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THEORY OF STATISTICAL ESTIMATION

Author's Note (CMS 11.699a)

In this paper an explanation of the theory of estimation is attempted,
more compact and businesslike than was possible in 1922 (Paper 18).
In particular, clarity has been gained by distinguishing the theory
of large samples, in which all estimates are normally distributed, and
all efficient estimates are equivalent, more emphatically from the
theory of small samples, in which it is necessary to distinguish be-
tween different methods of estimation, all of which are efficient in
large samples, and which moreover in finite samples give curves of
sampling error of various forms, for which the variance is of no
special interest.

The transition is effected by recognising that the limiting form in
large samples of the distribution of efficient statistics supplies an in-
trinsic measure of the amount of information, as to any unknown
parameter, supplied by data of the kind investigated, and that this
measure is applicable equally to the original data, and to any pro-
posed estimates calculated from them. A simple proof is given on
page 717 that no gain in intrinsic accuracy can accrue from any
process of statistical reduction, so that if there is no loss the maximum
precision has been obtained. The method gives also the simple con-
dition for zero loss leading both to the special case of sufficient sta-
tistics, and to the possibility of diminishing or obviating such loss
altogether, by the use of ancillary information.

From this point of view the paper is a study of the conditions in
which information is lost. In an important class of cases it is shown
that, by using the method of maximum likelihood, the loss is less
than by other efficient methods, and tends to a finite value in large
samples. Moreover, for large samples a series of ancillary values is
indicated successively reducing the limiting loss of information to
quantities of the order of N, N2, ... where N is the number of
observations, or, in general, a measure of the extent of the observa-
tional record. As these quantities are the successive derivatives at
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its maximum of the likelihood function, the inference is approached,
though it seems not to be drawn in this paper, that exhaustive esti-
mation is achieved by a set of statistics which together are capable
of specifying the entire course of the likelihood function.

A correction has been made in the analysis on pages 721  and
722, in the expression for the additional loss of information using
efficient statistics, which, unlike that derived from maximising the
likelihood, are not linear in the frequencies. The correct formulae
are somewhat simpler than those originally given.
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Theory of Statistical Estimation. By Mr R. A. FIsHER, Gonville
and Caius College.

[ Received 17 March, read 4 May, 1925.]
PREFATORY NOTE.

It has been pointed out to me that some of the statistical ideas employed
in the following investigation have never received a strictly logical definition
and analysis. The idea of a frequency curve, for example, evidently implies
an infinite hypothetical population distributed in a definite manner; but
equally evidently the idea of an infinite hypothetical population requires a
more precise logical specification than is contained in that phrase. The same
may be said of the intimately connected idea' of random sampling. These
ideas have grown up in the minds of practical statisticians and lie at the basis
especially of recent work; there can be no question of their pragmatic value.
It was no part of my original intention to deal with the logical bases of these
ideas, but some comments which Dr Burnside has kindly made have convinced
me that it may be desirable to set out for criticism the manner in which I
believe the logical foundations of these ideas may be established.

The idea of an infinite hypothetical population is, I believe, implicit in all
statements involving mathematical probability. If, in a Mendelian experiment,
we say that the probability is one half that a mouse born of a certain mating
shall be white, we must conceive of our mouse as one of an infinite population of
mice which might have been produced by that mating. The population must
be infinite for in sampling from a finite population the fact of one mouse being
white would affect the probability of others being white, and this is not the
hypothesis which we wish to consider; moreover, the probability may not
always be a rational number. Being infinite the population is clearly hypo-
thetical, for not only must the actual number produced by any parents be
finite, but we might wish to consider the possibility that the probability should
depend on the age of the parents, or their nutritional conditions. We can,
however, imagine an unlimited number of mice produced upon the conditions
of our experiment, that is, by similar parents, of the same age, in the same
environment. The proportion of white mice in this imaginary population
appears to be the actual meaning to be assigned to our statement of proba-
bility. Briefly, the hypothetical population is the conceptual resultant of the
conditions which we are studying. The probability, like other statistical
parameters, is a numerical characteristic of that population.

We only need the conception of an infinite hypothetical population, in
connection with random sampling. The ultimate logical elucidation of the
one idea implies that of the other. Also, the word infinite is to be taken in its
proper mathematical sense as denoting the limiting conditions approached by
increasing a finite number indefinitely. I imagine that an exact meaning can
be given to all the ideas required by some process such as the following,

Imagine a population of N individuals belonging to s classes, the number
in class k being p,¥. This population can be arranged in order in N! ways,
Let it be so arranged and let us call the first n individuals in each arrangement
a sample of n. Neglecting the order within the sample, these samples can be
classified into the several possible types of sample according to the number
of individuals of each class which appear. Let this be done, and denote the
proportion of samples which belong to type j by ¢;, the number of types being ¢.
Consider the following proposition.

Given any series of proper fractions P,, P,, ..., P, such that S (P)=1,
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and any series of positive numbers n;, 7,, -.., g however small, it is possible
to find a series of proper fractions @y, @, ..., @;, and a series of positive
numbers ¢, €, ..., €, and an integer N,, such that, if

N>N,
and | P = Py | <e for all values of £,
then will lg; - Q;] <n; for all values of j.

I imagine it possible to provide a rigorous proof of this proposition, but
I do not propose to do so. If it be true, we may evidently speak without
ambiguity or lack of precision of an infinite population characterised by the
proper fractions, P, in relation to the random sampling distribution of samples
of a finite size n.

It will be noticed that I provide no definition of ¢ random sample, and it
is not necessary to do so. What we have to deal with in all cases is a random
sampling distribution of samples, and it is only as a typical member of such
a distribution that a random sample is ever considered.

