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a b s t r a c t 

We propose a new training algorithm, ScanMix, that explores semantic clustering and semi-supervised 

learning (SSL) to allow superior robustness to severe label noise and competitive robustness to non- 

severe label noise problems, in comparison to the state of the art (SOTA) methods. ScanMix is based 

on the expectation maximisation framework, where the E-step estimates the latent variable to cluster 

the training images based on their appearance and classification results, and the M-step optimises the 

SSL classification and learns effective feature representations via semantic clustering. We present a theo- 

retical result that shows the correctness and convergence of ScanMix, and an empirical result that shows 

that ScanMix has SOTA results on CIFAR-10/-100 (with symmetric, asymmetric and semantic label noise), 

Red Mini-ImageNet (from the Controlled Noisy Web Labels), Clothing1M and WebVision. In all bench- 

marks with severe label noise, our results are competitive to the current SOTA. 

© 2022 The Author(s). Published by Elsevier Ltd. 

This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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. Introduction 

Much of the success of deep learning models is attributable to 

he availability of well-curated large-scale datasets that enables a 

eliable supervised learning process [1] . However, the vast majority 

f real-world datasets have noisy labels due to human failure, poor 

uality of data or inadequate labelling process [2] . Using noisy la- 

el datasets for training not only hurts the model’s accuracy, but 

lso biases the model to make the same mistakes present in the 

abels [3] . Therefore, one of the important challenges in the field is 

he formulation of robust training algorithms that work effectively 

ith datasets corrupted with noisy labels. 

Successful approaches to address the learning from noisy 

abel (LNL) problem tend to rely on semi-supervised learning 

SSL) [4–7] . Such methods run the following steps iteratively: a) 

utomatically split the training set into clean and noisy sets, b) 

iscard the labels of the samples in the noisy set and, c) minimise 
∗ Corresponding author. 
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he classification loss with the labelled (clean) and unlabelled 

noisy) data. Consequently, these SSL methods rely on successfully 

plitting the training set into clean and noisy sets, which for low 

oise rates, is accurate [4–7] because of the strong support in 

he training set that associates image representations and their 

rue labels. However, for severe label noise, this support weakens, 

esulting in the over-fitting of label noise [4–7] . 

To mitigate the issues caused by severe label noise, one can 

onsider self-supervised learning strategies [8–11] to build fea- 

ure representations using appearance clustering techniques. These 

trategies [8–11] show better classification accuracy than recently 

roposed LNL methods [7,12] when the noise rate is large (above 

0% symmetric and 40% asymmetric). However, for low noise rates, 

SL methods tend to produce better results because self-supervised 

ethods typically tend to cluster images with similar appearance, 

ut such similarity does not imply that the images belong to same 

lass. We argue that in a noisy label context, the use of self- 

upervised learning (without using the training set labels) can cre- 

te an initial feature representation that is more related to the 

eal hidden representation in comparison to supervised training 

ith noisy labels. However, when the dataset is relatively well- 

tructured and clean, the use of self-supervised learning alone is 
under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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Fig. 1. ScanMix explores semantic clustering (a) that clusters samples with similar appearances and classification results, and semi-supervised learning (SSL) (c) that 

trains the classifier by treating the samples classified to have noisy labels, as unlabelled samples. In the figure, circles represent true cat label, and squares, true dog class, 

where samples 3 and 6 are noisy, but the classifier produces the right classification (see yellow and pink bars). In frames (a),(c) the arrows denote how the training process 

moves samples in the feature space at each stage, with samples 3 and 6 showing white background in (b),(c) because they are classified as noisy in (b) and have their labels 

removed for SSL. 
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ot enough to bridge the gap to its supervised training counter- 

art. To this end, we propose a training mechanism that performs 

emantic clustering and SSL in tandem. We hypothesise that such 

raining 1) enables the model to not get too biased by noisy labels 

as it is guided by semantic clustering), and 2) still produces ac- 

urate classification results using the SSL strategy. These points are 

llustrated in Fig. 1 . 

We test this hypothesis with the proposed label-noise robust 

raining algorithm, ScanMix, that explores semantic clustering and 

SL to enable superior robustness to severe label noise and com- 

etitive robustness to non-severe label noise problems, compared 

ith the state of the art (SOTA). ScanMix is based on the expecta- 

ion maximisation (EM) framework [13] , where the semantic clus- 

ering stage clusters images with similar appearance and classifica- 

ion results, enabling a more effective identification of noisy label 

mages to subsequently be “unlabelled” and used by SSL. Although 

he use of EM in the context of LNL has been explored in [14] ,

canMix is the first to propose the joint exploration of semantic 

lustering and SSL together. The implementation of ScanMix relies 

n SOTA semantic clustering [10] and noisy label robust SSL [7] . 

e show a theoretical result that proves that ScanMix is correct 

nd converges to a stationary point under certain conditions. The 

ain contributions of ScanMix are: 

• A new noisy-label learning algorithm, based on EM optimi- 

sation, that explores and combines the advantages of seman- 

tic clustering and semi-supervised learning showing remarkable 

robustness to severe label noise rates; 
• A new theoretical result that shows the correctness and conver- 

gence of the noisy-label learning algorithm; and 

• Competitive performance in a wide range of noisy-label learn- 

ing problems, such as symmetric, asymmetric, semantic or in- 

stance dependent, and controlled noisy web labels. 

Empirical results on CIFAR-10/-100 [15] under symmetric, asym- 

etric and semantic noise, show that ScanMix outperforms pre- 

ious approaches. For high-noise rate problems in CIFAR-10/- 

00 [7] and Red Mini-ImageNet from the Controlled Noisy Web 

abels [16] , ScanMix presents the best results in the field. Fur- 

hermore, we show results on the challenging semantic label noise 

resent in the large-scale real-world datasets Clothing1M [17] and 

ebVision [18] , where our proposed method shows SOTA 

esults. 
2 
. Prior Work 

The main noisy label learning techniques are: label cleansing 

19,20] , iterative label correction [21] , robust loss functions [22–

4] , meta-learning [16,25,26] , sample weighting [27] , ensemble 

earning [28] , student-teacher model [29] , co-teaching [7,30–33] , 

imensionality reduction of the image representation [34] , and 

ombinations of the techniques above [12,35–38] . Recent advances 

howed that the most promising strategies are based on the com- 

ination of co-training, noise filtering, data augmentation and 

SL [5–7] . Below, we do not review approaches that require a clean 

alidation set, such as [39] , since that setup imposes a strong con- 

traint on the type of noisy-label learning problem. 

