

Leak Detection and Condition Assessment for Water Distribution Pipelines using Fluid Transient Waves

Jinzhe Gong

B.Eng., M.Eng.

Thesis submitted in fulfilment of the requirements for the degree of Doctor of Philosophy

The University of Adelaide Faculty of Engineering, Computer and Mathematical Sciences School of Civil, Environmental and Mining Engineering

Copyright[©] 2013

To my beloved wife He Shi and son Keming Gong

Abstract

The focus of this PhD research is to develop non-invasive and cost-effective techniques for assessing the structural condition of pressurised pipelines using fluid transient pressure waves. The specific objectives include the detection of leaks and localised deterioration that is distributed along a pipeline, such as extended sections of corrosion or the spalling of cement lining. The latter is described by *pipeline condition assessment* in this thesis.

The transient behaviour of a leak is studied in the frequency domain. Numerical studies conducted in this research demonstrate that two leakinduced patterns (on the resonant and the anti-resonant responses) can exist in a frequency response diagram (FRD). The amplitudes of the responses are related to the impedance of the valve in a reservoir-pipeline-valve (RPV) system.

A new leak detection technique has been developed in this research based on the further understanding of the leak-induced patterns. This technique uses the relative sizes of the first three resonant responses to determine the location and size of a single leak in RPV systems. In reservoir-pipeline-dead end systems, the information required for single event leak detection is further reduced to the first two resonant responses.

A new measurement strategy for the extraction of the FRD of single pipelines is proposed in this research. The boundary valve loss is used to adjust the amplitude of the leak-induced pattern on the resonant responses and also the sharpness of the resonant peaks. A specific type of pseudo-random binary sequence (PRBS) termed the inverse repeat sequence (IRS), is used as the excitation signal. The antisymmetric property of IRS enables part of the nonlinear responses of the system under excitation to be cancelled out, yielding a measured FRD close to the theoretical linear system response. A side-discharge valve based transient generator is designed and fabricated in this research to implement the new FRD measurement strategy. Laboratory experiments are conducted on an intact pipeline and a pipeline with a leak.

This research also conducts analysis of the characteristics of distributed pipe wall deterioration and develops new detection techniques. In a measured pressure trace, the size of the reflection resulting from a section of pipeline with a change in wall thickness is indicative of the characteristic impedance of this section. Once the impedance of this section is determined, the wave speed and wall thickness can be estimated. A technique for the detection of a single deteriorated section in pipelines is developed based on the above analysis.

Two other condition assessment techniques are developed to deal with the complexities induced by multiple deteriorated sections. The first technique is termed *reconstructive MOC* (method of characteristics) *analysis*, which uses the pressure trace measured at the upstream face of the valve in a RPV system to determine the distribution of the impedance along the pipeline. The algorithm reconstructs a MOC grid by calculating the MOC compatibility equations backwards in time, estimating the properties of the pipeline (impedance, wave speed) and the length of each pipe reach as discretised by the MOC grid from the valve towards the reservoir. Preliminary experimental verification is conducted to verify the applicability of the new technique.

The second technique is *reconstructive transient analysis* (RTA), which can be conducted at any interior accessible points along a pipeline, and does not require a RPV boundary condition. The RTA uses two pressure transducers in close proximity to measure two transient pressure traces in one test. A signal processing algorithm is developed to extract the directional transient waves (traveling upstream and downstream). The use of the directional transient waves enables the step response function (SRF) of the section of pipe upstream or downstream of the paired pressure transducers to be obtained. The *reconstructive MOC analysis* is then adapted to interpret the SRF to yield the distribution of the impedance, from which the location and severity of distributed deterioration can be identified.

Statement of Originality

I, *Jinzhe Gong*, hereby declare that this work contains no material which has been accepted for the award of any other degree or diploma in any university or other tertiary institution in my name and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text. In addition, I certify that no part of this work will, in the future, be used in a submission in my name, for any other degree or diploma in any university or other tertiary institution without the prior approval of the University of Adelaide and where applicable, any partner institution responsible for the joint-award of this degree.