When in 1921 the author put forward in the Phl. Trans. a
paper(1)* on mathematical statistics he was principally concerned,
in respect of problems of estimation, with the practical importance
of making estimates of high efficiency, ie. of using statistics
which embody a largs proportion of the relevant information
available in the data, and which ignore, or reject along with the
irrelevant information, only a small proportion of that which is
relevant. Many of the properties of efficient statistics, such as that
even moderate inefficiency of estimation will vitiate tests of
goodness of fit, were at that time unknown, and the further
discrimination among statistics within the efficient group, a
discrimination which is essential to the advance of the theory
of small samples, was left in much obscurity. Further work along
the lines of the 1921 paper has, however, cleared up the main
outstanding difficulties, and seems to make possible a theory of
statistical estimation with some approach to logical completeness.

1. The problem of estimation.

Any body of numerical observations, or qualitative data thrown
into a numerical form as frequencies, may be interpreted as a
random sample of some infinite hypothetical population of possible
values. Problems of estimation arise when we know, or are willing
to assume, the form of the frequency distribution of the population,
as a mathematical function involving one or more unknown
parameters, and wish to estimate the values of these parameters
by means of the observational record available. A statistic may
be defined as a function of the observations designed as an estimate
of any such parameter. The primary qualifications of satisfactory
statistics may most readily be seen by their behaviour when
derived from large samples.

A statistic, to be of any service, must tend to some fixed value

* See numbered list of references on p. 725.
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as the number in the sample is increased; more precisely if 7' be
any statistic calculated from a sample of n observations, there
must be a limiting value 7', such that if € be any positive number
however small, the frequency (or probability) with which | 7' — T' |
exceeds e, tends to zero as n tends to infinity. One example will
suffice to 1illustrate the class of statistics which fail to fulfil this
condition.

If the frequency with which the variate z falls into the range
dz, be given by

1 dz
4= 71+ (x— m)?’

where m 1s the unknown parameter representing the centre of the
symmetrical frequency curve of z, then it is not difficult to show
that the arithmetic mean of any number of independent values of
z, will be distributed in exactly the same distribution as a single
value of x. If the observational material consisted of 1000 values
of z, we should be able from it to estimate the value of m with
some precision; but if we were to replace the actual observations
by their mean, our action would be equivalent to discarding 999
of the observations, and retaining one of them chosen at random.
Clearly the mean is a useless statistic for our purpose in that it
does not tend to a fixed value as the size of the sample is increased.

2. Consistent statistics.

‘When 7' tends to a limiting value 7', the latter will be some
determinate function of the unknown parameters. If, therefore,
T is to be used for purposes of estimation, it must be equated to
one particular parameter, or function of the parameters, and if it
is equated to some other function its use will be inconsistent,
though perhaps approximately accurate. A statistic is said to be
a consistent estimate of any parameter, if when calculated from
an indefinitely large sample it tends to be accurately equal to that
parameter. The criterion of consistency has been widely used in
the development of statistical methods, and too often it has been
the only criterion employed. For example the “method of moments™
consists merely in evaluating a number of arbitrarily chosen
statistics, and equating as many of them as may be necessary to
the corresponding series of parametric functions. Estimates of the
parameters may be obtained from these equations, but they are
often estimates of little value. In the example given above we
have shown how little value has the mean, the first moment, in
locating a particular curve, one of the Pearsonian types, in fitting
which the method of moments has been so extensively used.

In a special group of cases the criterion of consistency is
adequate alone to give a complete solution. If the number of

17
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frequency classes is only one greater than the number of adjustable
parameters, then for each parameter there is only one consistent
statistic, and this of course is the one which must be used. Generally,
however, there are a great number of possible statistics available,
all of them consistent, but by no means all of equal value.

3. Efficient statistics.

In a large and important class of consistent statistics the
random sampling distribution tends to the normal (Gaussian) form
as the size of the sample is increased, and in such a way that the
variance (the square of the standard deviation) falls off inversely
to the size of the sample. In such cases the characteristics of any
particular statistic, for large samples, are completely specified by
(i) its bias, and (ii) its variance. The question of bias is only of
preliminary interest; if b is the mean value of 7' — T, then for
consistent statistics b must tend to zero with increasing samples.
If we wish to make tests of significance for the deviation of T' from
some hypothetical value, then b must fall off more rapidly than n~#;
if, finally, we wish to use mean values of 7' from a number of finite
samples, then b must be actually zero, or at least a small quantity
of an order determined by the number of such samples to be used.
In any case a knowledge of the exact form of the distribution of
T will enable us to eliminate any disadvantages from which a
statistic might seem to suffer by reason of bias.

Such knowledge is, however, of no avail to repair the defects
of a statistic in respect of variance. The criterion of efficiency
requires that the fixed value to which the variance of a statistic
(of the class of which we are speaking) multiplied by n, tends, shall
be as small as possible. An efficient statistic 1s one for which this
criterion Is satisfied. If we know the variance of any eflicient
statistic and that of any other statistic under discussion, then the
efficiency of the latter may be calculated from the ratio of the two
values. The efliciency of a statistic represents the fraction, of the
relevant information available, actually utilised, in large samples,
by the statistic in question.

