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Asymptotic Statistical Properties of AR Spectral
Estimators for Processes With Mixed Spectra

Soon-Sen Lau, Peter J. Sherman, Member, IEEE, and Langford B. White, Senior Member, IEEE

Abstract—In this paper, the influence of a point spectrum on
large sample statistics of the autoregressive (AR) spectral estimator
is addressed. In particular, the asymptotic distributions of the AR
coefficients, the innovations variance, and the spectral density es-
timator of a finite-order AR( ) model to a mixed spectrum process
are presented. Various asymptotic results regarding AR modeling
of a regular process with a continuous spectrum are arrived at as
special cases of the results for the mixed spectrum setting. Finally,
numerical simulations are performed to verify the analytical re-
sults.

Index Terms—Asymptotic normality, autoregressive (AR)
model, mixed spectrum processes, spectral analysis.

I. INTRODUCTION

A UTOREGRESSIVE (AR) models have been well studied
in relation to regular stochastic processes containing an

absolutely continuous spectrum. For example, [1] derived the
asymptotic normality of the coefficients of an AR() model for
an AR( ) process with by using linear regression, while
[2] employed the convergence properties of martingale differ-
ences to arrive at the limiting distribution of the parameters of
a th-order predictor for a regular stationary process. In fre-
quency-domain analysis, AR models have received extensive in-
terest as high-resolution alternatives to spectral estimates based
on the Fourier transform of the data. In [3] and [4], confidence
intervals were established for an AR spectral estimator in the
case of a regular process. The limiting distribution of the AR
spectral density estimator for a regular causal stationary process
when both and the sample size approach infinity under certain
conditions was approximated in [5].

Mixed spectrum processes, which contain both an abso-
lutely continuous spectrum and point masses associated with
sinusoids, exist in a wide variety of practical situations such
as communications, radar, rotating machinery, meteorology,
climatology, and geoscience. In spite of this, the limiting sta-
tistical properties of AR spectral analysis for mixed spectrum
processes have received limited attention. In [6], the asymptotic
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variance of the fixed th-order AR spectral estimator for a
general mixed spectrum process was developed under the
assumption of small estimation error. For a single sinusoid plus
white noise, [7] proved that for fixed, the least squares AR()
spectral estimator converges almost surely to the spectrum of
the theoretical th-order predictor. They also proved that the
theoretical AR() spectrum becomes unbounded at a signal
frequency as . This latter property was extended in [8] to
the more general case of unknown colored noise plus multiple
sinusoidal signals. In all these and other works, however, no
distribution limit theorems of the AR() spectral estimator for a
general mixed spectrum process containing multiple sinusoids
plus arbitrary colored noise were developed.

Recently, a first effort in response to this need was pursued in
[9]. That effort relied on the limiting distribution of the sample
autocovariances given in [10]. In this paper, we rely on that
result to develop a more concise set of limiting distributions
regarding the finite-order AR modeling of a mixed spectrum
process. We begin by summarizing the basic background of such
a process and AR modeling in Section II. In Section III, the
asymptotic normality of the coefficients and innovations vari-
ance of the AR() model are derived. The limiting distribution
of the corresponding AR() spectral estimator is derived in Sec-
tion IV. Numerical simulations are given in Section V in order
to illustrate the accuracy of the analytical results. Finally, Sec-
tion VI contains a brief summary of results, a discussion of their
practical value in all too common realistic and important set-
tings, and suggestions for future work. The proofs of the results
presented in this paper are provided in the Appendix.

II. PRELIMINARIES

In this work, a mixed spectrum process is defined as
, where

where

i.i.d.

and are unknown amplitudes and
frequencies, and where i.i.d. . Assuming
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and are independent, the theoretical autocovari-
ance function of is given by , where

are the autocovariance functions ofand , respectively. The
th-order AR (i.e., AR()) predictor of is

with the prediction error variance . The
minimum variance parameters and ,
which minimize this prediction error variance, are readily ob-
tained from the Yule–Walker (also termed minimum variance)
equations (see [1] or [3])

(1a)

(1b)

Here, the Toeplitz matrix and the vector
are given by

...
...

