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Abstract 

Water distribution systems (WDSs) are one of society’s most important 

infrastructure assets. They consist of a great number of pumps, valves, 

junctions and a tremendous number of pipes that connect these nodes within 

the system, all of which induce a significant capital cost at the time of 

construction. However, there is no singular option for designing a WDS, and 

each potential design affects the cost and performance of  the system 

differently (i.e., the pressure at each node and flow rates for each pipe). To 

identify solutions with a better trade-off between the cost and performance, 

multi-objective evolutionary algorithms (MOEAs) provide a robust 

optimisation tool to solve this type of problem. This PhD thesis focuses on 

improving and developing a more effective MOEA for WDS problems, and 

optimisation problems in general. The first stage of the research is to study the 

impact of select critical processes in MOEAs on algorithm performance and 

understand the reasons behind the performance observations. There are two 

chapters related to the first stage. The second stage is to develop a proposed 

General Multi-Objective Evolutionary Algorithm (GMOEA) and compare this 

with existing MOEAs for WDS problems. This is associated with the third 

content chapter. 

In the first paper, the impact of the operators on an algorithm’s performance 

has been studied. The operators are the key component for exchange of 

information between solutions in populations to produce offspring solutions, 

thereby exploring alternative regions of the search space. These have a 

significant impact on an algorithm’s search behaviour. However, the 

composition and number of operators that should be included in an MOEA is 

generally fixed, based on choices made by the developers of these algorithms. 

To explore this issue, an assessment was conducted via comprehensive 
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numerical experiments that isolate the influence of the size of the operator set, 

as well as its composition. In addition, the relative influence of other search 

processes affecting search behaviour (e.g., the selection strategy and 

hyperheuristic) have been studied. It has been found that operator set size is a 

dominant factor affecting algorithm performance, having a greater influence 

than operator set composition and other search processes affecting algorithm 

search behaviour. Moreover, it was also found that an existing MOEAs’ 

performance can be improved by simply increasing the number of operators 

used within the algorithm. This finding can be applied to justify the usage of 

operators for designing a new MOEA in the future. 

In the second paper, a new convex hull contribution selection strategy for 

population-based MOEAs (termed CHCGen) has been proposed and compared 

with existing MOEAs in order to study the impact of the selection strategy on 

MOEA performance. It has been found that the CHCGen selection strategy is 

able to emphasise selection of the population of solutions on the convex hull 

of the non-dominated set of solutions. The CHCGen selection strategy has 

demonstrated that it can also improve an existing MOEAs’ performance. The 

finding suggests different selection strategies have an impact on MOEA 

performance. In addition, CHCGen can be used for developing a new MOEA in 

the future.  

In the third paper, a new multi-objective evolutionary algorithm, called 

GMOEA(CHCGen,12,T,A)1  has been proposed by conducting comprehensive 

numerical experiments to determine the optimised component configuration 

for each MOEA process. The components considered within the algorithm 

construction include: the selection strategy, hyperheuristic, and operator set 

size. The numerical experiments not only explore the impact of each process’s 

 

1 Refer to Chapter 4 for the definition of the notation  
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component on algorithm performance comprehensively, but also investigate 

the correlation of each pairwise combination of the process’s components. In 

addition, the optimal form of the algorithm GMOEA(CHCGen,12,T,A) was 

compared with seven other existing MOEAs with an extended computational 

budget for a range of WDS problems. From the results, 

GMOEA(CHCGen,12,T,A) was shown not only to have outperformed all other 

MOEAs considered, but also to find a greater number of new Pareto front 

solutions for intermediate and large scale problems. 
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Chapter 1 Introduction 

1.1 Background 

Multi-Objective Evolutionary Algorithms (MOEAs) have been applied to 

solve WDS problems for over two decades. Their effectiveness at solving this 

type of optimisation problem is because these algorithms have the ability to 

adjust the way they search through the solution spaces by either intensifying 

the search in promising regions (i.e., exploiting good solutions) or 

diversifying the search in less promising regions (e.g., exploring the solutions 

space more widely), enabling them to perform well on problems with different 

characteristics (Maier et al., 2019). Such search behaviour responses can be 

fine-tuned by closely considering and adjusting the components of each 

process of an MOEA (e.g. the mutation strategy component in the 

reproduction process, or the selection strategy component in the parental 

selection process). Hence, many MOEAs with advanced features have been 

proposed to improve an algorithm’s performance. However, the framework of 

most MOEAs is generally consistent in terms of their processes; hence, the 

study of how each process affects MOEA performance is not yet sufficiently 

broad or generalised as authors typically only propose a particular algorithm 

(which is a set collection of process components) rather than study the broader 

question of what components or combinations of components are best. 

Moreover, it is hard to understand questions like why one algorithm 

outperforms another one without considering the impact that individual 

components have on performance. In this thesis, a General Multi-objective 

Evolutionary Algorithm (GMOEA) is used to isolate the impact of each 

MOEA’s process on the search behaviour. The GMOEA provides a general 

MOEA framework within which components can be incorporated or replaced 
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to enable the construction of a very broad array of customised algorithms. 

After understanding how each MOEA process affects the performance, a new 

algorithm GMOEA(CHCgen,12,T,A) was proposed and compared with the 

seven popular existing MOEAs to solve six WDS problems with different 

levels of complexity. 

1.1.1 Significance of multi-objective evolutionary algorithms 

optimising water distribution system problems 

Water distribution systems (WDSs) are designed to transport potable water 

from post-treatment water sources to consumers (Zecchin et al., 2005). As the 

cost of construction and maintenance of pipelines for the water supply is 

significant, there is an increasing desire to achieve a high level of 

effectiveness for each dollar spent (Simpson et al., 1994). In general, a WDS 

pipes’ diameters are treated as the decision variables and inform the 

constraints that determine the feasibility of a design (i.e., provide adequate 

pressure head) (Zecchin et al., 2005). 

In the past, WDS problems were treated as single-objective optimisation 

problems. The first objective is minimising the capital cost of the pipes while 

satisfying the network’s constraint or second objective of minimum residual 

pressure head. However, the limitations of this formulation have been 

criticized broadly as being too simplistic for the design of real systems. The 

reason is that it is difficult to balance the weights for any objectives. If the 

first objective is weighted too heavily, the outcome optimized solution is less 

reliable (Engelhardt et al., 2000; Fu et al., 2012; Walski 2001). Specifically, 

by combining the two objectives into a single objective, the trade-off 

information in each objective is lost (Singh et al., 2003). Consequently, it was 

necessary to develop a multi-objective formulation for WDS problems. In 

order to achieve this, a great number of indicators have been proposed as a 

second objective. For example, minimising the total pressure deficit (Cheung 
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et al., 2003); or minimising the number of nodes with a head deficiency 

(Farmani et al., 2004). However, these formulations are not necessarily 

compliant with looped network designs, which are reliable configurations 

under abnormal conditions (e.g., pipe burst). In an influential paper, Prasad & 

Park (2004) proposed an indicator called network resilience. Network 

resilience considers the effect of redundancy on a pipe network and 

maximizing this indicator can ensure reliable loops. In recent years, much 

work has been undertaken that used cost and network resilience as objective 

functions for WDS problems (Wang et al., 2015; Zheng et al., 2016; Wang et 

al., 2017; Jahanpour et al., 2018; Wang et al., 2020a). 

Given that the search space of possible design solutions for a network system 

is very large, it is computationally infeasible to find the global optima by 

enumerating each possible design. For example, the New York tunnel network 

consists of 21 pipes with 16 diameter options for each pipe. The entire search 

space size is about 1.93 × 1025. Thus, it would take 6.12 × 1016 years to 

evaluate all the solutions, given that one solution evaluation takes 0.1 seconds 

of clock time. In addition, the objectives and constraints are all nonlinear 

functions of the decision variables (Jahanpour et al., 2018). The NP-hard 

nature of this type of problem is a challenge to tackle, especially for large, 

real-world networks (Wang et al., 2015).  

Considering the nature of the problem type, Simpson et al., (1994) firstly 

applied the genetic algorithm (GA) to WDS problems (i.e., the single 

objective optimization problem) and demonstrated the performance of the GA 

outweighed other deterministic optimisation methods, such as linear 

programming (Schaake & Lai, 1969), and nonlinear programming (Murtagh 

& Saunders 1987). Then, as mentioned earlier, as multi-objectives have been 

adopted in the WDS problem, Deb et al., (2002b) proposed the nondominated 

sorting genetic algorithm-II (NSGA-II), which has been applied to WDS and 

has shown effective performance (Jourdan et al., 2005; Khu & Keedwell, 
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2005). NSGA-II is an effective MOEA that has been widely used as a 

benchmark MOEA in water engineering (Farmani et al., 2004). Moreover, it 

serves as the prototype of some state-of-the-art MOEAs (excluding some 

unique features). Thereafter, many MOEAs were developed to achieve 

effective performance on various types of problems. As inspired from natural 

adaptive systems, the search behaviour should adapt to different problems. 

This is achieved by implementing multiple operators, given different 

operators have different characteristics, therefore having different search 

behaviours. In addition, the degree to which each of the operators contributes 

to the search at each iteration can be controlled with the aid of 

hyperheuristics, which are high-level automated search methodologies for 

selecting the most appropriate lower-level operators (or heuristics) (Burke et 

al., 2013; Drake et al., 2019). This type of MOEA is able to change the search 

behaviour to adapt to a problem’s characteristics, thereby improving the 

algorithm’s performance. For the sake of understanding MOEA processes, the 

general structure of the state-of-the-art MOEAs is outlined in Figure 1-1. As 

can be seen, at the beginning of the optimisation process, an initial set of 

solutions is randomly generated to form the population. There are three key 

processes undertaken within an iteration. They are (i) parent selection, (ii) 

reproduction, and (iii) survivor selection. Subject to the parent selection 

process, some solutions are selected from the population as parent solutions, 

which have the opportunity to reproduce and create offspring. In the 

reproduction process, the new offspring solutions are produced from the 

selected parent solutions by use of one or more operators (e.g., cross-over 

from the parents). When using multiple operators, the degree to which an 

operator contributes to the search at each generation can be controlled with the 

aid of a hyperheuristic. Thereafter, the new population in the current 

generation and the new offspring are collated to form a combined set. Then, 

replacement is carried out to select the successful solutions from the combined 

set to form the next generation’s population. The above process is repeated  

until certain termination criteria are met, such as the execution of a fixed 
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number of generations, or no better solutions being identified within a given 

time interval. 

 

Figure 1-1. Generic multi-objective evolutionary optimisation process 

Examples of such algorithms are AMALGAM (Vrugt et al., 2007), Borg 

(Hadka & Reed, 2013), and a genetically adaptive leaping algorithm for 

approximation and diversity, GALAXY (Wang et al., 2017). These algorithms 

inherit some features of NSGA-II, and implement multiple operators with a 

hyperheuristic to favour more successful operators automatically to carry out 

reproduction. The MOEAs mentioned above have shown successful and 

effective performance for WDS problems (Wang et al., 2015, 2017; Zheng et 

al., 2016; Jahanpour et al., 2018; Wang et al., 2020a).  

1.1.2 MOEA Development 

In the past, the development of an MOEA has been motivated by addressing 

the limitations of computational efficiency or to achieve certain targets to 

improve algorithm performance. For example, Deb et al., (2002b) proposed 

NSGA-II in order to (i) reduce the high computational complexity of 

nondominated sorting; (ii) achieve elitism preservation; and (iii) develop an 

effective diversity maintenance strategy. These objectives were fulfilled by (i) 

the fast-nondominated sorting approach; (ii) combination of offspring with the 

last generation’s population to retain elite solutions; and (iiii) use of the 

crowding distance metric, respectively.  
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In other relevant work, Vrugt et al., (2007) found that the nature of fitness 

landscapes is considerably different in different problems. To improve MOEA 

performance, it was considered necessary to find a way to customise the 

search behaviour to cater for the different problem characteristics during the 

search. Given that MOEAs are able to be shown different search behaviours 

via the use of a range of different operators (Maier et al., 2014; Zecchin et al., 

2012; Zheng et al., 2015, 2017a), it is possible to tune an algorithm’s search 

behaviour by dynamically adjusting the degree to which different operators 

contribute to the identification of better solutions throughout the search. For 

many algorithms employing such approaches, this dynamic adjustment is 

controlled by a hyperheuristic (Burke et al., 2013), which tracks the historical 

performance of an operator and allocates computational resources to the 

operator based on this performance. Inspired by models of adaptation in 

natural systems, AMALGAM was proposed to use multiple operators, assisted 

by a hyperheuristic to tune each operator’s utilisation rate (Vrugt et al., 2007) 

during the search. This innovative hyperheuristic allows the algorithm to 

adapt to the current search by utilising more successful operators and 

improving algorithm performance.  

Hadka & Reed (2013) comprehensively studied the weaknesses of existing 

MOEAs for high objective dimension optimisation problems. Key issues 

include the: (i) lack of an appropriate non-dominance relationship for high 

dimension objectives; (ii) lack of an appropriate diversity maintenance 

strategy, (iii) risk of deterioration, in terms where the elite solutions are 

replaced by worse solutions during the search; and (iv) reduction of the work 

for parameterisation for the crossover rate and mutation rate of operators, for 

example. Borg was designed to address these issues, and is equipped with 

many new features such as an ε-non-dominance archive to store the elite 

solutions to avoid deterioration; multiple operators with a hyperheuristic to 

adapt the search to different problems’ characteristics and reduce 

parameterisation by using the six operators with a hyperheuristic to adapt the 
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search to different problems’ characteristics, such as ε-progress and an 

adaptive population sizing operator (hyperheuristic) to improve the diversity 

of the search.  

The above algorithms have shown effective performance not only on a wide 

range of applications and test functions (Asadzadeh & Tolson 2012; Hadka & 

Reed, 2012, 2013, 2015; Zeff et al., 2016; Zhang et al., 2010), but also on 

WDS problems (Wang et al., 2015; 2017; Zheng et al., 2016). Following on 

from the works undertaken, Wang et al., (2017) aimed to improve MOEA 

performance by optimising the components of an MOEA. This work 

represented the belief that the existing MOEA’s structure is effective, but that 

tailoring the components would benefit algorithm performance. Thus, 

GALAXY was proposed, equipped with a new survivor selection strategy and 

search operators, which were tailored for WDS problems (i.e., using operators 

that only work in the discrete search space). The idea of the algorithm 

development is that different search processes have different search 

behaviours, thereby affecting an algorithm’s performance. By conducting a 

numerical comparison study, it was demonstrated that GALAXY 

outperformed the aforementioned algorithms on WDS problems (Wang et al., 

2017). 

1.1.3 Limitations of existing MOEAs 

Key remaining issues in the applied EA field is that it is difficult to ascertain 

the reason or justification for a particular option of each MOEA component, 

aside from the overall end-of-run metrics, which only indicate the collective 

influence of all components. For example, it is unclear how many operators 

are sufficient for improving an algorithm’s performance. Also, it is unclear 

how different selection strategies affect search behaviour, and further, which 

hyperheuristics are able to improve algorithm performance effectively. These 
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questions are the research gaps of this thesis and are introduced in detail in the 

following subsections. 

1.1.3.1 The relative influence of size and composition of the operator set  

Evolutionary algorithms are able to achieve the diverse searching behaviour 

outlined above via the use of a range of operators (Maier et al., 2014; Zecchin 

et al., 2012; Zheng et al., 2015, 2017a), which provide different search 

behaviours for searching through the solution space. For the existing MOEAs, 

how many and which operators are used in a particular algorithm is generally 

fixed, based on the choices made by the developers of these algorithms.  For 

example, NSGA-II, which is one of the most common widely used EAs, uses 

two operators [simulated binary crossover (SBX) (Deb & Agrawal., 1994) and 

polynomial mutation (PM) (Deb & Agrawal., 1994)]; whereas the more 

recently-developed algorithms AMALGAM (Vrugt & Robinson, 2007), Borg 

(Hadka & Reed, 2013) and GALAXY (Wang et al., 2017) use six [SBX, PM, 

particle swarm optimisation (PSO) (Kennedy & Eberhart, 1995), turbulence 

factor (TF) (Pulido et al., 2004), differential evolution (DE) (Storn & Price, 

1997) and adaptive metropolis strategy (AMS) (Haario et al., 2001)], seven 

[parent-centric crossover (PCX) (Deb et al., 2002a), simplex crossover (SPX) 

(Tsutsui et al., 1999), unimodal distribution crossover (UNDX) (Kita et al., 

1999), uniform mutation (UM) (Michalewicz, 1992), SBX, PM and DE] and 

six [dither creeping (DC) (Wang et al., 2017), gaussian mutation (GM) (Wang 

et al., 2017), SBX, DE, TF and UM] operators, respectively. The issue of how 

many and which operators are included in an algorithm is likely to have a 

greater influence on algorithm performance than other search processes (as 

long as reasonable parameter values are selected for these processes) (Soria-

Alcarez et al., 2017). Consequently, it is somewhat surprising that the 

influence of the different number of operators on the performance of EAs has 

received very limited attention, with only Vrugt et al., (2009) exploring this 

issue. However, Vrugt et al., (2009) only considered five candidate operators, 
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making it possible to investigate the impact of all possible operator 

combinations of this limited set. This is not the case when considering a larger 

number of operators, such as those used in current state-of-the-art algorithms. 

The above shortcoming, with knowledge of the appropriate operator set, is 

discussed and addressed in Chapter 2.  

1.1.3.2 The relative influence of the selection strategy 

The selection strategy is a key component of an MOEA, which determines the 

composition of a population, and thereby the evolutionary search process 

overall, which imitates natural selection by granting fitter individuals an 

increasing opportunity to reproduce (Yu & Gen, 2010). The selection strategy 

is an important process in the evolution of the population, as it needs to be 

designed to drive convergence to increasingly fit regions of the search space 

(though elitism, for example), whilst avoiding pre-mature convergence to sub-

optimal regions (through maintaining population diversity) (Back, 1996; 

Hanne, 1999). Over the past 20 years, many selection strategies have been 

proposed and shown to be effective in different MOEAs. For example, 

Emmerich et al., (2005) applied a hypervolume contribution (HVC) selection 

strategy (Knowles et al., 2003) to SMS-EMOEA. The results show it 

outperformed NSGA-II (which uses a crowding distance (CD) selection 

strategy (Deb et al., 2002b)); however, this thesis did not isolate the impact of 

the selection strategy from those of the other MOEA components, which 

poses a difficulty in attributing the performance difference to the proposed 

selection strategy. Consequently, investigation into the relative influence of a 

selection strategy on an algorithm’s performance still needs to be addressed. 

A detailed review of the existing selection strategies is outlined in Chapter 3, 

where the aim is understanding how a selection strategy can affect search 

behaviour, thereby affecting the algorithm’s performance. Moreover, Chapter 

3 proposes a new convex hull contribution selection strategy for population-

based MOEAs (termed CHCGen) and this is shown to be the best performing 
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selection strategy component - performing better than the other existing 

selection strategies considered in this thesis. 

1.1.3.3 The component combination of MOEA 

Given the fact that different MOEA components determine the search 

characteristics that affect performance, as long as the general optimisation 

process is consistent with that outlined in Figure 1-1, different MOEAs can be 

viewed simply as the set of components used in each process. For example, 

for NSGA-II, during the selection process, parent selection and survivor 

selection uses the crowding distance selection strategy; in the reproduction 

process, NSGA-II uses SBX and PM as the two operators but no 

hyperheuristic is used. Thus, identifying or fine-tuning the components of 

these processes would affect the search behaviour and algorithm performance. 

However, systematic investigations into this topic are not currently sufficient. 

Given the fact that it is time-consuming to evaluate all of the component 

combinations, many existing MOEAs’ process components have traditionally 

been determined without understanding their influence on performance. In 

this work, we considered the best component alternatives found in Chapter 2 

(number of operators) and Chapter 3 (selection strategy) and the popular 

component alternatives in existing MOEAs to identify the best component 

combination, in terms of the proposed multi-objective evolutionary algorithm 

[GMOEA(CHCGen,12,T,A)]. The detailed review of the existing methodology 

for existing MOEA and its limitations is outlined and addressed in Chapter 4. 

1.2 Research aims 

The main objective of the thesis is to understand the impact of each 

component of an MOEA on algorithm performance, and to use this 

knowledge to systematically develop a new MOEA for WDS problems. In 

order to achieve this, a general multi-objective evolutionary algorithm 
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framework that reflects the general multi-objective evolution algorithm’s 

process, as outlined in Figure 1-1, is proposed. This framework is the 

algorithmic test bed used to create a fair comparison of the components that 

enable researchers to isolate the influence of individual components from any 

other components within the framework. With this framework, in this thesis, 

three objectives have been proposed, with the specific sub-objectives as 

shown below. 

Objective 1. To study the impact of the size of  an operator set on MOEA 

performance. 

Objective 1.1. To assess whether the inclusion of a larger number of 

operators improves algorithm performance. 

Objective 1.2. To assess whether the relative influence of the number 

of operators (i.e., the size of the operator set) is: greater than that of the 

composition of this operator set (i.e., which operators constitute this set) (sub-

objective 1.2a); and greater than that of the combined effect of other types of 

strategies affecting the algorithm search (such as parent and survivor selection 

or the degree to which various operators contribute at different stages of the 

search) (sub-objective 1.2b). 

Objective 1.3. To assess the potential for improving the performance of 

existing EAs by increasing the size of the operator set within these algorithms. 

Objective 2. To study the impact of the selection strategy on MOEA 

performance. 

 Objective 2.1. To propose a new convex hull contribution selection 

strategy for population-based MOEAs. 

 Objective 2.2. To assess the performance of MOEAs with different 

selection strategies. 
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 Objective 2.3. To assess the potential for improving the performance 

of existing MOEAs by using the new convex hull contribution selection 

strategy. 

Objective 3. To propose a new MOEA for WDS problems. 

Objective 3.1. To determine the optimal MOEA component 

configuration (i.e., operator, selection strategy and hyperheuristic) by 

conducting comprehensive numerical experiments. 

Objective 3.2. To investigate the relative influence of each component 

and pairwise combination of components on algorithm performance. 

Objective 3.3. To evaluate the new proposed MOEA’s performance by 

comparing it with seven state-of-the-art MOEAs. 

1.3 Organisation of the Thesis 

The main body of this thesis (Chapters 2 to 4) comprises the collection of 

three journal articles produced within this research2. A summary of the thesis 

chapters is given below. 

Chapter 2 (Journal paper 1) focuses on investigating the impact of the 

operator set on MOEA performance. Specifically, a comprehensive numerical 

comparison has been conducted to study the relative influence of the number 

 

2 The journal paper manuscripts have been reformatted in accordance with University of 
Adelaide guidelines, and sections have been renumbered for inclusion within this thesis. 
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of operators, operator combination, and other combined components on 

algorithm performance.  

Chapter 3 (Journal paper 2) proposes a new convex hull contribution 

selection strategy. Moreover, the proposed selection strategy was compared 

with existing selection strategies to study the influence of the selection 

strategy on algorithm performance. 