For example, in estimating the value of the standard deviation
of a normal distribution from a sample of » values, two methods
have frequently been employed. If

sy = /gS(jx—?ﬁ[),

where S stands for summation over the sample, s, is an estimate
of the true value o, based on the method of the mean error. It
has been shown (2) that the mean value of s; in random samples is

/n—1
[e3
n
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while the variance of s, is

M (%—}—Vn(n-—-?)—»nJrsin"l ! )

n? n—1

If, also, s, is given by the equation of the mean square error
ns,2 =8 (z — Z)?

then the mean value of s, is

(where z! is used as equivalent to I' (z + 1), whether = is an
integer or not); while the variance of s, is
n—2,\2

—t

2
n—23

2
The latter happens to be an efficient statistic, and for large samples
0.2

2n

2
Tln—1-2
n y

the variance reduces to = while for large samples the variance of

8, reduces to

0,2

o (m —2).
Evidently s, is not an efficient statistic, but has an efficiency of
nearly 88 per cent. From a body of 800 observations it will derive
an estimate of about the same value, as that obtained by s, from
700 observations. That is to say the behaviour of the two statistics
for large samples indicates that about one-eighth of the information
available is rejected if s, is used, while if s, is employed the whole
is retained. An exact knowledge of the distribution of s, would
not enable us to recover the lost information, for if the sample
were increased without limit, and consequently the distribution
brought infinitely near to the normal form, nevertheless the
fraction of information lost tends to a fixed value.

4. Properties of efficient statistics.

Some simple properties of efficient statistics may be derived
directly from their definition, e.g. their correlational properties (s).
The correlation between any two statistics, both efficient estimates
of the same parameter, tends to + 1 as the sample is increased.

19



20

O

My Fisher, Theory of statistica! estimation 705

For if A and B be two such statistics, let the variance of each be

2
% and the correlation between them be 7; also let

then C will be a statistic providing a consistent estimate of the
same parameter, but the variance of C' is

02(1+7‘
> =9

2
and this by hypothesis must not be less than % therefore

cannot be less than -+ 1; but 7 cannot be greater than + 1; therefore
r=+1.

For large samples therefore all efficient statistics are equivalent,
and if in practical work we were only concerned with infinitely
large samples, the theory of estimation would not require develop-
ment beyond the stipulation that statistics should be efficient.

If A is an efficient statistic, and B is an inefficient estimate of
the same parameter with efficiency equal to E, then in large
samples the correlation between 4 and B tends to a limit 7 = +- VE.
For if from them we compound a new statistic C, such that

(1+E—-2vVEC=(l—rVE)A + (E—rVE) B,

then C will be an estimate of the same parameter with variance
o? 1—12
n' (1 =)+ (r =VE?
and if r does not tend to the limiting value + V'E, this will be
less than the variance of 4, which is impossible; hence r = - VE.
It should be noted that in making a new statistic with variance
as low as that of 4, when r = + V'E, the above equation for C
degenerates Into '= 4. In other words if we have an efficient
statistic and an inefficient estimate of the same parameter, the
best use we can make of these two values, at any rate with large
samples, will be to ignore the latter entirely. Any compound of
the two will be less efficient than 4.

For example, if a quantity z be normally distributed with
variance o? then it is well known that the mean of a sample of
n is also distributed normally with variance o?/n. The mean in

this case is an efficient statistic; the median is a second statistic
which may be used to locate the curve. If

$ (a) = \/?7 J';‘e—%t* at

then if @ is the central value of a sample of n values (n being odd)

which reduces to




706 Mr Fisher, Theory of statistical estimation

1t appears that the probability that « shall fall into the range
da i3

n~—1

nl 1 & ay) 2
2a® 2—(11—1) . -
s e e

2

When n is large, ¢ <ﬁ> in this expression must be small, and
g

may be replaced by
oV 7

and the factor involving ¢ by

- (n=1)a*

) ol
€ )

so that the variance of ¢ for large samples multiplied by » tends
to the limit

The efficiency of the median in locating the normal curve is
therefore
3 ,
E = = = 63-66 per cent.;
- .

from this value may be deduced the correlation, in large samples,
between the mean and the median derived from the same sample

~VE = 7979,

The median thus utilises about 64 per cent. of the information
provided by the sample, its correlation with the mean of the same
sample is about -8, but any value obtained by combining the values
of the median and the mean will result in an estimate inferior to
that given by the mean.

A further consequence of this relation between the efficiency
of a statistic and its correlation with any efficient statistic, is that
if A be any efficient statistic, and B any inefficient statistic, then
the correlation of A with the difference B-A will tend to zero. We
may thus divide the error of B into two parts, which in large
samples at least will be independent; the first part is equal to
the error in 4, and is the error of random sampling properly so
called; the second B — A is not properly speaking an error of
random sampling, but an error of estimation. It is the property
of efficient statistics that, when applied to large samples, they
shall have no errors of estimation of order comparable with the
errors of random sampling.

21
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Tn all tests of significance an observed deviation 1s compared
with the random sampling variation to be anticipated; in tests of
goodness of fit, in particular the “expectation” from which the
deviations are measured is usually the product of a process of
estimation, the basis of which is the actual sample of observations
with which the expectation is to be compared. If, therefore, the
process of estimation employed involves errors of the same order
as the errors of random sampling the test of goodness of fit will
be vitiated; the apparent discrepancy between observation and
hypothesis will in fact involve errors of estimation of the same order
as the errors of random sampling to which it is to be compared.
The effects of such errors upon tests of goodness of fit have been
shown in more detail in (3).

5. Derwwation of efficient statistics.

To discover the efficiency of any statistic it is necessary that
we should have found at least one statistic efficient for the estima-
tion of the same parameter, and should know the variance in
large samples of the latter. We shall see that the method of maxi-
mumn likelihood will always provide a statistic which, if normally
distributed in large samples with variance falling off inversely to
the sample number, will be an efficient statistic. The variance in
large samples of such solutions may be obtained directly from the
equations by which they were obtained (1).