I give consent to this copy of my thesis when deposited in the University Library, being made available for loan and photocopying, subject to the provisions of the Copyright Act 1968.

The author acknowledges that copyright of published works contained within this thesis resides with the copyright holder(s) of those works.

I also give permission for the digital version of my thesis being made available on the web, via the University's digital research repository, the Library catalogue, the Australian Digital Thesis Program (ADTP) and also through web search engines, unless permission has been granted by the University to restrict access for a period of time.

Acknowledgments

First of all, I would like to show my gratitude to my supervisors, Prof. Martin Lambert, Prof. Angus Simpson and Dr. Aaron Zecchin. This PhD thesis would not be possible without their guidance and support. They have reviewed all my manuscripts and given comments for improvement. They also provided financial support to me for attending international conferences.

I gratefully acknowledge the support from Ms. Barbara Brougham. She has given me many helpful advices on academic writing. She helped me gain not only skills but also confidence in writing academic papers.

I would like to thank technicians Brenton Howie, Simon Order and Stan Woithe in the Robin Hydraulics Laboratory at the University of Adelaide. They provided support throughout my laboratory experiments, especially for the design and fabrication of the customised transient signal generator used in my research.

I thank all my fellow postgraduate students within the School for keeping company and sharing experiences with me. I also thank all the staff in the School of Civil, Environmental and Mining Engineering for their support and help over the years of my PhD study.

I would like to thank the emotional and financial support from my parents, Mr. Qi Gong and Ms. Jinying Zhang. I greatly appreciate my wife, He Shi, for her unwavering support and encouragement since we were married. Lastly, I thank my baby boy, Keming, who brought me joy and hope.

Table of Contents

Abstract	V
Statement of Originality	vii
Acknowledgments	ix
Table of Contents	xi
List of Publications	xix
Journal papers	xix
Conference papers	xxi
List of Tables	xxiii
List of Figures	XXV
8	
1. Introduction	1
1.1 Research background	1
1.1.1 Significance of leak detection and condition assessment	for water
pipelines	1
1.1.2 Limitations in current technologies	3
1.1.3 Leak detection and wall condition assessment using flui	d
transient waves	4
1.2 Research aims	10
1.3 Organisation of thesis	13
2. Synopsis of Publications	15
2.1 Journal paper 1	15
2.2 Journal paper 2	16
2.3 Journal paper 3	17
2.4 Journal paper 4	
2.5 Journal paper 5	19
2.6 Journal paper 6	20

2.7 J	ournal paper 7	21
2.8 J	ournal paper 8	22
2.9 J	ournal paper 9	23
3 . Fro	equency Response Diagram for Pipeline Leak Detection:	
Co	mparing the Odd and the Even Harmonics (Journal Publication	ı 1)
••••		27
State	ment of Authorship	29
3.1 I	ntroduction	33
3.2 H	Fundamental equations	36
3.3 H	Frequency response equations for a leaking pipe	38
3.4 I	Dimensionless analysis of the leak-induced patterns	40
3.4	.1 Dimensionless analysis of frictionless leaking pipes	40
3.4	.2 Impedance parameter ranges	42
3.4	.3 Leak size derivation	44
3.5 I	Dimensionless modeling of frictionless leaking pipes	45
3.6 (Case study of a specific pipeline with steady friction	49
3.7 (Comparison of the two existing leak detection methods	55
3.8 (Challenges to current FRD-based leak detection techniques	56
3.8	.1 Summary of the assumptions	57
3.8	.2 Challenges in practical applications	58
3.9 (Conclusions	61
4. Sin	gle Event Leak Detection in a Pipeline using the First Three	
Re	sonant Responses (Journal Publication 2)	65
Stater	ment of Authorship	67
4.1 I	ntroduction	71
4.2 F	Frequency response equations for a single pipe with a leak	75
4.2	.1 System configurations	75
4.2	.2 Frequency response equations for RPV-High Loss Valve system	ns
		76
4.2	.3 Frequency response equations for RPV-Closed Valve systems.	79
4.2	.4 Comparison between the RPV-High Loss Valve and the RPV-	
	Closed Valve boundary conditions	80