Instead, we focus on methods based on SSL for noisy-label 

raining [4–7,40,41] , which usually show SOTA results on several 

enchmarks. These methods rely on: 1) the identification of train- 

ng samples containing noisy labels and the subsequent removal 

f their labels; and 2) performing SSL [42] using this set of unla- 

elled samples and the remaining set of labelled samples. [4] iden- 

ify a small portion of clean samples from the noisy training set 

y associating them with high confidence. Then, they use the fil- 

ered samples as labelled and the remaining ones as unlabelled in 

n SSL approach. However, relying on highly confident samples to 

ompose the labelled set may not work well for severe noise rate 

cenarios because this labelled set can be contaminated with high 

oise rate. The methods in [5,7] classify the noisy and clean sam- 

les by fitting a two-component Gaussian Mixture Model (GMM) 

n the normalised loss values for each training epoch. Next, they 

se MixMatch [42] to combine the labelled and unlabelled sets 

ith MixUp [43] . However, these strategies do not perform well for 

igh noise rates because MixUp tends to be ineffective in such sce- 

ario. SSL methods can be robust to severe label noise by explor- 

ng a feature clustering scheme that pulls together samples that 

re semantically similar, without considering the noisy labels from 

he training set, and one way to enable such semantic clustering is 

rovided by self-supervised learning [8–11] . 

Self-supervised learning has been used as a pre-training ap- 

roach to estimate reliable features from unlabelled datasets, but 

e are not aware of methods that use it for semantic clustering. 

or instance, SimCLR [11] generates data augmentations of the in- 

ut images and trains the model to have similar representation of 

n image and its augmented samples, while increasing the dissim- 

larity to the other images. MoCo [8,9] tackles self-supervised rep- 



R. Sachdeva, F.R. Cordeiro, V. Belagiannis et al. Pattern Recognition 134 (2023) 109121 

r

t

n

i

t

h

C

t

l

l

n

s

q

t

g

i

l

p

a

a

L

3

3

 

S  

t  

o

t

l

 

[

m

n

t

t  

Y  

t

b  

x

a

(

n

o

3

w

{  

n

c

a

 

w  

c

t

m

θ

w

l

I

�  

w

r

d

w  

fi  

d

n

f  

t  

y  

c

a

l  

 

o

r

θ

w

(

w

θ

w  

d

E

i  

m

s

q

o

f

r

a

esentation learning by conflating contrastive learning with a dic- 

ionary look-up. The proposed framework builds a dynamic dictio- 

ary with a queue and a moving-averaged encoder to enable build- 

ng a large and consistent dictionary on-the-fly that facilitates con- 

rastive unsupervised learning. Another example is SCAN [10] that 

as several stages of self-supervised training: one based on Sim- 

LR [11] , followed by another based on a nearest neighbor clus- 

ering scheme, and another based on self-labelling. Self-supervised 

earning approaches usually show results better than the noisy 

abel SOTA methods for severe label noise problems (above 80% 

oise), but for relatively low label noise rates (below 50% noise), 

elf-supervised learning tends to be worse. Therefore, the main 

uestion we address in this paper is how to explore the seman- 

ic clustering capability of self-supervised learning approaches to- 

ether with SSL methods, to improve the current SOTA results 

n severe label noise problems, and maintain the SOTA results in 

ow noise label scenarios. Even though sophisticated clustering ap- 

roaches have been proposed in the field [44–47] , we opted to use 

 simple Euclidean-distance based K-nearest neighbour clustering 

pproach. Furthermore, semantic clustering has been explored in 

NL problems [14,48] , but without relying on SSL methods. 

. Method 

.1. Dataset and Label Noise Types 

Let the training set be denoted by D = { (x i , y i ) } |D| 
i =1 

, with x i ∈
 ⊆ R 

H×W being the i th image, and y i ∈ { 0 , 1 } |Y| a one-hot vec-

or of the noisy label, where Y = { 1 , ..., |Y|} represents the set

f labels, and 

∑ 

c∈Y y i (c) = 1 . The latent true label of the i th 

raining instance is denoted by ˆ y i ∈ Y , where 
∑ 

c∈Y ˆ y i (c) = 1 . This 

atent true label is used by a noise process to produce y i ∼
p(y | x i , Y, ̂  y i ) , with p(y ( j) | x i , Y, ̂  y i (c)) = η jc (x i ) , where η jc (x i ) ∈
0 , 1] and 

∑ 

j∈Y η jc (x i ) = 1 . 

The types of noises considered in this paper are: sym- 

etric [36] , asymmetric [49] , semantic [50] , and real-world 

oise [17,18,38] . The symmetric (or uniform) noise flips the la- 

ent true label ˆ y i ∈ Y to any of the labels in Y (including the 

rue label) with a fixed probability η, so η jc (x i ) = 

η
|Y|−1 

, ∀ j, c ∈
, such that j � = c, and ηcc (x i ) = 1 − η. The asymmetric noise flips

he labels between semantically similar classes [49] , so η jc (x i ) is 

ased on a transition matrix between classes j, c ∈ Y , but not on

 i . The semantic noise [50] also uses an estimated transition prob- 

bility between classes j, c ∈ Y but takes into account the image x i 
i.e., it is an image conditional transition probability). Real-world 

oise [17,18,38] contains the noise types above in addition to the 

pen-set noise, where the class c / ∈ Y . 

.2. ScanMix 

The proposed ScanMix training algorithm ( Fig. 2 ) is formulated 

ith an EM algorithm that uses a latent random variable z ji ∈ 

 0 , 1 } which indicates if a sample x j belongs to the set of K nearest

eighbours (KNN) of x i , estimated with the Euclidean distance. The 

lassifier trained by ScanMix is parameterised by θ = [ ψ, φ] ∈ �, 

nd represented by 

p θ (y | x ) = p ψ 

(y | f φ(x )) , (1)

here p ψ 

(. ) ∈ [0 , 1] |Y| produces a probability distribution over the

lasses in the classification space Y using the feature representa- 

ion f φ(x ) ∈ R 

d of the input image x . 