For example, if we have a number of observations drawn from
a population, of which the distribution is given by

1 dx
7' 1 4+ (z — m)?’
and wish from the observations to obtain an estimate of the value

of m, we may write down in terms of m the actual probability of
such a sample as ours occurring. This probability will be

at dayday ... dx, {1 + (2, — m)2 {1 + (x, —m)%~t ...
{L+ (2, —m)%~1

The likelihood of any value of m, in relation to such a sample,
is defined as a quantity, of which the maximum value is unity, and
which shall be proportional to the above probability. It is therefore
independent of the elements dax, ... dz, which enter into the
probability, but which do not involve m. Likelihood in this sense
is not a synonym for probability, and is a quantity which does
not obey the laws of probability; it is a property of the values of
the parameters, which can be determined from the observations
without antecedent knowledge. An exact knowledge of the likeli-
hood of different values of m tells us nothing whatever about the
probability that m will fall in any given range.

df =
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If we write for simplicity,

S (log df) = L,
then 21:’. =0
am

is the equation of maximum likelihood, the solution of which

gives an estimate of m, which we shall write m. In the example
before us this reduces to

. j 2 (x — m) }
U MG A S |
ST E=me
To find the value of the variance of m derived from a large
sample, 1t is only necessary to differentiate a second time;

2L {2(x—m)2—2}
om? " {1 + (z —m)32)’

and for large samples the value of the right-hand side divided by =,

tends to the limiting value — 4. If V (m) is the variance of m, we

therefore equate

_ra =
2V (m)
V () = =
or (m)—;b-.

Knowing this value it is easy to determine the efficiency of any
other proposed statistic; in particular, since the equations of
maximum likelihood do not always lend themselves to direct
solution, it is of importance that, starting with an inefficient
estimate, we can, by a single process of approximation, obtain an
efficient estimate.

For example, if m,;, the median of the above distribution, be
chosen as starting point, it is easy to show that the variance of m,

in large samples is

w2

4n
so that its efficiency is 8/m2. The median will differ from the
maximum likelihood solution by errors of estimation, of which the
variance will be
% — 8
4n

Tt is sufficient for our purpose that the error of estimation is
of the order n—*. If now we evaluate

8{12(90—77@1) }

+ (x — my)?
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from the observations, and calculate a new estimate m, from the

equation
2 2 (x — my)
me=m+ 28 {2

it is easy to see that the error of estimation of m, will be of the
order n~!, and therefore that m, will be an efficient statistic.

6. Intrimsic accuracy of error curves.

The variance of efficient statistics from a distribution of any
form affords us a measure of an important property of the distri-
bution itself. The fact that from a large sample of » it is possible
to obtain an estimate of the value of a parameter with variance
2/n, shows that regarded as an error curve the above distribution
is intrinsically of the same accuracy as, for example, a normal error
curve with variance 2. We may thus obtain a measure of the
intrinsic accuracy of an error curve, and so compare together
curves of entirely different form. If the variance of an efficient
estimate derived from a large sample of n is 4/n, then the intrinsic
accuracy of the distribution is defined as 1/4.

If a frequency curve is defined by

df = ydzx

where y is a function of a parameter 8, then the intrinsic accuracy
of the curve, as a means of estimating 6, is

al
—jy—50—2 (log y).dx
over the whole range of possible values. Since
0% oy 1 <§g 2
062 80) ’

while the integral of the first term over all possible values must
vanish, the intrinsic accuracy may equally be written

1 /0y\?
5 ) @

over all possible values; in this form it is clearly seen to be
necessarily positive.

What we have spoken of as the intrinsic accuracy of an error
curve may equally be conceived as the amount of information in
a sigle observation belonging to such a distribution. If for
Instance two independent observations were available from the
same or different distributions, the distribution of the pair of
values would be

df = yy' dx do’,
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and the intrinsic accuracy of such a pair would be

Ch ,
U yy (aezlogwk =G logJ)dwdw,
which, with the identities,

Jydx =1, Jy’d:c’ =1,

reduces to J Yy 8862 log y.dz — f e log y'.dax’;

the amount of information provided by a combination of two or
more independent observations is thus merely the sum of the
amounts of information in each piece separately.

It is a common case for a sample of n observations to be distri-
buted into a finite number of classes, the numbers “expected” in
each class being functions of one or more unknown parameters,
if p is the probability of an observation falling into any one class,
the amount of information in the sample is

1 /om\2?
s (#)1
where m = np, is the expectation in any one class. The variance

of an efficient statistic derived from a large sample may, of course,
be calculated from this expression.

7. Efficiency of the maxvmum likelihood solution.

We shall now prove that when an efficient statistic as defined
above exists one may be found by the method of maximum
likelihood.

If f stand for the probability that any particular type of
observation should occur, and ¢ for the probability that any
particular type of sample should occur, then

log ¢ = C + S (log f)

when C is a constant which does not involve the parameters, the
summation extending over all observations.
Asregards the variation of ¢ with varying 6, it is to benoted that

] g2 1 /o
;L—a-g-zlog¢=;bs<§0-§logf>

will tend to a fixed limit for large samples. Set (— 4) for this
limiting value. Then since

0
a—élogqﬂz(),
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when 6 = 6, and 8 is the solution of the equations of maximum
likelihood, it follows that

) A
%logg{):wm‘l(@-—@)

if 8— 6 is a small quantity of order n-%.