4.3	Leak	k detection for RPV-High Loss Valve systems	81
4	.3.1	Determination of the leak location for RPV-High Loss Valve	;
		systems	82
4	.3.2	Determination of the leak size for RPV-High Loss Valve sys	tems
			83
4	.3.3	Sensitivity analysis for the three resonant responses-based lea	ak
		location algorithm	84
4.4	Leak	k detection for RPV-Closed Valve systems	89
4	.4.1	Determination of the leak location for RPV-Closed Valve	
		systems	90
4	.4.2	Determination of the leak size for RPV-Closed Valve system	ıs91
4	.4.3	Sensitivity analysis for the two resonant responses-based leal	k
		location algorithm	92
4.5	Nun	nerical verification	94
4	.5.1	Unsteady friction model	94
4	.5.2	Case study	96
4	.5.3	Simulations for various leak locations	98
4.6	Expe	erimental verification	100
4	.6.1	System configuration and experimental data	100
4	.6.2	Leak location using the three resonant responses-based techn	ique
			101
4	.6.3	Leak location and size estimation using the two resonant	
		responses-based technique	101
4	.6.4	Summary of experimental verification	102
4.7	Chal	llenges in field applications	102
4.8	Con	clusions	103
5 T	Datarı	mination of the Linear Frequency Response of Single Pinel	lings
J. L	sing	Persistent Transient Excitation · a Numerical Investigation	
G	Iourr	nal Publication 3)	109
Stat	emen	at of Authorship	111
5.1	Intro	oduction	115
5.2	Non	linearities of a pipeline system and linearisation in FRD-based	l leak
0.2	dete	ction techniques	
		1	

	5.3	Sele	ection of appropriate excitation signals to minimise the nonlinear	
		resp	onse of a pipeline	21
	5.4	Con	nparison of the MLBS and the IRS in the accuracy of linear FRD	
		extr	action 12	24
	5.5	Con	clusions	28
~		C	Anning d Oida Diachanna Walas fan Entra dia a tha Eastaina	
ь.	E E	A Cus Poeno	stomized Side-Discharge valve for Extracting the Frequency	
	Г	cespo Sinar	The Function of Hydraunic Fipennes using recudorandom	21
	Etat		y Signais (Journal Fublication 4))1
	Stat	Jutu	it of Authorship)) 7
	0.1	Intro	Sduction	»/
	6.2	Exp	erimental apparatus	10
	6.3	Exp	erimental extraction of the linear FRF using MLBS and IRS 14	12
	6	.3.1	Case study No.1: For an amplitude of input signal of $A_{in} \approx 0.514$	14
	6	.3.2	Case study No.2: For an amplitude of input signal of $A_{in} \approx 0.214$	17
	6	.3.3	Case study No.3: For an amplitude of input signal of $A_{in} \approx 0.06$	
				50
	6.4	Con	clusions	53
7.	S	ingle	Event Leak Detection in a Pipeline using Fluid Transients	
	W	vith I	nverse-Repeat Binary Sequences (Journal Publication 5) 15	57
	Stat	temer	it of Authorship	;9
	7.1	Intro	oduction	53
	7.2	Effe	ects of boundary valve loss on the shape of the frequency response	;
		diag	ram	56
	7	.2.1	RPV-Open Valve configuration	57
	7	.2.2	RPV-Closed Valve configuration	59
	7	.2.3	RPV-High Loss Valve configuration	71
	7.3	App	ropriate values of valve impedance for leak detection	12
	7.4	Extr	action of the FRD of a pipe with a leak using a dual-solenoid	
		cont	rolled side-discharge valve and inverse-repeat sequences	75
	7.5	Esti	mation of the location and impedance of the leak using the three	
		reso	nant responses-based technique17	79
	7.6	Con	clusions	32

