents good trade-offs between
predictive accuracy and computational efficiency were
developed.

The validity of the guidelines was tested and confirmed for two
case studies with real data, including the forecasting of salinity in
the River Murray in South Australia and a rainfall-runoff study in
the Kentucky River basin in the USA.

While the results of this study provide useful insights and
guidance on the selection of appropriate parameter estimation
methods for GRNNs, further research into the possibility of
improving the predictive performance of some of the methods
that rely on the Gaussian assumption to some degree is war-
ranted, as these methods are much more computationally effi-
cient than the methods that are found to perform well with
extremely non-Gaussian data in this study. In particular, the
stage number used in the DPI, BCVDPI, and SCV methods may not
be sufficient to describe extreme distributions with data accu-
mulated at the boundary and a long tail. The boundary issue
(Scott, 1992; Karunamuni and Alberts, 2005), as another critical
issue with the same importance as the bandwidth, needs to be
studied further for problems that contain extreme data
distributions.
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Fig. A.1. Predictive accuracy for the validation data of MLPs and GRNNs, measured by CE, MCE, PI & MP], for different synthetic data-generating models and distributions for which
optimal parameters have been obtained using different methods.
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Fig. A.1. (continued).
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Fig. A.1. (continued).
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Fig. A.2. Standardised residuals for the training data of MLPs and GRNNs with different smoothing parameters for EAR4 model with different distributions (performance of the BCV
was similar to that of the GRR; performance of the BCVDPI and SCV was similar to that of the DPI; similar plots were also observed for TEAR10 & NL models).
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Fig. A.2. (continued).
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Fig. A.3. Predictive accuracy for the validation data of MLPs and GRNNs with different smoothing parameters for river salinity at Murray Bridge 1 day in advance (similar plots were
also observed for 5 days & 14 days in advance).
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Fig. A.4. Standardised residuals for the training data of MLPs and GRNNs with different smoothing parameters for river salinity at Murray Bridge 1 day in advance (plots of the BCV
were similar to those of the GRR; plots of the BCVDPI and SCV were similar to those of the DPI; similar plots were also observed for 5 days & 14 days in advance).
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Fig. A.5. Predictive accuracy for the validation data of MLPs and GRNNs with different smoothing parameters for runoff at Lock and Dam 10 in the Kentucky River basin1 day in
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ABSTRACT
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1. Introduction

Artificial neural networks (ANNs) have been applied success-
fully and extensively to environmental (e.g. Adeloye et al., 2012;
Ibarra-Berastegi et al, 2008; Luccarini et al., 2010; Maier and
Dandy, 1997b; Maier et al., 2004; Millie et al., 2012; Munoz-Mas
etal., 2014; Ozkaya et al., 2007; Pradhan and Lee, 2010; Young et al.,
2011) and water resources (eg. Abrahart et al, 2012; ASCE,
2000a,b; Dawson and Wilby, 2001; Maier and Dandy, 2000;
Maier et al., 2010; Wolfs and Willems, 2014; Wu et al., 2014)
problems over the last two decades. One of the most important
steps in the ANN model development process is the selection of
appropriate inputs (e.g. Galelli et al., 2014; Humphrey et al., 2014;
Maier et al., 2010; May et al., 2011, 2008b; Wu et al., 2014). Ac-
cording to Bowden et al. (2005a), if potential inputs that have a
pronounced relationship with the modelled output are not
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(A.C. Zecchin).
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included in the model, the performance of the resulting model will
be compromised. Conversely, if redundant or superfluous inputs
are included, computational efficiency is decreased, calibration
becomes more difficult and model parameters are less well defined,
potentially making model validation in terms of physical plausi-
bility, as well as knowledge extraction, problematic (Dawson et al.,
2014; Galelli et al., 2014; Haimi et al., 2013; Humphrey et al., 2014;
Maier et al., 2010; May et al., 2011; Mount et al., 2013).

Given the importance and likely impact of input variable se-
lection (IVS), it is somewhat surprising that in most studies, ad-hoc
approaches are used (Maier etal., 2010; Wu et al.,, 2014). However, a
number of quantitative approaches to IVS for ANN water resources
models have already been developed and utilized, such as sensi-
tivity analysis (Maier and Dandy, 1997a; Jain et al., 1999), the
Gamma test (Agalbjorn et al, 1997; Noori et al., 2011), partial
mutual information (PMI) (Bowden et al., 2005a), hybrid inde-
pendent component analysis and input variable selection filter
(Trappenberg et al., 2006), principal component analysis (Hu et al.,
2007), use of the Box—Jenkins method (Box et al., 2013), cross-
correlation analysis (Chua and Wong, 2010), distributed evalua-
tion of local sensitivity analysis (Rakovec et al., 2014), recursive
variable selection (RVS) embedded in dynamic emulation models
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(Castelletti et al., 2012a,b), and tree-based iterative input variable
selection (Galelli and Castelletti, 2013). Among these, PMI IVS is one
of the most promising approaches, as it has a number of desirable
properties, such as the ability to account for input relevance, the
ability to cater to both linear and non-linear input—output re-
lationships and the ability to determine the relative contribution
(significance) of selected inputs (May, 2010). In addition, it has
already been applied successfully to a number of studies (e.g.
Bowden et al., 2005a,b; Fernando et al., 2009; He et al., 2011; May
et al., 2008a,b; Wu et al., 2013).

However, current implementations of PMI IVS approaches are
not without their limitations. Generally, kernel density estimation
(KDE) is used to approximate the probability density function (PDF)
needed for the calculation of MI (Bowden et al., 2005a,b; He et al.,
2011; May et al., 2008a,b; Sharma, 2000a,b). One of the reasons for
this is that simple methods exist for KDE that are a function of only
a single parameter, the kernel bandwidth, otherwise termed the
smoothing parameter (Scott, 1992; Wand and Jones, 1995). While
many methods exist for estimating the bandwidth, in almost all
existing PMI IVS studies dealing with environmental and water
resources problems (e.g. Bowden et al, 2005ab; May et al,
2008a,b; He et al., 2011) the Gaussian reference rule (GRR) is
used for this purpose. The inherent limitation of this imple-
mentation of the PMI algorithm is that the input/output data are
assumed to follow a Gaussian distribution. However, this is unlikely
to be the case, as the distribution of most environmental and water
resources data is generally far from normal. As a result, use of the
GRR for determining the bandwidth for the KDE needed for MI
estimation is likely to result in inaccurate IVS for data that are
highly non-Gaussian (Galelli et al., 2014; Humphrey et al.,, 2014),
and over-smoothed bandwidths have been found to result in more
accurate MI estimates for such data (Harrold et al., 2001). Conse-
quently, there is a need to investigate the effectiveness of alterna-
tive approaches to estimating the bandwidth in PMIIVS so that the
performance of this commonly-used algorithm can be improved for
data that follow non-Gaussian distributions.

In order to overcome the limitations of existing PMI IVS
implementations outlined above, the objectives of the current
study are: 1) to assess if, and to what degree, the performance of
PMI IVS can be improved for data with different degrees of
normality by using alternative bandwidth estimators with reduced
reliance on the assumption that the data are normally distributed;
and 2) to develop and test a set of preliminary guidelines for
selecting the most appropriate bandwidth estimator for data with
different degrees of normality. Consequently this paper makes a
specific contribution in terms of improving the performance of the
PMI algorithm for data that are encountered most commonly in
practice.