Now if 7T is any statistic used as an estimate of 6, the proba-
bility, @, of T having any assigned value, will be the sum of the
probabilities of those samples which yield the said value 7', that is

D = S(4)
when S stands for summation over all the samples which yield the

same value for the statistic 7. Also, if T is in large samples
normally distributed with variance o?,

1 _(T~8)
=——=e 2 dT,
oV 2
0? 1
whence 55 log® = — =

The problem of making o? as small as possible, is the problem
of so grouping the several sorts of samples under the same values
of the estimate T, that the second differential coefficient of log @
shall be a negative quantity as large as possible. Now
Lo S S@)

— —

P A A A A )
and S (¢') =S (¢) is the mean value, within the group, of
—nd (0 — 9), while S (") = 8 (¢) is the mean value of
— nd + n242 (§ — )2,

consequently n——i-z =4 —nd?V’ (@)

when V' (é) is the variance of § within the group. If 7' = 9, then 6

will be constant within the group, so that the variance of § in
random samples will be 1/nA4. For any statistic 7' which has the

same value in sets of samples for which the variance of 8 is of
order n~! the value of 1/no? will be reduced, for the variance
within the group is necessarily a positive quantity, and conse-
quently the variance of any such statistic will be greater than

that of 8,

8. Efficiency of weighting.

The effects of the familiar process of weighting observations
may be well shown in terms of efficiency. If w is the weight of a
normally distributed observation z, so that its variance is 1/w, and



712 Mr Fisher, Theory of statistical estimation

if a number of such observations be combined with false weights
w’, then the variance of the weighted mean will be

and, when w’ = w, this reduces to 1/S (w), the minimum value.
The efficiency is therefore

The loss of weight is
S (w) —

5(%)
_ w
If now the inaccuracy in weighting is due to a slight variation
in w, and we have chosen weights %’ equal to the mean values
of w, then
w=w + ¢,
€2

s(%f)=5(w')_8(e)+s<—,>-...,

w
S (w) = 8 (%) =S )+ 8 () —8 (;)—2) b

whence the mean loss of weight is, approximately

S (5 7 ),

when V (w) 1s the variance of w.

9. Small samples; Sufficrent statistics.

It is now possible to approach the more general problem of the
estimation of statistics from finite samples, when the distributions
of the statistics considered will not generally be of the normal form,
nor will the errors of random sampling be small quantities. The
different possible efficient statistics will no longer be equivalent,
and it will be necessary to discriminate among them. In previous
work on this subject(1) two circumstances seemed to point to
fruitful lines of development. In the first place attention was called
to a class of statistics possessing very remarkable properties, which
contain In themselves the whole of the relevant information
available in the data. These statistics were therefore distinguished
by the term sufficient. In the second place it was suggested that
the idea of intrinsic accuracy might be applied to the random
sampling distributions of statistics when these were not normal, so
as to afford a method of comparing their relative values.
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As an example of a sufficient statistic consider the mean of the
Poisson Series. A variate, confined to whole numbers, is distributed
in a Poisson Series if the probability of its taking any particular
value, z, is

me
e—m —
-

The parameter m may be estimated from the mean of the
observed sample. This is evidently the solution of the equation of
maximum likelihood. If 7 is the mean of a sample of n, the distri-
bution of nZ may readily be proved to be given by the Poisson
Series
()T

(nZ)! "~

Now the probability of drawing in order any particular sample
Ty, Ty, -y Ly 18

—-nm

mni

e T o
V! 2y !

and this may be divided into two factors,
nim)"T (n)!
nZ) ! " nT ey ta, ! Lox, !’

of which the first represents the probability that the actual total
n# should have been scored, and the second the probability, given
this total, that the partition of it among the »n observations should
be that actually observed. In the latter factor, m, the parameter
sought, does not appear. Now when the mean 1s known any
further information which the sample has to give must depend on
the observed partition; but the probability of any particular
partition is wholly independent of the value of m. Consequently
no statistic calculated from the sample can give any information
whatever respecting the value of m, beyond that supplied by the
value of the mean.

In general, if  is any parameter, T, a statistic sufficient in
estimating that parameter, and T, any other statistic, the sampling
distribution of simultaneous values of 7, and T, must be such that
for any given value of 7}, the distribution of 7, does not involve 6.

This will evidently be the case, if f (6, Ty, T,) dT, dT, be the
probability that T, and T, should fall in the ranges dT,, dT),, and if

S0, Ty, To) = ?5‘(9; Ty).¢" (T4, T,).
If this condition is fulfilled for all possible statistics T, then
will 7, be a sufficient statistic.
When a sufficient statistic exists it is equivalent, for all sub-
sequent purposes of estimation, to the original data from which 1t

e“nm (
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was derived. For example the mean of a normal sample is a
sufficient statistic, and the mean possesses the property that it can
be combined with the mean of a second sample from the same
population to find the mean of the combined sample. If f(z,, ..., z,)
be for any distribution a sufficient estimate of some parameter, then

f(wlﬁ e wn) - ¢{f(x1, A xﬂ)’f(xp4‘1’ trt xﬂ)};

this circumstance much limits the funetions which can possibly
be sufficient statistics.
For example, the function

1
7

is a function which might, for the right distribution, be a sufficient
statistic. As % is made to increase without limit the above function
tends to be simply the greatest value observed in the sample; just
as the mean of a number of means is the mean of the aggregate,
so the greatest of a series of greatest observations, will be the
greatest of the aggregate.

When sufficient statistics exist it has been shown that they will
be solutions of the equations of maximum likelihood.

log S (e**) — ]ic log n,

10. Intrinsic accuracy of error curves of statistics.

The fact that sufficient statistics do not always exist renders it
necessary to explore the possibilities of comparing statistics by
means of the intrinsic accuracy of their random sampling distri-
butions.