...
and ...

The least squares estimators and of (1) based on a set
of samples can be obtained by replacingwith the sample
autocovariance function defined by

Denote by and the sample versions of and , respec-
tively. We then have

(2a)

(2b)

Let denote the minimum variance AR() spectrum and
denote its least squares estimator. Then

(3a)

(3b)

where . The goal of this paper is to arrive at
the large sample distribution of (3b). In particular, we desire to
characterize its statistical behavior in the frequency regions near
the point spectrum.

III. L IMITING DISTRIBUTIONS OFAR( ) PARAMETERS

In this section, the limiting distributions of and defined
by (2) are derived using a relatively recent result concerning the
limiting distribution of the sample autocovariance function.

The large sample distribution of the sample autocovariance
function for the case of a single sinusoid plus white noise was
recently derived in [7]. More recently, [10] extended the result
to the more general setting of multiple sinusoids plus colored
noise with continuous spectrum. Their main result is given in
Theorem 1. First define the following quantities:

where denotes vector transposition. Notice that
.

Theorem 1 [10]: Given a sample of size of , and
the assumptions and quantities described in Section II, then

is asymptotically normal with zero mean and
covariance matrix given by

(4)

Theorem 1 is a generalization of the corresponding result in
[1] for a regular process. The influence of point spectrum is
reflected in the first term on the right of (4).

The large sample distribution of is given in the next the-
orem. Because it is done in a mixed spectrum setting, it is an
extension of results such as those in [1]–[3].

Theorem 2: With and defined as in (1a) and (2a), we
have

(5)

Thus,

where

...
...

...
...

...

...
...

...
...

...
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The matrix in Theorem 2 has a special property. From the
Yule–Walker equation (1a), we know that

so that the following equality can be easily deduced:

...
...

...
...

...

(6)
Next, we derive the limiting distribution of . This will require
the following lemma.

Lemma 1: .
Thus,

where , and where is the convo-
lution of with its reverse at lag ;
specifically

with for and .

Remark 1: Defining , then
, where

To see this, first recall that the correlation of two real-valued
sequences and is equivalent to , where

denotes convolution. Denote by and the Fourier
transforms of and , respectively. The Fourier transform of

is

The second equality follows because
for real-valued sequence . Finally, observe that

Using Lemma 1, Remark 1, (1b), and (2b), we arrive at the
following large sample distribution for .

Theorem 3: With and defined as in (1b) and (2b), we
have the following asymptotic normality:

where the time-domain expression for is

(7)

Equation (7) is in quadratic form involving the covariance
matrix . Since the expressions for the elements of, (4),
involve infinite summations, a direct time-domain interpreta-
tion and simplification of is difficult. Our next result is an
equivalent frequency-domain expression forwhich provides
more insight into the influence of point spectrum on an AR
spectral estimator, and leads to a frequency-domain expression
for , as given in Corollary 1. The frequency-domain ex-
pression for the covariance matrixof the limiting distribution
of in (4) is given by

(8)

where

Here, is the Dirac delta function. The same frequency-do-
main expression as the first term on the right-hand side of (8) is
given in [11] where the case of more manageable complex sinu-
soids is addressed. Consequently, (8) is not only an extension to
the case of real sinusoids, but also includes a frequency-domain
expression for the rightmost term in (8); an expression not pro-
vided in [11]. It leads immediately to the following corollary.

Corollary 1: The frequency-domain expression of is
given by

(9)

Theorem 3 is, to our knowledge, the first of its kind which states
that for a general mixed spectrum processis asymptotically
unbiased estimator for . For the case of Gaussian noise (i.e.,

), Corollary 1 states that the point spectrum influence
is a combination of a direct influence on only the discrete fre-
quencies , plus an indirect influence on the entire fre-
quency range via .