Chapter 4 (Journal paper 3) proposes a GMOEA by identifying the best 

performing component combinations. Also, extensive numerical 

experimentation has been conducted to understand the relative influence of 

each component and pairwise combination of components on algorithm 

performance. The findings of this thesis also reinforce the conclusions in 

Chapters 2-3. 

Chapter 5 summarises the contributions of the research. Future work is also 

discussed. 
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Abstract 

Multiobjective evolutionary algorithms (MOEAs) have been used extensively 

to solve water resources problems. Their success is dependent on how well the 

operators that control an algorithm's search behavior are able to identify near‐

optimal solutions. As commonly used MOEAs contain a relatively small 

number of operators (generally between 2 and 7), this chapter investigates 

whether the performance of MOEAs could potentially be improved by 

increasing their operator set size. This is done via a series of controlled 

computational experiments isolating the influence of the size of the operator 

set (i.e., how many operators are used, ranging from 2 to 12), the composition 

of the operator set (i.e., which operators are used, given a set number of 

operators), the search strategy used (e.g., parent selection and survivor 

selection), and increasing the operator set size of an existing MOEA. These 

experiments are performed on six benchmark water distribution optimization 

problems. Results of the 3,150 optimization runs indicate that operator set size 

is the dominant factor affecting algorithm performance, having a significantly 

greater influence than operator set composition and other factors affecting 

algorithm search behavior. In addition, increasing the operator set size of the 

state-of-the-art MOEA GALAXY, which has been designed specifically for 

solving water distribution optimization problems, from its currently used 

value of 6 to 12 increased its performance significantly. These results suggest 

there is value in investigating the potential of increasing operator set size for a 

range of algorithms and problem types. 

2.1 Introduction 

Optimization has been used extensively to solve a wide range of water 

resources problems for a number of decades (Maier et al., 2014; Mala‐

Jetmarova et al., 2017, 2018; Nicklow et al., 2010). A persistent thread in this 

literature is the quest to develop algorithms that perform satisfactorily on the 
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widest range of problem types possible (Maier et al., 2014; Mala‐Jetmarova et 

al., 2017). On the surface, this might appear to be a somewhat utopian pursuit, 

as it contradicts the no-free-lunch theorem (Wolpert & Macready, 1997), 

which states that if an algorithm performs better than random search on some 

class of problems, then it must perform worse than random search on other 

types of problems. However, over the last two decades, the use of 

evolutionary algorithms (EAs) has enabled significant progress to be made 

toward achieving this goal. This is because these algorithms have the ability to 

adjust the way they search through the solution spaces by either intensifying 

the search in promising regions (i.e., exploiting good solutions) or 

diversifying the search in less promising regions (e.g., exploring the solutions 

space more widely), enabling them to perform well on problems with different 

characteristics (Maier et al., 2019). 

EAs are able to achieve the diverse searching behavior outlined above via the 

use of a range of operators (Maier et al., 2014; Zecchin et al., 2012; Zheng, 

2015; Zheng, Qi, et al., 2017), which provide different strategies for searching 

through the solution space. For example, crossover operators, such as parent‐

centric crossover (PCX) (Deb & Agrawal., 1994), simplex crossover (SPX) 

(Tsutsui et al., 1999), simulated binary crossover (SBX) (Deb & Agrawal., 

1994), unimodal distribution crossover (UNDX) (Kita et al., 1999), 

differential evolution (DE) (Storn & Price, 1997), the adaptive metropolis 

strategy (AMS) (Haario et al., 2001), and particle swarm optimization (PSO) 

(Kennedy & Eberhart, 1995) all provide different strategies for intensifying 

the search in the proximity of high-performing parent solutions. In contrast, 

operators such as uniform mutation (UM) (Michalewicz, 1992), polynomial 

mutation (PM) (Deb & Agrawal., 1994), Gaussian mutation (Rechenberg, 

1965), the turbulence factor (TF) (Pulido & Coello Coello, 2004), and 

dither creeping (DC) (Wang et al., 2017) offer different strategies for 

exploring various regions of the solution space more widely. 
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The different search strategies provided by various operators can generally be 

fine‐tuned with the aid of one or more parameters. For instance, in PCX and 

UNDX, the degree of proximity of the search to the parent solutions is 

controlled by two variance parameters, whereas in SBX this is achieved with 

the aid of a distribution index, in SPX by a spreading factor, in DE by using a 

mutation weighting factor and a crossover rate, in AMS by using a jump 

factor, and in PSO with the aid of a velocity factor. Similarly, in UM, PM, and 

GM, the degree of exploration is controlled by a probability of mutation, in 

addition to a distribution index in PM and a scaling factor in GM, whereas 

three probabilities of mutation parameters are used in DC. In addition to fine‐

tuning algorithm search behavior by changing the values of these parameters, 

search behavior can also be changed by dynamically adjusting the degree to 

which different operators contribute to the identification of better solutions 

throughout the search based on algorithm performance (Burke et al., 2013). 

How many and which operators are used in a particular algorithm is generally 

fixed, based on the choices made by the developers of these algorithms. For 

example, NSGA-II (Deb et al., 2002b), which is one of the most commonly 

and widely used EAs, uses two operators (SBX and PM), whereas the more 

recently developed algorithms AMALGAM (Vrugt & Robinson, 2007), Borg 

(Hadka & Reed, 2013), and GALAXY (Wang et al., 2017) use six (SBX, PM, 

PSO, TF, DE, and AMS), seven (SBX, PCX, SPX, DE, UNDX, UM, and 

PM), and six (SBX, DE, TF, DC, GM, and UM) operators, respectively. As a 

result, there has been a large number of studies that have focused on (i) the 

sensitivity of the performance of these algorithms to values of the operators 

(Vrugt et al., 2009; Wang et al., 2017), (ii) the impact of adapting values of 

these operators during the optimization process (Karafotias et al., 2015; 

Zheng, Zecchin, et al., 2017), and (iii) various strategies for determining the 

relative contribution of operators at different stages of the search (Burke et al., 

2013; Drake et al., 2019). 
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However, as the use of different operators is akin to the adoption of different 

search strategies, whereas the adjustment of the parameters that control these 

operators, and the mechanisms that are used to determine the relative 

contribution of these operators during the search, akin to fine‐tuning the 

selected strategies, the issue of how many and which operators are included in 

an algorithm is likely to have a greater influence on algorithm performance 

than the above factors (as long as reasonable parameter values are selected) 

(Soria-Alcaraz et al., 2017). Consequently, it is somewhat surprising that the 

influence of the different numbers of operators on the performance of EAs has 

received very limited attention, with only Vrugt et al., (2009) exploring this 

issue. However, they only considered five candidate operators, making it 

possible to investigate the impact of all possible operator combinations. 

However, this is not the case when consider a larger number of operators, 

such as those used in current state-of-the-art algorithms. 

In order to address this shortcoming, the overall aim of this paper is to 

systematically explore the influence of the number of operators on the 

performance of EAs. The specific objectives are as follows: 

1. To assess the relative influence of the size of the operator set on algorithm 

performance. 

2. To assess whether the size of the operator set is more important for 

algorithm performance than the composition of the operator set (i.e., 

intentionally constructed operator sets from existing algorithms versus 

randomly constructed sets). 

3. To assess whether the size of the operator set is more important for 

algorithm performance than the combined effect of the composition of the 

operator set and the search strategies used (i.e., intentionally constructed 
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operator sets and search strategies, such as parent and survivor selection and 

the use of approaches that govern the usage of operators, from existing 

algorithms vs. randomly constructed sets). 

4. To assess the potential for improving the performance of existing MOEAs 

by increasing the size of the operator set. 

The above objectives are achieved via a large number of computational 

experiments applied to a range of water distribution system design problems. 

These problems have been selected as they exhibit a diverse range of problem 

characteristics (Wang et al., 2015) and have been tested in a number of studies 

assessing the performance of different optimisation algorithms (Jahanpour et 

al., 2018; Wang et al., 2015, 2017; Zheng et al., 2016; Zheng, Qi, et al., 2017). 

In addition, the design of water distribution systems is an important test 

problem that has been studied extensively in the area of water resources 

(Mala-Jetmarova et al., 2018). The remainder of this paper is organized as 

follows. An outline of the methodology is given in section 2.2. The results are 

presented and discussed in section 2.3, followed by a summary and 

conclusions in section 2.4. 

2.2 Methodology 

2.2.1 Background 

The general steps in the iterative process by which multiobjective 

evolutionary algorithms (MOEAs) identify better solutions as the search 

progresses are shown in Figure 2-1. As can be seen, at the commencement of 

the optimization process, an initial set of solutions is generated, which is 

subjected to a selection process to identify better-performing solutions, which 

have the opportunity to reproduce. The reproduction process results in a set of 

offspring solutions, which are subject to a survivor selection process to 
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identify the solutions that form part of the next generation. This process of 

parent selection, reproduction, and survivor selection is repeated until certain 

termination criteria are met, such as the execution of a fixed number of 

iterations (generations) or until no better solutions can be identified. 

 

Figure 2-1. Steps in generic multi-objective evolutionary optimisation process 

The reproduction process is facilitated by one or more operators or heuristics 

(Figure 2-1). Consequently, reproduction is affected by the number of 

operators used (i.e., the size of the operator set) and which operators are used 

in this set (i.e., the composition of the operator set). As mentioned in section 

2.1, the performance of the operators can be fine-tuned with the aid of one or 

more parameters. In addition, the degree to which each of the operators 

contributes to the search at each iteration can be controlled with the aid of 

hyperheuristics, which are high-level automated search methodologies for 

selecting the most appropriate lower-level operators (or heuristics) (Burke et 

al., 2013; Drake et al., 2019). 

Different MOEAs, such as NSGA-II, GALAXY, or Borg, use different 

operator set sizes, different operator set compositions, and different search 

strategies (including different hyperheuristics and parent and survivor 

selection strategies), making it difficult to isolate the impact of the size of the 

operator set on algorithm performance, which is the focus of this chapter. 
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Consequently, a methodology has been developed for achieving this, an 

overview of which is given in the next subsection. 

2.2.2 Overview 

In order to enable the relative impact of the inclusion of a larger number of 

operators on optimization algorithm performance to be assessed, a general 

MOEA framework was developed (see section 2.3.1 for details). As part of 

the framework, parent and survivor selection strategies remain fixed, the 

operator set is varied (according to the type of experiment), and the relative 

contribution of each operator is held constant throughout the search (i.e., 

NAÏVE hyperheuristic is used). This enables the influence of the size and 

composition of the operator set to be assessed in an objective fashion as part 

of a series of controlled experiments. In order to be able to assess the relative 

influence of the size of the operator set on algorithm performance (Objective 

1), the composition of operator sets of different sizes was randomly generated 

from a pool of 12 operators via uniform sampling: 10 different combinations 

of two randomly selected operators; 5 different combinations of 4, 6, and 10 

randomly selected operators; and a single set of all 12 operators (Experiments 

1a to 1e, Figure 2-2). This minimizes the influence of the composition of the 

operator set (or any bias induced through intentional construction), thereby 

isolating the impact of the size of the operator set. 
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Figure 2-2. Overview of the methodology adopted to achieve the stated objectives, with the 

experiment number corresponding to the objective number being addressed 

It should be noted that sets that only contained operators with the same search 

emphasis (i.e., only exploitation or only exploration) were excluded. This 
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resulted in the consideration of 26 unique operator sets. For the sake of 

simplicity, each group consisting of the same operator set size is referred to as 

an algorithm group (e.g., “Algorithm Group 2” refers to all algorithms with an 

operator set size of 2). 

Information on the 12 operators used is given in Table 2-1-interested readers 

should refer to the relevant references within the table for additional 

information on each of these operators. These operators were chosen as (i) 

their use has resulted in successful performance on a wide range of test 

functions (please refer to the references listed in Table 2-1); (ii) many of these 

operators have been built into state-of-the-art MOEAs, such as Borg and 

GALAXY; (iii) they exhibit an array of different search behaviors (Hadka & 

Reed, 2013; Wang et al., 2017) given their different emphasis on exploitation 

and exploration (Maier et al., 2014); and (iv) algorithms that use these 

operators have been found to provide at least a satisfactory, if not highly 

competitive, outcome on a number of WDS problems (Wang et al., 2015, 

2017; Zheng et al., 2016). While the parameters affecting the behavior of the 

operators were set to values suggested in the literature for the majority of the 

experiments-for example, the parameter values of the constructed operator 

sets for Borg and NSGA-II were consistent with the recommended settings in 

the literature (Deb et al., 2002b; Hadka & Reed, 2013), which had also been 

used in Wang et al., (2015)-the influence of varying the parameters was tested 

as part of a targeted sensitivity analysis (Figure 2-2) (see section 2.2.5 for 

details). 

  



Chapter 2 – Influence of operator 

26 

 

Table 2-1. Operators Applied in the Computational Experiments 

Operator candidate Behavioural emphasis 

Simulated binary crossovera (SBX) Exploitative 

Differential evolutionb (DE) Exploitative & Explorative 

Parent-centric crossoverc (PCX) Exploitative 

Unimodal normal distribution crossoverd (UNDX) Exploitative  

Simplex crossovere (SPX) Exploitative  

Polynomial mutationa (PM) Explorative 

Uniform mutation for integerf (UMI) Explorative 

Gaussian mutation for integersg (GMI) Explorative 

Dither creeping for integersh (DCI) Explorative 

Differential evolution for integersb (DEI) Explorative & Explorative 

Simulated binary crossover for integersg (SBXI) Exploitative 

Turbulence factor for integersi (TFI) Explorative 

Note: aDeb & Agrawal., (1994). bStorn & Price, (1997). cDeb et al., (2002a). dKita et al., 
(1999). eTsutsui et al., (1999). fMichalewicz, (1992). gWang et al., (2017). hZheng et al., 

(2013). iPulido et al., (2004). 

In order to assess whether the size of the operator set is more important for 

algorithm performance than the composition of the operator set (Objective 2), 

the results for algorithms using constructed operator sets that are used in four 

existing MOEAs (Experiments 2a to 2d, Figure 2-2) were compared with 

those obtained using randomly generated operator sets (Experiments 1a to 1e). 

The existing MOEAs from which the constructed operator sets were obtained 

include NSGA-II, SAMODE, GALAXY, and Borg, which have two, two, six, 

and seven operators, respectively (Figure 2-2). These MOEAs have been 

selected as they use different numbers of operators and have been applied 

successfully to the case studies considered in this paper in previous studies 

(see section 2.2.3.2 for details). 

In order to assess whether the size of the operator set is more important for 

algorithm performance than the combined effect of the composition of the 

operator set and the search strategies used (Objective 3), the results for 
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algorithms using constructed operator sets and search strategies that are used 

in the four existing MOEAs considered, including different parent and 

survivor selection strategies and the use of different hyperheuristics that 

govern the usage of operators (Experiments 3a to 3d, Figure 2-2), were 

compared with those obtained using algorithms that use constructed operator 

sets but the same search strategy (Experiments 2a to 2d) and randomly 

generated operator sets (Experiments 1a to 1e). 

Finally, the potential for improving the performance of existing algorithms by 

increasing their operator set size (Objective 4) was assessed by comparing the 

performance of the best‐performing algorithm from Experiments 3a to 3d with 

that obtained by increasing the number of operators in this algorithm to the 

largest number of operators considered in this chapter (i.e., a total of 12 

operators) (Experiment 4, Figure 2-2). 

As shown in Figure 2-2, the above experiments were conducted on six water 

distribution system (WDS) design case studies, including the New York 

Tunnel network (NYT), the Hanoi network (HAN), the Fossolo network 

(FOS), the Pescara network (PES), the Modena network (MOD), and the 

Balerma irrigation network (BIN), minimizing network cost and maximizing 

network resilience for each (see section 2.2.4 for details). These case studies 

were selected, as they have different levels of complexity and were included 

in a benchmarking study of different MOEAs for this problem type by Wang 

et al., (2015). All optimization runs were repeated from 10 different starting 

positions in decision variable space (random seeds), as shown in the central 

block of Figure 2-2, resulting in a total of 3,150 optimization runs. 

To enable the results from the different computational experiments to be 

compared in an objective fashion and to understand the reasons for the 

relative performance of different algorithms, a range of metrics were used, as 

shown in the “Result Assessment” block in Figure 2-2. The performance rank 
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of the different algorithms used in each experiment was determined by 

applying the one-way Kruskal-Wallis test (Kruskal & Wallis, 1952) with 

Dunn's D posttest (Dunn, 1964) to a number of end-of-run performance 

metrics. In addition, a number of run-time metrics were used to explore and 

better understand the impact of operator set size and composition on algorithm 

searching behavior and performance (see section 2.2.6 for details). 

2.2.3 Optimization Algorithms 

2.2.3.1 General MOEA Framework 

As mentioned previously, the general MOEA framework was developed to 

enable the influence of different operator set sizes and compositions to be 

tested in an unbiased fashion. The general MOEA framework follows the 

general structure of NSGA-II, with the addition that it allows for an arbitrary 

operator set, where the use of the operators is governed by the NAÏVE 

hyperheuristic (i.e., equal computational resources are allocated to each 

operator). The reason for basing the structure of the general MOEA 

framework on that of NSGA-II is that its simplicity allows for the resulting 

search performance to largely be attributed to the choice of operator set, 

which is the purpose of this chapter, and that it forms the basis of the structure 

of a number of other popular MOEAs, such as AMLAGAM and GALAXY. 

The pseudo code of the framework is shown in Figure 2-3. As can be seen, the 

inputs to the framework are population size (N), number of function 

evaluations (NNFE), and the operator set  = {1, …, k}, consisting of k 

operators, where j is the j-th operator (line 1). Starting from the initialization 

(line 2), a population x of N solutions is uniformly sampled from the sample 

space and ranked by the fast non-dominated sorting approach (Deb et al., 

2002b). In the main loop (lines 3 – 10), the parent solutions are selected from 

the population set by implementing the constraint tournament selection 

strategy (Deb et al., 2002b). As part of this strategy, the infeasible solutions 
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were recognized as dominated by all feasible solutions and ranked in 

ascending order based on degree of constraint violation. Solutions with the 

highest degree of constraint violation had the smallest probability of being 

selected. 

As part of the reproduction process (lines 5 - 7), the operator set  is used to 

produce offspring solutions. A key feature of the framework is that the size, k, 

and composition of the operator set , are variable, so that the influence of the 

size and composition of the operator set on algorithm performance can be 

assessed in an objective fashion. It should be noted that the quota  𝑞𝑗 for each 

operator in  is equal, indicating that no biasing hyperheuristics are applied. 

For each operator, after  𝑞𝑗 offspring yj  are produced, they are added to the 

offspring set y (line 6). After evaluation of the solutions in the offspring set, 

the y are combined with x (line 9). In the survivor selection step, the crowding 

distance replacement strategy (Deb et al., 2002b) is used to select the 

population for the next generation (line 10) from y ∪ x. In addition, for the 

infeasible solutions, the solutions with a higher violation of the constraints 

would be less likely to be included into the population set. The main loop is 

terminated if the current iNFE is greater than the total NNFE (line 3). 
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1:  Inputs: population size (N), number of function evaluations (NNFE), and operator set   = {1, …, k}   

2:  Initialize N individuals as the population set x; the quotas of each search operator 𝑞𝑗 = ⌊
𝑁

𝑘
⌋; iNFE = 0  

3:  while iNFE <= NNFE 
4:   Select parent solutions, set y = Ø 

5:   for j = 1 to k 

6:    Produce  𝑞𝑗 offspring solutions 𝒚𝑗, and add to y  

7:   end 

8:            Evaluate y 
9:   Combine the x and y  
10:   Implement replacement strategy to select the survival individual to form the population set  

11:           𝑖𝑁𝐹𝐸  = 𝑖𝑁𝐹𝐸 + ∑ 𝑞𝑗
𝑘
𝑗=1   

12: Loop 
13:  end 

14:  Outputs: Pareto approximation set (z), Pareto approximation front (f(z)) 
end  

Figure 2-3. Pseudocode for the general MOEA framework used to test the relative influence 

of operator set size and composition 

2.2.3.2 Existing MOEAs 

As mentioned in section 2.2.2, for the purposes of benchmarking, the 

constructed operator sets used in Experiments 2a-2d and the constructed 

operator sets and search strategies used in Experiments 3a to 3d are those used 

in four existing MOEAs: NSGA-II, SAMODE, GALAXY, and Borg. These 

constructed operator sets and search strategies have been selected as their 

source MOEAs (i) are constructed from different operators set sizes (two for 

NSGA-II, two for SAMODE, six for GALAXY, and seven for Borg), 

compositions and search strategies (e.g., hyperheuristics and parent and 

survivor selection strategies), and (ii) have been applied successfully to the 

case studies considered in this research previously (e.g., Wang et al., 2015, 

2017; Zheng et al., 2016). 

NSGA-II is recognized as an industry standard MOEA for WDS optimization 

problems and has the simplest structure of the algorithms considered in this 

chapter. It also has been found to outperform more advanced MOEAs, such as 

Borg, in terms of the contribution percentages to the best-known Pareto front 

and end of runs metrics (i.e., hypervolume and generational distance), for the 

case studies considered in this paper (Wang et al., 2015; Zheng et al., 2016). 

In these studies, NSGA-II has shown faster convergence to the best-known 
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Pareto fronts and also maintained better solution diversity. Borg is a robust 

hybrid MOEA that has been shown to perform well on a wide range of 

applications and test functions (Hadka & Reed, 2012, 2013, 2015; Zeff et al., 

2016), and SAMODE is a parameter adaptive MOEA that has been shown to 

perform well for a range of WDS problems (Zheng et al., 2014, 2016). 

GALAXY was designed specifically for solving WDS problems and has been 

shown to outperform many other MOEAs for the WDS problem case studies 

considered in this paper. A brief description of each of these MOEAs is given 

below. 

NSGA-II (Deb et al., 2002b) combines fast nondominated sorting, elitist 

preservation (based on Pareto dominance rank), and filtering of the 

population's solutions based on crowding distance. The algorithm contains 

two operators (both used for every offspring construction): the crossover 

operator SBX and the mutation operator PM. These operators were selected 

based on their robust combined performance across a wide range of test 

functions (Deb & Agrawal., 1994). 

SAMODE was first proposed by Zheng et al., (2014). It combines fast 

nondominated sorting and use of a crowding distance to maintain population 

convergence and diversity, as is the case with NSGA-II. The parameters used 

to fine-tune operator search behavior, including the mutation weighting factor, 

F, and the crossover rate, CR, are embedded into each solution string. The 

values of the parameters are adaptive: If a given set of parameter values 

results in offspring solutions that dominate their corresponding parent 

solutions, these parameter values are retained in the next generation; 

otherwise, they are randomly generated within pre-specified ranges. 

Borg (Hadka & Reed, 2013) is a hybrid MOEA that utilizes multiple operators 

and combines a number of advanced search strategies, such as ε-progress, ε-

dominance archive, randomized restart, and adaptive tournament selection 
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size. Moreover, Borg uses a hyperheuristic to auto-adapt its operators, where a 

feedback loop is established in which operators that produce greater 

successful offspring are rewarded by increasing their selection probabilities 

for producing offspring solutions in subsequent generations. 