8.	D	etect	tion of Distributed Deterioration in Single Pipes Using	
	Т	'rans	ient Reflections (Journal Publication 6)	187
	Stat	emer	t of Authorship	189
	8.1	Intro	oduction	193
	8.2	Bac	kground	194
	8.3	Way	e propagation analysis	195
	8.4	Dist	ributed deterioration detection procedures	198
	8	.4.1	Detection at the end of a pipeline	198
	8	.4.2	Detection at an interior location	201
	8.5	Dist	ributed versus discrete deterioration	203
	8.6	Exp	erimental verification	203
	8	.6.1	System configuration	203
	8	.6.2	Experimental pressure traces	205
	8	.6.3	Determination of the impedance, wave speed and wall this	ckness
				206
	8	.6.4	The influence of the initial wave front	212
	8	.6.5	Determination of the location and length	
	8.7	Con	clusions	219
٥	п	atoo	tion of Extanded Structural Deterioration in a Dinalina	using
9.	р Е	Inid	Transionts: a Sonsitivity Analysis (Journal Publication	using 7) 221
	r Stat	iuiu emer	at of Authorship	7)221 223
	51ai 0 1	Intra	aduction	223
	9.1 0.7	Dine	line impedance and wave speed	
	9.2	Trar	scient wave reflection and transmission	229
	9.5 0 /	Sono	sitivity analysis of the affects of a change in wall thickness	$\dots 229$
	9.4	sizo	of the transmitted and reflected ways	222
	0	51ZC	An internal change in well thickness	232
	9	.4.1	An avternal change in wall thickness	235
	9 05	.4.2 Con	An external change in wan unekness	230
	7.J	Con	CIU510115	
10	. D	etect	tion of Localized Deterioration Distributed along Single	
	Р	ipeli	nes by Reconstructive MOC Analysis (Journal Publicat	tion 8)
	••	•••••		245

Statement of Authorship	247
10.1 Introduction	251
10.2 Method of characteristics	254
10.3 Reconstructive MOC analysis	256
10.3.1 Previous research on performing MOC analysis backwards	in
time	256
10.3.2 Problem definition	257
10.3.3 Assumptions	259
10.3.4 Analysis for the first reach	260
10.3.5 Analysis for the second reach	262
10.3.6 Analysis for the subsequent pipeline reaches	265
10.4 Numerical simulations	266
10.5 Experimental verification	269
10.5.1 Experimental pipeline configuration	270
10.5.2 Experimental pressure trace	271
10.5.3 Preprocessing of the measured data	272
	074
10.5.4 Reconstructive MOC analysis for the step response function	1274
10.5.4 Reconstructive MOC analysis for the step response function 10.6 Conclusions	a274
 10.5.4 Reconstructive MOC analysis for the step response function 10.6 Conclusions	274 277
 10.5.4 Reconstructive MOC analysis for the step response function 10.6 Conclusions	sure
 10.5.4 Reconstructive MOC analysis for the step response function 10.6 Conclusions	sure 281
 10.5.4 Reconstructive MOC analysis for the step response function 10.6 Conclusions	sure 281
 10.5.4 Reconstructive MOC analysis for the step response function 10.6 Conclusions	sure 281 283
 10.5.4 Reconstructive MOC analysis for the step response function 10.6 Conclusions 11. Condition Assessment of Hydraulic Pipelines using Paired Press Transducers and Reconstructive Transient Analysis (Journal Publication 9)	274 277 sure 281 283 287 291
 10.5.4 Reconstructive MOC analysis for the step response function 10.6 Conclusions	274 277 sure 281 283 287 291 291
 10.5.4 Reconstructive MOC analysis for the step response function 10.6 Conclusions	274 277 sure 281 283 287 291 291 292
 10.5.4 Reconstructive MOC analysis for the step response function 10.6 Conclusions	274 277 sure 281 283 283 287 291 291 292 293
 10.5.4 Reconstructive MOC analysis for the step response function 10.6 Conclusions	274 277 sure 281 283 283 287 291 291 292 293 293
 10.5.4 Reconstructive MOC analysis for the step response function 10.6 Conclusions 11. Condition Assessment of Hydraulic Pipelines using Paired Pres Transducers and Reconstructive Transient Analysis (Journal Publication 9) Statement of Authorship 11.1 Introduction 11.2 Measurement of transient pressure traces 11.2.1 Pipeline configuration 11.2.2 Pressure measurement 11.3 Extraction of the reflected axial plane waves 11.3.1 Expression of the measured pressure traces 11.3.2 Estimation of the axial plane waves 	274 277 sure 281 283 283 287 291 291 291 292 293 293 294
 10.5.4 Reconstructive MOC analysis for the step response function 10.6 Conclusions	274 277 sure 281 283 283 287 291 291 291 292 293 293 294 295
 10.5.4 Reconstructive MOC analysis for the step response function 10.6 Conclusions	sure 274 sure 281 283 283 287 291 291 291 292 293 293 294 295 297
 10.5.4 Reconstructive MOC analysis for the step response function 10.6 Conclusions	sure 274 sure 281 283 283 287 291 291 291 292 293 293 294 295 297 1 297