The remainder of this paper is organised as follows. A detailed
explanation of PMI IVS is provided in Section 2, followed by the
methodology for meeting the objectives in Section 3. The results
are presented and discussed in Section 4. The developed guidelines
are validated on the semi-real studies in Section 5, before a sum-
mary and conclusions are given in Section 6.

2. PMIIVS

Although PMI IVS has been described in Sharma (2000a),
Bowden et al. (2005a), May et al. (2008b, 2011), and He et al.
(2011), the implementation of the KDE in 2-D used in this paper
has not been explained clearly thus far in this field of research.
Consequently, the overall procedure, mathematical details, and
relevant assumptions of the PMI IVS algorithm implemented in this
paper are discussed in detail below for the sake of completeness. As
illustrated in Fig. 1, the first step is to procure candidate inputs X and
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Fig. 1. Procedure of PMI IVS adopted in this study (the superscript is omitted, as all
operations are performed over the input data j=1,..., n).

output(s) y from the available data in accordance with an under-
standing of the system. Let: X = [X;...X;y]" be the input, wherem is
the number of inputs; (X/,)/) be the observed pairs of input and
output data for j = 1.....n, where n is the number of observations,
X — [x}...X},]" are the observed input data and y/ are the observed
output data.

The second step is to estimate the marginal PDF of each indi-
vidual input f(X;) and the output f(y). The PDF is approximated by
KDE in accordance with

fmw%ﬁm@—@ (1)
-

The kernel type K, used in Eq. (1) is the most commonly used
Gaussian kernel since the selection of kernel type has negligible
impact on the accuracy of KDE (May et al., 2008b; Scott, 1992;
Wand and Jones, 1995). The expression of the 1D Gaussian kernel is

1 X2
Kn(X) :WEXD(_W) (2)

In Eq. (2), h is the univariate kernel bandwidth, which determines
the accuracy of the KDE (Duong and Hazelton, 2003; Scott, 1992;
Wand and Jones, 1995). This single dimensional bandwidth, used
for the marginal PDF estimation, directly contributes to the band-
width matrix used for the joint PDF estimation (as explained later).
As mentioned previously, in most studies, the GRR has been used
for the estimation of the kernel bandwidth in PMI IVS due to its
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high computational efficiency, ease of implementation, and
reasonable stability (Bowden et al., 2005a; He et al.,, 2011; Huang
and Chow, 2005; May et al., 2008b).

The third step is to calculate the joint PDF f(X;.y) between the i-
th input and the output, which requires the development of a 2-D
bandwidth matrix for the joint KDE. The currently used bivariate
bandwidth matrix for standardised data is

2 Sesi
H=h2|x Oy 3)
sxy.i sy

where Sﬁ_i is the sample variance of the input X;; Sy, is the
covariance between input X; and outputy, Sf is the sample variance
of the output y, and h;(h; = h,; = hy) is the estimated 1-D kernel
bandwidth if the data are standardised, or for non-standardised
data

H-— h)z(_l' ﬂxy\ihxjhy (4)
Pxy.i hyihy hﬁ

(known as a hybrid class of bandwidth matrix), where p,, ; is the
correlation coefficient between input X; and output y. According to
Wand and Jones (1993), the diagonal terms of the bandwidth ma-
trix adjust the shape of the joint PDF, while the off-diagonal terms
control the orientation. The empirical joint density of the i-th input
Xi and the output y can be estimated by the Gaussian kernel-based
estimator as

o =553 4]

J

where the multivariate kernel is given by

Ky(X) = -leH-'x} (6)

1
(\Vnmn) o0

It should be noted that this approximation is commonly known as
the Parzen window density estimation (Cacoullos, 1966; Parzen,
1962). This is valid, however, only if the underlying density is
continuous and the first partial derivative at any X is small.
According to Shannon (1948), Ml is then approximated as

F(X.¥) } -

)

(marginal PDst(X’i) andf()/) are as defined in Eq. (1)) in the fourth
step. The input with the greatest MI value is the most significant
input among the candidate inputs. The significant inputs are
selected by means of these four steps during the first run of the
algorithm and added to the significant input set Xs, that is, the set is
updated to include X;- € X; where i* = argmax{l,, ,}.

In order to remove any redundant information, residual esti-
mation is required in the fifth step. Residual estimation is at the core
of the ‘partial’ aspect of PMI IVS and the mutual information shared
between the residual inputs and output is called PMI (the term used
after the 1st iteration of the PMI IVS). Typically, a general regression
neural network (GRNN) (Specht, 1991) is used as the residual
estimator in PMI IVS (e.g. May et al., 2008b; He et al., 2011). The
residual estimator is used to update the inputs and output by
removing the influence of the selected input variables. The updated
input is defined as the difference between the current value of the

l n
IX,'._V z; Z lo

=1
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unselected inputs v; and the estimation of v; based on the selected
input X;. and is given by

V:<—v: - ﬁ1,,l(X‘ii.) (8)

where m,, (X{.) is the residual estimate of v; based on X;- which
removes the shared information between the selected input X{m and
the remaining inputs v;. Similarly, the updated output is

w1 — iy (X)) (9)

where ﬁru(x{.) is the residual estimate of u based on X;-, which
again eliminates the shared information between the selected in-
puts X;- and the output u.

The sixth step is to judge the selected input against the chosen
stopping criterion. Potential stopping criteria include the boot-
strapping, the tabulated critical values, the Akaike information
criterion (AIC), and the Hampel test, as discussed and tested in May
et al. (2008b). After updating the input and output variables based
on the selected input variable, the corresponding PMI is estimated
as

v u]
f—fﬁ,:)f&ﬂ 1o

based on Egs. (7) to (9). If the PMI value of the selected input is still
significant according to the applied termination criterion, the above
steps are repeated, as shown in Fig. 1, until all significant inputs Xs
have been determined. In this way, the algorithm can accommodate
a large number of potential input variables, as demonstrated in
Fernando et al. (2009).

1 n
I[r‘ u :F kz] log

3. Methodology

The adopted procedure for assessing if, and to what degree, the
performance of PMI IVS can be improved for data with different
degrees of normality by using alternative bandwidth estimators is
outlined in Fig. 2. This proposed approach contains three main
steps: (i) generation of input/output data for a range of distribu-
tions (with different degrees of normality); (ii) estimation of the
kernel PDF and MI for these data using a number of different kernel
bandwidth estimators; (iii) assessment of the performance of the
IVS process.