We may, in fact, give an extended meaning to the word
efficiency by the definition

The efficrency of a statvstic us the ratio of the intrinsic accuracy of
ats random sampling distribution to the amount of information in the
data from which it has been derwed.

This definition is in accordance with the definition previously
given of efficiency for the case of large samples with normally

2
distributed statistics. For if% is the variance in large samples of

an efficient statistic, the intrinsic accuracy of the original distri-
bution will be 1/0? and the whole information in the data will be
n/o®.  Moreover if in large samples any statistic has variance
o®/En, its intrinsic accuracy will be Enfo?, and its efficiency, by
either definition, will be &.

The extended definition has the advantage of applying to finite
samples and to other cases where the distribution is not normal.

As an example of the calculation of the efficiency of statistics
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derived from finite samples, consider the median of an odd number,
2s + 1, of observations the error curve of which is given by
1 dz
b= e Tre—mp
It is easy to see that the frequency distribution of the median
will be given by

(28 + 1)! fmr? dz
df“——@:i( - )

where tan § = z — m, and @ lies between =+ .
To find the intrinsic accuracy of the distribution, we differentiate
the logarithm of the above expression with respect to the unknown

parameter, m; then since

2
we have —_— 4 sin 26.

The intrinsic accuracy will be the average value of the square
of this quantity, or

(_Qf._t_l)_ [ {236 cos? 6 + (Z — 92) sin 23} (—4-2 — 92) o db.

(.S") mstl |
-2

The definite integral may be expressed in terms of the Bessel
functions of 7 and 2, in the form

_1_+ 3s (25 4+ 1) 4 (s + 3)! ' (g)sﬂr{ 2s Toos (7) — 2sis (w)}

2 2(s=1)a* " 2s-—1 s—1
(s+ P! A\s+E( 2s _25+3
-ﬁ?—:f(n) S__le—%(zﬂ') 9 Sz (2m)1.

The Bessel functions are easily evaluated, for J; = 0, for both
values of the argument; while the values of J; are v/2/= and
— 1/m, the others being thence obtainable by the recurrence formula

w

2n
Jﬂ+1 = 7!]-“ - Jﬂ-1'

Thus for s = 2, we find the intrinsic accuracy of the median of five
observations to be

1, 15 85
3t 2 T o
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The following table shows the numerical values.

Number in Increase for two .
sample § Accuracy observations Efficiency
1 0 -50000 . 100-00 %
3 1 1-09064 P 727197
5 2 1-74552 .69490 69-82 9/
7 3 2-44042 79121 69-73 9%,
9 4 3-16164 73945 70-26 9%,
11 5 3-90109 70-93

The efficiency appears to have a minimum between 5 and 7
observations, and is not approaching its limiting value, 81:06 per
cent., very rapidly. This is perhaps to be anticipated since for large
samples it falls short of its limiting efficiency by 1-19/s, and the
discrepancy in the above table is considerably less than this.

Statistics which are efficient for large samples may, of course,
have comparatively low efliciencies for finite samples, and in
certain cases the efficiency may tend to its limiting value so slowly
that even samples of over 100 are not very efliciently treated.
The median, for example, is an efficient statistic for locating the
centre of the double exponential curve,

df = Je~le-ml g,
when the sample is increased without limit, but owing to the
discontinuity at the apex, its efficiency approaches its limiting
value somewhat slowly. The intrinsic accuracy of the original
distribution is unity, and that of the median of (2s + 1) observa-
tions may be shown to be
(8+1)(28+1){1 (2s)! }

s — 1 TR gy

The numerical values are:

i .. Loss of
N‘slar,xllrll)glrem s Accuracy Efficiency % information
1 0 1 100 0
3 1 2:3178 77-26 <6822
5 2 3-7500 7500 1-2500
7 3 5-2500 75-00 1-7500
9 4 6-7969 7552 2-2031
19 9 14-940 7863 4-060
33 16 26-932 81-61 6-068
51 25 42-844 84-01 8:156
73 36 62-709 85-90 10-291
99 49 86-544 87-42 12:456
129 64 114-36 88-65 14-64
163 81 146-16 89-67 16-84
201 100 181-95 90-52 19-05
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The case is unusual in that the loss of information does not
tend to a fixed limit, but increases ultimately as 4 V's/w — 4; the
cause of this exceptional behaviour lies in the fact that at the
apex of the curve the second differential coeflicient with respect
to the unknown, m, is infinite. The example stresses the importance
of investigating the actual behaviour of statistics from finite
samples, instead of relying wholly upon their calculated behaviour
in infinitely large samples.

We can now prove in general that the efficiency can never
exceed unity, and derive the condition that there shall be no loss
of information.

If the probability that any statistic, T, should take a particular
value is @, then the intrinsic accuracy of the distribution of 7' is

@2
s {g )
the summation being taken over all possible values. If now every

possible sample, having frequency ¢ gave a different value of T,
then the intrinsic accuracy would be

’9
s {51
¢
and would be independent of T'. If, however, a number of different

samples give the same value of T, then the effect of this amalga-
mation will be to decrease the intrinsic accuracy by the amount

)%

_ ¢l @/ 2
- sk(5-3)}

This quantity is never negative, so that the intrinsic accuracy
of T can never be greater than when every possible sample yields
a different value of 7. This is obvious because, in such a case, the
actual sample can be reconstructed without ambiguity from the
value of 7', and so the value of 7, which is merely a kind of short-
hand statement of the original sample, must contain the whole
of the information provided by the sample.