11.6 Numerical simulations	305
11.6.1 System configuration	305
11.6.2 Pressure traces from MOC modeling	306
11.6.3 Determination of the axial plane waves	307
11.6.4 Determination of the unit step response function	309
11.6.5 Determination of the impedance and wave speed using RTA	310
11.6.6 Effects of friction	311
11.7 Conclusions	312
12. Conclusions	317
12.1 Research contributions	318
12.2 Research limitations and future work	320
References	323

List of Publications

Journal papers

The following peer-reviewed journal papers are the major outcomes of this research and they form the main body of this thesis.

- Gong, J., Zecchin, A. C., Simpson, A. R., and Lambert, M. F. (2013). "Frequency response diagram for pipeline leak detection: comparing the odd and the even harmonics." *Journal of Water Resources Planning and Management*, DOI: 10.1061/(ASCE)WR.1943-5452.0000298 (accepted for publication).
- Gong, J., Lambert, M. F., Simpson, A. R., and Zecchin, A. C. (2013).
 "Single event leak detection in a pipeline using the first three resonant responses." *Journal of Hydraulic Engineering*, 139(6), 645-655.
- Gong, J., Simpson, A. R., Lambert, M. F., and Zecchin, A. C. (2013). "Determination of the frequency response diagram of single pipelines using persistent transient excitation: a numerical investigation." *Journal of Hydraulic Research*, DOI: 10.1080/00221686.2013.818582 (accepted for publication).
- 4. Gong, J., Lambert, M. F., Simpson, A. R., and Zecchin, A. C. (2013). "A customized side-discharge valve for extracting the frequency response function of hydraulic pipelines using pseudorandom binary signals." *Journal of Hydraulic Engineering* (under review).
- Gong, J., Lambert, M. F., Simpson, A. R., and Zecchin, A. C. (2013).
 "Single event leak detection in a pipeline using fluid transients with inverse-repeat binary sequences." *Journal of Hydraulic Engineering*, (under review).

- 6. Gong, J., Simpson, A. R., Lambert, M. F., Zecchin, A. C., Kim, Y., and Tijsseling, A. S. (2013). "Detection of distributed deterioration in single pipes using transient reflections." *Journal of Pipeline Systems Engineering and Practice*, 4(1), 32-40.
- Gong, J., Simpson, A. R., Zecchin, A. C. and Lambert, M. F. (2013).
 "Detection of extended structural deterioration in a pipeline using fluid transients: a sensitivity analysis." *Journal of Hydraulic Engineering*, (under review).
- Gong, J., Lambert, M. F., Simpson, A. R., and Zecchin, A. C. (2013). "Detection of localized deterioration distributed along single pipelines by reconstructive MOC analysis." *Journal of Hydraulic Engineering*, DOI: 10.1061/(ASCE)HY.1943-7900.0000806 (accepted for publication).
- Gong, J., Zecchin, A. C., Lambert, M. F., and Simpson, A. R. (2013).
 "Condition assessment of hydraulic pipelines using paired pressure transducers and reconstructive transient analysis." *Journal of Hydraulic Engineering* (under review).

Conference papers

The following conference papers are also outcomes of this research.