3.1. Generation of inputfoutput data with different degrees of
normality

As pointed out by Galelli et al. (2014), the accuracy of IVS al-
gorithms can only be assessed in an objective and rigorous manner
if the correct outputs are known. Consequently, input data with
different degrees of normality were generated from distributions
with differing degrees of normality, and the corresponding output
data were obtained by substituting the generated inputs into syn-
thetic models. Seven distinct distributions were used for input data
generation, including normal (NORM), log-normal (LOGN), expo-
nential (EXP), gamma (GAMMA), Pearson type Il (PT3), log-Pearson
type IlI (LOGPT3), and extreme value type | (EVT1), as these are the
most commonly adopted distributions in hydrological modelling
(Chow et al.,, 1988). The degree of normality of the input/output
data was measured using skewness and kurtosis in accordance with
Bennett et al. (2013). The properties of each distribution are listed
in Tables 1 and 2. Although time series of different lengths (i.e. 500,
1000, and 2000) were considered in preliminary tests, their impact
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1. Synthetically generate Input and output data with
different degrees of normallity

Generate 500 input data from 7 distinct
distributions

[NORM, LOGN, EXP, GAMMA, PT3, LOGPT3,
EVT1]

+

Generate corresponding output data for
each of the 500 input data with 7
distributions via 3 functions with different
problem non-linearity

[EAR4, TEAR1O, NL]

-

Obtain 21 sets of 500 synthetically
generated inputs and outputs

L

2. Estimate PDF and M| using different bandwidth
estimators: GRR, BCV, 2-stage DPI, BCVDPI, SCV, 5VO

I!

3, Estimate reslduals using different bandwidth
estimators: GRR, SVCS

Herative process withl=1, 30

d

4, Assess performance of VS over 30 trials

Accuracy Computational efficlency
Assess accuracy of Assess computatlonal
PDF estimation expense using

and PMI selection: computational time {CT}:
CSR CPU time

Fig. 2. Outline of the proposed experimental approach.

Table 1

Details of the distributions used to generate values of the exogenous input variables
and the statistical properties of the generated data for all time series models (EAR4,
TEAR10).

Distribution Key parameters s k Normality
NORM Mean = 3.0; sd = 1.0 0.000 -0.013 High
GAMMA Shape = 2.0; scale = 1.0 1370 2,638 High
LOGN Mean = 0.5; sd = 1.0 5326 53.694 Low
EXP Rate = 1.0 2132 7219 Moderate
PT3 Shape = 2.5; scale = 3.0; 1251 2381 High
location = 2.0
LOGPT3 Shape = 0.5; scale = 0.2; 4.792 43.265 Low

location = 2.0
EVT1 Shape = 0.0; scale = 0.5; 1.198 2.880 High
location = 10.0

The skewness and kurtosis shown in the table are the averaged values of all input
and output data.

Table 2

Details of the distributions used to generate values of the input variables and the
statistical properties of the generated data for the non-linear input—output model
(NL).

Distribution Key parameters s k Normality
NORM Mean = 3.0; sd = 1.0 1.826 5158  High
GAMMA Shape = 2.0; scale = 1.0 10520  192.091 Low
LOGN Mean = 0.5; sd = 04 5389 47.767 Low
EXP Rate = 1.0 14.029  334.408 Low
PT3 Shape = 0.5; scale = 1.0; 16.271 514.270 Low
location = 0.5
LOGPT3 Shape = 0.5; scale = 0.2; 14.261 390.522 Low

location = 0.5
EVT1 Shape = 0.1; scale = 0.0; 1.788 9.807
location = 10.0

Moderate

The skewness and kurtosis shown in the table are the averaged values of all input
and output data.

on the results was found to be insignificant. Therefore 500 data
points were generated and the first additional 25 points were
rejected in order to prevent initialisation effects (May et al., 2008b).

The three synthetic models used for generating the known
outputs, given a set of inputs, included a linear exogenous auto-
regressive time series model (EAR4), a threshold exogenous auto-
regressive time series model (TEAR10), and a non-linear
input—output model (NL), as they are representative of general
water engineering problem scenarios with increasing degrees of
problem non-linearity and are based on those used for this purpose
in previous studies (Bowden et al., 2005b; Galelli and Castelletti,
2013; Li et al., 2014; May et al., 2008b). The equation of the EAR4
model is given by

Xt = 0.6x;_1 —04x;_4 + P11+ 0.1 (] 1)

where x; stands for the output time series; x; , represents the
input time series with lag n; p;_, is the exogenous input with lag n;
and 0.1g is the introduced error term (as explained later). The
equation for the TEAR10 model is given by

Xp = —O‘SX‘_G = o O‘Sxt_]o — 0'3pt—1 + 0.1¢ X6 < 0 (]2)
=0 0.8%_ 10— 0.3p,_1 + 0.1g: otherwise

and the equation for NL is given by

y = (x2)> + Xg + 5 sin(xg) + 0.1 (13)

The first two synthetic models (Egs. (11) and (12))were modified
from those used in May et al. (2008b) through the introduction of
an independent lagged input p; ; into all exogenous AR models,
and the p; ; were sampled from the distributions outlined in
Table 1. The third synthetic model (Eq. (13))was modified from the
one used in Bowden et al. (2005a) through a slight adjustment of
the significance (coefficient) of each input, and each input was
sampled based on the distributions outlined inTable 2. For all three
synthetic models, the error term 0.1¢ was added to introduce noise
without obscuring the influence of the actual independent vari-
ables. The noise term ¢ followed a standard normal distribution
N(0.1). In addition, for each synthetic model, 22 redundant or
irrelevant input variables were included, so that the effectiveness of
PMI IVS could be tested.

3.2. Estimation of PDF and MI using different bandwidth estimators

The kernel bandwidths used to estimate the PDF and MI for the
synthetic and semi-real data sets were approximated by six
different bandwidth estimators, including the Gaussian reference

287



X. Li et al. / Environmental Modelling & Software 65 (2015) 1529 19

rule (GRR), biased cross validation (BCV), 2-stage direct plug-in
(DPI), a combination of BCV and DPI (BCVDPI), smoothed cross
validation (SCV) and single variable optimisation (SVO) (Fig. 2).
These bandwidth estimators were selected because they have
distinct dependence on the Gaussian assumption. The mathemat-
ical details of each method are given in the following sections.

3.2.1. Gaussian reference rule (GRR)

As the most commonly used bandwidth estimator, the GRR is
applied as the benchmark approach in this study. It approximates
the bandwidth by minimising the asymptotic mean integrated
squared error (AMISE) between the unknown probability function f
of the given data and the KDE f(-:h) under the integrability
assumption of f, in accordance with Scott (1992) and Wand and
Jones (1995). The expression of AMISE is given as
AMlSE{f(-:h)} = (nh)"'R(K) +%h4u2(K)2R(f”) (14)
where K is the kernel function; R(K) is the integrated square of the
kernel function; u, (K) is the second moment of K; and R(f") is the
integrated squared second derivative of f. According to Wand and
Jones (1995), although it is ideal to determine the bandwidth by
directly investigating the mean squared error (MSE) (summation of
bias and variance), its expression depends on the bandwidth in a
complicated way, which makes it difficult to interpret the impact of
the bandwidth on the performance of the KDE. Consequently,
AMISE was developed with consideration of the bias and the
variance of the approximated kernel density function f(-;h)
(assuming that the bandwidth approaches 0 at a rate slower than
n~! and K has a finite 4th moment and symmetry about origin) to
overcome such issues and the optimal univariate bandwidth with
respect to the AMISE can be derived as

” 5
herri = (%) on

by assuming that the data follow a Gaussian distribution and by
adopting a Gaussian kernel. A detailed derivation of Eq. (15) is given
in Wand and Jones (1995) and Scott (1992).