GALAXY (Wang et al., 2017) is a hybrid MOEA that is tailored to discrete 

combinational problems, such as the WDS design problem. It uses six 

operators that have been selected based on empirical and preliminary 

numerical investigations, and for the purpose of facilitating a diverse array of 

search behaviors. In addition, several advanced strategies are built into 

GALAXY to improve algorithm performance, such as hybrid replacement, the 

global sharing strategy, the duplicates handling strategy, and a hyperheuristic 

called genetically adaptive strategy. 

2.2.3.3 Implementation 

The code for the general MOEA framework was developed using MATLAB's 

M-script, and the operator codes were developed to be consistent with the 

code of NSGA-II (Deb et al., 2002b), Borg (Hadka & Reed, 2013), and 

GALAXY (Wang et al., 2017). The code for implementing NSGA-II was 

obtained from Deb et al., (2002b); the code for implementing SAMODE was 

obtained from Zheng et al., (2016); the code for implementing GALAXY was 

obtained from Wang et al., (2017); and the code for implementing Borg was 

obtained from Hadka and Reed (2013). For all experiments, EPANET 2.0 

(Rossman, 2000) was used to perform the hydraulic simulations needed to 

evaluate the pressures at each node of the WDSs considered. All optimization 

runs were conducted on the Phoenix High Performance Computer (HPC) at 

the University of Adelaide. Phoenix HPC is a heterogeneous hardware system 

that includes a mix of CPU-only and CPU/GPU-accelerated nodes. It has 260 

nodes in total, which equipped with 2X Intel Gold 6148, 40 cores @ 2.4 GHz, 
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384 GB memory for CPU nodes. In addition, the max RAM per node is 125 

GB. 

2.2.4 Case Studies 

2.2.4.1 Formulation of Optimization Problem 

WDS optimization is an NP-hard combinatorial problem that is nonconvex, 

high dimensional, multimodal, and nonlinearly constrained (Zecchin et al., 

2012). The problem can be defined as the selection of the lowest-cost 

combination of appropriate component sizes and component settings, such 

that demands and other design constraints are satisfied. A common bi-

objective formulation of the problem, adopted by many authors (Bi et al., 

2016; Jahanpour et al., 2018; Wang et al., 2015, 2017; Zheng et al., 2016), is 

the consideration of the cost and resilience of a network as the two objective 

functions. Therefore, the maximization of network resilience (Prasad & Park, 

2004) and minimization of network cost are considered as the two objectives 

in this chapter. The cost objective is given by 

𝐹𝑐 = 𝑎 ∑ 𝐷𝑖
𝑏 𝐿𝑖

𝑛
𝑖=1        (2-1) 

where 𝐹𝑐 = total network cost, which is determined by pipe diameter 𝐷𝑖 and 

pipe length 𝐿𝑖; a and b = specified cost function coefficients; 𝑛 = total number 

of pipes in the network. The network resilience objective, which measures of 

combined effect of surplus power and nodal uniformity, is given by: 

𝐼𝒏 =
∑ 𝑼𝒋𝑸𝒋(𝑯𝒋−𝑯𝒋

∗)𝒎
𝒋=𝟏

∑ 𝑸𝒓,𝒋𝑯𝒓,𝒋
𝑵𝑹
𝒋=𝟏

−∑ 𝑸𝒋(𝑯𝒋
∗+𝒛𝒋)

𝒎
𝒋=𝟏

      (2-2) 

where  𝐼𝑛 = the network resilience, for which the numerator represents the 

surplus power combined with the nodal uniformity for all of the nodes and for 

which the denominator indicates the maximum surplus power;  𝑚 = total 
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number of demand nodes; 𝑄𝑗,  𝐻𝑗 and 𝐻𝑗
∗ are, demand, actual head, and 

minimum head required at each node j, respectively; 𝑁𝑅 = total number of 

reservoirs; 𝑄𝑟,𝑗, 𝐻𝑟,𝑗 are the actual discharge and actual head at reservoir j; and 

𝑈𝑗 is an indicator of diameter uniformity for pipes that are connected to node j 

and is defined as: 

𝑈𝑗 =
∑ 𝐷𝑖𝑗

𝑁𝑝,𝑗
𝑖=1

𝑁𝑝,𝑗max {𝐷𝑖𝑗 :𝑖=1,…,𝑁𝑝,𝑗}
      (2-3)  

where 𝐷𝑖𝑗 = the diameter of the i-th pipe connected to node j; 𝑁𝑝,𝑗 = total 

number of pipes that are connected to node j. Note that a larger value of 

𝑈𝑗 represents a higher reliability of the network node since the diameter 

variations between these pipes are lower overall (𝑈𝑗 =1 when all pipe 

diameters are identical) (Prasad & Park, 2004).  

In this chapter, the pipe size decision variables were encoded as consecutive 

integer values, ranging from one to the number of commercially available 

sizes. The constraints of the WDS optimization problem were flow velocity in 

each pipe and pressure head at each node. The satisfaction of the constraints, 

or otherwise, was computed by the hydraulic simulation software EPANET 

2.0 (Rossman, 2000). 

2.2.4.2 Case Studies 

The six case studies considered have been used in a number of previous 

studies assessing the relative performance of different MOEAs (Wang et al., 

2015, 2017; Zheng et al., 2016) and represent problems with different 

characteristics (Table 2-2). The size of the case study networks varies 

considerably, with the number of pipes ranging from 21 to 454 (Table 2-2), 

corresponding to problems with a range of characteristics (Wang et al., 2015). 

The population size N and computational budgets (i.e., NNFE) used are 
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consistent with those used in Wang et al., (2017), who selected these values 

based on the results of a number of computational experiments considering a 

range of population sizes and MOEAs. 

As can be seen from Table 2-2, both population size and computational 

budget are related to network size (i.e., the number of pipes). In terms of 

population size, values of 100 were used for the small- and medium-sized 

NYT, HAN, FOS, and PES problems, whereas values of 200 were used for 

the larger MOD and BIN problems. In terms of the number of function 

evaluations, values of NNFE = 50,000, 100,000, and 400,000 were used for 

the medium, intermediate, and large-scale WDS case studies, respectively. 

Table 2-2. WDS Case Studies and Population Size of the MOEAs 

Scale Case study (problem) 
Number of options for 

each pipe 
NNFE N 

Small 
New York tunnel (NYP21) 16 5x104 100 

Hanoi (HAN34) 6 5 x104 100 

Intermediate 
Fossolo (FOS58) 22 1 x105 100 
Pescara (PES99) 13 1 x105 100 

Large 
Modena (MOD317) 13 4 x105 200 

Balerma (BIN454) 10 4 x105 200 

2.2.5 Parameter Sensitivity Analysis 

The values of the parameters for the 12 operators used (Table 2-1) were those 

recommended by Wang et al., (2015, 2017). However, in order to ensure the 

results obtained are robust, the sensitivity of the relative performance of the 

algorithms to the choice of parameter values was tested on one instance of 

each algorithm group for the Balerma network (BIN), which is the largest of 

the case study networks considered (Figure 2-2). The search behavior of the 

12 operators considered is affected by 11 parameters (Table 2-3). For each of 

these, three choices were considered, including the recommended value and a 

±10% deviation from this. This is considered appropriate, as guidelines for 

reasonable values of these parameters are well established. 
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Table 2-3. Sampled parameter ranges for the uncertainty analysis 

Parameter 
Parameter values 

Min Recommended Max 

SBX rate 0.81 0.9 0.99 

SBX 

Distribution 

index  
13.5 15 16.5 

DE Crossover 

rate 
0.09 0.1 0.11 

DE Differential 

weight 
0.45 0.5 0.55 

UNDX Zeta  0.45 0.5 0.55 

UNDX Eta  0.315 0.35 0.385 

PCX Eta  0.09 0.1 0.11 

PCX Zeta  0.09 0.1 0.11 

SPX Expansion 

rate 
2.7 3 3.3 

PM Rate 0.9*1/n 1/n 1.1*1/n 

PM Distribution 

index 
0.63 7 7.7 

Details of the number of parameters that are relevant for each of the 

algorithms with different operator numbers included in the sensitivity analysis 

are given in Table 2-4. In order to ensure that representative combinations of 

all possible parameter combinations were included in the sensitivity analysis 

for each algorithm, the space of possible parameter combinations was sampled 

using a Latin hypercube approach. The number of samples used for each 

algorithm was calculated as “the number of options for each parameter” (i.e., 

3) times “the number of parameters included in the algorithm,” based on the 

suggestion by Munoz and Smith-Miles (2017). This resulted in a total of 105 

different parameter combinations (Table 2-4). As each optimization run was 

repeated 10 times from different random starting positions in the decision 

variable space, the parameter sensitivity analysis consisted of an additional 

1,050 optimization runs. 
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Table 2-4. Number of Latin hypercube samples used for algorithms with different numbers of  

operators as part of the parameter sensitivity analysis 

Algorithm 

Instance 

 

Number of 

Parameters 

Number of 

Parameters 

Options 

Sample 

Size 

Algorithm 2 2 3 6 

Algorithm 4 7 3 21 

Algorithm 6 4 3 12 

Algorithm 10 11 3 33 

Algorithm 12 11 3 33 

Total   105 

2.2.6 Result Assessment 

2.2.6.1 End-of-Run Performance Metrics 

Four end-of-run metrics were used to assess the relative performance of the 

different algorithms investigated, as they are able to capture both the best-

known solutions’ convergence and diversity. The four metrics are 

hypervolume (IHV) (Zitzler & Thiele, 1999), generational distance (IGD) 

(Veldhuizen, 1999), ε-indicator (Iε+) (Zitzler et al., 2003) and ε-performance 

(IEP) (Kollat & Reed, 2005). IHV measures both convergence and diversity of 

solutions by computing the ratio of the volume of a set of solutions to that of 

the best-known Pareto front, relative to a fixed reference point. IGD measures 

convergence of solutions by calculating the average distance between a set of 

solutions and the best-known Pareto front. Iε+ is designed to measure the 

convergence and consistency of a solution set by computing the minimum 

distance required to shift this set to dominate the best-known Pareto front. IEP 

evaluates the proportion of solutions that is within a user-specified ε-value 

from the best-known Pareto front (the ε-value applied in this chapter is 

consistent with that used in Wang et al., 2015). Therefore, greater values of 

IHV and IEP and smaller values of IGD and Iε+ indicate better performance. 



Chapter 2 – Influence of operator 

38 

 

Where required, the best-known Pareto fronts for the case studies considered 

were those obtained by Wang et al., (2015). 

Additionally, to enable each existing algorithm/algorithm group to be ranked 

in a statistically robust fashion, the one-way Kruskal-Wallis test (Kruskal & 

Wallis, 1952) (with Dunn's D post-test (Dunn, 1964)) was implemented to 

calculate the statistical significance of the differences in performance between 

each existing algorithm/algorithm group for each of the four metrics described 

above. The Kruskal-Wallis test is a nonparametric test that is used for 

comparing the statistical properties of two or more independent samples, of 

equal or different sample sizes, to determine if their medians are significantly 

different. If the nonparametric analysis is significant, Dunn’s D post-test is 

used to determine if one algorithm performs significantly better than another 

as part of a pairwise comparison. This analysis enables the rank of each 

algorithm to be determined by counting the number of times an algorithm 

performs better, and the number of times it performs worse, than the rest of 

the algorithms considered. This statistical test provides a robust indication that 

any observed differences are not as a result of random chance (Ameca-

Alducin et al., 2018; Hadka & Reed, 2012). 

2.2.6.2 Run-time metrics 

In order to better understand the impact of different operators on the ability to 

find good regions within the search space, and ultimately the best-known 

Pareto front, the relative operator contribution rate, CR(t) (Eq. 2-4), is 

introduced.  This metric consists of the fraction of successful offspring 

produced by each operator j in each generation t, which is based on the 

concept of measuring the contribution of the offspring solutions to the 

population set (Vrugt & Robinson, 2007). The time-varying nature of this 

metric enables the relative contribution of different operators to the 
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identification of the set of best-known solutions to be determined at different 

stages of the optimisation process. 

𝐶𝑅𝑗(𝑡) =
𝑘

𝑁
∙ 𝑃𝑗

𝑡       (2-4) 

where 𝑃𝑗
𝑡 is the number of solutions produced by operator j that contribute to 

the population of best-known solutions at generation t.   

To better understand the impact of different operators on algorithm 

performance, the CR(t) values were not only calculated for individual 

operators, but also for combinations of operators that contribute to a different 

behavioural emphasis. Accordingly, referring to the categorisation of each 

operator in Table 2-2, the total CR(t) for exploitation / exploration / 

exploitation and exploration can be estimated by summing up the CR(t) values 

of each operator with the same behavioural emphasis. This allows an 

investigation of the impact of operators that result in exploitative and 

explorative behaviour on algorithm performance.  

To enable CR(t) values at different stages of the search to be related to 

algorithm performance, a number of run-time algorithm performance metrics 

were used, including the Average Euclidean distance (AED(t)), the 

hypervolume indicator (HI(t)), and the extent of the front (EF(t)).  AED(t) 

measures the distance of the population of solutions to the reference set, in 

terms of IGD(t); HI(t) measures the generation-wise value of IHV(t) for the 

current population of solutions, and EF(t) measures the extent of the non-

dominated front in the objective domain (Zheng et al., 2016).  In addition, in 

order to understand the impact of different operator contributions on the 

nature of the solutions, the averaged population variance (Var(t)) was used, 

which measures the mean population solution variance in decision variable 

space (Zheng et al., 2016). 
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2.3 Results and Discussion 

2.3.1 Relative Influence of the Size of the Operator Set 

2.3.1.1 Performance Comparison 

The rankings of the different algorithm groups considered in Experiments 1a 

to 1e with respect to the four end-of-run performance metrics, as well as their 

average rank, are shown in Figure 2-4 as categorical surface plots.  In Figure 

2-4 (a) – (d), the case studies are given along the horizontal axis (in order of 

increasing complexity) and algorithm groups (experiments) are given on the 

vertical axis (ordered by operator set size).  The shade in each box indicates 

the rank of each algorithm group for the given case study (where a darker 

shade indicates a lower ranking– for example, Algorithm group 6 is ranked as 

the third best algorithm group for the FOS case study according to the IHV 

metric). In Figure 2-4 (e), the columns are associated with the different 

metrics, and each block is the average rank value across the six case studies 

for each algorithm. 
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Figure 2-4. Ranks of the four end-of-run performance metrics for each algorithm group in 
Experiments 1a to 1e across the six WDS case studies. Note: Kruskal-Wallis with Dunn D 

tests are used to check for statistical differences in the four metrics across 10 duplication runs 

with different random seeds; subfigures are: (a) rank based on IGD; (b) rank based on IHV; (c) 
rank based on Iɛ+; (d) rank based on IEP; and (e) Overall average ranks; the sparse line in (d) 

means all algorithms failed to capture the solutions near the best-known Pareto fronts. 

From Figure 2-4, it can be consistently observed that across all four end-of-

run performance metrics, an algorithm groups’ rank improves as the size of its 

operator set increases for this type of problem. For example, in Figure 2-4 (e), 

the average rank of an algorithm group improves as the size of its operator set 

increases, with Algorithm group 10 and Algorithm 12 achieving the best 
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average rank (IGD and IHV). In contrast, Algorithm group 2 maintains the worst 

average rank across all six case studies. Consequently, these results suggest 

that increasing the operator set size is able to improve an algorithm’s 

performance. 

In addition, the improved performance for the larger algorithm groups is 

emphasised as problem complexity increases. It can be seen from Figure 2-4 

(a) - (d) that Algorithm groups 6, 10 and Algorithm 12 typically have similar 

ranks for the smaller scale problems (e.g. NYT and HAN). However, for the 

larger scale problems (e.g. MOD and BIN), Algorithm group 10 and 

Algorithm 12 perform significantly better than all other algorithm groups. It 

should be noted that in Figure 2-4 (d), the IEP ranks are not available for the 

MOD problem as none of the algorithms successfully identified solutions 

close to the best-known Pareto front within epsilon precision, which is 

identical to the results in Wang et al., (2017). The effectiveness of using 

Algorithm group 10 and Algorithm 12 is confirmed by their typically higher 

ranking in terms of IHV for the larger case studies from Figure 2-4 (b). This 

finding implies that the adoption of larger operator sets yields greater benefits 

when dealing with problems of higher complexity.  

The results of the parameter sensitivity analysis typically show that the 

variation in parameters considered had little impact on algorithm rankings 

(Figure 2-5), indicating that the influence of the number of operators 

outweighs the influence of parameter values. Consequently, the overall 

conclusion with respect to objective 1 is that when the influence of the 

number of operators is isolated, there is a statistically significant increase in 

algorithm performance with an increase in the operator set size. 
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Figure 2-5. Ranks of the selected operator sets with varied/ recommended parameter values 

for BIN problems; Algorithms 2*, 4*, 6*, 10*, 12* use the varied parameter values. 

2.3.1.2 Discussion 

For the sake of illustration, the results for Algorithm 12 and for three of the 

randomly selected operator combinations for Algorithm Group 4 (a, b, and 

c—see the table in Figure 2-7b) are presented and discussed for the BIN 

problem. 

The impact of including operators that focus on either exploration or 

exploitation is clearly demonstrated by comparing the total CR(t) values for 

exploitation and exploration (Figure 2-6) and the resulting Pareto fronts 

(Figure 2-7) for Algorithm group 4a and 4b. These algorithms were selected 

because they are dominated by exploitative (i.e. three exploitative operators 

and one operator exhibiting both explorative and exploitative behaviour), and 

explorative (i.e. two explorative operators, one exploitative operator and one 

operator exhibiting both explorative and exploitative behaviour) operators, 

respectively. As can be seen by comparing Figure 2-6 (a) and (b), for 

Algorithm group 4a, the contributions to the non-dominated solutions are 

dominated by the exploitative operators, while the reverse is true for 

Algorithm group 4b. 
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For Algorithm group 4a, the CR(t) values in the initial search phase are 

greater than those for Algorithm group 4b, as the exploitative operators are 

able to find good regions of the search space relatively quickly (as shown by a 

comparison of the yellow best-known solutions to the best-known Pareto 

front, after only 2,000 NFEs – see Figure 2-7 (a)). However, as can be seen in 

this figure, the extent of the front of the best-known solutions is limited, 

focusing on the low-cost region of the front.  Due to the limited explorative 

capacity of this algorithm, the CR(t) values drop off quickly to values around 

0.5, indicating that it is more difficult to find improved solutions as the search 

progresses.  This is highlighted by the fact that the extent of the front of best-

known solutions for this algorithm is unable to expand by the end of the 

search (Figure 2-7 (b)) and is only able to move closer to the best-known 

Pareto front in the low-cost region of the solution space. 

For Algorithm group 4b, the CR(t) values in the initial search phase are 

smaller than those for Algorithm group 4a, as the exploration dominated 

search of this algorithm takes longer to find improved solutions.  However, as 

can be seen in Figure 2-7 (a), this emphasis on exploration means that while 

the resulting front of best-found solutions is not as close to the best-known 

Pareto front solutions in the early stages of the search, the extent of the front 

of best-known solutions is much greater.  While there is also a reduction in 

CR(t) values for this algorithm as the search progresses, this drop is far less 

pronounced than for Algorithm group 4a, with CR(t) values stabilising at 

values of around 1.  This continued exploration of the search space results in 

the front of best-known solutions moving closer to the best-known Pareto 

front as the search progresses, producing a front that is quite close to the best-

known Pareto front at the end of the search (Figure 2-7 (b)). 
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Figure 2-6. Total CR(t) for exploitation and exploration of the selected algorithms for the BIN 
problem. Note: Each line is the average value over 10 different runs. Note subfigures are: (a) 

Algorithm group 4a; (b) Algorithm group 4b; and (c) Algorithm group 4c. 
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Figure 2-7. Pareto front solutions of Algorithm group 4 and Algorithm 12 at different search 
stages for the BIN problem. Note subfigures are: (a) is the best-known solutions at iNFE 

=2,000; and (b) the Pareto front solutions at iNFE =400,000. 

The relationship between operators, search behaviour and solution quality 

described above is consistent with our knowledge of the shape of the fitness 

landscape for typical WDS design problems.  Bi et al., (2016) found that this 

landscape is shaped like a “big bowl” structure, where: 

(i) there are regions in the solution space far from the near-optimal region where 

rapid improvements in objective function values occur, thereby favouring 

exploitative operators in the initial stages of the search; and 

(ii)  there is a large region of the search space (a near-optimal region) where 

changes in objectives with changes in solutions are relatively small, thereby 

favouring explorative operators once this region of the fitness landscape has 

been reached. 
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In addition to demonstrating the impact explorative and exploitative operators 

have on algorithm search behaviour, the results also highlight the importance 

of the nature of the explorative or exploitative behaviour induced by different 

operators. For example, Algorithms 4b and 4c both have two explorative 

operators, one exploitative operator and one operator exhibiting both 

explorative and exploitative behaviour, resulting in CR(t) values that are 

dominated by explorative behaviour for both algorithms (Figure 2-6 (b) and 

(c)).  However, the fronts of the best-known solutions obtained from these two 

algorithms are very different. Algorithm group 4c is able to not only achieve a 

greater extent of the front of best-known solutions, but also to move closer to 

the best-known Pareto front in comparison to Algorithm group 4b, within both 

the initial and final stages of the search (Figure 2-7 (a) and (b)). This indicates 

that the search behaviour of the two algorithms is very different, where, 

collectively, the different sets of operators used in Algorithm group 4c result 

in greater exploration and exploitation of the search space compared with the 

set of operators used in Algorithm group 4b.   

The differences in the nature of the collective explorative and exploitative 

search behaviour of Algorithms 4b and 4c can be explained by examining the 

individual search behaviours of the particular operators used in these two 

algorithms. While both algorithms use the GMI operator as one of their 

explorative operators, Algorithm group 4b uses DCI as its other explorative 

operator, while Algorithm group 4c uses TFI. In addition, Algorithm group 4b 

uses DE, which results in both explorative and exploitative search behaviour, 

whereas Algorithm group 4c uses DEI, which exhibits similar search 

behaviours to DE. Finally, Algorithm group 4b uses SBX as an exploitative 

operator, while Algorithm group 4c uses SPX. Given that both algorithms use 

GMI and that the behaviour of DE and DEI is similar, the differences in 

search behaviour of Algorithms 4b and 4c has to be due to the differences in 

the search behaviour in the other operators (i.e. DCI vs. TFI and SBX vs. 