- Gong, J., Lambert, M. F., Simpson, A. R., and Zecchin, A. C. (2012). "Distributed deterioration detection in single pipelines using transient measurements from pressure transducer pairs." In: *11th International Conference on Pressure Surges*, 24-26 October 2012, Lisbon, Portugal. Cranfield, UK: BHR Group, 2012: 127-140.
- Gong, J., Lambert, M. F., Simpson, A. R., and Zecchin, A. C. (2012).
 "Distributed deterioration detection and location in single pipes using the impulse response function." In: WDSA 2012: *14th Water Distribution Systems Analysis Conference*, 24-27 September 2012, Adelaide, South Australia. Barton, ACT, Australia: Engineers Australia, 2012: 702-719.
- Gong, J., Zecchin, A. C., Lambert, M. F., and Simpson, A. R. (2012). "Signal separation for transient wave reflections in single pipelines using inverse filters." In: *World Environmental and Water Resources Congress* 2012: Crossing Boundaries, 20-24 May 2012, Albuquerque, New Mexico. Reston, VA: ASCE, 2012: 3275-3284.
- 4. Gong, J., Simpson, A. R., Lambert, M. F., Zecchin, A. C., and Kim, Y. (2011). "Detection of distributed deteriorations in single pipes using transient reflections." In: ICPTT 2011: *International Conference on Pipelines and Trenchless Technology 2011*, 26-29 October 2011, Beijing China. (Presented in the conference but not included in the conference proceedings. Published as Journal Paper No.6 after a major revision.)
- Gong, J., Lambert, M. F., Zecchin, A. C., and Simpson, A. R. (2011). "Frequency response measurement of pipelines by using inverse-repeat binary sequences." In: CCWI 2011: Computing and Control for the Water Industry 2011: Urban Water Management - Challenges and Opportunities, 5-7 September, 2011, the University of Exeter, Exeter, UK. Exeter, UK: the University of Exeter, 2011: 883-888.

List of Tables

Table 3.1 System parameters for the case study
Table 4.1 System parameters for the numerical simulations
Table 7.1 Experimental results for leak location and size estimation
Table 8.1 Impedance B_1 , wave speed a_1 and wall thickness e_1 of the
deteriorated section
Table 8.2 Difference in the impedance, wave speed and wall thickness
between the deterioration and the original pipeline
Table 8.3 Magnitude of the reflected disturbance and the estimated impedance
difference between the deterioration and the original pipeline216
Table 8.4 Location and length of the deteriorated section
Table 10.1 Estimated properties of the deteriorated section and corresponding
error

List of Figures

Figure 1.1 Research aims and their hierarchy
Figure 2.1 Contribution of the nine journal publications presented in this
thesis in relation to the research aims of this doctoral research25
Figure 3.1 A reservoir-pipeline-valve system with a leak
Figure 3.2 A dimensionless FRD with same leak-induced pattern amplitudes
at the odd and even harmonics for a frictionless pipe simulation45
Figure 3.3 Dimensionless leak-induced patterns at the odd and even
harmonics (frictionless pipe). The circles are values at harmonics,
and the solid lines are the sinusoidal fitted lines46
Figure 3.4 Variation of the leak-induced pattern amplitudes as the
dimensionless value impedance (Z_V^*) varies for a frictionless pipe
simulation
Figure 3.5 Variation of the leak-induced pattern amplitudes according to
changes in the dimensionless leak impedance (Z_L^*) for a frictionless
pipe simulation
Figure 3.6 A dimensionless FRD for the pipeline system in the case study,
$x_L^* = 0.1$
Figure 3.7 A dimensionless FRD for the pipeline system in the case study,
Figure 3.7 A dimensionless FRD for the pipeline system in the case study, $x_L^* = 0.9$
Figure 3.7 A dimensionless FRD for the pipeline system in the case study, $x_L^* = 0.9$
Figure 3.7 A dimensionless FRD for the pipeline system in the case study, $x_L^* = 0.9$