(15)

3.2.2. Biased cross validation (BCV)

Although the BCV based bandwidth estimator also minimises
the AMISE, and depends on the Gaussian assumption through
minimising the AMISE under the assumption of normally distrib-
uted data, it is a combination of a cross-validation and ‘plug-in’
approach, which is potentially more stable than the GRR (Scott and
Terrell, 1987) as its asymptotic variance is considerably lower. The

BCV is achieved via replacing the unknown R.(f"') in Eq. (14) by a

REF) =n2 % 5 (K'*K")
P#q

(XP —X{) and the optimal bandwidth is then determined by min-

imising the approximation of the AMISE with the cross-validation
term. Therefore its expression is given as

cross-validation kernel estimator

hgevi = argminh{mh)‘ () + a2 32 3 (KK

pP¥q
< (-t}
(16)

where K’ denotes the second derivative of kernel K and * is the
convolution operation and the golden section search (GSS) method
(Press et al, 1992) was applied for the purpose of univariate
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optimisation in the current study. A detailed derivation of Eq. (16)is
given in Wand and Jones (1995).

3.2.3. 2-Stage direct plug-in (DPI)

As with the GRR and BCV based approaches, the DPI estimates
the optimal bandwidth by minimising the AMISE. For univariate
KDE, the optimal bandw:dth for Eq. (14) can be derived as
[(R(K))/(uz(K)ZR(f )n)]g in accordance with Wand and Jones (1995).
The DPlis then establlshed through replacing the unknown R(f") in
[(R(K))/ (ma( K)ZR(f )n)]fv by a pilot kernel estimation of the r-th
order integrated squared density derivative ¢,(g) (where g is the
pilot kernel bandwidth; L is the pilot kernel; and r is the stage
number), according to Park and Marron (1992). Hence the univar-
iate bandwidth estimator of DPI becomes

o e s
13(K)* 94 (g)n

where @4(g) is the fourth order integrated squared density deriv-
ative, which is approximated by the pilot kernel L with a pilot
bandwidth g (Hall and Marron, 1987; Jones and Sheather, 1991).
Although the pilot kernel L can be identical to the Gaussian kernel
K, the pilot bandwidth g is estimated by minimising the asymptotic
mean squared error (AMSE), resulting in

[ ko) 1™
g [—nk(L)a.-+k(g)n] sl

where k represents the order of the pilot kernel L (normally k = 2); r
is the stage number of L; and (L) is the k-th moment of L. Although
the stage number r determines how many kernel estimations are
required to approximate 4(g) based upon the higher order inte-
grated squared density derivative and more stages can result in a
better estimation, determination of the optimal stage number is not
trivial and there is a trade-off between an increase in accuracy and
computational efficiency (Wand and Jones, 1995). Consequently, the
stage number used for the current study was two, as suggested by
Aldershof (1991) and Park and Marron (1992), which results in a
desirable balance between the effectiveness and computational cost
of the pilot kernel. The motivation behind the DPI is that the
dependence of the Gaussian assumption is attenuated by introducing
the pilot kernel estimation with r> 0, which makes the estimation
more sensitive to the actual distribution. In fact, the GRR can be
treated as a special case of the DPl withr = 0. A detailed derivation of
Egs. (17) and (18) can be found in Wand and Jones (1995).

(17)

3.2.4. Combination of BCV and DPI (BCVDPI)

The BCVDPI is simply a combination of the BCV and the DPI
based approaches. The motivation behind this method is to main-
tain the advantage of low asymptotic variance in BCV, while adding
the feature of reduced Gaussian dependence from the pilot kernel
estimator used in DPI. Hence, the BCVDPI is implemented by
replacing the cross-validation kernel estimator
n2% 3 (KK )(XP — XJ) in hgey; (EQ. (16))with the g4(g) used

P#q

in EDP” (Eq. (17)), resulting in the following expression.

fscvor = argming { () R(K) + g% (K 2s(@)on ) (19

As such, the BCVDPI inherits the reduced dependence on the
Gaussian assumption from the ‘plug-in’ term ¢, (g) and the optimal
bandwidth is approximated by minimising the AMISE, which was
obtained for the BCVDPI in this study by optimisation with the GSS.
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3.2.5. Smoothed cross validation (SCV)

Although the concept behind the SCV based bandwidth esti-
mator is similar to that underpinning the aforementioned four
approaches, SCV aims to minimise the exact MISE (EMISE), rather
than the AMISE used in the other four methods. The main differ-
ence between the EMISE and AMISE is that the former estimates
MISE as a summation of the exact integrated squared bias and the
approximation of the integrated variance of f (-; h), while the later
approximates MISE by integrating MSE (summation of bias and
variance) with the integrability assumption and the asymptotic
feature of the integrated squared bias. The EMISE derived for SCV is
given as

EM]SESCVA,-(h) = (nh) 'R(K) + 1§§(h) (20)

where the exact integrated squared bias Eﬁ(h) is estimated by

n n
ISB(h)=n"23 "> (Ky*Ky*Ly*Lg—2*Ky*Lg*Lg +Lg*Lg ) (XD —X7)
p=1g=1
(21)

where Kj, and L; are the Gaussian kernels with kernel bandwidth
h and pilot kernel bandwidth g, respectively (Hall et al., 1992;
Wand and Jones, 1995). g is a function of a series of pilot kernel
bandwidths, each estimated based upon sequentially higher or-
der integrated squared density derivatives, and up to the 10th
order was applied in this study based on Wand and Jones (1995).
The SCV based optimal univariate bandwidth is then determined
as

hscy; = argminy, {EMISEscy i (h) } (22)

A detailed derivation of Eq. (22 ) can be found in Wand and Jones
(1995). Although the dependence on the Gaussian assumption of
SCV is also reduced by introducing the pilot kernel estimation,
which is similar to that of the DPI, the predictive accuracy of the
former is expected to be the same as or better than that of the latter
due to minimising EMISE, rather than AMISE.

3.2.6. Single variable optimisation (SVO)

Unlike the five estimators mentioned above, SVO, developed in
this paper, determines the best bandwidth by minimising the
Kolmogorov—Smirnov (K—S) statistic (Parsons and Wirsching,
1982) between the empirical and estimated cumulative density
functions (CDFs). This method does not depend on the Gaussian
assumption, nor the approximation of the MISE. The optimal uni-
variate kernel bandwidth is determined as

ESVO,i = argmin,, {supj_lm,, IFemp (X{) — Fest (X',’> ‘ } (23)

where Fcn,p(X{) is the empirical CDF of the input variable esti-
mated by a histogram; Feq(X!) is the estimated kernel-based CDF
of the input variable; and sup represents the supremum function.
The adopted optimiser was the GSS. The performance of the
empirical histogram is a function of the histogram bin width,
therefore a number of bin widths (from 0.001 to 1.0) were tested
via sensitivity analysis. Although alternative ways can be used to
estimate the histogram bin width for each case, the results of the
sensitivity analysis (as shown in Appendix A Figs. A.4to A.6) sug-
gest that a bin width of 0.01 was adequate for the purposes of this
study.