The condition that there shall be no loss of information when
different samples give the same value of 7 is that the sets of
possible samples for which T is constant shall be those for which

¢ oL

é 0
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18 constant. If these sets are the same for all values of 4, then the
equation of maximum likelihood

oL
will provide a sufficient statistic.

For if this 1s the case 0L/00 depends, apart from @, only on the
set to which the sample belongs; in other words it is a function

of § and 6 only. Thus if f is the frequency with which any sample,
or group of samples having the same 6, occurs, then

now let the frequency of samples such that § lies in the range df
and a second statistic, 7', lies in the range d7', be f (6,0, T') dﬁAdT,

then since the above equation will be true for all values of 8, we
shall integrate it with respect to § and obtain

logf = [ (6,6)d6 +
where C' does not involve 6, and is a function therefore of and T
only. Hence f is of the form

$0,8).4' @ T)

whatever statistic may be taken as 7', and so 6 must be a sufficient
statistic.

11. Meinimal loss of accuracy.

When the sets of samples which for one value of 8 have the
same value of 0L/06, have no longer the same value for other
values of 0, there exists no sufficient statistic, and some loss of
information will necessarily ensue upon the substitution of a single
estimate for the original data upon which it was based.

The extent of this loss, in large samples, for which presumably
it will be greatest, may now be calculated. If the sample consist
of observed numbers z,, ... #, In categories in which the expecta-
tions are my, ..., m,, then

L = 8 (zlog m),

m

BLJ30 = S (az -n;) ,

22L/06* — S {m (% - 9"’—2)} ,

me
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if now 8L/85 — 0, then to a first approximation

oL A 0°L

w=Y %
and the variance of 9L/06 in a set of sa.mples. fo? which 8 is constant,
will be given by the variance of 02L[06% within the set multiplied
by (8 — 5)2, or the total loss of information will be given by the

general variance within such sets multiplied by V(0).

Now the random sampling distribution of the values of z will
be the multinomial distribution, and the simplest method of
regarding this distribution is to consider each value of z indepen-

dently distributed in a Poisson .Se_ries about a mean value m; the
whole being subject to the restriction that

S (z) = S (m) = n.

In such a system any quantity S (kz) is easily seen to have a
mean value S (km); its variance, if there were no restriction, would
be S (k*m), and in introducing any linear restriction we have only
to remove that portion of the variance produced by varying in
the prohibited direction. Two restrictions are here necessary, for
the first

S(x)=n
we have to deduct S (km) + n.
The second restriction arises from the fact that we require the

variance within the groups for which oL/ 26 is constant, since

oL m’

the deduction will be 52 (km') + S (’Z;) .
Writin poml _me

8 T om o mE’

2

and remembering that V (9) =1/S (%

information in large samples,
/242 4 w2
S {_1_ (;n” _ﬂ_..) } , S2 {’_7}_ (7%” — _):}_L_.>)
m m 1 3 (m 2) B m m J\

79 _ = — 7
T
m m
The method of calculation by differences has the advantage

that if, by the estimation of other parameters, further restrictions
upon variation are introduced, we may choose such parameters

), we have for the loss of
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that their maximum likelihood estimates will be in large samples

uncorrelated with each other and with é, and the whole effect of
the restrictions will be further to reduce the loss of accuracy by

terms of the form
, {] om ( . m’2>}
S2{— s (m" — —
m og m

s GG 15 ()

without further examination of the restrictions.

b

12. Exzample of loss of intrinsic accuracy.

1 dx
In the curve df = 7 1+ (z— 0)
we may write m= - da ;
y ol + (2= 0)¥

then for the determination of 6,

S <m’2> o J” ddt_ m

m

Ly, mH  ow (P 412, Tn
S {;L (m - W) P = ;V‘mw TR dt = T

m /o, m?) .
S {;; (m — -;nv-j} = (),

The loss of information is therefore

7 1 __ 4
T - )

and since the intrinsic accuracy of the original distribution is },
the loss on statistical reduction is equivalent in large samples to
91 observations. For small samples the loss will presumably be
less since it vanishes for samples of one.

In the location of the centre of this curve, therefore, we see
that the mean is a statistic which throws away the greater part of
the information available; the median is an inefficient statistic
which makes use of a fraction, approaching in large samples the
limit 8/ of the information. The solution of the equation of
maximum likelihood, like other efficient statistics makes use of all
but an amount which tends to a finite limit as the sample is
increased. The amount lost may differ in different efficient
statistics; it will be least for the solution of the equation of maxi-
mum likelihood.
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13. Loss of accuracy with other statistics.

With efficient statistics other than the maximum likelthood
solution, the loss of accuracy will be somewhat greater, though
still tending to a finite limit for large samples. The variance of
0L[20 for sets of samples yielding the same statistic will be due
to two independent causes. The first depends upon the sampling
error, T — 0, and upon the fact that 92L/06* is not the same for
all samples yielding the same statistic. Since all efficient statistics
tend to equivalence with increasing samples, this portion will be
the same for all efficient statistics. The second portion is approxi-
mately independent of the sampling error, and depends upon the

deviation of T from the maximum likelihood solution 0.