SPX). 
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The differences in the way DCI, TFI, SBX and SPX generate solutions are 

illustrated in Figure 2-8 as a 2-D plane.  As can be seen, DCI tends to explore 

a small area next to a parent solution (Figure 2-8 (a)), whereas TFI is able to 

explore areas that are further away from a parent. In other words, TFI has a 

greater exploration capacity than DCI. This results in Algorithm group 4c 

being able to cover a greater extent of the front of best-known solutions in 

comparison to Algorithm group 4b (Figure 2-7).  For the exploitative 

operators, SBX tends to exploit in directions that are orthogonal to the parent 

solutions (Figure 2-8 (b)), whereas SPX focuses on exploiting a simplex area 

that is defined by the parent solutions (Figure 2-8 (d)). As seen in Figure 2-8 

(b), SPX is able to potentially produce offspring solutions along oblique 

directions next to each parent solution (i.e. the diagonal directions in  Figure 

2-8 (b)), whereas SBX only produces solutions that are aligned along the 

decision variable axes (i.e. orthogonal directions only). Thus, SPX has a 

greater capacity for exploitation than SBX. This ability to exploit a larger 

region about the parental solutions results in Algorithm group 4c’s best-

known solutions moving closer to the best-known Pareto front compared with 

those of Algorithm group 4b (Figure 2-7).  Consequently, even though the 

search of both Algorithms 4b and 4c is dominated by explorative operators, 

the greater explorative capacity of Algorithm group 4c results in a higher 

diversity in the objective space (Figure 2-7), which is due to the difference in 

the nature in which the operators search the solution space. 
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Figure 2-8. Illustration of offspring distributions of different operators in discrete space, 
where the parents are indicated by the red triangle. Note subfigures are: (a) DCI, (b) SBX, (c) 

TFI and (d) SPX. 

The above results highlight the importance of the nature, not just the 

behavioural emphasis, of the way different operators modify solutions from 

one generation to the next.  However, it should be noted that this difference in 

the nature of the searching behaviour of algorithms with the same behavioural 

emphasis is not able to be captured by the CR(t) values.  For example, the 

CR(t) values for Algorithm group 4b (≈1) are greater than those for Algorithm 

group 4c (≈0.5) throughout the second stage of the search (Figure 2-6 (b) and 

(c)).  This highlights that although Algorithm group 4b is able to identify a 

larger number of better solutions from one generation to the next, these 

improvements are not due to the extension of the front. This demonstrates that 

although CR(t) values provide an indication of the number of improved 

solutions that are identified at each generation, they do not provide an 

indication of the type and extent of the improvement achieved.   
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The value of the inclusion of operators with different types of exploitative and 

explorative search behaviours is demonstrated clearly by the CR(t) values for 

Algorithm 12, which consists of five exploitative operators, five explorative 

operators and two operators that exhibit both explorative and exploitative 

behaviour (Figure 2-9 (a)-(c)).  As can be seen, even though certain operators 

have a larger contribution towards the identification of better solutions 

throughout the search, all 12 operators provide at least some contribution 

towards the identification of better solutions at all stages of the search.  This 

highlights the value of different types of search behaviours, even if these 

differences are subtle. 

Interestingly, in the early stages of the search, during which the steep section 

of the fitness landscape is descended, the exploitative operators (e.g. UNDX, 

SBXI and SPX) make the largest contribution to finding better solutions, as 

indicated by their higher CR(t) values (Figure 2-9 (a) and (d)).  However, as 

the search progresses into the near-optimal region of the fitness landscape, the 

explorative operators (e.g. DCI, GMI, PM and UMI) have a bigger impact on 

determining better solutions (Figure 2-9 (b) and (d)). This further highlights 

the benefits of algorithms with a larger number of operators with diverse 

searching behaviours in that they have the ability to utilise the search 

behaviour that is most beneficial at different stages of the search. 
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Figure 2-9. CR(t) of Algorithm 12 for the BIN problem. Note: Each line is the average value 

over 10 different runs. Note subfigures are: (a) for the exploitative operators; (b) for the 
explorative operators; (c) for the exploitative and explorative operators; and (d) total CR(t) for 

exploitation and exploration. 

The increase in the diversity of the types of searching behaviours introduced 

by increasing the number of operators is the reason for the increased 

performance of algorithms with a larger number of operators observed in this 

chapter (Section 2.3.1.1). This increase in performance is also illustrated by 

the average values of the run-time behavioural metrics for each algorithm 
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group (Figure 2-10). As can be seen, as the number of operators increases, so 

does the ability to identify solutions that (i) provide a broader range of trade-

offs between the cost and resilience objectives, as evidenced by larger values 

of EF(t) (Figure 2-10 (b)); (ii) have a lower IGD(t) (Figure 2-10 (c)); and (iii) 

have a larger IHV(t) (Figure 2-10 (a)). Figure 2-10 (a)-(c) also clearly show the 

two distinct phases of searching, with rapid improvement in the performance 

metrics during the descent of the steep portion of the fitness landscape in the 

early stages of the search, followed by a more gradual improvement as the 

near-optimal base of the “big bowl” in the fitness landscape is traversed.  

The presence of these two distinct phases of searching is further highlighted 

by the changes in the population diversity metric as the search progresses 

(Figure 2-10), with a rapid initial decrease in solution diversity as the values 

of the pipe diameters that result in the largest improvements in the objectives 

are determined (a phase dominated by exploitation), followed by an increase 

in population diversity as the bottom of the “big bowl” in the fitness landscape 

is explored (a phase dominated by exploration). In other words, the non-

dominated solutions are far from each other in decision variable space. 

The two phases of searching are more distinct for algorithms with a larger 

number of operators. This is because the increased diversity of searching 

behaviours these algorithms have access to enables them to use the best 

possible exploitative behaviour to move down the steep portions of the fitness 

landscape more quickly and then the best possible explorative behaviour to 

navigate the relatively flat and rugged portion of the fitness landscape in the 

“big bowl”, resulting in a larger increase in population diversity. Despite the 

fact that Algorithm 12 outperformed all algorithms with smaller operator sets 

(with statistical significance), the difference between the absolute values of 

the metrics (i.e. IHV and IGD) between Algorithm 12 and Algorithm group 10 is 

small, indicating that the improvement of the solution quality metrics 

diminishes as the operator set increases from 10 to 12 (Figure 2-10). This 
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suggests that, in practice, an increase in the operator set size beyond 10 or 12 

may not result in significant improvements in algorithm performance. 

 

Figure 2-10. Search behaviour metrics of the different algorithm groups for the BIN problem. 

Note: Each line is the average value over 10 different runs across different operator sets. Note 

subfigures are: (a) & (c) are solution quality metrics; (b) & (d) are spacing metrics. 

2.3.2 Relative Impact of the Size of the Operator Set, 

Operator Set Composition and Search Strategy      

The rankings of the different algorithm groups with randomly generated 

operator sets (Experiments 1a to 1e) and those with constructed operator sets 

(Experiments 2a to 2d) are shown in Figure 2-11. As can be seen, the 

influence of the size of the operator set clearly outweighs the influence of the 

composition of the operator set, as indicated by the better average rank of 
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algorithms with more operators (this is also reflected in the hypervolume 

values of the algorithms – this metric is considered the most comprehensive 

metric), irrespective of whether operator sets are generated randomly or not. 

While there is some variation in the ranking of algorithms with the same 

number of operators, this is relatively minor. Somewhat surprisingly, use of 

the intentionally constructed operator sets from some of the existing MOEAs 

resulted in a decrease in average performance compared with the use of the 

randomly generated operators (e.g. for constructed operator sets 2 and 3).  

 

Figure 2-11. Rankings of different algorithm groups with randomly generated (Experiments 

1a to 1e) and constructed operator sets (Experiments 2a to 2d) 

The rankings of the different algorithm groups with randomly generated 

operator sets (Experiments 1a to 1e), those with constructed operator sets 

(Experiments 2a to 2d) and those with both constructed operator sets and 

search strategies (Experiments 3a to 3d) are shown in Figure 2-12. As can be 
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seen, although the use of constructed search strategies (e.g. the use of 

hyperheuristics and different parent and survivor selection strategies) results 

in slightly larger differences in the performance of algorithms with the same 

number of operators, the increase in the number of operators is still the 

dominant factor affecting algorithm performance. This is evidenced by the 

clear trend of improving average rank for algorithms with a larger number of 

operators, irrespective of operator composition or the use of more advanced 

search strategies, despite some minor exceptions, including that constructed 

algorithm 1 (2 operators) performs slightly better than Algorithm group 4 and 

constructed algorithm 4 (7 operators) performs worse than Algorithm group 4 

and constructed algorithm 1 (2 operators).  

 

Figure 2-12. Rankings of different algorithm groups with randomly generated operator sets 

(Experiments 1a to 1e), constructed operator sets (Experiments 2a to 2d) and constructed 

operator sets and search strategies (Experiments 3a to 3d) 
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2.3.3 Potential for Improving the Performance of Existing 

Algorithms by Increasing their Operator Set Size 

As GALAXY performed best out of the four algorithms considered (i.e. the 

algorithm used in Experiment 3c performed better than the algorithms used in 

Experiments 3a, 3b and 3d - Figure 2-12), its operator set was expanded to 

include all 12 operators considered in this paper (GALAXY-12 - Experiment 

4, Figure 2). For benchmarking purpose, the performance of this algorithm 

was compared with that of the original GALAXY (6 operators – Experiment 

2c) and Algorithm 12 (Experiment 1e), which was the best performing 

algorithm in all previous experiments (see Figure 2-11 and Figure 2-12). The 

results show that by expanding the size of the operator set of GALAXY from 

6 to 12, its performance can be improved significantly, to the point where its 

performance is better than that of any other algorithm tested in this chapter 

(Figure 2-13). The fact that GALAXY-12 (12 operators) outperforms 

Algorithm 12 demonstrates that the advanced features of GALAXY (e.g. 

hyperheuristics, alternative parent and survivor selection strategies) are able to 

improve algorithm performance. These results suggest that there is potential 

of improving the performance of existing MOEAs by increasing the size of 

their operator sets. 



Chapter 2 - Influence of operator 

57 

 

 

Figure 2-13. Ranking of GALAXY (6 operators – Experiment 2c), GALAXY with an 
expanded set of 12 operators (GALAXY-12 – Experiment 4) and Algorithm 12 (Experiment 

1e) 

2.4 Conclusion 

This paper has studied the impact of operator set size on the performance of 

multi-objective evolutionary algorithms (MOEAs) for six WDS problems. 

Specifically, the research objectives were to assess (i) the relative influence of 

the size of the operator set on algorithm performance, (ii) whether the size of 

the operator set is more important than the composition of the operator set, 

(iii) whether the size of the operator set is more important than the combined 

effect of the composition of the operator set and the search strategies used, 

and (iv) the potential for improving the performance of existing MOEAs by 

increasing the size of the operator set.  

In order to isolate the influence of operator set size and composition from that 

of other search strategies, a generic MOEA framework was developed. The 

influence of operator set size was assessed by randomly selecting operators 

from a pool of 12 (i.e. 6 explorative and 6 exploitative) for operator set sizes 

of 2, 4, 6, 10 and 12 and the influence of operator set composition was 

assessed by using the constructed operator sets from four well-known 
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MOEAs, instead of randomly selected operators. The impact of other 

searching strategies was assessed by using the four unique constructed search 

strategies from the four well-known MOEAs (not just their operators) in lieu 

of the MOEA framework and the potential of improving the performance of 

existing MOEAs by increasing their number of operators was assessed by 

including all 12 operators considered in this chapter in the well-known MOEA 

that performed best for the case studies considered, which was GALAXY. 

The results from the 3,150 optimisation runs clearly indicate that operator set 

size plays a dominant role in algorithm performance for the six WDS case 

studies considered. Operator set size had a larger influence than operator 

parameter values, operator set composition and other strategies affecting 

algorithm searching behaviour. The reason for the increased performance of 

algorithms using a larger number of operators is that they provide a larger 

variety of searching mechanisms, which are able to find better solutions at 

different stages of the optimisation process. 

Given the complexity of the problems considered in this chapter, the general 

finding that algorithm performance can be improved by increasing the size of 

the operator set used should hold for a wider class of combinational 

optimisation problems. However, it is important to note that specific 

conclusions with regard to the relative performance of particular algorithms 

are conditioned on the WDS design problems, which are possible to have a 

“big bowl” shape in their fitness landscape. Its generalization to other problem 

types need further investigations, with focus on the assessment of the 

controllability, effectiveness, efficiency and reliability (Hadka & Reed, 2012). 

For example, given that GALAXY was specifically tailored for the 

optimisation of WDS problems (in fact, GALAXY can only be applied to 

problems with discrete decision variables), it is less likely to perform as well 

as more generic algorithms, such as Borg, which has shown consistent levels 

of controllability, effectiveness, efficiency, and reliability on different 
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multimodal and non-separable problems (Hadka & Reed, 2012). 

Consequently, future work should extend the assessment of the impact of 

operator set size on algorithm performance to a broader array of problem 

types, where issues of scalability across dimensions and objectives can be 

considered directly, as in Kollat and Reed (2007). 

Overall, the findings of this chapter tend to suggest that existing multi-

objective evolutionary algorithms do not use a sufficient number of operators 

and that there is significant potential to increase the performance of a wide 

range of existing algorithms by simply increasing their operator set size. 

Based on the results obtained, it is recommended to increase the number of 

operators in existing algorithms to 10 or 12, ensuring a balance between 

exploration and exploitation (see Table 2-1 for guidance). For cases where the 

original algorithm to be improved does not use a hyperheuristic to control the 

degree to which each operator contributes to the search at each iteration, it is 

recommended to use the NAÏVE hyperheuristic, which ensures that all 

operators contribute equally. 
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Abstract 

Multi-objective evolutionary algorithms (MOEAs) have been applied to water 

distribution system (WDS) optimisation problems for over 20 decades. The 

selection strategy is a key component of a MOEA that determines the 

composition of a population, and thereby the evolutionary search process, 

which imitates natural selection by granting fitter individuals an increasing 

opportunity to reproduce (Yu and Gen, 2010). This paper proposes a novel 

selection strategy for generational MOEAs that is based on the convex hull 

contribution of solutions to the Pareto front in the objective space. Numerical 

experiments using a general MOEA framework, demonstrate that the 

proposed selection strategy is able to outperform existing popular selection 

strategies (e.g. crowding distance, Hypervolume contribution, and hybrid 

replacement selection strategies). Moreover, it is illustrated that the CHCGen 

selection strategy is able to improve the performance of existing MOEAs. The 

conclusions are based on the results of six bi-objective WDS problems. 

Keywords: Multi-objective evolutionary algorithms, selection strategy, water 

distribution system design optimization, GALAXY, NSGA-II. 
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3.1. Introduction 

Water resource optimisation problems are commonly characterised by non-

linearity, multi-modality, high variable interdependencies, search space 

discontinuities, high variable dimensionality and multiple objectives (Nicklow 

et al., 2010; Szemis et al., 2013; Maier et al., 2019). In the last thirty years, the 

use of multi-objective evolutionary algorithms (MOEAs), and other 

metaheuristics, has arguably become the preferred optimisation approach in 

water resources (e.g. Maier et al., 2014; Mala-Jetmarova et al., 2017, 2018). 

The MOEA process can be viewed as the selection and perturbation of an 

existing population of solutions by sequential application of specific operators 

(e.g. crossover and mutation), with the aim of generating new and improved 

solutions to iteratively refine the quality of solutions in the population set 

(Asadzadeha et al., 2014). 

A key advantage of MOEAs is the identification of a set of solutions that 

provide near optimal trade-offs between competing objectives in a single 

optimisation run (Deb et al., 2002b).  These solutions are called the 

approximate Pareto optimal solutions and the set of these solutions is called 

the approximate Pareto front (as they provide an approximation to the true 

Pareto front). Typically, the shape of approximate front (e.g. whether it is 

convex or nonconvex) is unknown a priori and depends on a problem’s 

characteristics. However, the shape of the approximate front is found to be 

convex for many practical problems in practice. For example, Asadzadeha et 

al., (2014) stated that for multi-objective hydrologic model calibration, the 

approximate front shape is usually convex (i.e. a knee-bend in the middle and 

long tails). This statement is supported by numerical experiments of 

hydrological modelling calibration (Xia et al., 2002; Fenicia et al., 2007; Lee 

et al., 2011 & Kollat et al., 2012). For water distribution system (WDS) 
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problems, Wang et al., (2015) evaluated 12 WDS case studies, within this 

work, the approximate front shapes were all found to be convex.  

As the actual Pareto front is not known for most real-life problems, the 

performance of different MOEAs’ ability to generate a quality approximate 

front is compared using metrics that correspond to different attributes of the 

front. For example, the average distance of the approximate front to the “ideal 

point” (i.e. the point in the objective space that dominates all other points) is 

compared to understand MOEA’s ability of convergence, where the front 

closest to this point is preferred. Alternatively, the extent of the front is 

measured by evaluating the diversity of the set of solutions (e.g. the degree of 

spreading).  

The ability of an MOEA to generate a quality approximate front is affected by 

a number of search strategies including the following factors: the operators 

govern how offspring solutions are produced; the hyperheuristic manages the 

utilisation of each operator throughout the search; and the selection strategy 

determines which solutions are selected to be used by the operators to produce 

the offspring solutions, and which offspring solutions survive to join the 

population. Based on how the selection strategy is utilised, there are two types 

of MOEAs, namely, generational and steady-state. A generational MOEA 

generate multiple offspring solutions within each generation, where generally 

the number of offspring solutions is equal to the size of population. As a 

consequence of this process, the offspring solutions compete between 

themselves and the existing population to enable survival of the best solutions 

(Zapotecas & Menchaca, 2020). A steady-state MOEA involves the selection 

of two individuals from the population to generate a singular offspring within 

each generation. The new solution replaces the worst performing solution 

from the population. Within both of these algorithms, the selection strategy is 

particularly important as it needs to be designed to drive the population to 
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converge to increasingly fit regions of the search space, whilst avoiding pre-

mature convergence to sub-optimal regions (Back, 1996; Hanne, 1999).   

In the past 20 years, many selection strategies have been proposed and applied 

within both types of MOEAs. For steady-state MOEAs, several studies have 

investigated the impact of different selection strategies on algorithm 

performance. For example, Emmerich et al., (2005) applied a hypervolume 

contribution (HVC1) selection strategy (Knowles et al., 2003) to a steady-

state multi-objective selection based on dominated hypervolume (SMS-

EMOEA). The HVC1 captures both attributes of a Pareto Front in terms of 

convergence and diversity by measuring the contribution of to the overall 

hypervolume (Zitzler & Thiele, 1999) of a Pareto front by each individual 

solution. In the comparative experiments, HVC1 outperformed NSGA-II (a 

generational algorithm) with a crowding distance (CD) selection strategy, 

which focuses on maintaining Pareto front diversity (Deb et al., 2002b). 

However, these studies did not isolate the performance impact of the selection 

strategy from that of the other algorithm processes, which poses a difficulty in 

terms of being able to attribute any performance differences to HVC1. This 

limitation was addressed by Igel & Hansen, (2007) who compared the two 

selection strategies (HVC1 and CD) by applying them within the same 

generational algorithm, the multi-objective covariance matrix adaptation 

evolution strategy (MO-CMA-ES). The results suggested the algorithm with 

HVC1 outperformed those with a CD selection strategy on a range of test 

functions. Building on this work, Asadzadeh & Tolson (2013) compared the 

influence of four selection strategies using a steady-state MOEA termed 

Pareto archived dynamically dimensioned search (PA-DDS). The selection 

strategies considered in this work were HVC1, an alternative Hypervolume 

contribution termed HVC2 based on the work of Bader & Zitzler (2001), CD 

and a purely random strategy (RND) which did not take account of any of the 

solutions attributes. The mechanism of HVC2 is akin to HVC1 but has an 

additional parameter that defines the maximum number of solutions that 
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should be considered in the calculation of HVC2 [the interested reader should 

refer to (Bader & Zitzler 2001)]. The comparative study showed that the 

HVC1 selection strategy achieved the best performance overall in all test 

functions and water resources problems. Moreover, in the water resources 

problems considered in Asadzadeh & Tolson (2013), the HVC1 selection 

strategy resulted in better solutions found within the ‘knee region’ of the 

approximate fronts. The reason for this is that more solutions in the ‘knee 

region’ are improved during the search, as the solutions in this region 

normally have a greater hypervolume contribution value, thereby having more 

chance to be selected to produce solutions, and be retained in the population 

(Asadzadeh & Tolson, 2013; Jahanpour et al., 2018). In practice, the solutions 

in the ‘knee region’ of a Pareto front are preferred as they provide a locally 

distinct compromise of each objective (Mala-Jetmarova et al., 2018; Hadka & 

Reed, 2012).  

For a convex Pareto front, Feng et al., (1997) and Cococcioni et al., (2007) 

showed that giving greater selection priority to solutions that are closer to the 

convex approximation of the Pareto front can improve the performance of an 

MOEA.  Asadzadeh et al., (2014) proposed the novel convex-hull contribution 

(CHC) selection strategy for PA-DDS. This approach gives a high selection 

priority to the non-dominated solutions that have greater CHC values. 

Typically, a solution CHC is the difference in size (e.g. area) of the convex 

hull set between the approximate front with and without that solution. This 

selection strategy not only accounts for convergence and diversity in 

generating the approximate front, but its search behaviour is well suited for 

problems that have a convex shape of the approximate front, such as the WDS 

problem. Moreover, given the nature of the convex shape of approximate 

fronts, the solutions in the ‘knee region’ have a greater CHC value thereby 

being selected and exploited. Thus, the CHC selection strategy is effective on 

finding better solutions in the ‘knee region’ of the approximate fronts 

(Asadzadeha et al., 2014 and Jahanpour et al., 2018). This selection strategy is 
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currently the top one for water resource problems, as it has been found to 

improve the performance of PA-DDS, and outperformed the HVC1 selection 

strategy in test functions, real hydrologic model calibration problems and 

WDS problems (Asadzadeha et al., 2014 and Jahanpour et al., 2018). In 

particular, this work found that the CHC selection strategy resulted in better 

solutions being identified within the ‘knee region’ of the approximate fronts, 

in comparison to HVC1. However, there is currently no generic formulation 

of CHC selection strategy that is applicable to generational MOEAs. 

Consequently, the objectives of this chapter are to: (i) develop a new convex 

hull selection strategy formulation for generational MOEAs (termed 

CHCGen); (ii) explore the impact of different selection strategies for 

generational MOEAs; and (iii) test the utility of the CHCGen selection 

strategy to improve existing MOEA’s performance. The above objectives are 

achieved by conducting an extensive numerical experimental program 

involving WDS case studies as in the work of Wang et al., (2015, 2017); 

Zheng et al., (2016, 2017). 