It should be noted that the introduced kernel bandwidth esti-
mators were implemented directly for the estimation of the uni-
variate marginal PDF, which then extended to the bivariate joint

PDF in conjunction with the bandwidth matrix, as mentioned in
Section 2 (as in Egs. (3)to (6)).

3.3. Performance assessment

As mentioned in the Introduction and described in Fig. 2, PMI
performance was assessed based on selection accuracy and
computational efficiency. Selection accuracy was characterised by
the correct selection rate (CSR), which corresponds to the per-
centage of times the correct inputs are selected in the 30 inde-
pendent trials with different instances of a particular data set, as
was done in May et al. (2008b) and Galelli and Castelletti (2013). In
addition, the degree of over- and under-estimation of the correct
inputs was also assessed, in order to provide additional information
on selection accuracy (see Galelli et al., 2014).

Computational efficiency was measured using the average CPU
time (measured by a dual processor 2.6 GHz Intel Machine).

3.4. Test regime

The software used for conducting the numerical experiments
was coded in Fortran 90/95 and run on a Linux 2.6.32.2 operating
system. As outlined in Fig. 2, 630 synthetic data sets were gener-
ated, which consisted of a combination of 30 replicates, for each of
the three synthetic models with input data generated from the
seven distributions. For the 630 data sets, each of the 6 different
kernel bandwidth estimators was used for KDE, resulting in a total
of 3780 tests for the synthetic case studies.

The residual estimation required for PMI estimation (see Section
2) was carried out using a GRNN, as was the case in previous studies
(e.g. Bowden et al., 2005a; May et al., 2008b; Fernando et al., 2009).
The empirical guidelines proposed by Li et al. (2014) for identifying
the most appropriate bandwidth estimation approach based on the
distributional properties of the data were used in order to isolate
the impact of different bandwidth estimators for residual estima-
tion on IVS accuracy as much as possible. Details of the GRNN
bandwidth estimators used for the different datasets resulting from
the application of these empirical guidelines are given in Table 3.

The Akaike Information Criterion (AIC) (Akaike, 1974) was used
as the stopping criterion (i.e. to decide when to stop adding inputs
to the selected set) because it offers a trade-off between model
accuracy and generalisation ability (Akaike, 1974; Bennett et al.,
2013; Dawson et al,, 2007; May et al., 2008b), has been found to
perform well compared with alternative stopping criteria (May
et al, 2008b) and has been successfully applied to a number of
previous studies using PMI IVS (e.g. May et al., 2008a,b; He et al,,
2011; Wu et al,, 2013). The AIC stopping criterion for PMI IVS is
computed as

A]C:nx]n[%i:(yj—ij)z] + 2k (24)

j=1

where y' denotes the estimated output and k is the number of
effective inputs, measured by the trace of the n x n hat-matrix in
KDE (May et al., 2008b). The performance of all 3780 synthetic tests
was assessed against the performance criteria detailed in Section
3.3

4. Results and discussion

Within the following, Section 4.1 focuses on assessing the se-
lection accuracy of the PMI IVS methods with different bandwidth
estimators applied to the synthetic data sets, and Section 4.2
focusses on computational efficiency. The empirical guidelines for
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Table 3
GRNN bandwidth estimation techniques used for residual estimation during the PMI
IVS process (based on the guidelines from Li et al., 2014).

Synthetic data set 1 EAR4

Data distribution NORM EVT1I PT3 GAMMA EXP LOGN LOGPT3
Bandwidth estimator GRR'  GRR GRR GRR GRR SVCS SVCs

Synthetic data set 2 TEAR10

Data distribution NORM EVT1 PT3 GAMMA EXP LOGN LOGPT3
Bandwidth estimator GRR'  GRR GRR  GRR GRR SVCS SVCs

Synthetic dataset 3 NL

NORM EVT1 LOGN PT3 EXP LOGPT3 GAMMA
GRR SVCS SVCS SVCS SVCs SvVGs

Data distribution
Bandwidth estimator GRR

GRR denotes for Gaussian reference rule; SVCS stands for single variable calibration
with squared error based fitness function.

the selection of the most appropriate bandwidth estimators for PMI
IVS are presented in Section 4.3.

4.1. Selection accuracy

The accuracy of the PMI algorithm with alternative bandwidth
estimators for the three synthetic models is summarised in Figs. 3
to 5. As can be seen from Fig. 3, for the EAR4 model, the use of
alternative bandwidth estimators did not result in any significant
improvement in CSR when the input/output data followed
Gaussian or nearly Gaussian distributions (averages <1.3 and k< 3;
i.e. NORM, EVT1, and PT3). For instance, the CSRs when the GRR was
used were all above 96.7% for the NORM, EVT1, and PT3 distribu-
tions, indicating very high selection accuracy. This result can be
explained by the fact that the alternative bandwidth estimators did
not provide a significant improvement in KDE accuracy compared
with the GRR, as assessed using the Kolmogorov—Smirnov (K—S)
statistic (Parsons and Wirsching, 1982), as shown in Figs. 6(a) to (c).
This is not surprising, as the Gaussian assumption used in the KDE
is consistent with the actual input/output data distributions, which
resulted in an insignificant difference between the empirical and
estimated CDFs (Figs. 6(a) to (c)). To better understand the causes
for these findings, the predictive accuracy of the GRNN models used
for residual estimation at each step of the PMI process was assessed
using the coefficient of efficiency (CE) (Fig. 7), which measures the
difference in predictive performance of the model and a model that
only contains the mean of the observations (Bennett et al., 2013). As
can be seen, the predictive accuracy of the GRNN models was very
high, as indicated by CE values close to 1. Consequently, errors in
residual estimation were unlikely to contribute to any inaccuracies
in PMI IVS.

For data that were moderately non-Gaussian (average 1.3 <s <5
and 3 <k<30; i.e. GAMMA and EXP), the alternative bandwidth
estimators (DPI, BCVDPI, SCV, and SVO) increased the CSR (Fig. 3).
For example, for data following the EXP distribution, use of the GRR

PMI Selaction (EARA)
HNORM WEVT1 ®PT3 mGAMMA mEXP ®wLOGN = LOGPT3
100%
am
5 60%
40%
20%
%
GRR BCV DPl BCVDPI 5oV Svo
Bandwidth Estimator

Fig. 3. Correct selection rate of EAR4 model with alternative bandwidth estimators.
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PMI Selaction {TEARLD)
ENORM =EVT1 mPT3 EGAMMA EEXP mLOGN wLOGPT3

GRR BCV DPI
Bandwidth Estimator

BCVDP SV VO

Fig. 4. Correct selection rate of TEAR10 model with alternative bandwidth estimators.

resulted in a CSR of 86.7%, whereas the CSRs for the alternative
bandwidth estimators were much higher at 96.7% (SVO), 93.3%
(SCV and DPI) and 90.0% (BCVDPI). As can be seen from Figs. 3, 6(e),
and 6(f), the trend in improvement in CSR for the different band-
width estimation techniques is matched by a similar trend in KDE
accuracy, suggesting that the improved KDE has a direct impact on
CSR. This is because the DPI, BCVDPI, SCV, and SVO based estima-
tors have a reduced dependence on the assumption that the data
follow a Gaussian distribution compared with the GRR. As was the
case for the data that followed mildly non-Gaussian distributions,
the accuracy of the GRNNs used for residual estimation was very
high (Fig. 7), suggesting that the residual estimation step in the PMI
process was unlikely to have any negative impact on CSR.