. (x — m)?)
2
For example, if x2 =8 { o j,
the equation for minimum x?%,
22 — m2 om
8 ( m2 5§_> =0,

gives an efficient estimate of 6; for the maximum likelihood equa-

tion is
T — M Om
8 ( m 89> =0,

tends to the constant value, 2, for large

and the ratio g+ m

samples. Now, since
(2% — m?) = 2m (x — m) + (z — m)?,
the deviation in 0L/06 will be
1 ¢ [(®—m)* om
28 { m: 00}’
and it is the variance of this quantity for samples of equal sampling

error which gives the loss of information. By the same device as
before we evaluate the variance of S {k (z — m)?} in the form

¢ 2 Lan’2
28 (k2m?) — 2 S2 (km?) — 2 §——(-@-,2—) ,
n m
= (%)
n mual
e 1w
or, substituting k= 5
'3
-
2
we have i8S (—7%2-) — % m’z .
5
m
\masnra—

Delete the underlined terms.



722 Mr Fisher, Theory of statistical estimation

This quantity remains finite as the size of the sample is increased
without limit, but increases without limit as the number of classes
is increased. Consequently, as one might expect, the method of
minimising y? breaks down for fine grouping.

For example, suppose we have b classes only, in a population
distributed according to the binomial distribution

(p + 9~

Let p be caleculated from numbers observed in the 5 possible
classes in a large sample. Then

my = npt, my, = dnp’q, ete.,

and the intrinsic accuracy is

m'2 4in
S ()=

The loss of information due to using the minimum x? solution is
calculated from

’9 »
18 (%) = = 39 = 2pq + 3¢?)

and
m’3 4 —
S (%g) =— (pr-g-) (p* — 2p% + 18p*¢® — 2pg® -+ ¢*) m,
and is in fact
5 o p—q)? .
g (B3P = 20+ 3°) = <[-;,p2q12) (p* — 2p°q + 18p%* — 2pg® + ¢)*
This is least when p = ¢, and is then equal to

20
Py’

or equivalent to the loss of 5 observations. .
Tn approaching the maximum likelihood solution by successive
approximations we have seen that starting with an inefficient
statistic, a single process of approximation will in ordmary cases
give an efficient statistic differing from the maximum likelihood
solution, by a quantity which with increasing samples decreases
as n—1. The loss of information of such efficient statistics is therefore
finite for large samples, for the additional variance of 9L/06 will be

L2V (T -0,
and L increases proportionately to the sample. If the process
of approximation be repeated a statistic is obtained differing from
the maximum likelihood solution only to the order of n~% and
for such a statistic the loss of accuracy, beyond that suffered by
the maximum likelihood solution will tend to zero for large samples.

Delete this line.
Delete the underlined expression.
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The practical procedure of fitting will thus not ordinarily require
more than a second process of approximation.

14, Theoretical existence of fully accurate statistics.
In the manner in which we have developed the theory it would

appear that the loss of information inherent in the process of

replacing a quantity of observational material by a single value,
arose from the circumstance that the groups of samples, which
ought to give us the same estimate, change with the value of the
unknown parameter, and so that no way of grouping can be the
best for all values of the parameter. The method of maximum
likelihood takes that way of grouping which is most accurate for
the particular value which is equal to the estimate arrived at. The
loss of information with which we are concerned is the difference
in accuracy between the solution of the equations of maximum
likelihood, and another statistic which might conceivably be
arrived at by chance, but which cannot be specified without
knowledge of the true value of the parameter.

If, for example, the quantity § in the following expression
happened to be equal to the value of 7 in the population specified by

.1 dx
V= TTm—me
and we used the equation of estimation
2(x—-0) |
s {m} = nf(T),
where it will be noticed that the left-hand side is 0L/d6, then
0L[08 is constant for samples giving the same 7'; the form of f can
be ascertained from the condition of consistency, for the equation
will only be consistent if
1 2(x—0) dz _ 2(m =10
f(m)—’ITJ_wl T x—02 T+ (z—mE (m—0)2+4
The equation for T will therefore be
{ 2(z—0) 1 2a(T—0)
1+ (z—03? (I-—-02+¢

this equation is nearly equivalent to the equation we have given
for improving an approximate value, in this case 4. If, however,
0 were in fact equal to the true value of the parameter, the statistic
T would be distributed in random samples with an intrinsic
accuracy equal to the maximum possible. We cannot, however,
utilise this fact, for if we could rely upon our putting the right

value of 8 into this equation, we could choose 6 as our estimate
and so avoid errors of random sampling altogether.
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15. Use of ancillary statistics.

Since the original data cannot be replaced by a single statistic,
without loss of accuracy, it is of interest to see what can be done
by calculating, in addition to our estimate, an ancillary statistic
which shall be available in combination with our estimate in
future caleulations.

If our two statistics specify the values of 0L/08 and 62L[0%
for some central value of 8, such as @, then the variance of 0L/08
over the sets of samples for which both statistics are constant, will
be that of
5 O°L

g’
which will ordinarily be of order n~! at least. With the aid of
such an ancillary statistic the loss of accuracy tends to zero for
large samples.

The function of the ancillary statistic is analogous to providing
a true, in place of an approximate, weight for the value of the
estimate. If a number of large samples were available, and if

b0 -0)

when the summation is taken over all the samples, then M will
be the logarithm of the likelihood of § from the combined sample;
but necessarily

M = S(L), M’ =S(L")

and if § be the value of 8 for which M’ vanishes, and OA,, the value
for which L, vanishes, then with large samples, when 6 = 8,
L)=0-0,)L,"
Hence 6 is given by the equation
S (B8, =0,
or M6 =8 (L,"0,),
where M’ =S (L")

If we had ignored the ancillary statistic and taken as weights
the mean value
1

V()

the loss of weight in the combined value,

S ([157 V(w)>,
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is the sum of the contributions to the loss of weight from the
several samples. Each contribution is equal to the sampling

variance of L" multiplied by V(@), and this is just the quantity
we have found as measuring the loss of information.
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