The remainder of this paper is structured as follows. The section Methodology 

formulates the CHCGen selection strategy, and a general MOEA framework 

is introduced to provide a generic generational algorithm structure to 

investigate the impact of different selection strategies. Additionally, two 

existing MOEAs are outlined with modifications proposed by including the 

CHCGen to evaluate its utility for other generational MOEAs. The structure 

of the computational experiments is also outlined. In the section Result and 

Discussion, the results of the numerical experiments were reported and 

highlighted the effectiveness of CHCGen selection strategy. The summary of 

the finding was concluded at the end. 
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3.2. Methodology 

The general steps within a multi-objective evolutionary algorithm (MOEA) is 

shown in Figure 3-1. As can be seen, at the commencement of the 

optimisation process, an initial set of solutions is randomly generated and 

form the population xt (t=0) with size N. Then, subject to the parent selection 

process, some solutions are selected as parent solutions that have opportunity 

to reproduce offspring yt. The reproduction process is facilitated by one or 

more operators. In addition, the degree to which operator contributes to the 

search at each generation can be controlled with the aid of hyperheuristics, 

which are high-level automated search strategies for selecting the most 

appropriate lower-level operators (or heuristics, such as mutation and cross-

over) (Burke et al., 2013; Drake et al., 2019). Thereafter, xt and yt are 

combined to form a combined set ct. The replacement is carried out to select 

and to form the next generation xt+1. The above process is repeated until 

certain termination criteria are met, such as the execution of a fixed number of 

generations or no better solutions are identified. 

 

Figure 3-1. Generic multi-objective evolutionary optimisation process 

The purpose of the process of parent selection and replacement is to identify 

better solutions from the current solution set. A general process of parent 

selection and replacement is summarised as follows. For parent selection, in 
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order to select better solutions from population set x, the primary criterion 

value for solution xi is given by l(xi|x), where l indicates the relative rank of xi 

with respect to the population x (e.g. non-dominance rank). Given this criteria 

value assignment, the population is organised into the sets 𝝁1, … , 𝝁𝑔, based on 

their values, where if xi and xj are in 𝝁𝐾, then l(xi|x) = l(xj|x), and l(xi|x) < 

l(xk|x) for all 𝑥𝑘 ∈ 𝝁𝐺 for which G > K (i.e. each 𝝁𝐾 contains solutions of the 

same criteria value, and indicate a better rank for lower K). The secondary 

selection criterion applies to each solution in each 𝝁𝐾 and is denoted as 

v(x|𝝁𝐾), 𝑥 ∈ 𝝁𝐾 which enables the ordering of solutions in 𝝁𝐾 as 

(𝑥[1] ,𝑥[2], … , 𝑥[|𝝁𝐾|]) where 𝑣(𝑥[𝑖]|𝝁𝐾) > 𝑣(𝑥[𝑗]|𝝁𝐾) if j > i. The sorting of 

the population x is then based on the overall rank of a solution with respect to 

the entire population, which is first based on I (i.e. the 𝝁𝐾 set that a solution is 

a member of) and secondarily on v. As indicated, in general, the primary 

selection criterion is associated with solution quality (e.g. nondominance 

rank) and the secondary selection criterion is associated with the diversity of 

solutions (e.g. crowding distance). 

The replacement follows a similar approach as with the parent selection that is 

outlined in Figure 3-2. This stage involves the sorting of ct to select N 

solutions to form xt+1. First ct undergoes a non-dominance sorting process 

which involves the allocation of solutions in ct into the ordered subsets 

𝝁1, 𝝁2 …,  where 𝝁𝑖 indicates the solutions from ct that form the i-th order 

Pareto front (e.g. 𝝁1 are the pareto optimal solutions for the entire set ct, 𝝁2 

are the pareto optimal solutions for the reduced set ct\𝝁1 and so on). As |μ1| is 

typically smaller than N, all of the solutions in μ1 are used to form the first |μ1| 

solutions in xt+1. The remaining available N - |μ1| positions in xt+1 are filled by 

subsequent solutions in μ2. This process is repeated until the point K in which 

|μ1|+ ··· +|μK+1| > N. At this point, the set μK+1 is sorted according to the 

second selection criteria, where the top ranked solutions are used to fill the  
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remaining positions in xt+1. This step represents the final step for a given 

generation. 

 

Figure 3-2. Replacement step for a generational MOEA. (Deb et al., 2002b) 

3.2.1. Proposed new CHC Selection Strategy 

In order to develop a selection strategy for generational MOEA that not only 

accounts for convergence and diversity in generating the approximate fronts, 

but its search behaviour is well suited for problems that have convex shape of 

approximate front. Moreover, the selection strategy is desired to result in 

better solutions being identified within the ‘knee region’ of approximate 

Pareto fronts. The CHC selection strategy for generational MOEA (termed as 

CHCGen) is introduced in this section. Initially, the concepts of convex hull 

and convex hull contribution are outlined. The approach of calculating CHC 

value for a solution is based on Asadzadeh et al., (2014) for either 

generational or steady state MOEAs. Thereafter, the detail procedure of the 

CHCGen is introduced. 

3.2.1.1.Convex hull background 

For an m-dimensional space, the convex hull of a set of points S∈ℝ𝑚 is the 

intersection of all convex sets containing S (Barber et al., 1996). An example 

of the convex hull (grey filled area) of a given set of points (empty circles) set 
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in a 2-dimensional space is given in Figure 3-3. It can be seen that the convex 

hull area contains all of the given points. From Figure 3-3, a convex hull is 

bound by the segment line of two vertices (dot points) called facets (solid and 

dash lines). The convex hull contribution is described as follows. 

Each facet divides the space into two sides, one side contains the convex hull 

and the other does not. The area of the region bounded by the facets (or area 

in a 2-dimensional space) is called the convex hull size (V). If any of the 

vertices (s) is removed from a convex hull set, the size of the convex hull will 

change (Asadzadeh et al., 2014). For instance, if the vertex p is removed from 

the convex hull in Figure 3-3, the new facet (the dot dash line) is the new 

boundary of the new convex hull, thereby reducing the size of the convex hull 

by an amount given by the sparse lined area in Figure 3-3. In m-dimensional 

space, the reduced volume (or area) that is resulted by removing any vertexes 

(e.g. that given by the lined area) is called a convex hull contribution (CHC), 

and is given as  

CHC = V(S)-V( 𝐒\p)           (3-1) 

 

Figure 3-3. Convex hull of nondominated points in a bi-objective space. (Asadzadeh et al., 

2014) 
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The key steps for CHC calculation for a nondominated set is outlined as 

follows (interested readers should refer to Asadzadeh et al., (2014) for more 

details). For the first step, the axes of a nondominated set are normalized in 

the objective space to eliminate any potential bias resulted by varying scales 

of the objective functions. For the following explanation, consider that the 2-

D space in Figure 3-3 is representative of an objective space, where the 

criteria for both objectives is a minimisation (that is, the lower left side of the 

polygon is associated with the Pareto front).   The solutions are divided into 

four groups as shown in Figure 3-3: (i) points inside the convex hull; (ii) 

vertices on the top facets (dash line); (iii) vertices on the bottom facets (solid 

line) and (iv) vertices in the intersection of top and bottom facets. 

To calculate the CHC for each solution, zero CHC values are assigned to the 

solutions in group (i) and (ii) that are mentioned above. The calculation of 

CHC is only conducted for solutions in group (iii), where, for example, the 

CHC for point p is given by the sparse lined area in Figure 3-3. The CHC for 

the solutions in group (iv) is assigned as the CHC value of the closest 

solutions’ CHC values from group (iii) (Asadzadeh et al., 2014). The original 

CHC selection strategy is designed for a steady state MOEA (the 

aforementioned PA-DDS), for which the population set only contains non-

dominated solutions. However, for a generational MOEA, the CHC selection 

strategy is not applicable for two reasons. Firstly, a generational MOEA’s 

population set may contain dominated solutions during the search (Deb et al., 

2002b), which are beneficial for solution diversity. In this case, dominated 

solutions may have greater CHC values than nondominated solutions. For 

example, as outlined in Davoodi et al., (2011), the solution at the top facet is 

dominated, but has a positive CHC value. Applying the CHC selection 

strategy directly within a generational MOEA would result in a higher 

selection probability to such dominated solutions, thereby potentially resulting 

in a poor performance. Secondly, the portion of solutions with a non-zero 

convex hull contribution from a given set is usually small (Jahanpour et al., 
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2018). In other words, a great portion of solutions’ CHC values are zero and, 

as a result, they become non-competitive in a tournament selection process. 

This will result in a highly biased selection process and may not benefit an 

algorithm’s performance. In summary, there is a motivation to propose a new 

CHC selection strategy for generational MOEAs. 

3.2.1.2.Proposed new CHC for a population based MOEA 

The details of a proposed new generational CHC (CHCGEN) selection strategy 

for population based MOEAs is outlined in Figure 3-4. At the beginning, the 

fast non-dominance sorting approach is implemented to the combined set ct to 

sort the solutions into the non-dominance sets 𝑵𝑫1 , 𝑵𝑫2 , … (line 1), where 

𝑵𝑫𝑖 , is the i-th non-dominant front, where every solution in 𝑵𝑫𝑖  domainates 

all solutions in 𝑵𝑫𝑗, for j > i. Within the proposed approach, the primary 

selection criterion is the non-dominance rank and the secondary selection 

criterion is the CHC value. The values for  𝝂 for each solution are initialised 

as Ø; convex hull contribution to NDq, CHC(NDq) is initialised as 0; 

nondominance convex hull sets μ is initialised as Ø (line 2). Then, the process 

evaluates the convex hull contribution to the solutions in each NDq set (line 5) 

and removes the solutions with positive convex hull contribution values from 

NDq and inserts them into 𝝁𝑙. The 𝝂𝑙 of the solutions in set 𝝁𝑙 is updated as 

well.. The above procedures are iterated until the set ND is emptied. At this 

stage, all of the solutions are categorised into μ and associated by convex hull 

rank 𝑙 and convex hull contribution 𝝂. Consequently, the replacement step is 

enable to be conducted as mentioned above. The xt+1 is filled by N solutions 

from 𝒄𝒕, where the solutions with smaller 𝑙 and greater 𝜈 values are preferred.  
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0: Inputs: Input combined set ct that requires selection of N solutions (N < |ct|). 

1: Implement fast nondominated sorting approach to find the nondominated fronts ND = (𝑵𝑫1,…, 𝑵𝑫𝑟 ) of ct 
2: Set: 𝒙𝒕+𝟏 = Ø, 𝑙 = 1, 𝝁 = Ø, 𝝂 = Ø, 𝑞 = 1, CHC(ND) = 0  
3:  While q ≤ r 

4:  for all NDq ≠ Ø 
5:   Evaluate CHC(NDq) 
6:   temp = { NDq , CHC(NDq)>0} 

7:   NDq = NDq\ temp 

8:   Add temp to 𝝁𝑙 

9:   𝝂𝑙 = CHC(NDq)>0 

10:   𝑙 = 𝑙 + 1 
11:  𝑞 = 𝑞 + 1 

 
Figure 3-4. Proposed CHCGen selection strategy 

3.2.2. Numerical Experiment 

In order to study the impact of the proposed new CHCGen selection strategy on 

MOEA performance, a systematic approach has been adopted to compare the 

proposed new CHCGen selection strategy with other existing selection 

strategies (Objective 2); and to investigate the application of the new CHCGen 

selection strategy on existing MOEAs (Objective 3). The flow chart of the 

numerical experimental program is proposed and shown in Figure 3-5. 

In order to investigate the impact of different selection strategies on a MOEA 

performance (Objective 2, Figure 3-5), it is important to isolate the impact of 

selection strategy. The general MOEA framework (Wang et al., 2020a) is a 

generational MOEA that has interchangeable components (e.g. operators, 

hyperheuristic and selection strategy) and is adopted to achieve this target. As 

part of this framework, the operator set and hyperheuristic remain unchanged, 

and the selection strategies of parent selection and replacement are varied. 

Each constructed MOEA is named by the selection strategy utilised. For 

example, the general MEOA framework utilising the crowding distance 

selection strategy is denoted as Algorithm-CD. In addition, to measure the 

absolute performance of the general MOEA framework with the proposed 

new CHCGen selection strategy, two popular generation MOEAs applied to 

water resources problems, NSGA-II and GALAXY, were modified by 
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embedding the new CHCGen selection strategy and comparing with the 

original version of the algorithms.  

In order to assess the influence of different selection strategies on MOEA 

performance, the proposed new CHCGen and four existing selection strategies, 

which are hypervolume contribution (HVC), crowding distance (CD), hybrid 

replacement (HR), random (RND) were adopted within the general MOEA 

framework and compared with each other (i.e. in the largest solid block in 

Figure 3-5).  

In order to test the utility of the proposed new CHCGen selection strategy to 

improve existing MOEAs. The proposed new CHCGen selection strategy was 

adopted within the two existing MOEAs that are denoted as NSGA-II-CHCGen 

and GALAXY-CHCGen. The two modified algorithms were compared with 

the original versions of these algorithms. Moreover, the general MOEA 

framework with the proposed new CHCGen strategy was included in the 

comparison in order to investigate the relative influence of other components 

such as operator and hyperheuristic on MOEA performance. 

The above numerical experiments were assessed by using a bi-objective 

optimization problem (i.e. minimising network cost and maximising network 

resilience) for the six WDS problems shown in Figure 3-5. These case studies 

include: the New York tunnel network (NYT), the Hanoi network (HAN), the 

Fossolo network (FOS), the Pescara network (PES), the Modena network 

(MOD) and the Balerma irrigation network (BIN). These cases studies have 

been widely used to assess MOEAs performance (Wang et al., 2015, 2017 and 

Zheng et al., 2016). As shown in the block at the central of Figure 3-5, each 

optimization runs were duplicated 10 times with different starting positions in 

decision domain. 
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In the “Result Assessment” block at the bottom of Figure 3-5, the results for 

the different objectives are compared by applying the one-way Kruskal-Wallis 

test (Kruskal & Wallis, 1952) with Dunn's D post-test (Dunn, 1964) to three 

end-of-run performance metrics. Moreover, a novel visualization metric called 

the selection metric is introduced and implemented to understand how 

different search strategies affect an algorithm’s search.  

The code of the general MOEA framework was adopted from Wang et al., 

(2020); the code of the selection strategies considered in this chapter were 

written in MATLAB m-script; and the CHCGen  selection strategy, the convex 

hull’s size (i.e. Lebesgue measure), vertices, facets, etc. can be acquired by 

implementing the “qhull” code, which is available at: http://www.qhull.org/ 

(Barber et al.,et al., 1996).The best-known solutions were compared with 

reference Pareto fronts (the best-known Pareto fronts) for the six WDS case 

studies found by Wang et al., (2015) and Jahanpour et al., (2018). All 

simulations were run on the Phoenix High Performance Computer (HPC) at 

the University of Adelaide, Australia. The Phoenix HPC is a heterogeneous 

hardware system that includes a mix of CPU-only and CPU/GPU-accelerated 

nodes. It has 260 nodes in total, which are equipped with 2x Intel Gold 6148, 

40 cores @ 2.4GHz, and 384GB memory for CPU nodes. In addition, the 

maximum RAM per node is 125 GB. 

http://www.qhull.org/
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Figure 3-5. Overview of the methodology flowchart for each objective. 

3.2.3. Comparison Selection Strategies 

Four existing selection strategies, studied for the purpose of comparison, are 

described in this section. The reason for considering the four existing 

selection strategies in this chapter are that they have been implemented by 

popular generational MOEAs (e.g. NSGA-II, GALAXY) and have shown 

effective performance in WDS problems (Wang et al., 2015 & 2017). Each 

selection strategy is described briefly by the selection criteria outlined in 

Section 3.2.1. For example, for the crowding distance selection strategy, the 

primary selection criterion 𝑙 is defined as the nondominace rank; and the 

secondary selection criterion 𝜈 is defined as crowding distance. Interested 

readers can find details to each selection strategy in the corresponded 

references outlined in the following subsections. 
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3.2.3.1.Crowding Distance 

The crowding distance (CD) selection strategy is a popular selection strategy 

that has been widely applied in many MOEAs since it was proposed by Deb et 

al., (2002b). It uses nondominace ranks as 𝑙, and CD as 𝑣. CD measures the 

diversity of solutions within the same nondominated front in the objective 

space. In the same nondominated front, the CD values are set as infinity for 

extremal solutions and the sum of side lengths of the segment lines that touch 

the neighbours for the non-extremal solutions. Generally, a solution with a 

greater CD, which indicates a solution of greater uniqueness, is far from its 

neighbours in the objective space (Deb et al., 2002b). 

3.2.3.2.Hypervolume Contribution 

The hypervolume contribution (HVC) selection strategy implements the 

hypervolume measure proposed by Zitzler & Tiele (1998). The solutions with 

a greater value of HVC, are those that are normally located within the knee 

region of a Pareto front (Emmerick et al., 2005). The HVC selection strategy 

uses nondominated ranks as 𝑙, but HVC as  𝑣. The HVC for a target solution 

within a nondominated front (𝝁𝑙) is the difference between the hypervolume 

of all solutions in the front and, the hypervolume of the all solutions in the 

front that exclude the target solution. In addition, the HVC of the extremal 

solutions is usually dependent on the reference point selection (Igel & 

Hansen, 2007). However, in this chapter, the HVC for the extremal solutions 

are equal to the HVC of the solutions next to each extremal solution, which is 

the same as Asadzadeh et al., (2014).  

3.2.3.3.Hybrid Replacement 

The hybrid replacement (HR) selection strategy was first introduced in 

GALAXY, which is a new hybrid MOEA that tailored for WDS problems 

(Wang et al., 2017). The HR selection strategy contains two secondary 
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selection criteria of the CD and the ε-dominance criterion (Deb et al., 2005) as  

𝑣. In the parent selection, the CD is activated for selecting parent solutions for 

reproducing offspring solutions. However, in the replacement step, the 

secondary selection criterion being used depends on the number of 

nondominated solutions in the first front (𝝁1). On the one hand, if the number 

of 𝝁1 is smaller than N, CD will be activated. On the other hand, the ε-

dominance selection is activated when the number of 𝝁1 is greater than N. 

This forces the ε-nondominated solutions to be included in xt+1. For the later 

criterion, the objective domain that is bounded by the two solutions on the tail 

of 𝝁1 is divided into (N-2)x(N-2) grids. Each grid is denoted as an ε-box. It is 

noted that the dominant region within an ε-box, which is at the right bottom 

corner in this chapter (i.e. maximise resilience and minimise cost objective 

values). In each ε-box, solutions are found that have the smallest Euclidean 

distance to the dominant corner and recognise it as an ε-nondominated 

solution. Therefore, the ε-nondominated solutions are found and included in 

xt+1. The remaining slots left in xt+1 are filled by the remaining ε-dominated 

solutions that are ordered by the distance to the corresponding dominant 

corner.  

3.2.3.4.Random 

RND selection strategy was used as a control selection strategy in this chapter. 

It uses the nondominated fronts as 𝑙. The  𝑣 for each solution are randomly 

sampled in the range [0, 1], removing any bias in the solution ordering.  

3.2.4. Case Studies 

3.2.4.1.Two Objective WDS Optimisation Problem 

The WDS optimisation problem involves the selection of pipe diameters for a 

WDS network to optimise set criteria. This selection aims to achieve the 

design of the lowest cost network that satisfies performance constrains such as 
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the minimum pressure for each node in the network and constraints on the 

fluid velocity in each pipe. This type of problem is complex to solve as it is 

NP-hard, nonconvex, high dimensional, multimodal and nonlinearly 

constrained (Zecchin et al., 2012). 

The objective functions used in this chapter are consistent with the popular 

ones in water resource (Wang et al., 2015, 2017, Jahanpour et al., 2018), 

namely the maximising of network resilience and minimising of network cost. 

The cost objective is given by Eq. (3-2). 

𝐹𝑐 = 𝑎 ∑ 𝐷𝑖
𝑏 𝐿𝑖

𝑛
𝑖=1        (3-2) 

where 𝐹𝑐 = total network cost, which is determined by pipe diameter 𝐷𝑖 and 

pipe length 𝐿𝑖; a and b = specified cost function coefficient and exponent; 𝑛 =

 the total number of pipes in the network. The network resilience objective is 

given by Eq. (3-3). 

In =
∑ 𝑼𝒋𝑸𝒋(𝑯𝒋−𝑯𝒋

∗)𝒎
𝒋=𝟏

∑ 𝑸𝒓𝑯𝒓
𝑵𝑹
𝒓=𝟏

−∑ 𝑸𝒋(𝑯𝒋
∗+𝒛𝒋)𝒎

𝒋=𝟏

           (3-3) 

where 𝐼𝑛 = the network resilience; 𝑚 =  the total number of demand nodes; 
𝑄𝑗,  𝐻𝑗 and 𝐻𝑗

∗ are, the demand, actual head, and minimum head required at 

each node j, respectively; 𝑁𝑅 = the total number of reservoirs; 𝑄𝑟 , 𝐻𝑟  are the 
actual discharge and actual head at reservoir r; and 𝑈𝑗  is an indicator of 

diameter uniformity for pipes that are connected to node j and is defined by Eq. 
(3-4). 

𝑈𝑗 =
∑ 𝐷𝑖𝑗

𝑁𝑝,𝑗
𝑖=1

𝑁𝑝,𝑗max {𝐷𝑖𝑗 :𝑖=1,…,𝑁𝑝,𝑗}
      (3-4) 

where 𝐷𝑖𝑗 = the diameter of the pipe i connected to node j; 𝑁𝑝,𝑗 = the total 

number of pipes that are connected to node j. Note that a larger value of 

𝑈𝑗 represents a higher reliability of the network node, since the diameter 

variations between these pipes are lower overall (𝑈𝑗 =1 when all pipe 

diameters are identical) (Prasad & Park, 2004). 
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In this chapter, a set of integer options, ranging from 1 to the number of 

commercially available sizes, is used as the decision variable. The constraints 

of the WDS optimisation problem in this chapter are the flow velocity in each 

pipe and pressure head at each node as specified by each case study. EPANET 

2.0 (Rossman, 2000) hydraulic simulation software is used to evaluate the 

flowrates and pressure heads for each pipe and node respectively to compute 

constraints and the resilience of network.  

3.2.4.2.WDS Case Studies and parameter setup 

In order to study the impact of different selection strategies on algorithm 

performance, six WDS design problems commonly adopted in a wide range of 

MOEA studies (Wang et al., 2015, 2017, Jahanpour et al., 2018, Zheng et al., 

2016) were considered in this work. These were chosen as to provide a range 

of problem characteristics and sizes (Wang et al., 2015). Table 3-1 provides 

details of the six WDS case studies, where it can be seen that the number of 

pipes varies from 21 to 454. The configurations of population size and 

computational budget (i.e. NNFE) were set consistent with the configuration in 

Wang et al., (2017), as these were found to provide satisfactory outcomes for 

the case studies. The population size was set as 100 for the NYT, HAN, FOS, 

and PES problems, and for the large-scale WDS case studies, MOD and BIN, 

a population size of 200 was used. 