The optimal parameters for the classifier are estimated with 

aximum likelihood estimation (MLE): 

∗ = arg max 
θ

1 

|D| 
∑ 

(x i , y i ) ∈D 
log p θ (y i | x i ) , (2) 
3 
here 

og p θ (y i | x i ) = E q (z) 

[
log 

(
p θ (y i | x i ) 

q (z) 

q (z) 

)]

= 

∫ 
q (z) log 

(
p θ (y i , z| x i ) q (z) 

p θ (z| y i , x i ) q (z) 

)
dz 

= E q (z) [ log (p θ (y i , z| x i ))] − E q (z) [ log q (z)] 

+ KL [ q (z) || p θ (z| y i , x i )] 

= � ELBO (q, θ ) + KL [ q (z) || p θ (z| y i , x i )] . (3) 

n Eq. 3 above, we have: 

 ELBO (q, θ ) = E q (z) [ log p θ (y , z| x )] − E q (z) [ log q (z)] , (4)

ith KL [ ·] denoting the Kullback-Leibler divergence, and q (z) rep- 

esenting the variational distribution that approximates p θ (z| y , x ) , 
efined as 

p θ (z ji | x i , y i ) 
= 

{
(1 − z ji ) , if y j � = y i 

(p θ (: | x j ) � p θ (: | x i )) z ji (1 − p θ (: | x j ) � p θ (: | x i )) (1 −z ji ) , if y j = y i 
(5) 

here p θ (: | x ) ∈ [0 , 1] |Y| is the probability classification for de-

ned in Eq. 1 . Hence, Eq. 5 defines the probability of z i j ∈ { 0 , 1 } ,
enoting the probability of x j to belong to the set of K nearest 

eighbours (KNN) of x i . In this definition, when their labels are dif- 

erent, or y i � = y j , the probability of z i j = 1 is 0 (and consequently,

he probability of z i j = 0 is 1). Also, when their labels are equal, or

 i = y j , the probability of z i j = 1 depends on the similarity of their

lassification probabilities denoted by p θ (: | x j ) � p θ (: | x i ) . 
The maximisation of the log likelihood in Eq. 2 follows the EM 

lgorithm [13] consisting of two steps. The E-step maximizes the 

ower bound of Eq. 3 by zeroing the KL divergence with q (z ji ) =
p θold (z ji | y i , x i ) , where θ old denotes the parameter from the previ-

us EM iteration. Then the M-step maximises � ELBO in Eq. 4 , which 

e-writes Eq. 2 as: 

∗ = arg max 
θ

1 

|D| 
∑ 

(x i , y i ) ∈D 

|D| ∑ 

j=1 

∑ 

z i j ∈{ 0 , 1 } 
q (z ji ) log p θ (z ji , y i | x i ) 

= arg max 
θ

1 

|D| 
∑ 

(x i , y i ) ∈D 

|D| ∑ 

j=1 

∑ 

z i j ∈{ 0 , 1 } 
q (z ji ) log 

(
p θ (z ji | y i , x i ) p θ (y i | x i ) 

)

hich by noting that 

∑ 

x i , y i ) ∈D 

|D| ∑ 

j=1 

∑ 

z i j ∈{ 0 , 1 } 
q (z ji ) log p θ (y i | x i ) = 

∑ 

(x i , y i ) ∈D 

|D| ∑ 

j=1 

log p θ (y i | x i ) , 

e have 

∗ = arg max 
θ

1 

|D| 
∑ 

(x i , y i ) ∈D 

|D| ∑ 

j=1 (
log p θ (y i | x i ) + 

∑ 

z i j ∈{ 0 , 1 } 
q (z ji ) log p θ (z ji | y i , x i ) 

)
, (6) 

here the term E q (z) [ log (q (z))] is removed from � ELBO since it only

epends on the parameter from the previous iteration, θ old . Hence, 

q. 6 comprises two terms: 1) the classification term that max- 

mises the likelihood of the label y i for sample x i ; and 2) the se-

antic clustering term that maximises the association between 

amples that are close in the feature and label spaces, according to 

 (z ji ) estimated from the E-step. 

According to the Equations 5 and 6 , the run-time complexity 

f ScanMix is quadratic in |D| , making this algorithm impractical 

or large-scale problems. Therefore, we approximate both steps by 

unning a self-supervised pre-training process [8–11] that forms 

n initial set of K nearest neighbours in the feature space f φ(x ) 
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Fig. 2. ScanMix has a pre-training stage consisting of a self-supervised training [8–11] , where we use contrastive loss to approximate features to its data augmented variants, 

in the feature space, while repelling representations from negative examples. In the training stage we first warm-up the classifier using a simple classification loss. Then, 

using the classification loss, we train the GMM to separate the samples into a clean set X and a noisy set U that are ”MixMatched” [42] for SSL training. In parallel to this 

SSL training, we use the classification results and feature representations to train the semantic clustering. Please see Algorithm 1 for more details. 
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or each training sample. The set of KNN samples for each sam- 

le x i ∈ D is denoted by N x i = { x j } K j=1 
(for x j ∈ D). Then, q (z ji ) is

pproximated to be equal to 1, when x j ∈ N x i and y j = y i , and 0

therwise. Such an approximation makes the run-time complex- 

ty of the E and M steps linear in D2 . Also, using this approxima-

ion to estimate q (z ji ) in Eq. 5 reduces even more the complexity

f the semantic clustering maximisation because we only consider 

 (z ji = 1) instead of q (z ji = 1) and q (z ji = 0) . 

The optimisation of the classification term in Eq. 6 assumes 

hat D is not noisy, so we modify it to enable learning with a 

oisy dataset. This is achieved by maximising a lower bound of 

hat term, as follows [7] : 

aximise 1 
|X | 

∑ 

(x , y ) ∈X log p θ (y | x ) 

ubject to 

1 
|U| 

∑ 

(x , y ) ∈U ‖ y − p θ (: | x ) ‖ 

2 
2 = 0 

KL 

[
π|Y| 

∣∣∣∣
∣∣∣∣ 1 
|X | + |U| 

∑ 

x ∈ (X ⋃ 

U ) p θ (: | x ) 

]
= 0 , 

(7) 

here X and U represent the sets of samples extracted from D au- 

omatically classified as clean and noisy, respectively, p θ (: | x ) de- 

otes the classification probability for all classes in Y , KL [ . ] rep-

esents the Kullback Leibler (KL) divergence, and π|Y| denotes a 

ector of |Y| dimensions with values equal to 1 / |Y| . The clas-

ification of training samples into clean or noisy is first formed 

ith [7,38,50,51] : 