When the average distributions of the input/output data were
extremely non-Gaussian (average s>5 and k>30; i.e. LOGN and
LOGPT3), use of the alternate bandwidth estimators still resulted in
a noticeable improvement in CSR (Fig. 3). However, this improve-
ment was less pronounced for the most extreme distribution
(LOGPT3), increasing CSR from 43.3% when the GRR was used to
just over 60% when the DPI, BCVDPI, SCV and SVO were used. This is
significantly lower than the CSR (over 90%) obtained for all other
distributions. The reason for this is likely to be a combination of
inaccuracy in KDE, as well as residual estimation. As can be seen in
Fig. 6(g), although the use of SVO resulted in improved KDE, the
K-S statistic is still outside the 95% confidence limits. In addition,
there are significant errors in residual estimation, as shown in Fig. 7,
even though the bandwidth estimator was based on the empirical
guidelines suggested by Li et al. (2014). As seen in the LOGN and
LOGPT3 boxplots in Fig. 7, despite the relatively high median, very
low CE values were obtained for some of the 30 trials, which is
likely to have a negative impact on CSR. These residual estimation
inaccuracies are most likely caused by boundary issues (Scott, 1992;
Karunamuni and Alberts, 2005), as discussed in Li et al. (2014),
which occur when a symmetrical kernel is applied at a bounded
and unsymmetrical boundary, resulting in an under-estimated
density near the boundary.

It should also be noted that while the results suggest that
improved accuracy in KDE results in improved PMI selection ac-
curacy, consideration of the average ratio of the bandwidths of the

PMI Salection {NL}
ENORM WEVT1 WLOGN mGAMMA HEXP WLOGPTA EPT
100%
80%
a 60%
40%
20%
0%
GRR BCV DPI BCVOPI SV VO
Bandwidth Estimator

Fig. 5. Correct selection rate of NL model with alternative bandwidth estimators.
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Fig. 6. KDE accuracy measured by K-S statistics for EAR4 & TEAR10 models (The dashed line indicates the 95% confidence interval for kernel density estimation based on the

Kolmogorov—-Smimov (K-S) statistic (Parsons and Wirsching, 1982)).

30 replicates used in the MI calculation (see Eq. (25)) is also
informative.

ho .
Ratio of the bandwidths = —22* (25)
hcge i
EAR4 GRR/SVCS
»Ql -min #med -max =03
100 ——tm————im
53 5
i T T T
s 060
Y040 ]
0.20
0.00 (

NORM EVT1 PT3 GAMMA EXP LOGN LOGPT3
Data Distribution

Fig. 7. Residual accuracy measured by CE for EAR4 model.

where fzpm,’ stands for the estimated bandwidth based on the
proposed bandwidth estimators and hggg; is the estimated band-
width based on the GRR (Eq. (15)). As part of an empirical study on
the effect of different bandwidth ratios on the accuracy of Ml
estimation, Harrold et al. (2001 ) found that for highly non-Gaussian
data, an over-smoothed bandwidth performs best, with an optimal
bandwidth ratio of 1.5. This general finding is confirmed by the

Table 4
Average ratio of different kernel bandwidths under different distribution scenarios
for EAR4 model.

NORM  EVT1 P13 GAMMA  EXP LOGN  LOGPT3
GRR
BCV 0.964 0954 0997 0984 1033 1007 0997
DPI 0958 0886 1.039 0971 1265 1716 1.804
BCVDPI 0958 0.886 1.039 0971 1265 1716 1.804
SCcvV 0971 0856 1.046 0967 1268 1737 1.804
SVo 0.493 0418 0810 0.791 1.190 1399 1497

The average ratio is between each of the alternative kernel bandwidth estimators
and the GRR.
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Fig. 8. KDE accuracy measured by K-S statistics for NL model (the dashed line indicates the 95% confidence interval for kernel density estimation based on the Kolmogor-

ov-Smirnov (K-S) statistic (Parsons and Wirsching, 1982)).

results of this study (Table 4), which show that bandwidth ratios
increase with the degree of non-Gaussianity for the bandwidth
estimators that result in more accurate KDE. In addition, the GRR
based PMI IVS is found to mainly underestimate the correct number
of significant inputs (shown in Appendix A, Fig. A1) for the non-
Gaussian cases (e.g. LOGN and LOGPT3), which is consistent with
the results (i.e. NL and Bank cases) in Galelli et al. (2014). This can be
ascribed to the underestimated bandwidth, as the severity of
underestimating the correct number of significant inputs is pro-
portional to the bandwidth ratio outline in Table 4. However,
alternative bandwidth estimators (i.e. DPI, BCVDPI, SCV, and SVO)
tend to correct such underestimation with increased bandwidths,
which sometimes even result in slight overestimation.

The general trends observed for the EAR4 model were
confirmed by those obtained for the TEAR10 and NL models, except
for the comparatively low accuracy when SVO was used for the
NORM and LOGPT3 distributions for the data generated from the
TEAR10 model and the overall reduction in CSR for the data
generated from the NL model. Even the alternative bandwidth es-
timators (i.e. DPI, BCVDPI, SCV, and SVO) were found to tend to
underestimate the correct number of significantinputs, as shown in
Appendix A Fig. A3. This observation is likely to be the result of the
combined effect of the reduced KDE and residual estimation ac-
curacy due to boundary issues, particularly influenced by increased
problem non-linearity, as discussed below. For example, the non-
Gaussianity of the NL model, as measured by skewness and kur-
tosis, is much more severe than that of the EAR4 and TEAR10

NL GRR/SCVS
*xQl -min ¢med -max xQ3
100 —== == _
0.80 A & —L n
0.60
y 040 ]
0.20
0.00 T T T

NORM EVT1 LOGN GAMMA EXP LOGPT3 PT3
Data Distributlon

Fig. 9. Residual accuracy measured by CE for NL model.

models (as shown in Tables 1 and 2), suggesting increased potential
impact of boundary issues on KDE and residual estimation. For
kernel based PDF and MI estimation, the corresponding accuracy of
the KDE of the NL model is generally slightly worse than that of the
EAR4 and TEAR10 models, as indicated by the K—S values in Figs. 6
and 8. For residual estimation, the overall accuracy of the NL model
was found to be significantly less than that of the EAR4 model, as
shown in Figs. 7 and 9. This can be explained by the fact that the
univariate GRNN used for residual estimation is essentially a
Nadaraya—Watson regression and therefore the corresponding bias
is a function of the regression function m(X;) and the probability
density function f(X;) with respect to input X;. According to Fan
(1992), Ruppert and Wand (1994), and Masry (1996), this bias in-
creases as the boundary issue becomes severe. Consequently, the
accuracy of residual and PMI estimation is likely to be compromised
as the influence of boundary issues increases with increasing
problem non-linearity and non-normality.