Table 3-1. WDS Case Studies and Population Sizes of the MOEAs Considered in the Paper 

Scale Case study 
Number of pipes 

for each case study 

Number of options 

for each pipe 
NNFE N 

Small 
New York tunnel (NYP) 21 16 5x104 100 

Hanoi (HAN) 34 6 5 x104 100 

Intermediate 
Fossolo (FOS) 58 22 1 x105 100 

Pescara (PES) 99 13 1 x105 100 

Large 
Modena (MOD) 317 13 4 x105 200 

Balerma (BN) 454 10 4 x105 200 
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3.2.5. Result Assessment 

3.2.5.1.End-of-run performance metrics 

In order to evaluate MOEA performance, three end-of-run performance 

metrics, hypervolume (IHV) (Zitzler & Thiele, 1999), generational distance 

(IGD) (Veldhuizen, 1999) and the ε-indicator (Iɛ+) (Zitzler et al., 2003), were 

used to assess the relative performance of the algorithms in this chapter. These 

metrics effectively capture both the convergence and diversity of an 

algorithms approximate Pareto-optimal set (approximate Pareto front). IHV is 

the ratio of the dominated volume of an approximate Pareto front compared 

with a reference Pareto front representing both the convergence and diversity 

of solutions. IGD is the average distance between an approximate Pareto front 

and the reference Pareto front, in terms of evaluating the convergence. Iε+ 

evaluates the minimum distance required to shift the approximate Pareto front 

to dominate the reference Pareto front, which measures the convergence and 

consistency of a solution set. 

In order to yield a robust comparison among the algorithms’ performance 

metrics, the one-way Kruskal-Wallis test (Kruskal & Wallis, 1952), with 

Dunn's D post-test (Dunn, 1964) were implemented to evaluate if a pair of 

algorithms’ end of run data significantly differ from each other. This 

nonparametric analysis provides a statistical test of whether two or more 

group data means are equal (Hadka & Reed, 2012; Ameca-Alducin et al., 

2018). If the difference is not statistically significant, the pairs’ data are 

assigned as being equivalent. Otherwise, the algorithm with the better metric 

median value is assigned as the better performing algorithm. The pairwise 

statistical tests were conducted for all algorithm group pairs, where the 

number of times an algorithm was recorded as being the better performer was 

recorded and aggregated to yield the overall rank. 
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3.2.5.2.Selection Metric 

In order to provide insight about how a selection strategy affects MOEA 

search, a novel visual metric is proposed termed the selection metric. The 

metric is able to visualize the “hot-spots” of a population set, in terms of the 

solutions’ selection probability to be selected as a parent solution. The idea of 

the selection metric is to combine the two selection criteria to a single metric 

for each solution in a population. The selection metric (Sel) is defined for 

solution x from population x as Eq. (3-5): 

𝑆𝑒𝑙(𝑥|𝒙) = 𝑙norm(𝑥|𝒙) + 𝑣(𝑥|𝜇𝑙(𝑥|𝒙))     (3-5)  

where 𝑙norm(𝑥|𝒙) is the normalized primary selection criterion value defined 

as Eq. (3-6): 

𝑙norm(𝑥|𝒙) = 1 −
𝑙(𝑥|𝒙)−1

𝑙𝑚𝑎𝑥−1
      (3-6) 

where  𝑙 is the primary selection criterion value; lmax is the greatest primary 

selection criterion value; and 𝜈 is the secondary selection criterion value for 

population x. The reason for this metric is to rank solutions by taking account 

of the influence from both primary and secondary selection criteria values. In 

this chapter, the primary selection criterion values are greater than one, and 

have to be normalized to the range [0,1], which is the same as the secondary 

selection criterion value range. 
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3.3. Results and Discussion 

3.3.1. The Impact of Different Selection Strategies on MOEA 

Performance 

3.3.1.1.Performance comparison 

The rank of the three end-of-run metrics and the average ranks of the general 

MOEA framework algorithms with the different selection strategies for the six 

WDS problems are shown in Figure 3-6 as categorical surface plots, where 

shades from white to black indicate the best to the worst ranks, respectively. 

In Figure 3-6 (a) to (c), the case studies are presented in ascending order of 

complexity on the horizontal axis and the general MOEA framework 

algorithms that are embedded with the different selection strategies are listed 

on the vertical axis. In Figure 3-6 (d), the first three columns are the average 

ranks across the six case studies for each algorithm for the associated metrics. 

In addition, the fourth column is the overall average rank, which assess the 

performance of each algorithm, across the three metrics’ average ranks. 
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Figure 3-6. Ranks of the general MOEA frameworks with the different selection strategies 

As shown in Figure 3-6, it can be consistently observed that the Algorithm-

CHCGen typically performs better than other algorithms with the existing 

selection strategies, regarding the three end-of-runs metrics as well as the 

average ranks in Figure 3-6. In contrast, Algorithm-RND remains the worst 

ranked across the three end-of-run metrics for the six case studies [Figure 3-6. 

(a)-(c)]. Moreover, Algorithm-HR achieves the second-best average rank as 

shown in Figure 3-6 (d). This implies the effectiveness of the recently 

developed HR selection strategy may have been an important contributing 

factor to the performance of GALAXY (Wang et al., 2017). In addition, 

Algorithm-HVC outperforms Algorithm-CD, which is consistent with the 

findings by Igel & Hansen, (2007) [Figure 3-6 (d)]. Given that the only 

component that is varied in the general MOEA framework algorithms is the 

selection strategy, these results show that applying different selection 

strategies affect MOEAs performance, and furthermore, that the CHCGen 
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selection strategy outperforms the selected existing selection strategies for 

WDS problems. 

In addition, the benefit of adopting CHCGen is emphasised as the scale of the 

problems increase. For example, From Figure 3-6 (b) and (c), apart from 

Algorithm-RND, the algorithms using the CHCGen, HVC, CD and HR 

selection strategies typically achieve similar rank values in small scale 

problems: NYT and HAN. However, for the large scales problems, such as 

MOD and BIN, Algorithm-CHCGen outperforms other algorithms most of the 

time. This finding suggests that adopting the CHCGen selection strategy can 

benefit a MOEA’s performance on problems with a high degree of complexity 

for this type of problem. 

3.3.1.2.Discussion 

In order to understand how different selection strategies affect an algorithm’s 

search performance, the general MOEA framework with the four selection 

strategies (i.e. CHCGen, HVC, HR and CD) was assessed by the selection 

metric. Figure 3-7 shows the survived population of solutions by applying the 

four selection strategies to the same combined set c, resulted by Algorithm-

RND after 20,000 NFE for the BIN problem (selected for illustrative 

proposes). The categorical colour spectrum indicates the assigned 𝑆 of the 

solutions for assessment: from the shading from blue to orange indicates the 

best to the worst selection metric values, respectively. To help the readers to 

identify the solutions with higher values, the top 20 ranked solutions are 

marked by red circles, and are denoted as preferred solutions as they have a 

higher probability to be selected as parent solutions for reproducing offspring 

solutions. In this example, overall, the difference of the population of 

solutions resulted by conducting replacement by the four selection strategies 

are similar. However, the distribution of the selection metric for each solution 

are different and discussed. Thereafter, based on the knowledge of the search 
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behaviours resulted from different selection strategies obtained from Figure 

3-7, it is possible to gain a deep understanding of the approximate Pareto 

fronts for the BIN problem that resulted from the general MOEA framework 

algorithm with different selection strategies, as shown in Figure 3-8. 

From Figure 3-7 (a), it can be seen that the CHCGen selection strategy 

typically prefers the solutions on the convex hull (typically the solutions with 

a blue colour), which are located in the low cost and knee region (M€5 to 

M€8); medium cost range (about M€10.5); and high cost region (about 

M€20). As shown by the Algorithm-CHCGen (blue front in Figure 3-8), the 

approximate Pareto front shows the greatest degree of diversity in resilience 

value than the general MOEA framework algorithm with other selection 

strategies (from above 0.45 to over 0.95) and is closer to the reference Pareto 

front (grey) within the low and mid cost region than other algorithms. 

However, the lowest ranking selection metric solutions are in the cost range 

between M€14 and M€18 [Figure 3-7 (a)]. This resulted the inconsistency of 

the identified solutions along the front within the medium to high cost range 

[M€14- M€18 in Figure 3-8]. Overall, based on the success of the Algorithm- 

CHCGen, it is implied that the portion of the solutions within the convex hull in 

population set are able to direct the solutions toward the best-known Pareto 

front, which is consistent with the findings from Jahanpour et al., (2018). 

For the HVC selection strategy, the distribution of the preferred solutions 

[Figure 3-7 (b)] is similar to those resulted by the CHCGen selection strategy 

[Figure 3-7 (1)]. However, the HVC selection strategy preferred a more 

diverse region in the objective space than the CHCGen selection strategy. For 

example, the preferred solutions are observed in the cost range between M€8 

and M€10; M€14 and around M€18 approximately [Figure 3-7 (b)]. This 

behaviour results in Algorithm-HVC performing better within the knee region 

of the Pareto front, as shown in Figure 3-8, than Algorithm-HR, Algorithm-

CD and Algorithm-RND. Moreover, the low-ranking solutions of the selection 
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metric are located evenly along the whole front [Figure 3-7 (b)], which 

prevents the search from missing some areas along the front. The HVC 

selection strategy resulted in a consistent front (Figure 3-8). As a trade-off, 

without preferring a particular region in the objective space, Algorithm-HVC 

fails to achieve the best convergence and relatively poor diversity of the front, 

in terms of finding solutions only in the narrow resilience value range from 

above 0.6 to over 0.95.  

The difference of the ranking of the solutions by the selection metric values 

resulted by CD selection strategy and HR selection strategy are subtle, as 

shown in Figure 3-7 (c) and (d). However, considering closely the population 

of solutions [the inserts in Figure 3-7 (c) and (d)], it is observed that within 

each box is an ɛ-box and the three solutions [excluding the orange solutions in 

Figure 3-7 (d)] are ɛ-nondominated solutions [Figure 3-7 (d)]. The three 

orange solutions with the least CD values are excluded by the CD selection 

strategy, but preserved within the HR selection strategy as they are the ɛ-

dominated solutions (Deb et al., 2005) and closest to the right bottom corner 

of the corresponding ɛ-boxes -the two blocks highlighted by the red colour in 

Figure 3-7 (d)]. Therefore, with this mechanism, the HR selection strategy is 

able to preserve good convergence in population. Such attributes as these 

would enable the population to converge to the global optima effectively 

(Wang et al., 2017). As shown in Figure 3-8, Algorithm-HR outperforms 

Algorithm-CD in terms of convergence of its approximate front.  

In summary, it is found that augments the selection preference to the solutions 

on the convex hull of the population set would improve both convergence and 

diversity of the approximate front. This is somewhat surprising, as these 

preferred solutions are on the distinct clusters of the approximate front, rather 

than being on relatively uniformly along the approximate front. The finding 

implies that focusing on exploiting the solutions on convex hull would 

improve algorithm performance. 
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Figure 3-7. Selection metric (for a range of selection strategies) for the population of solutions 

from an Algorithm-RN run applied to the BIN problem (taken at iteration NFE=20,000). 
Subfigures are for the selection metric based on the following selection strategies: (a) 

CHCGen; (b) HVC; (c) CD; and (d) HR. The inserts are zoomed in views of points in the 

grey boxes in (c) and (d). 
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Figure 3-8. Approximate Pareto front solutions for the general MOEA frameworks with 

different selection strategies. 
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3.3.2. The Application of CHCGen Selection Strategy to 

Existing MOEAs 

 

Figure 3-9. Ranks of NSGA-II, NSGA-II-NCHC, GALAXY, GALAXY- CHCGen and the 

general MOEA framework with CHCGen selection strategy. 

Figure 3-9 shows the algorithm ranks according to the end-of-runs metrics for 

two existing generational MOEAs (NSGA-II and GALAXY), and these two 

MOEAs with the adoption of the CHCGen selection strategy (along with 

Algorithm- CHCGen). As can be seen, the CHCGen benefits existing MOEAs. 

This is indicated by the fact that NSGA-II-CHCGen and GALAXY-CHCGen 

outperform NSGA-II and GALAXY [Figure 3-9 (d)], respectively. Moreover, 

the results show that the influence of the selection strategy does not outweigh 

other search strategies. This is illustrated by comparing the relative influence 

of the hyperheuristic and the operator set with the selection strategy, 

respectively. On the one hand, the influence of the hyperheuristic dominates 

the selection strategy. This is demonstrated by GALAXY outperforming 
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Algorithm-CHCGen [Figure 3-9 (d)]. On the other hand, the influence of the 

number of operators outweighs the selection strategy. This is evidenced by the 

higher average rank of Algorithm-CHCGen in comparison to NSGA-II-CHCGen 

[Figure 3-9 (d)]. In addition, the results show the benefit of implementing an 

adaptive hyperheuristic and using larger operator set size. This is 

demonstrated by GALAXY-CHCGen outperforming Algorithm-CHCGen; and 

Algorithm-CHCGen outperforming NSGA-II-CHCGen, respectively [Figure 3-9 

(d)].  

3.4. Conclusion 

A novel selection strategy called the generational convex hull contribution 

(CHCGen) is developed in this chapter. The CHCGen selection strategy not only 

accounts for convergence and diversity in generating the approximate front, 

but its search behaviour is well suited for problems that have a convex shape 

of the approximate fronts. Moreover, the selection strategy is desired to result 

in better solutions being identified within the ‘knee regions’ of approximate 

Pareto fronts.  

CHCGen was compared with four existing selection strategies by implementing 

these strategies within a consistent general MOEA framework. The general 

MOEA framework with the CHCGen selection strategy was found to 

outperform four other popular existing selection strategies in the numerical 

study involving six WDS problems. The CHCGen selection strategy showed 

the overall best convergence, diversity and consistency of the approximate 

fronts that were generated.   

In order to understand that how the influence of the selection strategies reflect 

on the attributes of the approximate front, each algorithm with different 

selection strategies were applied to search from a common population set for 

the most complicate problem – BIN. It was observed that the CHCGen 
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selection strategy augments the selection preference to bias the population 

solutions that lie on the convex hull regions of the approximate front. Given 

the nature of the convex hull solutions within a nondominated set that are 

closer to the “ideal point” and in distinct regions along the approximate front, 

this type of selection preference leads to an improved convergence and 

diversity of the search. Therefore, CHCGen selection strategy allows the 

algorithm effectively explore the search space and results in the best 

performance of the approximate front in comparison to other existing 

selection strategies. 

To further investigating the potential of the CHCGen selection strategy to 

improve existing MOEAs, the current best generational MOEA on solving 

WDS problems (GALAXY) and the industry standard generational MOEA 

(NSGA-II) were modified to incorporate the CHCGen selection strategy. The 

CHCGen selection strategy was found to be able to boost the performance of 

these two algorithms, suggesting that the proposed selection strategy could 

benefit other existing MOEAs.
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Abstract 

Multi-objective evolutionary algorithms (MOEAs) have been regarded as 

effective optimisation tools for solving water distribution system (WDS) 

problems for over 20 years. The components of MOEAs are the key factors 

affecting the algorithms’ search behaviours, thereby affecting algorithm 

performance. Traditionally, to propose an effective MOEA, many works 

diligently propose new algorithm components. Currently, fine-tuning the 

components is a sufficient and effective method to improve an MOEA’s 

performance. In this chapter, a systematic investigation is conducted to 

identify the optimal component combination and propose a general multi-

objective evolutionary algorithm. Many popular and state-of-the-art 

components were considered in this chapter. Moreover, the impact of different 

components on algorithm performance was also studied comprehensively. In 

addition, the effectiveness of the general multi-objective evolutionary 

algorithm is assessed by comparing seven existing MOEAs by solving six 

WDS problems. 

Keywords: Multi-objective evolutionary algorithms, water distribution 

system design optimization 
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4.1. Introduction 

Water distribution system (WDS) optimisation problems are framed around 

the design of a pipe network at minimal cost, which satisfies the network’s 

hydraulic constraints (Jetmarova et al. 2018; Keedwell and Khu 2003; Prasad 

and Park 2004). The characteristics of this problem type are that it is non-

linear and multimodal, which results in difficulty in finding efficient, global, 

optimal solutions (Zecchin et al. 2012; Zheng et al. 2017). In the last 30 years, 

evolutionary algorithms (EAs), particularly multi-objective evolutionary 

algorithms (MOEAs), have been proposed and have experienced growing 

popularity in applications for WDS problems (Jahanpour et al., 2018; Wang et 

al., 2015; 2017; Zecchin et al., 2012; Zheng et al., 2016). Traditionally, the 

development of an MOEA is focused on key algorithmic improvements, 

addressing limitations in computational efficiency and algorithm search 

quality. For example, Deb et al., (2002b) proposed NSGA-II, which aimed to: 

(i) reduce the high computational complexity of nondominated sorting; (ii) 

achieve elitism preservation; and (iii) develop an effective diversity 

maintenance strategy. These objectives were fulfilled by the fast-

nondominated sorting approach, comparing offspring with the population to 

retain elite solutions and use of the crowding distance metric, respectively.  

As algorithm performance is a combination of not only the internal workings 

of an algorithm, but also the problem characteristics, Vrugt et al., (2007) 

found that the nature of a fitness landscape often varies considerably in 

different problems and proposed AMALGAM in response. AMALGAM is a 

self-adaptive algorithm, designed to respond dynamically to strategies that are 

found to be most effective in the given search space. Inspired by models of 

adaptation in natural systems, AMALGAM was developed to use multiple 

search operators assisted by a hyperheuristic to tune each operator’s 

utilization during the search (Vrugt et al., 2007). The key aspect in this work 
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is the hyperheuristic, which allows effective feedback concerning which 

operators are likely to be most effective for the search. Hadka and Reed 

(2013) studied the weaknesses of existing MOEAs comprehensively for high 

dimension optimisation problems, which include: (i) an appropriate 

nondominance relationship for high dimension objective numbers; (ii) an 

appropriate diversity maintenance strategy, (iii) a reduction in the risk of 

deterioration; and (iv) a reduction in the works for parameterization. Borg was 

developed to include many new search strategies such as ε-nondominance; 

multiple operators with a hyperheuristic; ε-progress and an adaptive 

population sizing operator (hyperheuristic) to overcome the difficulties 

mentioned above. The algorithms listed above have shown effective 

performance not only in a wide range of applications and test functions 

(Asadzadeh and Tolson 2012; Hadka and Reed, 2012, 2013, 2015; Zeff et al. 

2016; Zhang et al. 2010), but also in WDS problems (Wang et al., 2015; 2017; 

Zheng et al., 2016). Following on from these works, Wang et al., (2017) 

aimed to improve MOEA performance by customising existing search 

strategies. This is achieved by tailoring operators for WDS problems (i.e. the 

discrete search space); developing a new hybrid replacement selection 

strategy to maintain solutions’ convergence and diversity; and applying a 

hyperheuristic that is akin to AMALGAM to adapt the search to various 

problems’ characteristics. It has been demonstrated that GALAXY 

outperformed the aforementioned algorithms on a range of WDS problems 

(Wang et al., 2017) 

In addition to the development of different algorithmic formulations, in order 

to improve algorithm performance, many studies have been conducted to 

refine an MOEA’s components for a given algorithm. For example, Vrugt et 

al., (2009) studied the impact of operator combinations on AMALGAM’s 

performance to find the best operator combination from a set of 5 operators. 

Wang et al., (2020) investigated the impact of the number of operators on 

algorithm performance by comparing an algorithm with a different number of 
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operators and suggested a large operator size to be of benefit for algorithm 

performance. Moreover, Matthew et al., (2013) found Borg is relatively 

insensitive to its parameter settings by conducting massive numerical 

experiments, indicating a robustness of performance for this algorithm. In 

addition, (Wang et al., 2020b) studied the impact of different selection 

strategies by comparing a general MOEA framework separately incorporating 

five selection strategies. These works provide a more insightful understanding 

as to which algorithm’s search strategies are more effective and provide 

insight for designing MOEAs in the future. 

From previous studies, it is clear that different search components embedded 

in an MOEA affect algorithm performance, which is evident for the case of 

two algorithms sharing the same structure of processes (i.e. parental selection, 

reproduction and off-spring selection) but with different components within 

those processes (e.g. AMALGAM and GALAXY use different operator sets 

for reproduction). The reason is that the different components’ characteristics 

are unique, thereby resulting in a different search behaviour. Therefore, this 

leads to the observation that optimizing the components within an algorithm 

framework presents an opportunity to fine tune an MOEA’s search behaviour 

and improve its performance. However, past work has typically only focused 

on either entirely different algorithm structures, or singular processes in 

isolation (e.g. only parental selection). To the authors’ knowledge, a 

comprehensive analysis involving a systematic investigation into 

simultaneously varying the components across the range of algorithmic 

processes is still lacking. Consequently, the objective of this chapter is that 

within a common MOEA framework, a systematic numerical experiment is 

conducted to investigate the impact of component combinations on algorithm 

performance. In the second objective, the best performing component 

combination MOEA is selected and compared with seven existing MOEAs on 

WDS problems. 
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To achieve the above objective within this chapter, firstly, a comprehensive 

systematic investigation is conducted using the general multi-objective 

evolutionary algorithm (GMOEA) framework (Wang et al. 2020) to construct 

algorithms automatically, based on varying the components of the 

framework’s processes (e.g. the operator set and hyperheuristic for 

reproduction, and the selection strategy for the population selection 

processes).  This investigation not only yields insight into the influence of 

singular and pair-wise variations of components, but also allows for the 

systematic construction of the best performing algorithm across the range of 

algorithms considered. This algorithm is symbolised by the notation 

GMOEA(CHCgen,12,T,A), showing that it adopts the GMOEA framework 

with a new convex hull contribution selection strategy (the CHCgen in the 

parenthesis), an operator set of 12 operators (12), the transitional hyper-

heuristic (T), and the archive meta-data (A) (all of these components are 

explained in later sections). The algorithm GMOEA(CHCgen,12,T,A) 

demonstrates great performance on the six WDS problems and has identified a 

significant number of new best-known Pareto Front solutions for the more 

complex problems. 
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4.2. Methodology 

4.2.1. Overview 

An overview of the proposed experimental methodology is outlined in Figure 

4-1. In order to investigate the impact of MOEA components on algorithm 

performance, a GMOEA framework (Wang et al. 2020) was outlined that 

contains the key processes of selection (i.e. parent selection and survivor 

selection) and reproduction, into which feed the components of selection 

strategy, along with the operator and hyperheuristic components, which is 

shown in the top-left block in Figure 4-1. To achieve a comprehensive 

investigation into the influence of different components, a range of process 

component alternatives are analysed through the GMOEA framework as 

constructed GMOEAs. Through comparing the performance of these 

constructed algorithms (i.e. algorithms constructed where specific components 

are selected for each process), it is possible to study how each component, 

individually and in a pair-wise sense, affect algorithm performance. Adopting 

this strategy, the best component combination is able to be identified and a 

final GMOEA is proposed. Thereafter, in order to assess the performance of 

the proposed GMOEA, it was compared with eight existing MOEAs, with a 

full computational budget, to evaluate how many solutions from each 

algorithm contribute to the best-known Pareto front solution set. 

The above MOEAs were tested by solving six WDS case studies with 

different characteristics that are associated with the size of the search spaces 

(Wang et al., 2015). These are outlined in the central block in Figure 4-1. To 

maintain a practical computational time, the partial computational budget 

proposed by Wang et al., (2017) (sufficient to guarantee convergence of 

algorithms) was used in this part of the study. Then, the best performing 

MOEA was selected as the proposed MOEA (top-right block in Figure 4-1). 
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Thereafter, the proposed MOEA was compared with eight state-of-the-art 

MOEAs with a full computational budget to demonstrate the effectiveness of 

the proposed MOEA. In addition, within the above numerical experiments, 30 

independent runs were undertaken for each algorithm application. 