Figure 3.9 V	Variation of the dimensionless leak size $(C_{Ld}A_L/A)$ (derived from
tl	he odd and the even harmonics, respectively) for changes in the
d	limensionless steady-state value impedance (Z_V^*), for the case
S	tudy with steady friction
Figure 4.1 A	A reservoir-pipeline-valve system with a leak
Figure 4.2 I	Impact of the dimensionless leak location x_L^* on the dimensionless
p	beak values of the first three resonant responses, with $Z_V / Z_L = 1.87$
Figure 4.3 I	Impact of the dimensionless leak location x_L^* on the three
с	coefficients C_1 , C_3 and C_5 in Eq. (4.14), with $Z_V/Z_L = 1$
Figure 4.4 I	Impact of the dimensionless leak location x_L^* on the two
с	coefficients C'_1 and C'_3 in Eq. (4.19)
Figure 4.5 N	Numerical FRDs for the case study $x_L^* = 0.2$
Figure 4.6 T	The relative deviation between the estimated leak location and the
a	actual leak location (solid lines), and the relative deviation between
tl	he estimated leak size and the actual leak size (dashed lines) 99
Figure 5.1 A	An <i>n</i> -Stage shift register with XOR feedback for MLBS generation
Figure 5.2 I	Percentage error at the first resonance (frequency response at 2.5
ŀ	Hz) as a function of the magnitude of valve perturbation 126
Figure 5.3 (Comparison between the FRD from MOC using the MLBS and the
Ι	RS excitation with $\Delta \tau / \tau_0 = 0.4$ and the linear FRD from the
t	ransfer matrix method
Figure 6.1 7	The customized transient generator used for generating MLBS and
Ι	RS

Figure 6.2 A schematic diagram of the experimental pipeline used in this
research142
Figure 6.3 The normalized IRS τ perturbation (input) in the case study No.1
Figure 6.4 The head perturbation (output) in the case study No.1145
Figure 6.5 Comparison between the experimental FRF induced by IRS and
MLBS excitation with the theoretical FRF in case study No.1146
Figure 6.6 The normalized IRS τ perturbation (input) in the case study No.2
Figure (7 The head northerheation (output) in the ages study No 2 149
Figure 6.7 The head perturbation (output) in the case study No.2
Figure 6.8 Comparison between the experimental FRF induced by IRS and
MLBS excitation with the theoretical FRF in case study No.2149
Figure 6.9 The normalized IRS τ perturbation (input) in the case study No.3
Figure 6.10 The head parturbation (output) in the case study No.2 151
Figure 0.10 The near perturbation (output) in the case study 10.5
Figure 6.11 Comparison between the experimental FRF induced by IRS and
MLBS excitation with the theoretical FRF in case study No.3152
Figure 7.1 A Reservoir-Pipe-Reservoir system (which is equivalent to a RPV-
Open Valve system) and the corresponding arrangement of the
pressure transducer and a side-discharge valve transient generator
for the extraction of the FRD167
Figure 7.2 A Reservoir-Pipenne-(in-line) valve (RPV) system and the
corresponding arrangement of the pressure transducer and a side-
discharge valve transient generator for the extraction of the FRD.
When the in-line valve is fully closed, it forms a RPV-Closed
Valve configuration; when the in-line valve is slightly open, it
forms a RPV-High Loss Valve configuration170

Figure 7.3	Dimensionless frequency response diagrams (FRDs) of a RPV system with a leak ($Z^* = 10$, $r^* = 0.3$). The shape of the FRD
	changes with the value of the dimensionless valve impedance Z_V^*
Figure 7.4	The system layout of the experimental pipeline 177
Figure 7.5	Normalized frequency response diagrams (including the first three
	resonant peaks) for the experimental pipeline. The peak at A is the
	result of low signal-to-noise ratio at the frequency of $0.5 f_c$ (i.e. 50
	Hz in this experiment), where the theoretical power of the IRS is
	zero
Figure 8.1	Wave propagating through a deteriorated section (designated with
	length L_1 , impedance B_1 , and wave speed a_1): (a) a step incident
	wave is approaching the deterioration from the right side; (b) the
	first reflection and transmission occur at the right boundary of the
	deterioration; (c) the second reflection and transmission occur at
	the left boundary of the deterioration; (d) the third reflection and
	transmission occur at the right boundary of the deterioration 196
Figure 8.2	Distributed deterioration detection at an interior location within the
	pipeline: (a) the steady state condition; (b) the incident wave
	generated by the closure of the side-discharge valve
Figure 8.3	The experimental pipeline system layout
Figure 8.4	Experimental pressure trace of Test 1 205
Figure 8.5	The first plateau of experimental head response traces. Three
	experiments (Tests 1 to 3) on a pipeline with a section of thinner
	wall thickness, compared to one experiment on an intact pipeline
Figure 8.6	Enlarged view of the wave front in Test 1