4.2. Computational efficiency

The computational efficiency of different bandwidth estimators
used for the EAR4 model is given in Fig. 10. The GRR based method
was found to be the most efficient overall. This can be explained by
the fact that the only unknown parameter is the size of the applied
data after standardisation (May et al., 2008b). The computational
expense of the BCV approach was close to that of the GRR because
the fitness functions used are identical, although the BCV requires
an additional iterative optimisation process. The average runtimes

Efficlency (EARS)

ENORM ©EVTL ®PT3 EGAMMA HEXP mLOGN = LOGPT3

GRR

BCY DPI BCVDPI

Bandwidth Estimatar

Scv SvO

Fig. 10. Computational efficiency of EAR4 model with different bandwidth estimators.
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Fig. 11. Suggested bandwidth estimators under different distribution scenarios (VE = comparatively very computationally efficient, E = comparatively moderately computationally
efficient, and NE = comparatively not computationally efficient; *recommendation based on Li et al., 2014; ** recommendation based on present study).

for both DPI and BCVDPI were double that required by the GRR. This estimation is significantly less than that of the methods discussed
is because of the additional time required for the estimation of the thus far, with an average runtime of 667s, which is over 110 times
pilot bandwidths during each iteration of the Ml estimation (Wand greater than that associated with the GRR. The increased compu-
and Jones, 1995). The efficiency of using SVO for bandwidth tational requirements of SVO are aresult of the need to estimate the
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Fig. 12. The River Murray in South Australia (Maier and Dandy, 1996).
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Table 5
Candidate inputs and output for the salinity case study.
Candidate inputs Output
Location Variable Abbreviation Lags Location Variable Abbreviation Forecasting period
Mannum Salinity MAS 13,579 Murray Bridge Salinity MBS 14
Morgan Salinity MOS 1.3,5.2.9
Waikerie Salinity WAS 1,2345
Loxton Salinity LOS 12345
Murray Bridge Salinity MBS 13,579
Lock 1 Upper River level L1UL -3,-1,135

fitness function for each trial bandwidth during the optimisation
process. Use of the SCV method was most inefficient, with an
average runtime of over 160 times greater than that for the GRR.
The inefficiency of SCV can be ascribed to the need to approximate a
high order integrated squared density derivative during each iter-
ation of the MI estimation (Wand and Jones, 1995), as well as the
optimisation searching process. These findings were supported by
the results for the TEAR10 and NL models (see Figs. A.7 and A.8 in
Appendix A).

4.3. Suggested rules and guidelines

The preliminary empirical guidelines for selecting the most
appropriate kernel bandwidth estimation technique based on the
degree of normality of the data (according to the findings of the
3780 computational experiments with the synthetically generated
data) are given in Fig. 11. It should be noted that the proposed
guidelines represent reasonable trade-offs between selection ac-
curacy and computational efficiency, although it is acknowledged
that the best trade-off is also a function of case-study dependent
features and user preferences.

As can be seen in Fig. 11, the preliminary empirical guidelines
can be categorised into three scenarios, as described below:

Scenario 1: If most of the input/output data follow Gaussian or
nearly Gaussian distributions (average s < 1.3 and k < 3), the GRR
is suggested for residual estimation and the GRR (or BCV) is
recommended for MI estimation, as these methods are able to
provide good selection accuracy at a comparatively greater
computational efficiency.

Scenario 2: If the input/output data are mainly moderately non-
Gaussian (average 1.3 <s <5 and 3 < k < 30), the GRR is sug-
gested for residual estimation and the DPI (or BCVDPI) is rec-
ommended for MI estimation, so that selection accuracy can be
improved with only a small reduction in computational effi-
ciency, in comparison with using the GRR and BCV.

Scenario 3: If the input/output data are mainly extremely non-
Gaussian (average s > 5 and k > 30), the SVCS is suggested for
residual estimation and the DPI (or BCVDPI) is recommended for
MI estimation. While these methods will decrease
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computational efficiency significantly, they are also likely to
result in a marked increase in selection accuracy.

5. Testing of proposed rules and guidelines

The rules and guidelines proposed in Section 4.3 were tested on
two semi-real case studies, including the estimation of salinity in
the River Murray in South Australia 14 days in advance (e.g.
Bowden etal., 2005b; Fernando et al., 2009; Kingston et al., 2005; Li
et al., 2014; Maier and Dandy, 1996) and the prediction of flow in
the Kentucky River Basin in the USA one day in advance (e.g.
Bowden et al.,, 2012; Jain and Srinivasulu, 2004; Li et al., 2014;
Srinivasulu and Jain, 2006; Wu et al., 2013). The case studies are
semi-real in the sense that actual input data are used, but that the
corresponding output data are generated using a trained ANN
model. The adoption of semi-real case studies enabled the benefits
of utilising measured input data (i.e. not generated from a known
distribution) to be combined with those of having known outputs,
thereby enabling the performance of IVS methods to be tested in an
objective and rigorous manner, as suggested by Galelli et al. (2014)
and Humphrey et al. (2014). Details of each semi-real case study are
given in the subsequent sections.

5.1. River salinity at Murray Bridge

The study area of the first semi-real case is illustrated in Fig. 12.
According to Maier and Dandy (1996), river salinity at Murray
Bridge 14 days in advance (MBS + 13) is a function of the salinity at
Mannum, Morgan, Waikerie and Loxton and the river level at Lock
1, given a specified lag time (i.e., river salinity: MAS-1, MOS-1, WAS-
1, WAS-5, LOS-1 and river level: L1UL-1 at locations specified in
Table 5). Consequently, these six inputs were used to generate the
corresponding outputs (MBS + 13). Other redundant or irrelevant
candidate inputs listed in Table 5 were also introduced for the
purpose of testing the effectiveness of PMI IVS.

In order to generate the known outputs from the real inputs,
standard multilayer perceptron (MLP) artificial neural networks
(ANNs) were developed using the approach outlined in Wu et al.
(2014). The historical records from 1987 to 1990 were split into
training (60%), testing (20%) and validating sets (20%) using the
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Fig. 13. Correct selection rate and efficiency of salinity forecast at Murray Bridge with proposed and alternative bandwidth estimators.
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DUPLEX method (see May et al., 2010), in accordance with the
guidelines suggested by Wu et al. (2013). A single hidden layer was
used and the optimal number of hidden nodes was determined by
trial and error, considering a range of O to 6. The optimal model
structure was found to be 6-4-1. The back-propagation algorithm
(with learning rate of 0.1 and momentum of 0.1) was used for
model calibration. The test inputs were then re-simulated 30 times
based on the real observations in order to obtain data sets that
contained a certain degree of variation, while still maintaining the
major time patterns and data distributions. This enabled IVS per-
formance to be evaluated over 30 independent trials. The corre-
sponding output was obtained by substituting the simulated inputs
into the trained ANN model. The input/output data contain strongly

RRWTP

HYDEN

MANCHESTER

LD9
LD10

= Lock and Dam 9
= Lock and Dam 10

linear components and follow a mildly non-Gaussian distribution,
according to Bowden (2003), Wu et al. (2013) and Li et al. (2014).
Consequently, this study corresponds to Scenario 2 in Fig. 11. Given
this, the selection performance of the PMI using the DPI (and
BCVDPI) for KDE and the GRR for residual estimation was expected
to be superior in terms of an appropriate trade-off between selec-
tion accuracy and computational efficiency.