 

′ = { (x i , y i ) : p ( clean | � i , γ ) ≥ τ } , 
U 

′ = { (x i , y 
∗
i ) : p ( clean | � i , γ ) < τ } , (8) 

ith τ denoting a threshold to classify a clean sample, y ∗
i 

= p θ (: 

 x i ) , � i = −y � 
i 

log p θ (: | x i ) , and p ( clean | � i , γ ) being a function that

stimates the probability that (x i , y i ) is a clean label sample. 

he function p ( clean | � i , γ ) in Eq. 8 is a bi-modal Gaussian mix- 

ure model (GMM) [7] ( γ denotes the GMM parameters), where 

he component with larger man is the noisy component and the 

maller mean is the clean component. Next, we run SSL [7] , con- 

isting of a data augmentation to increase the number of samples 

n X 

′ and U ′ , followed by MixMatch [42] that combines samples 

rom both sets to form the sets X and U , which are used in Eq. 7 .

he optimisation in Eq. 7 is done with Lagrange multipliers by 

inimising the loss � MLE = � X + λu � U + λr � r , where � X represents

he (negative) objective function, � U and � r denote the two con- 

traints, and λu and λr are the Lagrange multipliers. 
2 We tested ScanMix without this approximation and preliminary results show 

hat updating neighbors { N x i } | D | i =1 
leads to similar results as the ones in this paper, 

uggesting the validity of our approximation. s

4 
We constrain the optimisation of the semantic clustering term 

n Eq. 6 with a regulariser [10] to make it robust to semantic 

rift [52] . Hence, we maximise a lower bound of the semantic clus- 

ering term in Eq. 6 , as follows: 

maximise 
1 

|D| 
∑ 

(x i , y i ) ∈D 

|D| ∑ 

j=1 

∑ 

z i j ∈{ 0 , 1 } 
q (z ji ) log p θ (z ji | y i , x i ) 

ubject to 

∑ 

c∈Y 
E x ∼D [ p(c| x , θ )] log E x ∼D [ p(c| x , θ )] = 0 , (9) 

here q (z ji ) = 1 if x i and x j have the same classification re-

ult, i.e., arg max c∈Y p θ (c| x i ) = arg max c∈Y p θ (c| x j ) and x j ∈ N x i .

e also use Lagrange multipliers to optimise Eq. 9 , where we min- 

mise � CLU = � N + λe � e , with � N denoting the negative objective 

unction, � e representing the constraint, and λe being the Lagrange 

ultiplier. An interesting point from the optimisations in Eq. 7 and 

q. 9 is that the constraints can help mitigate the semantic drift 

roblem [52] typically present in under-constrained SSL methods. 

.3. Training, Inference, Correctness and Convergence Conditions 

Algorithm 1 describes the training process that starts with a 

lgorithm 1 ScanMix 

equire: D, number of epochs E, clean sample threshold τ

f φ(x ) , {N x i } |D| 
i =1 

= PreTrain( D) � Self-supervised pre-training 

p θ (y | x ) = WarmUp( D, f φ(x ) ) � Warm Up

while e < E do 

for i = { 1 , ..., |D|} do 

Estimate p( clean | � i , γ ) , with 

� i = −y � 
i 

log p θ (: | x i ) 
X 

′ , U ′ =FormCleanNoisySets( { p( clean | � i , γ ) } |D| 
i =1 

, τ ) 

X , U=MixMatch( X 

′ , U ′ ) 
for (x i , y i ) ∈ D do � E-step 

˜ y i = arg max c∈Y p θ (c| x i ) 
q (z ji ) = 0 , ∀ j ∈ { 1 , ..., |D|} 
for x j ∈ N x i do 

˜ y j = arg max c∈Y p θ (c| x j ) 
if ( ̃  y i == ˜ y j ) then 

q (z ji ) = 1 

Minimise � MLE with X , U , and 

� CLU with {N x i } |D| 
i =1 

, and { q (z ji ) } |D| 
i, j=1 

� M-step 

elf-supervised pre-training [8–11] which optimises the parame- 
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ers of the feature extractor f φ(x ) using the unlabelled images of 

and defines the set of KNNs for each training sample {N x i } |D| 
i =1 

. 

hen, we warm-up the classifier by training it for a few epochs on 

he (noisy) training dataset using cross-entropy loss. Next, we run 

he EM optimisation using Eq. 7 and Eq. 9 . The inference uses the

odel in Eq. 1 to classify x . 

ScanMix improves � ELBO (q, θ ) in Eq. 4 instead of improving 

p θ (y | x ) in Eq. 2 . Following Theorem 1 in [13] , Lemma 1 shows

he correctness of ScanMix, where an improvement to � ELBO (q, θ ) 

mplies an increase to p θ (y | x ) . Following Theorem 2 in [13] ,

emma 2 shows the convergence conditions of ScanMix. 

emma 1. Assuming that the maximisation of � ELBO in Eq. 6 es- 

imates θ that makes E q (z) [ log p θ (y , z| x )] ≥ E q (z) [ log p θold (y , z| x )] ,

e have that 
(
log p θ (y | x ) − log p θold (y | x ) ) is lower bounded 

y 
(
E q (z) [ log p θ (y , z| x )] − E q (z) [ log p θold (y , z| x )] 

)
≥ 0 , with q (z) = 

p θold (z| y , x ) . 
roof. Following the proof for Theorem 1 in [13] , from Eq. 3 , we

ave 

og p θ (y | x ) = � ELBO (q, θ ) + KL [ q (z) || p θ (z| y , x )] , (10) 

here q (z) = p θold (z| y , x ) . Subtracting log p θ (y | x ) and

og p θold (y | x ) , we have 

log p θ (y | x ) − log p θ old (y | x ) 

= � ELBO (q, θ ) − � ELBO (q, θ old ) 

+ KL [ q (z) || p θ (z| y , x )] − KL [ q (z) || p θ old (z| y , x )] . (11) 

iven that KL [ q (z) || p θ (z| y , x )] ≥ KL [ q (z) || p θold (z| y , x )]

nd that � ELBO (q, θ ) − � ELBO (q, θ old ) = E q (z) [ log p θ (y , z| x )] −
 q (z) [ log p θold (y , z| x )] , we conclude that 

log p θ (y | x ) − log p θ old (y | x ) 