In the result assessment block at the bottom of the Figure 4-1, three end-of-

run metrics were used to assess the performance of the 20 MOEAs with a 

non-parametric statistical test to report any statistical difference of the metrics 

among the MOEAs. For objective 2, as many new best-known Pareto front 

solutions have been found by the proposed MOEA, the metric “percentage of 

contribution” to best-known Pareto fronts was used to compare the proposed 

MOEA with the other state-of-the-art MOEAs. 

 

Figure 4-1. Flowchart of the methodology for each objective 
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4.2.2. General MOEA Framework 

In order to study the impact of the MOEA components on algorithm 

performance systematically, a process of MOEA, shown in Figure 4-2, was 

constructed by summarizing a range of state-of-the-art MOEAs’ features. 

Starting from initialisation, a set of solutions (or population) is produced 

randomly. Some population members are selected as parent solutions, which 

are identified by a selection process that then feeds into the reproduction 

process. After reproduction, the survivor selection strategy identifies the 

successful offspring. These successful offspring replace the unsuccessful 

population solutions and form the new population set for the next generation.  

The above processes are repeated until a termination criterion is met [e.g. 

running out of number of function evaluation (NFE)]. The key components of 

each of these processes are shown in the dash-line boxes in Figure 4-2. They 

each induce a unique search behaviour, thereby affecting population, parent 

and offspring characteristics. The process components are introduced as 

follows: 

 

Figure 4-2. Steps for the General MOEA framework 

The parent and survivor selection processes are characterised by the selection 

strategy component. It is a key component of an MOEA and affects the 

algorithm’s performance. This is because the selection strategy is the 

component that mainly determines the character of the population (Back, 
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1996; Hanne, 1999). The selection strategy determines which solutions are 

recognized as “good” and have an opportunity to produce offspring in the 

parent selection process. The survivor selection improves the population’s 

fitness by selecting the successful offspring to include in the solution set.  

The reproduction process involves two components, as shown in Figure 4-2: 

the hyperheuristic and the operator set. The operator set contains low-level 

operators, which are search strategies that produce an offspring (i.e. through 

recombination or randomisation processes), thereby allowing the algorithm to 

explore the search space. The utilisation of operators in this set is managed by 

a hyperheuristic, which is a self-adaptive scheme for selecting the most 

appropriate lower-level operators (Burke et al., 2013; Drake et al., 2019). The 

hyperheuristic plays an important role in MOEA performance as it controls 

the degree to which operators contribute to produce offspring solutions in 

each generation. In the next section, the actual working of these components, 

and some of examples that have been implemented in state-of-the-art MOEAs, 

are discussed. 

4.2.3. MOEA Components 

4.2.3.1.Selection Strategy 

As outlined above, the selection strategy (employed in both the parent 

selection, or survivor selection processes) is a process of determining which 

solutions are selected to be included in the parental and next generation 

population sets. For a generational MOEA, selection is determined by primary 

and secondary selection criteria, with the secondary criterion only considered 

when two solutions have the same value of the primary selection criterion. 

The primary selection criterion is typically based on the non-dominance status 

of the solutions (i.e. whether the solution is a member of the primary or higher 

order non-dominance front), and the secondary criteria is based on solution 

diversity metrics (Wang et al., 2020b). In this chapter, two selection strategies 
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for the secondary criteria were considered. The first strategy, crowding 

distance (CD), is the most popular strategy that has been applied to various 

MOEAs such as NSGA-II, AMALGAM, ε-NSGA-II and GALAXY. The 

second strategy is the convex hull contribution (CHCgen) selection strategy 

that was recently developed for generational MOEAs and found to outperform 

other existing selection strategies. The details of the two selection strategies 

are outlined as follows: 

Crowding distance selection strategy 

The crowding distance (CD) selection strategy is a popular selection strategy 

that has been widely applied to many MOEAs owing to its simplicity and 

effectiveness since its conception by Deb et al., (2002b). The primary 

selection criterion is the non-dominance status of the solutions, where 

solutions xi with a higher non-dominance rank outweigh others with a lower 

non-dominance rank. CD is the secondary selection criterion, and is used to 

find and discard solutions with the smallest CD within the same non-

dominance rank, set to maintain population size. Within a non-dominated set 

(𝑵𝑫𝑙, which is the set of solutions in the l-th non-dominance front) in the 

population, the solutions are sorted based on any one objective value. The 

metric is equal to infinity for the extremal solutions (i.e. for i=1 or i=|𝑵𝑫𝑙|), 

which have the greatest and smallest objective values 𝑓𝑚𝑎𝑥
𝑚  and 𝑓𝑚𝑖𝑛

𝑚  across all 

m objectives, respectively. For a non-extremal solution x∈ 𝑵𝑫𝑙, the CD value 

of the solution is given by the sum of the side lengths of the segment lines that 

touch the neighbouring solutions to x (Deb et al., 2002b) and can be given by: 

𝐶𝐷(𝑥|𝑵𝑫𝑙 ) = ∑
𝑓𝑥𝑖+1

𝑚 −𝑓𝑥𝑖−1
𝑚

𝑓𝑚𝑎𝑥
𝑚 −𝑓𝑚𝑖𝑛

𝑚
𝑀
𝑚=1      (4-1) 

where 𝑓𝑥
𝑚 is the m-th objective value for solution x, and <x,m> is used to 

denote the nearest neighbour solutions to x in NDl with respect to objective m. 
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New convex hull contribution selection strategy 

The new convex hull contribution (CHC) selection strategy for generational 

MOEAs was proposed by Wang et al., (2020b) to improve algorithm 

performance in water resource problems that have convex hull shaped Pareto 

fronts. A set is called convex if, for every two solutions inside the set, all 

solutions on the line segment between them are inside the set (Asadzadeh, et 

al. 2014). A convex hull is a set of points that are the intersection of all 

convex sets containing those points (Barber et al. 1996). For a solution x in a 

convex hull set, its convex contribution is the difference of the convex hull 

size (i.e. length, area, or hypervolume in one, two, or higher dimensional 

spaces, respectively) between the set with and without x. For example, in the 

bi-objective domain, the step involved in a CHC evaluation is described as 

follows: firstly, the area covered by the entire convex hull set of solutions is 

evaluated. Then, the area of the set that excludes x is evaluated. In the end, the 

CHC value of x is the area difference of the convex hull set with and without 

x. 

Given the fact that many CHC values in a MOEA’s population set are zero 

(Asadzadeh, et al. 2014), the CHCgen uses the fast non-dominance sorting 

approach and convex hull contribution (CHC) to assign a Convex Hull rank 

CH and a non-zero CHC to each population to preserve elitism within the 

population. The procedure of the CHCgen selection strategy is outlined as 

follows: within the first non-dominated set in the population (ND1), the CHC 

values are evaluated for the set’s solutions, and the solutions in ND1 with non-

zero CHC values are assigned a CH rank of one. Then, the remainder of the 

solutions in ND1 are evaluated (based on the CH1 solutions being omitted 

from this evaluation), and the solutions with a non-zero CHC value are 

assigned as CH2. The above procedure is iterated until all the solutions in ND1 

have been assigned a CH and possess a non-zero CHC value. Thereafter, the 

same procedure is carried out for the remainder of the non-dominated sets. 
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The CH ranks are hierarchically ordered with respect to each non-dominance 

front. That is, the set of solutions in the CH rank two set of ND1 rank more 

highly in terms of selection than the CH rank one set of solutions from ND2. 

Hence, the primary selection criterion represented by the CH rank sets 

preserve the elitism of the non-dominance. The secondary selection criterion, 

being the CHC value within each CH rank set, indicates solution diversity. 

CHCgen will favour solutions with a higher CH rank and greater CHC values, 

which represent better convergence and diversity. 

4.2.3.2.Operator Set 

For an MOEA with multiple operators, performance is a matter of not only the 

operator combination, but also the number of operators. The operators used in 

this chapter are outlined in Table 4-1. To select appropriate operators, two 

schemes are considered. The first one is the operator combination that is used 

in GALAXY, as these operators were specially designed for WDS problems 

and have shown effective performance against other state-of-the-art MOEAs 

(Wang et al., 2017). The second scheme includes the 12 operators outlined in 

Table 4-1. These have been proven to outperform the other operator 

combinations of the state-of-the-art MOEAs (Wang et al., 2020a). 
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Table 4-1. Operators Applied in the Computational Experiments 

Operators 

Simulated binary crossovera (SBX) Uniform mutation for integerf (UMI) 

Differential evolutionb (DE) Gaussian mutation for integersg (GMI) 

Parent-centric crossoverc (PCX) Dither creeping for integersh (DCI) 

Unimodal normal distribution crossoverd 

(UNDX) 
Differential evolution for integersb (DEI) 

Simplex crossovere (SPX) 
Simulated binary crossover for integersg 

(SBXI) 

Polynomial mutationa (PM) Turbulence factor for integersi (TFI) 

Notes: aDeb & Agrawal., (1994); bStorn & Price, (1997); cDeb et al. (2002a); dKita et al. 
(1999); eTsutsui et al. (1999); fMichalewicz, (1992); gWang et al., (2017); hZheng et al. 

(2013); iPulido et al. (2004). 

4.2.3.3.Hyperheuristic  

According to the ‘No-free-lunch theorem’ (Wolpert and Macready, 1997), it is 

impossible to develop a single MOEA that is universally the most efficient for 

all optimization problems, given different algorithms have different search 

behaviours that are only efficient for some problems. In past research, 

operators have been shown to play a dominant role in affecting an MOEAs’ 

search behaviour (Wang et al. 2020). Inspired by models of adaptation in 

natural systems (Vrugt et al. 2007), many MOEAs using multiple operators 

with a high level hyperheuristic have been proposed and have demonstrated 

effective performance on a range of problems (Hadka and Reed, 2013; Vrugt 

et al. 2009; Wang et al. 2017). For an MOEA with multiple operators, a 

hyperheuristic is a process that automatically selects operator(s) to produce 

current solutions within each generation of the search (Drake et al., 2019). A 

hyperheuristic involves a feedback loop in which operators that produce more 

successful offspring are rewarded by increasing the number of offspring 

produced by that operator (Hadka and Reed, 2013). Within the feedback loop, 

there are two components: the selection rule and the metadata. Through a 

streaming process (i.e. passing the metadata to a selection rule in each 

generation), hyperheuristics are able to make a decision as to which and how 
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many operators produce offspring in the reproduction process.  In this chapter, 

two popular hyperheuristics, used in Borg and AMALGAM, were considered 

and the two components for each of them are described as follows: 

Metadata  

The metadata are properties from a set of solutions that provide feedback to 

the selection rule to update the probabilities of each operator being able to 

produce offspring. The metadata Zt is given as a set of triples of the form (x, 

f(x), j) where x is a solution set included in the metadata at iteration t; f(x) 

contains its objective values, and j is the operator from which x was 

generated. The set of solutions included in the metadata can vary from 

algorithm to algorithm.  For example, for Borg’s hyperheuristic, the metadata 

is the current ε-non-dominance solutions (Archive Metadata); and for 

AMALGAM’s hyperheuristic, the metadata is the solution contributing to the 

population set (Population Metadata). In this chapter, two types of metadata, 

‘Archive’ and ‘Population’, were included in the numerical experiments.  

Selection rule 

Selection rule is associated with the selection of operators prior to reproducing 

offspring solutions that are likely to, themselves, produce successful offspring 

solutions that approach the true Pareto front solutions. The basic formula of 

the selection rule is outlined as: 

𝑃𝑗
𝑡 =

𝑐𝑗
𝑡

∑ 𝑐𝑖
𝑡𝑘

𝑖=1

        (4-2) 

where 𝑃𝑗
𝑡 is the selection probability of operator 𝑗; 𝑐𝑗

𝑡is a non-zero factor that 

indicates the degree of success of operator 𝑗; and k is the number of operators. 

𝑃𝑗
𝑡 is categorized as either transition-based or steady state-based in different 
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MOEAs. For example, Borg uses a steady state selection rule where by 𝑐𝑗
𝑡 is 

based on the size of components in the metadata, given by: 

𝑐𝑗
𝑡 = 𝑁𝑗(𝒁𝑡) + 𝜍       (4-3) 

where 𝑁𝑗(𝒁𝑡) represents the number of solutions in 𝒁𝑡  that were generated 

using operator j; and 𝜍 = 1 is used to prevent any selection probability from 

reaching zero. Thus, the steady-state selection probability is calculated by the 

proportion of the solutions in the metadata. The transition state selection rule, 

adopted in AMALGAM, defines 𝑐𝑗
𝑡 as the ratio between the size of the 

relevant solutions in the metadata and the quota of operator 𝑗 of the last 

generation (symbolised as 𝑁𝑗
𝑡−1) and is given by: 

𝑐𝑗
𝑡 =

𝑁𝑗 (𝒁𝑡)

𝑁𝑗
𝑡−1        (4-4) 

where 𝑁𝑗
𝑡−1 = max{1, ⌈𝑁 ∙ 𝑃𝑗

𝑡−1⌉} is the total number of solutions generated 

in iteration t-1 using operator j. It is noted that  𝑁𝑗
𝑡−1 = 1 only if 𝑃𝑗

𝑡−1 = 0 to 

avoid the possibility of inactivating operators that may contribute to the search 

in future generations. 

4.2.4. Case studies 

4.2.4.1.Objective functions 

In order to compare the proposed MOEA with other existing MOEAs that 

were studied in previous works, this study used the same objective functions 

that are popular in WDS problems (Wang et al., 2015, 2017, Jahanpour et al., 

2018). The first objective function is to minimize the cost Fc): 
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𝐹𝑐 = 𝑎 ∑ 𝐷𝑖
𝑏 𝐿𝑖

𝑛
𝑖=1        (4-5) 

where 𝐷𝑖 and  𝐿𝑖 = diameter and length for pipe i, respectively; a and b = 

constants that are associated with different problems; 𝑛 = the total number of 

pipes in the network. The second objective is to maximize the network 

resilience (In), as proposed by Prasad and Park, (2004), which measures the 

combined effects of surplus power and nodal uniformity. 

In =
∑ (

∑ 𝐷𝑖𝑗
𝑁𝑝,𝑗
𝑖=1

𝑁𝑝,𝑗max {𝐷𝑖𝑗:𝑖=1,…,𝑁𝑝,𝑗}
)𝑄𝑗(𝐻𝑗−𝐻𝑗

∗)𝑛𝑑
𝑗=1

∑ 𝑄𝑟𝐻𝑟
𝑁𝑅
𝑟=1 −∑ 𝑄𝑗(𝐻𝑗

∗+𝑧𝑗)𝑚
𝑗=1

    (4-6) 

where 𝑛𝑑 =  the total number of demand nodes; 𝑁𝑝,𝑗 = the total number of 

pipes that are connected to node j; 𝐷𝑖𝑗 = the diameter of pipe i connected to 

node j; 𝑄𝑗,  𝐻𝑗 and 𝐻𝑗
∗ = the demand, actual head, and minimum head required 

at each node j, respectively; 𝑁𝑅 = the total number of reservoirs and 𝑄𝑟 , 𝐻𝑟  = 

actual discharge and actual head at reservoir r, respectively. 

In each WDS case study there exist hydraulic constraints that must be met. For 

example, a node’s head should be greater than the corresponding minimum 

head required. Also, for some cases (e.g. Fossolo, Pescara and Modena 

problems), the constraints involve minimum and/or maximum flow velocities. 

The interested reader can refer to Wang et al., (2015) for further details. 

The objective functions were evaluated by running the hydraulic software 

EPANET 2 toolkit in the software language C, complied to a MEX function 

that is available for MATLAB source code. In addition, in order to handle the 

infeasible solutions, the degree of constraint violation is recorded for each 

solution and the constraint-tournament selection (Deb et al., 2002b) was 

applied to the all algorithms tested in this chapter. 
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4.2.4.2.WDS Study Networks 

In this paper, six WDS case studies that are widely used to compare the 

performance of different MOEAs in other works (Jahanpour et al., 2018, 

Wang et al., 2015, 2017, Zheng et al., 2016) were considered and are shown 

in Table 4-2. They are categorized into three different types according to the 

number of pipes, varying from 21 to 454. The networks New York tunnel 

(NYT) and Hanoi (HAN) have 21 and 34 pipes, respectively, and are 

classified as small scale problems; Fossolo (FOS) and Pescara (PES) have 58 

and 99 pipes, respectively, and are classified as medium scale problems; 

Modena (MOD) and Balerma (BIN) have 317 and 454 pipes, respectively, and 

are classified as large scale problems. The numbers of the partial NFEs for 

each case study are consistent with the setting in Wang et al. (2017) and Wang 

et al. (2020), which are sufficient for the MOEAs to converge. In addition, to 

achieve a more extensive comparison with the existing MOEAs outlined in 

Wang et al. (2015) and Jahanpour et al. (2018), the full NFE and epsilon 

precisions for cost (EFc) and network resilience (EIn), as adopted in Wang et 

al., (2015), were used. 

Table 4-2. WDS Problems Specifications 

Scale Case study (problem) 
Number of options 

for each pipe 

NFE 

(Partial) 

NFE 

(Full) 
EFc EIn N 

Small 

New York tunnel 

(NYP21) 
16 

5x104 6x105 
100 10-3 

100 

Hanoi (HAN34) 6 10-1 10-3 

Medium 
Fossolo (FOS58) 22 

1x105 1x106 
10-3 10-3 

100 
Pescara (PES99) 13 10-2 10-3 

Large 
Modena (MOD317) 13 

4x105 2x106 
10-2 10-3 

200 
Balerma (BN454) 10 10-2 10-3 
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4.2.5. Numerical experiment setup 

In order to study how each component affects algorithm performance, as 

outlined in Section 4.2.1, a comprehensive investigation that focuses on 

comparing different component combinations of the constructed GMOEA was 

conducted. Table 4-3 outlines the alternatives for each component that is 

considered in this chapter (also shown in Figure 4-1). A total of 20 component 

combinations (i.e. constructed realisations of the algorithm) were compared 

by optimising the six WDS problems that are outlined in Section 2.3.2. The 

name of each constructed MOEA is given as by following example: 

GMOEA(CHCgen,12,T,A) is the algorithm with a CHCgen selection strategy, 

12 operators, transitional probability selection rule, and the archive metadata. 

The results of the algorithms with the 20 component combinations were 

evaluated by three end-of-runs metrics and post-processed by a non-

parametric statistical analysis that is outlined in section 4.2.6.1. To study the 

impact of each component on algorithm performance, the performance of the 

algorithms with the same component within a given process were grouped and 

compared with the performance of other grouped constructed GMOEAs with 

alternative components within the given process. Moreover, to investigate the 

influence of each pairwise component combination, the results of the 

algorithms with the same two components were grouped together and 

compared against the other alternatives. Conducting this investigation helps to 

understand not only how each component alternative affects algorithm 

performance, but also how pairwise combinations affect algorithm 

performance. The performance of the algorithm with each component 

combination was evaluated and the best performing algorithm was selected. 
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Table 4-3. Search Components Varied in the Computational Experiments 

Selection Strategy 
Number of 

Operators 

Hyperheuristic 

Metadata Selection Rule 

CHCgen 6 Archive (A) 
Transitional 

Probability (T) 

CD 12 Population (P) Steady Probability (S) 

In order to propose a new MOEA by finding the combination process 

component that yields the best performing algorithm, 

GMOEA(CHCgen,12,T,A) is selected from the best performing 20 algorithms 

with different component combinations. To evaluate the performance of 

GMOEA(CHCgen,12,T,A) with other state-of-the-art MOEAs, Jahanpour et 

al., (2018) and Wang et al., (2015) conducted extended optimization to the 

WDS problems with full computational budgets (as outlined in Table 4-2) for 

eight state-of-the-art MOEAs, including: NSGA-II, ε-MOEA, ε-NSGA-II, 

AMALGAM, Borg, GALAXY, PADDS-CHC and PADDS-HVC. The Pareto 

fronts for these algorithms with full computational budgets are used within 

this paper and are available from Jahanpour et al., (2018) and Wang et al., 

(2015). In this chapter, the approximate sets of GMOEA(CHCgen,12,T,A) 

were collected to update the best-known Pareto fronts of the WDS case 

studies. 

4.2.6. Results assessment 

4.2.6.1.End of run metrics 

In order to evaluate each MOEA’s performance, three end-of-run performance 

metrics were used to assess the relative performance of the algorithms in this 

chapter, namely hypervolume (IHV) (Zitzler and Thiele, 1999), generational 

distance (IGD) (Veldhuizen, 1999) and ε-indicator (Iɛ+) (Zitzler et al., 2003). 

These metrics effectively capture both the approximate sets’ convergence and 

diversity. IHV measures both convergence and diversity of a Pareto approximate 
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front. It is the ratio of the Lebesgue measure of the objective space between a 

Pareto approximate front and a Pareto reference front. IGD measures the average 

Euclidean distance in the objective space between each solution point on a 

Pareto reference front and its closest solution point on a Pareto approximate 

front. Iε+ evaluates the minimum distance a Pareto approximate front must be 

shifted to dominate the best-known Pareto front in the objective space, which 

measures the convergence and consistency of a solution set. 

In order to report any significant difference in the above metrics across 

different MOEAs, a nonparametric analysis was implemented in this chapter 

(Hadka and Reed, 2012; Ameca-Alducin et al., 2018). The one-way Kruskal-

Wallis test (Kruskal and Wallis, 1952), with Dunn's D post-test (Dunn, 1964), 

was used to evaluate if a pair of end of run metric data sets differ significantly 

from each other. In this chapter, the metric data sets for an MOEA for 

represent an end of run metrics (IGD, IHV, or Iɛ+) of the approximate Pareto sets 

for 30 duplicated runs. The score panel is used to evaluate the effectiveness of 

each group of data. The two groups’ data is assigned as equivalent, if the 

difference is not significant (p-value>5%). In this condition, two groups are 

assigned using a zero score. Otherwise, the group with a better median value 

(i.e. lower values for IGD and Iɛ+ and higher value for IHV) of a metric is 

recognised as the better performing group by having one score; and the other 

is penalised by assigning a zero score to it. There are overall 210 pairwise 

statistical tests for each end of run metric, which were conducted for all 

algorithm group pairs, and the scores for each algorithm group are added 

together to represent the effectiveness of performance for each algorithm. 

Therefore, the ranks for each MOEA metric can be sorted, based on the score 

for each group of data. 
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4.2.6.2.Percentage contribution to new best-known Pareto fronts 

To compare the proposed MOEA with other state-of-the-art MOEA results for 

the case studies using a full computational budget, the contribution 

percentage, proposed by Wang et al. (2015), was used to evaluate how many 

solutions of the aggregate sets contribute to the new-best-known fronts for 

each case study. The details for calculating the contribution percentage for a 

case study are outlined as follows: firstly, all approximate fronts’ objective 

values are rounded to the required epsilon precisions (EFc and EIn), as defined 

by Wang et al., (2015) for each case study. Then, the aggregated sets of the 30 

duplicated runs are merged and yield a unique nondominated solution set. 