Figure 8.7 Enlarged view of the pressure perturbation in the first plateau of	of
the pressure trace measured in Test 1	.207

- Figure 9.1 Variation of the normalized head perturbations for the reflected wave (H_r^* , solid line) and transmitted wave (H_t^* , dashed line) according to variations in the impedance ratio (B_r)......231

Figure 10.1 (a) An example pipeline system; and (b) its MOC grid for conventional MOC analysis25	55
Figure 10.2 (a) An example pipeline system; and (b) a possible MOC grid reconstructed by the reconstructive MOC analysis (note that the pipeline properties can be different between reaches)	58
Figure 10.3 An example pressure trace resulting from a rapid valve closure and measured at the upstream face of the closed valve	61
Figure 10.4 MOC analysis at point x_0 for determining B_1	61
Figure 10.5 Reconstructive MOC analysis for the second pipe section 26	63
Figure 10.6 MOC analysis for point x_1 at $t = \Delta t / 2$	64
Figure 10.7 Pipeline configuration for the numerical simulation	67
Figure 10.8 Pressure trace obtained in the forward MOC modeling (the first plateau, i.e. from the initial wave jump to the first reflection from the reservoir).	68
Figure 10.9 Impedance (<i>B</i> , on the left axis) and wave speed (<i>a</i> , on the right axis) estimated from the reconstructive MOC analysis for the numerical simulations	t 69
Figure 10.10 System layout of the experimental pipeline	71
Figure 10.11 First plateau of the experimental pressure trace	72
Figure 10.12 Plot of the unit step response function (SRF) estimated from the measured pressure trace (SRF for $Q_0 = 1 \text{ m}^3/\text{s}$)	e 74
Figure 10.13 Impedance (<i>B</i> , on the left axis) and wave speed (<i>a</i> , on the righ axis) estimated from the reconstructive MOC analysis for the experimental pipeline	ht 74

Figure 11.1 Pipeline configuration for transient wave measurement with
illustration of wave propagation; R_u and R_d represent the reflected
waves traveling upstream and downstream respectively with
respect to where transducer T_{p1} is located
Figure 11.2 Theoretical behavior of a steep pressure wave crossing a
Figure 11.2 Theoretical behavior of a steep pressure wave crossing a
discontinuity of impedance (H_0 = steady-state head; H_i = head of
the incident wave; H_{j1} = head of the reflected and transmitted
waves; $B_1 < B_0$)
Figure 11.3 Discretization of a section of pipe using a MOC grid for the
reconstructive transient analysis. Note that the properties of each
pipe reach ($\Delta x_i, a_i, B_i$) are unknown and yet to be determined. The
pair of transducers are T_{p1} and T_{p2}
Figure 11.4 Evolution of the transient wave propagation within the first time
step. Arrows represent the direction of the wave propagation 302
Figure 11.5 Pipeline configuration for the numerical simulations
Figure 11.6 Pressure traces measured by the pair of transducers in the
numerical simulation. $H_1(t)$ is from transducer T_{p1} and $H_2(t)$ is
from transducer T_{p2}
Figure 11.7 The pressure trace of the reflected wave $R_u(t)$ that travels
upstream
Figure 11.8 The pressure trace of the reflected wave $R_d(t)$ that travels
downstream
Figure 11.9 The input and the output signals for determining the unit step
response function (SRF) of the pipe section upstream from the
transducers

Figure 11.10 Comparison between the estimated unit step response function
(SRF) with the theoretical unit SRF determined from MOC
modeling
Figure 11.11 The distribution of impedance and wave speed estimated from
the reconstructive transient analysis