Based on the results in Fig. 13, this was observed to be the case.
The CSR resulting from the use of the proposed approach was
96.7%, compared with 83.3% when the GRR and BCV approaches
were used for KDE. Although use of the SCV and SVO methods also
resulted in a CSR of 96.7%, the associated computational cost was
significantly greater. Consequently, the DPI/BCVDPI based method

LEXINGTON AIRPORT

LEXINGTON/FAYETTE COUNTY

HEIDELBURG

KRWTP = Kentucky River Water Treatment Plant
RRWTP = Richmond Road Water Treatment Plant

Fig. 14. The Kentucky River Basin in USA (Jain and Srinivasulu, 2004).
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Table 6
Candidate inputs and output used for the rainfall-runoff case study.

Candidate inputs Output

Location Variable Abbreviation Lags Location Variable Abbreviation Forecasting period

Manchester Average daily effective rainfall P Oto 10 Lock & Dam 10 Average daily runoff  Q 1

Hyden

Jackson

Heidelberg

Lexington Airport

Lock & Dam 10 Average daily runoff Q 1to 10

provided a good trade-off between selection accuracy and
computational efficiency for this study, as suggested by the pro-
posed guidelines (Fig. 11).

5.2. Rainfall-runoff in Kentucky River Basin

The second semi-real data set is concerned with rainfall-runoff
modelling in the Kentucky River Basin in the USA (Fig. 14). The
output variable for this case study is the forecast flow at Lock and
Dam 10 one day in advance (Jain and Srinivasulu, 2004). The cor-
responding inputs, including average daily effective rainfall and
runoff with specific lag time (i.e. average daily effective rainfall:
P(t), P(t-1) and average daily runoff: Q(t — 1), Q(t — 2) at locations
specified in Table 6), together with other redundant or irrelevant
candidate inputs, are summarized in Table 6, which are the same as
those used by Bowden (2003), Wu et al. (2013) and Li et al. (2014).

The historical rainfall-runoff records from 1960 to 1972 were
used for developing the MLP-ANNs using the approach described
for the salinity case study. The optimal model structure was
determined as 4-4-1. Thirty sets of inputs and outputs were
generated using the procedure described for the salinity case study.
It should be noted that the input/output data contain non-linear
components and follow extremely non-Gaussian distributions, as
discussed by Wu et al. (2013), Li et al. (2014) and Galelli et al. (2014).
Consequently, this study corresponds to Scenario 3 in Fig. 11. Given
this, the selection performance of the PMI using the DPI (and
BCVDPI) for KDE was expected to be superior in terms of an
appropriate trade-off between selection accuracy and computa-
tional efficiency.

As indicated in Fig. 15(a), use of the approach suggested in the
proposed guidelines derived from the synthetic data (i.e. DPI with
SVCS) clearly results in the best CSR, with an accuracy of 96.7%. This
is much higher than the CSR of 77.8% when the ‘standard’ approach
(i.e. GRR with GRR) is used. While this increased selection accuracy
comes at a significant increase in computational cost (i.e. 68 times
more computationally expensive), as shown in Fig. 15(b), this still
seems to provide the best trade-off between selection accuracy and
computational efficiency, as suggested by the proposed guidelines
(Fig. 11).
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6. Summary and conclusions

Input variable selection (IVS), as one of the most important steps
in the development of ANN and other data driven environmental
and water resources models, determines the quality and quantity of
information used in the modelling process. Partial mutual infor-
mation (PMI) is one of the most promising approaches to IVS, as itis
able to account for the relevance and redundancy of all candidate
inputs and can be used for both linear and non-linear problems.
However, one disadvantage of using PMI is that it requires kernel
density estimates (KDEs) of the data to be obtained, which can
become problematic when the data are non-normally distributed,
as is often the case for environmental and water resources prob-
lems. However, this is an issue that has been ignored in previous
studies on the application of PMI IVS, in which the Gaussian
reference rule (GRR) has generally been used to obtain the required
KDEs. This is likely to result in a reduced CSR for data that are non-
Gaussian, as shown by Galelli et al. (2014) and Humphrey et al.
(2014).

In order to develop an improved approach to PMI IVS for data
that are non-normally distributed, the selection performances of
PMI with six different kernel bandwidth estimators for KDE were
assessed in terms of selection accuracy and computational effi-
ciency for input/output data with distinct degrees of normality on
three synthetic data sets. The results from the 3780 trials with the
synthetic data were used to develop empirical guidelines for the
choice of the most appropriate bandwidth estimation techniques
for data with different degrees of non-normality. The validity of
these guidelines was then tested on the two semi-real data sets.

The results of the synthetic case studies suggest that the use of
GRR-based bandwidth estimators only results in good input se-
lection accuracy if the input/output data follow Gaussian or nearly
Gaussian distributions, which is in line with the results obtained by
Galelli et al. (2014) and Humphrey et al. (2014). As a result of their
reduced dependence on the Gaussian assumption, DPI, BCVDPI,
SCV, and SVO based bandwidth estimators generally result in
marked improvements in CSR for problems with data that follow
non-Gaussian distributions. However, there is a distinct trade-off
between selection accuracy and computational efficiency.
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Fig. 15. Correct selection rate and efficiency of flow forecast at Kentucky River Basin with proposed and alternative bandwidth estimators.
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One of the major outcomes of this paper is the development of
the empirical guidelines based on the synthetic tests. As shown in
Fig. 11, the suggested bandwidth estimators for KDE used in the MI
calculation should be used in conjunction with the bandwidth es-
timators for residual estimation suggested by Li et al. (2014). The
results for the two semi-real data sets, which follow mildly and
extremely non-Gaussian distributions, support the validity of the
proposed guidelines for the selection of appropriate bandwidth
estimation methods for data with different degrees of non-
normality. It should be noted that the proposed guidelines are
valid for environmental and water resource applications with data
that have distributional properties similar to those provided in the
guidelines, and that the implementation of the guidelines is also
likely to benefit other data-driven environmental and water re-
sources models, even though they were only tested on MLPs.

Although the results of this study indicate that the use of
alternative bandwidth estimators can result in significant im-
provements in PMI VS for data that are non-normally distributed,
these improvements were not as pronounced for extremely non-
Gaussian data and the non-linear synthetic case study. This is
likely due to boundary issues associated with KDE for highly non-
Gaussian data (Karunamuni and Alberts, 2005; Scott, 1992).
Consequently, future research should focus on potential improve-
ments to IVS accuracy as a result of the consideration of such
boundary issues. In addition, alternative methods for dealing with
non-Gaussian data in the context of PMI VS, such as transforming
the input data to normality (e.g. Bowden et al,, 2003) and esti-
mating the required densities using histogram-based methods (e.g.
Fernando et al., 2009), require further investigation, as does the
impact of the stopping criterion (see May et al., 2008a) on the re-
sults obtained in this study. Finally, there is a need to assess the
performance of the proposed modifications to the implementation
of the PMI algorithm on a broader set of data and against that of
other IVS algorithms (see Galelli et al., 2014).
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