Thus, the contribution percentage of the unique nondominated set to the new-

best-known Pareto fronts can be calculated. It is noted that the new best-

known Pareto fronts for the case studies have been updated by the proposed 

MOEA, based on the best-known Pareto fronts updated by Jahanpour et al., 

(2018). 

4.3. Results and Discussion 

4.3.1. Performance of MOEAs for a Partial Computational 

Budget 

The rankings of the constructed GMOEA algorithms based on the three end-

of-run metrics’ average are shown in Table 4-4. The first column consists of 

the name of each GMOEA, which is identified by the component options as 

described in Section 4.2.5, where the naming convention is: GMOEA(A, B, C, 

D) where A is the selection strategy (either the parent selection or survivor 

selection), B is the number of operators, C is the selection rule, and D is the 

metadata. For example, an algorithm with a crowding distance selection 

strategy; 12 operators; transition probability as the selection rule; and the 

archive as the metadata is denoted as GMOEA (CD, 12, T, A). 
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Table 4-4. Ranks of the 20 Constructed MOEAs 

Algorithm 
Ranking 

GD HV E+ Average 

GMOEA(CHCgen,6,T,A) 5 5 6 5.3 

GMOEA(CHCgen,6,T,P) 7 5 10 7.3 
GMOEA(CHCgen,6,S,A) 8 14 17 13 

GMOEA(CHCgen,6,S,P) 10 13 15 12.7 
GMOEA(CHCgen,6,N) 12 7 9 9.3 
GMOEA(CD,6,T, A) 16 16 14 15.3 

GMOEA(CD,6,TP) 17 18 16 17 
GMOEA(CD,6,S,A) 19 19 19 19 
GMOEA(CD,6,S,P) 19 20 20 19.7 

GMOEA(CD,6,N) 18 11 7 12 

GMOEA(CHCgen,12,T,A) 2 1 1 1.3 
GMOEA(CHCgen,12,T,P) 1 2 2 1.7 

GMOEA(CHCgen,12,S,A) 4 8 3 5 
GMOEA(CHCgen,12,S,P) 6 12 11 9.7 
GMOEA(CHCgen,12,N) 3 3 3 3 

GMOEA(CD,12,T,A) 10 10 12 10.7 
GMOEA(CD,12,T,P) 9 9 5 7.7 
GMOEA(CD,12,S,A) 13 15 13 13.7 

GMOEA(CD,12,S,P) 14 17 18 16.3 
GMOEA(CD,12,N) 15 3 8 8.7 

As can be seen, GMOEA(CHCgen,12,T,A) achieves the best performance, 

indicated by the overall average rank (Table 4-4). In contrast, GMOEA(CD, 6, 

S, P) achieves the overall worst performance of the three metrics ranks. It is 

obvious that different component combinations have an impact on algorithm 

performance, as shown by the average rank. Moreover, the table shows  which 

algorithms contain a certain component that typically affects performance. For 

example, algorithms with 12 operators typically outperform algorithms with 6 

operators, shown by the average rank (Table 4-3). To further investigate how 

each component’s alternative affects MOEA performance, as outlined in 

Table 4-5, the aggregated average ranks of the algorithms using the same 

component are discussed as follows: 

  



Chapter 4 – Influence of the component combination 

119 

 

Table 4-5. The Average Rank of Each Component 

Selection Strategy 
Number of 

Operators 

Hyperheuristic 

Metadata Selection Rule 

CHCgen 6.7 6 13.2 A 10.6 T 8.3 

CD 14.3 12 7.8 P 11.6 
S 14.0 

N 8.0 

As can be seen in Table 4-5, it is demonstrated that the selection strategy and 

the number of operators have greater impact on algorithm performance than 

other criteria. For example, the average ranks of selection strategy, 

CHCgen(6.7) is over two times better than the CD (14.3). This result is 

consistent with the finding shown in (Wang et al., 2020b). The feature of 

convex hull contribution would avoid extensively sampling from solutions on 

the extended tails of the Pareto front, i.e., near vertical or near horizontal lines 

in the biobjective (Asadzadeh et al. 2014). This feature improves the 

algorithm’s efficiency of searching. On the other hand, for the operator 

component, 12 operators (7.8) are about two times better than 6 operators 

(13.2). The finding is consistence with the results shown by Wang et al. 

(2020). For an algorithm that includes more operators, a higher search 

diversity enabled. Thus, performance should be improved (Wang et al. 2020).  

For the influence of the metadata of a hyperheuristic, the average rank of  the 

archive (A) (10.6) is slightly better than the population (P) (11.6) (Table 4-5). 

The ε-nondominated solutions are able to maintain convergence and diversity 

simultaneously (Hadka and Reed, 2013). Hence, an operator that can produce 

offspring with great convergence and diversity would benefit the search 

(Maier et al. 2014). This implies the ε-nondominated solution metadata from 

the archive could provide more effective feedback for operator prioritisation 

than the population. 



Chapter 4 – Influence of the component combination 

120 

 

For the selection rule, the average rank of the transitional selection rule (T) is 

5.8 lower than the average rank of the steady selection rule (S) (Table 4-5), 

which suggests the transitional selection rule improves algorithm 

performance. The inferred reason for this is that transitional selection allows 

the all operators to produce offspring solutions, which increase the search 

diversity (Wang et al. 2020). In contrast, the steady selection rule only allows 

one operator to be selected and produce offspring solutions, which does not 

help to maximize search diversity. The naïve selection rule performs 

significantly better than the steady selection rule (Table 4-5). The reason is 

that naïve selection allows each operator to produce offspring solutions as 

well. However, it is unexpected to see the naïve average rank is marginally 

better than the transitional selection rule. Nonetheless, as shown in Table 4-3, 

the algorithm with a naïve selection rule does not always outperform the 

algorithm with the transitional selection rule. The results are discussed in 

Section 4.3.2. 

4.3.2. Pairwise Analysis of Component Influences 

To understand the relative influence of each pairwise combination of the 

different process components, Table 4-6 shows all pairwise combinations’ 

merged average rank (across all algorithm instances). 
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Table 4-6. The Relative Influence of Each Pairwise Option of the Search Strategies 

Primary 

Component 

Secondary Component 

Metadata Selection Rule Selection Strategy 

Combination 
Average 

Rank 
Combination 

Average 

Rank 
Combination 

Average 

Rank 

Number of 

operators 

6-A 
6-P 

13.5 
14.3 

6-T 11.3 
6-CHCgen 

6-CD 
9.4 
17 

6-S 16.5 

6-N 10.5 

12-A 
12-P 

7.8 
9 

12-T 5.3 
12-CHCgen 

12-CD 
4 

11.6 
12-S 11.5 

12-N 5.5 

Selection 

Strategy 

CHCgen-A 
CHCgen-P 

6 
7.8 

CHCgen-T 3.5   

CHCgen-S 10.3   

CHCgen-N 6   

CD-A 
CD-P 

15.3 
15.5 

CD-T 13   

CD-S 17.8   

CD-N 10   

Selection 

Rule 

T-A 8.3     

T-P 13     

S-A 8.3     

S-P 15     

As can be seen, the performance of each component in each pairwise 

component is typically the same as the results shown on Table 4-5. For 

example, for algorithms with the same number of operators, the Archive 

metadata (e.g. 12-A average rank is 7.8) is better than the Population metadata 

(e.g. 12-P average rank is 9). For algorithms with the same number of 

operators, the CHCgen selection strategy (e.g. 12- CHCgen average rank is 4) is 

more than two times better than the CD selection strategy (e.g. 12-CD average 

rank is 11.6). Moreover, algorithms with 12 operators are typically better than 

algorithms with 6 operators (Table 4-6). Thus, it is implied that the relative 

influence of the number of operators is greater than that of the selection 

strategy and greater than that of the metadata.   

However, an exception was observed for the relative influence of the selection 

rules under different selection strategy options, as shown in Table 4-6. For 

example, the average rank of CD-N (10) is better than CD-T (13). These ranks 

resulted in the average rank of the transitional selection rule (8.3) being 

slightly worse than the average rank of the naïve selection rule (8.0) shown in 
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Table 4-5. However, algorithms with the CHCgen selection strategy and 

transitional selection rule (CHCgen -T) perform better than those with the naïve 

selection rule (CHCgen -N). This implies an ineffective selection strategy (CD) 

could encourage non-effective operators to explore the search space and result 

in poor performance. 

In summary, by conducting a comprehensive numerical study and analysing 

the relative influence of each component’s impact on performance, typically, 

there is little correlation across each pairwise component. The relative 

influence of a component on algorithm performance would be the same when 

paired with components of other MOEA processes. This implies that the 

components in GMOEA(CHCgen,12,T,A) would improve other algorithms. 

4.3.3. Benchmarking with Existing Algorithms 

To evaluate and compare the performance of the GMOEA(CHCgen,12,T,A), 

with state-of-the-art MOEAs, the percentage contribution of solutions to the 

best known-Pareto fronts of the six case studies that were produced by the 

eight MOEAs (NSGA-II, ε-MOEA, ε-NSGA-II, AMALGAM, Borg, PADDS-

CHC, PADDS-HVC) and GMOEA(CHCgen,12,T,A) are shown in Table 4-7. 

It can be seen that GMOEA(CHCgen,12,T,A) achieves the highest percentage 

contribution on the medium and large scale problems. Moreover, 

GMOEA(CHCgen,12,T,A) identified at least more than 44% of the new best-

known Pareto front solutions for the large scale problem. In particular, for the 

largest scale problem, BIN, GMOEA(CHCgen, 12, T, A) almost provides an 

entire new best-known Pareto front (267 out of 270), with reference to this 

phenomenon reported in Jahanpour et al. (2018). This means that 

GMOEA(CHCgen, 12, T, A) is a highly effective MOEA to solve complicated 

WDS optimisation problems. 
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However, for the small scale problems, PADDS algorithms results in the 

highest percentage. For instance, the PADDS-HVC percentage contribution is 

100 and 97.4 and GMOEA(CHCgen,12,T,A) has a percentage contribution of 

53.1 and 66.7 for the NYT and HAN problems, respectively. According to the 

No-free-lunch theorem, it is not possible to have an algorithm that 

outperforms all other algorithms on every single problem in terms of solution 

quality and efficiency. Consequently, despite the relative simplicity of 

PADDS-HVC in comparison with GMOEA(CHCgen,12,T,A), this simpler 

algorithm performs more effectively for smaller problems, but cannot match 

the performance of GMOEA(CHCgen,12,T,A) for larger problems. Similarly, 

it is noted that for NSGA-II, the percentage contribution values are higher 

than other state-of-the-art MOEAs (i.e. AMALGAM, Borg, 

GMOEA(CHCgen,12,T,A)) for smaller problems. This fact implies that an 

MOEA with a simple structure can potentially achieve a more effective 

performance on small scale problems.  

Despite the fact that GMOEA(CHCgen,12,T,A) was not as effective on the 

small scale problems, its performance dominates the existing MOEAs on 

medium and large scale problems, as indicated by it finding the greatest 

number of the best-known Pareto front solutions. 

Table 4-7. The Percentage of Contribution to the Best-Known Pareto Front for Each MOEA 

Problem 

Number of new 
PF found by 

GMOEA- 
(CHCgen,12,T,A) 

Number 
of 

solutions 
in best-

known 
PF 

Percentage contribution (%) 

NSGA-

II 

ε-

MOEA 

ε-

NSGA-
II 

AMALGAM Borg 
PADDS-

CHC 

PADDS-

HVC 

GMOEA- 

(CHCgen,12,
T,A) 

NYT 0 145 91.0 17.9 24.8 90.3 20.0 100.0 100.0 53.1 

HAN 0 39 94.9 20.5 23.1 84.6 25.6 94.9 97.4 66.7 

FOS 101 131    6.1   0.0 0.0 0.7 0.0 0.0 0.0 95.2 

PES 79 119    4.0 11.6 0.0 1.3 0.0 20.1 25.6 64.3 

MOD 90 201   15.9   0.0 0.0 11.1 0.0 29.5 0.0 49.3 

BIN 267 270     0.0   0.0 0.0 0.4 0.0 1.1 0.0 98.9 

Note: The highest percentage numbers for each case study are in bold. 
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4.4. Conclusion 

This chapter investigates the influence of each process of MOEA on algorithm 

performance, and develops a new GMOEA(CHCgen,12,T,A), for solving WDS 

problems. Specifically, the objective of this chapter is that within a common 

MOEA framework, a systematic numerical experiment is conducted to 

investigate the impact of component combinations on algorithm performance. 

In the second objective, the best performing component combination MOEA 

is selected and compared with seven existing MOEAs on WDS problems. 

To study the impact of each individual and pairwise component on algorithm 

performance, the GMOEA framework (Wang et al. 2020) was used to enable 

swapping of components of each algorithm process. There are eight 

components in the processes of reproduction (number of operators, 

hyperheuristic) and selection (including parent selection and survivor 

selection) that together form 20 constructed algorithms. A comprehensive 

numerical experiment was conducted to study the relative impact of each 

individual and pairwise component on algorithm performance. Three end of 

run metrics with rigorous statistical tests were used to assess algorithm 

performance. 

The results indicate each component affects algorithm performance. The 

number of operators and selection strategy play important roles in affecting 

the performance. The reason is that they affect the population solutions 

directly by controlling search behaviour. Moreover, it is found that a high 

number of operators would improve algorithm performance; and the CHCgen 

selection strategy is more effective than the CD selection strategy. These 

findings are the same as in previous studies (Wang et al. 2020a & 2020b). In 

addition, it is found that the influence of each component on algorithm 

performance is typically independent from other components.  
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The proposed new algorithm, GMOEA(CHCgen,12,T,A), was developed by 

selecting the most effective one out of the 20 constructed algorithms. The 

performance of GMOEA(CHCgen,12,T,A) was assessed by evaluating the 

contribution to the best-known Pareto Fronts from the six WDS problems and 

comparing them with seven existing MOEAs (NSGA-II, ε-MOEA, ε-NSGA-

II, AMALGAM, Borg, PADDS-CHC and PADDS-HVC). 

GMOEA(CHCgen,12,T,A) outperformed the existing MOEAs by finding many 

new best-known Pareto Front solutions. In particular, for the most complex 

BIN problem, GMOEA(CHCgen,12,T,A) found 98.9% new best-known Pareto 

Front solutions. However, for the small scale problems, a simple structure 

algorithm like NSGA-II outperforms GMOEA(CHCgen,12,T,A). Hence, for 

future study, it is possible to investigate the relationship between the 

complexity of a problem type and algorithm structure. Alternatively, it would 

be possible to design an algorithm with an adaptive algorithm structure. 
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Chapter 5 Conclusions 

5.1. Research Contributions 

MOEAs have the ability to adjust the way they search through the solution 

spaces by either intensifying the search in promising regions or diversifying 

the search in less promising regions, enabling them to perform well on 

problems with different characteristics, as the search behaviour alterations can 

be fine-tuned by the components of each process of the MOEA. This thesis 

has investigated the impact of the components of MOEAs’ search behaviour 

and performance comprehensively. The details of the findings are outlined as 

follows: 

The impact of the operator set size on the performance of multi-objective 

evolutionary algorithms (MOEAs) for WDS problems has been studied 

comprehensively (Chapter 2). The study assessed (i) the relative influence of 

the size of the operator set on algorithm performance, (ii) whether the size of 

the operator set is more important than the composition of the operator set, 

(iii) whether the size of the operator set is more important than the combined 

effect of the composition of the operator set and the search strategies used, 

and (iv) the potential for improving the performance of existing MOEAs by 

increasing the size of the operator set.  

The results from the 3,150 optimisation runs for the work presented in 

Chapter 2 clearly indicate that operator set size plays a dominant role in 

algorithm performance. Operator set size was observed to have a larger 

influence than operator parameter values, operator set composition and other 

strategies affecting algorithm searching behaviour. The reason for the 
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increased performance of algorithms using a larger number of operators is that 

they provide a greater variety of searching mechanisms, which are able to find 

better solutions at different stages of the optimisation process. 

Overall, the findings within Chapter 2 tend to suggest that existing multi-

objective evolutionary algorithms do not use a sufficient number of operators 

and that there is significant potential to increase the performance of a wide 

range of existing algorithms simply by increasing their operator set size. 

Based on the results obtained, it is recommended that the number of operators 

in existing algorithms should be increased to between 10 and 12, ensuring a 

balance between exploration and exploitation. For cases where the original 

algorithm to be improved does not use a hyperheuristic to control the degree 

to which each operator contributes to the search at each iteration, it is 

recommended to use the NAÏVE hyperheuristic, which ensures that all 

operators contribute equally. 

A novel selection strategy called the generational convex hull contribution is 

proposed for generational MOEAs (GMOEAs) (Chapter 3). Moreover, the 

impact of selection strategies on algorithm performance has been investigated 

by comparing the performance of GMOEAs that use different existing 

selection strategies. 

As shown in Chapter 3, the general MOEA framework algorithm with the 

CHCGen selection strategy outperforms the four other existing selection 

strategies that were tested. The CHCGen selection strategy not only accounts 

for convergence and diversity in generating the approximate front, but its 

search behaviour is well-suited for problems that have a convex shape of the 

approximate fronts. Moreover, the selection strategy should result in better 

solutions being identified within the ‘knee regions’ of approximate Pareto 

fronts. 
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CHCGen was compared with four existing selection strategies by implementing 

these strategies within a consistent general MOEA framework. The general 

MOEA framework with the CHCGen selection strategy was found to 

outperform four other popular existing selection strategies in the numerical 

study involving six WDS problems. The CHCGen selection strategy showed 

the best overall convergence, diversity and consistency of the approximate 

fronts that were generated.   

As shown in Chapter 3, the CHCGen selection strategy augments the selection 

preference to bias the population solutions that lie on the convex hull regions 

of the approximate front. Given the nature of the convex hull solutions within 

a non-dominated set that are closer to the “ideal point” and in distinct regions 

along the approximate front, this type of selection preference leads to  an 

improved convergence and diversity of the search. Therefore, the CHCGen 

selection strategy allows the algorithm to explore the search space effectively 

and results in the best performance of the approximate front in comparison 

with other existing selection strategies. 

To further investigate the potential of the CHCGen selection strategy to 

improve existing MOEAs, the current best generational MOEA for solving 

WDS problems (GALAXY) and the industry standard generational MOEA 

(NSGA-II) were modified to incorporate the CHCGen selection strategy. The 

CHCGen selection strategy was found to be able to boost the performance of 

these two algorithms, suggesting that the proposed selection strategy could 

benefit other existing MOEAs. 

A systematic numerical experiment was conducted to investigate the impact 

of component combinations on algorithm performance (Chapter 4). 

Furthermore, a new MOEA has been developed by combining the most 

effective components considered in this thesis. 
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The results from Chapter 4 indicate that each component affects algorithm 

performance. The number of operators and the selection strategy play 

important roles in affecting performance. The reason is that they affect the 

population of solutions directly by controlling the search behaviour. 

Moreover, it was found that a high number of operators would improve 

algorithm performance and that the CHCgen selection strategy is more 

effective than the CD selection strategy. These findings are the same as in 

previous studies (Wang et al. 2020a & 2020b). In addition, it was found that 

the influence of each component on algorithm performance is typically 

independent from other components.  

Within Chapter 4, the proposed new algorithm, GMOEA(CHCgen,12,T,A), 

was developed by selecting the most effective artificially constructed 

algorithm out of a total of 20 algorithms. The performance of 

GMOEA(CHCgen,12,T,A) was assessed by evaluating its contribution to the 

best-known Pareto Fronts from the six WDS problems and comparing them 

with seven existing MOEAs (NSGA-II, ε-MOEA, ε-NSGA-II, AMALGAM, 

Borg, PADDS-CHC and PADDS-HVC). The algorithm 

GMOEA(CHCgen,12,T,A) outperformed the existing MOEAs by finding many 

new best-known Pareto front solutions. In particular, for the most complex 

case study, the BIN problem, GMOEA(CHCgen,12,T,A) found 98.9% of the 

new best-known Pareto front solutions. However, for the small scale 

problems, a simply structured algorithm, like NSGA-II, outperforms 

GMOEA(CHCgen,12,T,A).  

5.2. Scope of Future Work 

The recommendation for future work related to multi-objective evolutionary 

algorithms are outlined below. 
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The proposed GMOEA has been developed and tested in WDS problems. The 

new challenge is to test the effectiveness of the proposed GMOEA on other 

optimisation problems. For example, it is worth evaluating different water 

resource problems such as hydraulic model calibration problems, water 

quality optimisation problems, etc. Moreover, this thesis only considers a bi-

objective optimisation problem. For real-world WDS problems, more design 

objectives should be considered, such as not only the economic perspective, 

but also the community, performance and environmental perspectives. 

Considering multiple objectives enables us not only to explore the algorithm’s 

performance in higher objective dimensions, but is also more practical for 

designing WDSs in the real world. 

One of the key advantages of MOEAs is the ability to adjust the way they 

search through the solution spaces by either intensifying the search in 

promising regions (i.e., exploiting good solutions) or diversifying the search 

in less promising regions (e.g., exploring the solutions space more widely), 

enabling them to perform well for problems with different problem 

characteristics. However, the relationship between the problem characteristics 

and algorithm search behaviour is still not sufficiently clear. Bridging this gap 

would help to develop a better understanding of the impact of search 

behaviour on algorithm performance. Hence, it would be possible to tune the 

algorithm search behaviour according to problem characteristics, thereby 

significantly improving performance. 

This thesis views MOEAs as a generic process. Through adopting different 

search strategies, the search behaviour could be changed, thereby affecting 

algorithm performance. However, these search strategies are predetermined 

prior to the search. In future work, there is great potential to adapt different 

search strategies during the search, which allows the algorithm to show a 

more flexible search behaviour and search diversity. To achieve this, another 

challenge is to propose a robust feedback to collect the problem characteristics 
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during the search and convert them to useful information (e.g., desired search 

behaviour) to reward the most effective search strategies for conducting the 

search.  

The limitation of deterioration, in which good solutions are erroneously 

replaced by worse solutions, has existed in generational MOEAs. This is due 

to the fact that the size of a population in generational MOEAs is fixed. The 

challenge is to develop a method to preserve all elite solutions in the 

population and retain some space to store redundant solutions to increase 

search diversity. Also, the effectiveness of such a method should be proved 

mathematically. If the deterioration can be solved for generational MOEAs, it 

would improve the algorithms’ performance. 

This thesis only investigates the potential to swap different search strategies 

on generational MOEAs. The conclusions found are not tested on the other 

type of MOEA, which is a steady state MOEA. Steady state MOEAs have 

also been developed and applied to a wide range of optimisation problems for 

over two decades. It would be worthwhile testing the potential of swapping 

different search strategies to improve algorithm performance. By doing this, 

more generic conclusions could be determined.
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