≥ E q (z) [ log p θ (y , z| x )] − E q (z) [ log p θ old (y , z| x )] ≥ 0 (12) 

ecause of the assumption E q (z) [ log p θ (y , z| x )] ≥
 q (z) [ log p θold (y , z| x )] [13] . �

emma 2. Suppose that { θ (e ) } + ∞ 

e =1 
denotes the sequence of trained 

odel parameters from the maximisation of � ELBO in Eq. 6 such that: 

1. the sequence { log p θ (e ) (y | x ) } + ∞ 

e =1 
is bounded above, and 

2. 
(
E q (z) [ log p θ (e +1) (y , z| x )] − E q (z) [ log p θ (e ) (y , z| x )] 

)
≥

ξ
(
θ (e +1) − θ (e ) 

)� (
θ (e +1) − θ (e ) 

)
for ξ > 0 and all e ≥ 1 , and 

q (z) = p θ (e ) (z| y , x ) . 
Then the sequence { θ (e ) } + ∞ 

e =1 
converges to some θ ∈ �. 

roof. Following the proof for Theorem 2 in [13] , the sequence 

 log p θ (e ) (y | x ) } + ∞ 

e =1 
is non-decreasing (from Lemma 1 ) and bounded

bove (from assumption (1) in Lemma 2 ), so it converges to L  <

 ∞ . Therefore, according to Cauchy criterion [57] , for any ε > 0 ,

e have e (ε) such that, for e ≥ e (ε) and all r ≥ 1 , 

r ∑ 

j=1 

( log p θ (e + j) (y | x ) − log p θ (e + j−1) (y | x ) ) 

= ( log p θ (e + r) (y | x ) − log p θ (e ) (y | x ) ) < ε. (13) 

rom Eq. 12 , 

 ≤ E q (z) [ log p θ (e + j) (y , z| x )] − E q (z) [ log p θ (e + j−1) (y , z| x )] 

≤ log p θ (e + j) (y | x ) − log p θ (e + j−1) (y | x ) (14) 

or j ≥ 1 and q (z) = p θ (e + j−1) (z| y , x ) . Hence, from Eq. 13 , 

 r 
j=1 (E q (z) [ log p θ (e + j) (y , z| x )] − E q (z) [ log p θ (e + j−1) (y , z| x )]) < ε, 

(15) 
5 
or e ≥ e (ε) and all r ≥ 1 . Given assumption (2) in Lemma 2 for

, e + 1 , e + 2 , ..., e + r − 1 , we have from Eq. 15 , 

> ξ
r ∑ 

j=1 

(
θ (e + j) − θ (e + j−1) 

)� (
θ (e + j) − θ (e + j−1) 

)
, (16) 

o 

> ξ
(
θ (e + r) − θ (e ) 

)� (
θ (e + r) − θ (e ) 

)
, (17) 

hich is a requirement to prove the convergence of θ (e ) to some 
 ∈ �. �

. Experiments 

.1. Experimental Setup 

We evaluate our method on CIFAR-10/-100 [15] , Controlled 

oisy Web Labels (CNWL) [38] , Clothing1M [17] , and WebVi- 

ion [18] . The CIFAR-10 and CIFAR-100 datasets contain 50,0 0 0 

raining images and 10,0 0 0 test images of size 32 × 32 pixels 

ith 10 and 100 classes respectively. Since both these datasets 

ave been annotated with clean labels, we use synthetic noise 

o evaluate the models. For CIFAR-10/-100, we evaluate three 

ypes of noise: symmetric [54,58] , asymmetric [54,58] , and se- 

antic [50] . For symmetric noise we used η ∈ { 0 . 2 , 0 . 5 , 0 . 8 , 0 . 9 } ,
here η was defined in Section Method as the symmetric noise 

robability. The asymmetric noise was applied to the dataset, sim- 

larly to [7] , which replaces the labels truck → automobile, bird 

 airplane, deer → horse , and cat → dog . For asymmetric noise, 

e use the noise rates of 40% and 49%. For the semantic noise, 

e use the same setup from [50] , which generates semantically 

oisy labels based on a trained VGG [59] , DenseNet (DN) [60] , and

esNet (RN) [61] on CIFAR-10 and CIFAR-100. 

The CNWL dataset [38] is a benchmark to study real-world 

eb label noise in a controlled setting. Both images and labels 

re crawled from the web and the noisy labels are determined 

y matching images. The controlled setting provide different mag- 

itudes of label corruption in real applications, varying from 0 

o 80%. CNWL provides controlled web noise for Mini-ImageNet 

ataset, called red noise. The red Mini-ImageNet consists of 50k 

raining images and 50 0 0 test images, with 100 classes. The orig- 

nal image sizes are of 84 ×84 pixels, which are resized to 32 ×32

ixels. The noise rates use in this work are 20%, 40%, 60% and 80%, 

s used in [16] . 

Clothing1M is a dataset of 14 classes containing 1 million train- 

ng images downloaded from online shopping websites. All training 

mages are resized to 256 × 256 pixels [7,62] . The noise rate is esti- 

ated to be asymmetric [53] with a rate of 40% [17] and class dis-

ribution is heavily imbalanced. Clothing1M has 50k and 14k clean 

mages for training and validation, respectively, but we do not use 

hem for training. The testing set has 10k clean-labelled images. 

The WebVision [18] is a real-world large scale dataset contain- 

ng 2.4 million images collected from the internet, with the same 

0 0 0 classes from ImageNet [63] . As the images vary in size, we re-

ized them to 227 × 227 pixels. WebVision provides a clean test set 

f 50k images, with 50 images per class. We compare our model 

sing the first 50 classes of the Google image subset, as in [7,64] 

All experiments were run on Intel Core i9 computer with 128GB 

emory and 4x nVidia GeForce RTX 3090. 

.2. Implementation 

CIFAR-10/-100 We use PreAct-ResNet-18 as our backbone model 

ollowing [7] . For the self-supervised pre-training learning task, we 

dopt the standard SimCLR [11] implementation with a batch size 

f 512, SGD optimiser with a learning rate of 0.4, decay rate of 0.1, 
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Table 1 

Test accuracy (%) for all competing methods on CIFAR-10 and CIFAR-100 under symmetric and asymmetric noises. 

Results from related approaches are as presented in [7] . The results with ( ∗) were produced by locally running the 

published code provided by the authors. Top methods within 1% are in bold . 

dataset CIFAR-10 CIFAR-100 

Noise type sym. asym. sym. 

Method/ noise ratio 20% 50% 80% 90% 40% 49% 20% 50% 80% 90% 

Cross- 

Entropy 

[7] 

Best 86.8 79.4 62.9 42.7 85.0 - 62.0 46.7 19.9 10.1 

Last 82.7 57.9 26.1 16.8 72.3 - 61.8 37.3 8.8 3.5 

Coteaching + 

[33] 

Best 89.5 85.7 67.4 47.9 - - 65.6 51.8 27.9 13.7 

Last 88.2 84.1 45.5 30.1 - - 64.1 45.3 15.5 8.8 

MixUp 

[43] 

Best 95.6 87.1 71.6 52.2 - - 67.8 57.3 30.8 14.6 

Last 92.3 77.3 46.7 43.9 - - 66.0 46.6 17.6 8.1 

PENCIL 

[53] 

Best 92.4 89.1 77.5 58.9 88.5 - 69.4 57.5 31.1 15.3 

Last 92.0 88.7 76.1 58.2 88.1 - 68.1 56.4 20.7 8.8 

Meta- 

Learning 

[54] 

Best 92.9 89.3 77.4 58.7 89.2 - 68.5 59.2 42.4 19.5 

Last 92.0 88.8 76.1 58.3 88.6 - 67.7 58.0 40.1 14.3 

M- 

correction 

[51] 

Best 94.0 92.0 86.8 69.1 87.4 - 73.9 66.1 48.2 24.3 

Last 93.8 91.9 86.6 68.7 86.3 - 73.4 65.4 47.6 20.5 

MentorMix [38] Best 95.6 - 81.0 - - - 78.6 - 41.2 - 

Last - - - - - - - - - - 

MOIT + [6] Best 94.1 - 75.8 - 93.3 - 75.9 - 51.4 - 

Last - - - - - - - - - - 

DivideMix 

[7] 

Best 96.1 94.6 93.2 76.0 93.4 83.7 ∗ 77.3 74.6 60.2 31.5 

Last 95.7 94.4 92.9 75.4 92.1 76.3 ∗ 76.9 74.2 59.6 31.0 

ELR + [22] Best 95.8 94.8 93.3 78.7 93.0 - 77.6 73.6 60.8 33.4 

Last - - - - - - - - - - 

PES [55] Best 95.9 95.1 93.1 - 77.4 - 74.3 61.6 - - 

Last - - - - - - - - - - 

FSR [56] Best 95.1 - 82.8 - 93.6 - 78.7 - 46.7 - 

Last - - - - - - - - - - 

DRPL [5] Best 94.2 - 64.4 - 93.1 - 71.3 - 53.0 - 

Last - - - - - - - - - - 

ScanMix 

(Ours) 

Best 96.0 94.5 93.5 91.0 93.7 88.7 77.0 75.7 66.0 58.5 

Last 95.7 93.9 92.6 90.3 93.4 87.1 76.0 75.4 65.0 58.2 
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omentum of 0.9 and weight decay of 0.0 0 01, and run it for 500

pochs. This pre-trained model produces feature representations 

f 128 dimensions. Using these representations we mine K = 20 

earest neighbours (as in [10] ) for each sample to form the sets 

N x i } |D| 
i =1 

, defined in the Method Section. For the semantic cluster- 

ng task, we use a batch size of 128, λe = 2 as in [10] , SGD opti-

iser with momentum of 0.9, weight decay of 0.0 0 05 and learning 

ate ∈ { 0 . 0 01 , 0 . 0 0 0 01 } based on the predicted noise rate, which is

stimated with |U| / |D| , defined in Eq. 8 – if this ratio is larger than

.6, then the learning rate is 0.001, otherwise, the learning rate is 

.0 0 0 01. This accounts for the fact that when the estimated label

oise is high, then we want to increase the influence of semantic 

lustering in the training; but when the label noise is low, then 

he signal from the labels in the SSL method should carry more 

eighting. For the SSL, we adopt the implementation of [7] and 

se the same hyperparameters, where we rely on SGD with learn- 

ng rate of 0.02 (which is reduced to 0.002 halfway through the 

raining), momentum of 0.9 and weight decay of 0.0 0 05. Number 

f epochs E = 300. 

Red Mini-ImageNet We use PreAct-ResNet-18 as our backbone 

odel, following [16] . For the self-supervised pre-training, we 

dopt the standard SimCLR [11] implementation with batch size 

28. All other parameters for the self-supervised pre-training and 

emantic clustering are the same as for CIFAR, except for the se- 

antic clustering learning rate, which we used 0.001, and the 

u = 0 for all noise rates. The feature representation learned from 

his process has 128 dimensions. For the SSL, we adopt the imple- 

entation of [16] , where we train for 300 epochs, relying on SGD 

ith learning rate of 0.02 (decreased by a factor of ten at epoch 

00 and epoch 250), momentum of 0.9 and weight decay of 5e-4. 

e also resized the images from 84 × 84 to 32 × 32 [16] . 

Clothing1M We use ResNet-50 as our backbone model, which is 

rained for 80 epochs with a WarmUp stage of 1 epoch. For the 
6 
elf-supervised pre-training task we adopt the standard MoCo-v2 

ethod for a 4-GPU training [9] with a batch size of 128, SGD 

ptimiser with a learning rate of 0.015, momentum of 0.9 and 

eight decay of 0.0 0 01 and run it for 100 epochs. In this pre-

raining task we use 100k randomly selected images from Cloth- 

ng1M training set as the pre-training images. All the other pa- 

ameters were the same as described above for CIFAR, except for 

he batch size of semantic clustering task was 64 and the number 

f epochs E= 80. During ScanMix training, we followed [7] , which 

elies on 64k randomly selected training images from the entire 

raining for each epoch. As the training images change for every 

poch, we adapted ScanMix to update the nearest neighbors be- 

ore training each batch. Different from [7] , we do not use the 

re-trained weights from ImageNet. 

WebVision We use InceptionResNet-V2 as our backbone model, 

ollowing [7] . For the self-supervised pre-training task we adopt 

he standard MoCo-v2 method for a 4-GPU training [9] with a 

atch size of 128, SGD optimiser with a learning rate of 0.015, 

omentum of 0.9 and weight decay of 0.0 0 01, and run it for 100

pochs with a WarmUp stage of 1 epoch. The feature representa- 

ions learned from this process have 128 dimensions. All the other 

arameters were the same as described above for CIFAR, except 

he batch size of semantic clustering task was 64, and number of 

pochs E = 100. 

.3. Comparison with State-of-the-Art 

We compare ScanMix with several existing methods using the 

atasets described in Sec. Experimental Setup. For CIFAR-10 and 

IFAR-100 in Table 1 , we evaluate the models using different lev- 

ls of symmetric label noise, ranging from 20% to 90% and asym- 

etric noise rates of 40% and 49%. We report both the best test 

ccuracy across all epochs and the averaged test accuracy over the 
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Table 2 

Test accuracy (%) for Semantic Noise. Results from baseline methods are as presented in [50] . The results with ( ∗) were produced 

by locally running the published code provided by the authors. Top methods within 1% are in bold . 

dataset CIFAR-10 CIFAR-100 

Method/ noise ratio DenseNet (32%) ResNet (38%) VGG (34%) DenseNet (34%) ResNet (37%) VGG (37%) 

D2L + RoG [50] 68.57 60.25 59.94 31.67 39.92 45.42 

CE + RoG [50] 68.33 64.15 70.04 61.14 53.09 53.64 

Bootstrap + RoG [50] 68.38 64.03 70.11 54.71 53.30 53.76 

Forward + RoG [50] 68.20 64.24 70.09 53.91 53.36 53.63 

Backward + RoG [50] 68.66 63.45 70.18 54.01 53.03 53.50 

DivideMix ∗ [7] 84.57 81.61 85.71 68.40 66.28 66.84 

ScanMix (Ours) 89.70 85.58 89.96 68.44 67.36 67.34 

Table 3 

Test accuracy (%) for Red Mini-ImageNet. Results from baseline 

methods are as presented in [16] . Top methods within 1% are 

in bold . 

Method/ noise ratio 20% 40% 60% 80% 

Cross-entropy [16] 47.36 42.70 37.30 29.76 

Mixup [43] 49.10 46.40 40.58 33.58 

DivideMix [7] 50.96 46.72 43.14 34.50 

MentorMix [38] 51.02 47.14 43.80 33.46 

FaMUS [16] 51.42 48.06 45.10 35.50 

ScanMix (Ours) 59.06 54.54 52.36 40.00 
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Table 4 

Test accuracy (%) for WebVision [18] by methods trained 

with 100 epochs. Baseline results are as presented in [7] . 

Top methods within 1% are in bold . 

dataset WebVision ILSVRC12 

Method Top-1 Top-5 Top-1 Top-5 

F-correction [49] 61.12 82.68 57.36 82.36 

Decoupling [31] 62.54 84.74 58.26 82.26 

D2L [34] 62.68 84.00 57.80 81.36 

MentorNet [30] 63.00 81.40 57.80 79.92 

Co-teaching [32] 63.58 85.20 61.48 84.70 

Iterative-CV [64] 65.24 85.34 61.60 84.98 

MentorMix [38] 76.00 90.20 72.90 91.10 

DivideMix [7] 77.32 91.64 75.20 90.84 

ELR + [22] 77.78 91.68 70.29 89.76 

MOIT + [6] 78.76 - - - 

FSR [56] 74.90 88.20 72.30 87.20 

ScanMix (Ours) 80.04 93.04 75.76 92.60 

Table 5 

Results on Clothing1M [17] for ScanMix 

and SOTA approaches (SOTA results col- 

lected from [7] or original papers). Top 

results within 1% are highlighted in bold . 

Method Test Accuracy 

Cross-Entropy [7] 69.21 

M-correction [51] 71.00 

Meta-Cleaner [37] 72.50 

Meta-Learning [54] 73.47 

PENCIL [53] 73.49 

DeepSelf [62] 74.45 

CleanNet [65] 74.69 

DivideMix [7] 74.76 

ScanMix (Ours) 74.35 
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ast 10 epochs of training. Results show that our method signifi- 

antly outperforms the previous methods under severe label noise. 

pecifically, we observe an increase of roughly +13% for CIFAR-10 

ith 90% symmetric noise, +5% for CIFAR-10 with 49% asymmetric 

oise, +25% for CIFAR-100 with 90% symmetric noise and +5% for 

IFAR-100 with 80% symmetric noise. These results show that our 

canMix does make the model more robust to noisy labels than 

revious methods, particularly for severe label noise. To demon- 

trate that more clearly, we computed mean and variance accuracy 

sing bootstrapping, and applied a T-test to compare ScanMix and 

ivideMix. For all cases that we claim to be better in Table 1 (sym-

etric at 80% and 90% on Cifar10,100 and asymmetric at 40% and 

9% on Cifar10), we obtained p-values < 0 . 01 . 

Table 2 shows the ability of our method to handle seman- 

ic noise, which can be regarded as a harder and more realis- 

ic type of label noise that depends not only on label transition, 

ut also on the image features. The current SOTA for this bench- 

ark is RoG [50] , and even though the noise rates are not par-

icularly large, our ScanMix shows results that are better by a 

arge margin varying from 12% to 22%. The results on Red Mini- 

mageNet [16] in Table 3 shows that ScanMix provides substantial 

ains form 4% to 7% over the SOTA for all noise rates. 

We also evaluate ScanMix on the noisy large-scale dataset Web- 

ision. Table 4 shows the Top-1/-5 test accuracy using the WebVi- 

ion and ILSVRC12 test sets. Results show that ScanMix is slightly 

etter than the SOTA for both WebVision test sets and top-5 

LSVRC12 test set. This suggests that our approach is also effective 

n large-scale, low noise rate problems. Results on Clothing1M in 

ab. 5 show that ScanMix is on par with the current SOTA in the 

eld, even though our method does use the whole training set for 

he pre-training stage (recall that we randomly selected 100k out 

f the 1M training images for pre-training) and differently from 

ost of previous approaches, we do not rely on an ImageNet pre- 

rained model, as explained in Sec. 4.2 . These two issues should 

ave had a significant negative impact on the performance of Scan- 

ix, but these Clothing1M results indicate that ScanMix remained 

obust in this challenging scenario. 

For the running time complexity, ScanMix and DivideMix are 

imilar asymptotically since both have linear complexity in terms 

f the training set size, as described in the Section 3.2 . In practice,
7 
canMix is two times slower. On CIFAR-10, DivideMix takes 13.93 

PU hours while ScanMix takes 27.94 hours (where pre-train takes 

.9 GPU hours). 

.4. Ablation Study 

We show the results of the ablation study of ScanMix in 

able 6 . Using classification accuracy in the testing set of CIFAR-10 

nd CIFAR-100 under symmetric and asymmetric noises at several 

ates, we aim to show the influence of self-supervised training by 

tself or in combination with SSL. For self-supervised learning, we 

se the current SOTA method, SCAN [10] , displayed in the first two 

ows, with the first row containing the published results, and the 

econd, our replicated results using the authors’ code. The result 

s the same across different noise rates because it never uses the 

oisy labels for training. Using the pure SSL method, DivideMix [7] , 

hich is the current SOTA in noisy label learning, we see that it 

as much better results for low noise levels, but SCAN is better for 

evere label noise. When using SCAN for pre-training DivideMix, 
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Table 6 

In this ablation study we show the classification accuracy in the testing set of CIFAR-10 and CIFAR-100 under symmetric and asym- 

metric noises at several rates. First, we show the results of self-supervised pre-training using the current SOTA SCAN [10] (first two 

rows, with the results with ( ∗) produced by locally running the published code provided by the authors). Then we show the current 

SOTA SSL learning for noisy label DivideMix [7] . Next, we show the results of DivideMix pre-trained with SCAN. The last row shows 

our ScanMix that combines SSL and semantic clustering. The top results within 1% are highlighted in bold . 

dataset CIFAR-10 CIFAR-100 

Noise type sym. asym. sym. 

Method/ noise ratio 20% 50% 80% 90% 40% 49% 20% 50% 80% 90% 

Self-superv. pre-train = (SCAN) [10] 81.6 81.6 81.6 81.6 81.6 81.6 44.0 44.0 44.0 44.0 

Self-superv. pre-train ∗ (SCAN) [10] 77.5 77.5 77.5 77.5 77.5 77.5 37.1 37.1 37.1 37.1 

SSL (DivideMix) [7] 96.1 94.6 93.2 76.0 93.4 83.7 ∗ 77.3 74.6 60.2 31.5 

Self-superv. pre-train + SSL (DivideMix) ∗ 95.3 94.4 93.7 91.0 93.3 85.9 75.2 74.4 64.4 52.8 

ScanMix (Ours) 96.0 94.5 93.5 91.0 93.7 88.6 77.0 75.7 66.0 58.5 

Fig. 3. Test accuracy (%) as a function of the number of training epochs for ScanMix (blue) and DivideMix (black) for 90% asymmetric noise on CIFAR-100 (a), and 40% 

asymmetric noise on CIFAR-10 (b). 

Fig. 4. Per-sample normalised loss distributions of the training set produced in the 

early stages of the training by our ScanMix (left) and DivideMix [7] (right) for 

CIFAR-10 (top) and CIFAR-100 (bottom) affected by 90% label noise, where green 

bars represent the clean samples and blue bars the noisy samples. 
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e note that results become quite good for all types and levels 

f noise. Neverthless, our ScanMix improves the results of SCAN + 

ivideMix, showing the efficacy of ScanMix, which combines SSL 

ith semantic clustering. 

A common issue with learning with noisy labels is the tendency 

f models to overfit the noisy labels during training [22,34] , caus- 

ng a reduction of accuracy in the test set. To show the robustness 
8 
f ScanMix to this issue, we present in Fig. 3 the prediction accu- 

acy on the test set as a function of the number of training epochs 

or ScanMix (blue) and DivideMix (black) for 90% asymmetric noise 

n CIFAR-100 (a), and 40% asymmetric noise on CIFAR-10 (b). No- 

ice that in both cases, ScanMix is shown to be more robust to 

verfitting than DivideMix. 

We also demonstrate that ScanMix is able to provide a reli- 

ble separation between clean and noisy samples. Figure 4 shows a 

omparison between the distributions of losses produced by Scan- 

ix and DivideMix at one of the early epochs of training for CIFAR- 

0 and CIFAR-100 affected by 90% label noise. This figure shows 

hat semantic clustering combined with SSL in ScanMix enables a 

uch clearer separation between the clean (green bars) and noisy 

blue bars) samples, when compared with the distribution pro- 

uced by DivideMix. Such clearer separation will help the classi- 

cation of clean samples in Eq. 8 , which in turn will improve the 

erformance of the SSL in Eq. 7 . 

. Conclusion and Future Work 

In this work we presented ScanMix, a novel training strategy 

hat produces superior robustness to severe label noise and com- 

etitive robustness to non-severe label noise problems, compared 

ith the SOTA. Results on CIFAR-10/-100, Red Mini-ImageNet, 

lothing1M and WebVision showed that our proposed ScanMix 

utperformed SOTA methods, with large improvements particularly 

n severe label noise problems. Our approach also produced su- 

erior results for semantic noise and real-world web label noise, 

hich are regarded to be the most challenging noise types. These 

esults show evidence for our claims in Section 1 , that SSL noisy 
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abel learning methods (e.g., DivideMix [7] ) depend on an effec- 

ive way to classify clean and noisy samples, which works well for 

mall noise rates, but not for severe noise rates. Semantic cluster- 

ng methods (e.g., SCAN [10] ) ignore labels, enabling them to work 

ell for severe noise rates, but poorly for low noise. Hence, our 

canMix explores the advantages of SSL and semantic clustering to 

chieve SOTA results for severe label noise rates, while being com- 

etitive for non-severe label noise. 

The increasing availability of large-scale datasets is associated 

ith a decreasing availability of trustworthy annotations. This can 

ntroduce label noise into training sets, and reduce the generalisa- 

ion ability of machine learning models. Our method can mitigate 

his issue and enable the use of large-scale datasets by commu- 

ities that do not have other ways to re-annotate such datasets, 

hus democratising machine learning. A drawback of our approach 

s the longer training time, compared with the SOTA DivideMix [7] , 

o we are currently working on an approach that mitigates this 

ssue by having a joint self-supervised and semi-supervised train- 

ng algorithm. Another point that can be improved in ScanMix is 

he semantic clustering algorithm, which can explore more robust 

ethods, such as RBSMF [45] , MPF [44] , ClusterNet [46] , and US-

DTM [47] . 
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