IV. L IMITING DISTRIBUTION OFAR( ) SPECTRALESTIMATOR

The results of the last section for the AR parameters set the
stage for our goal of this paper, which is the large sample ap-
proximate distribution of AR spectral estimator (3b) for the case
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of a mixed spectrum process. To this end, we first describe the
limiting distribution of .

Lemma 2:

(10)

Thus,

(11)

where

(12)

We now give the main result of this paper.

Theorem 4: , where

Theorem 4 is a new result that provides a complete statis-
tical description of the large sample AR() spectral estimator
for a general mixed spectrum process. An expression for the
asymptotic variance of was given in [6], but no limiting
distribution was given. Theorem 4 establishes the asymptotic
normality of . It would be desirable to simplify the vari-
ance expression of Theorem 4 in order to gain deeper insight
into the influence of factors such as the shape of the noise color
and the signal-to-noise ratio (SNR). To this end, we have in-
vestigated the combined use of (8) and properties of circulant
approximants of quadratic forms involving covariance informa-
tion associated with AR processes [12]. To date, we have had
limited success.

Recall from [7] and [8] that the theoretical AR() approxi-
mant converges to at tone frequencies as

. This is not surprising since sinusoids have point mass. It is
this same property that is responsible for the convergence of the
th-order minimum variance (MV), denoted MV() spectrum

at point frequency to the process power spectrum as
[8], [13]. The MV( ) spectrum is defined to be the inverse of
the sum of AR() spectra for . Since the family of MV
spectra have demonstrated significant potential for identifying
point spectrum with arbitrary noise, and since the MV() spec-
trum is related to the AR() spectra for , a valid ques-
tion in the context of this paper is: What is the statistical be-
havior of the AR( ) spectral estimator as . Clearly, this
question requires conditions on as both and .
This problem was studied in [5] for regular processes, wherein
it was proved that if such that , then

converges to a normal distribution with
the asymptotic variance equalsif , and otherwise.
We conclude this section with the following conjecture.

Conjecture 1: Define as in Theorem 4, then

if and

if and

if

(13)

where is some constant. Even though in the setting of [5]
there is no point spectrum, given the orthogonalizing property
of a frequency decomposition of a correlation function, it is not
surprising that (13) approaches the value ofat .
After numerous unsuccessful attempts to prove this, we have
decided to let it remain as a conjecture, as did Sakai [6]. This
conjecture was arrived at by investigating a number of simula-
tions. The unknown value in (13) is of particular interest with
respect to MV type of spectral analysis of mixed processes pro-
posed in [8]. To illustrate this convergent property, consider the
process , where

i.i.d.

Fig. 1 shows the value of for

over the frequency range . At tone frequency ,
this numerical approximation shows that the normalized vari-
ance of the AR spectrum remains bounded.

V. NUMERICAL ANALYSIS

The proofs of the results in the previous sections relied on
the delta method, which is a first-order Taylor series approxima-
tion approach. As such, it is important to investigate the accu-
racy of this approximation. This investigation could proceed by
a theoretical analysis of the remainder of the approximation. But
such an approach would be nontrivial to say the very least. For
this reason, and to illustrate its potential in a more user-friendly
fashion, our investigation will proceed in the context of an ex-
ample.

In this section, we will illustrate the potential accuracy of our
results by fitting an AR() model to the mixed spectrum process

, where

i.i.d.

Each of the following two cases to be considered utilized
1000 random simulations of . The numerical results are com-
pared to the analytical results for each case, emphasizing only
the first four elements the coefficient vector, and the inno-
vation variance . Case 1 and Case 2 consider record lengths

and of , respectively. The SNR for both cases
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Fig. 1. Numerical approximation of (13) forp = [5; 10; 30; 50; 100; 200; 500].

TABLE I
CASE 1: SNR= �7.3221 dB,N = 500

is 7.3221 dB, and AR models of order and are con-
sidered. The simulation and theoretical results are tabulated in
Tables I and II for Cases 1 and 2, respectively. The data in paren-
theses correspond to the theoretical results. An interpretation
of these data shows an excellent match between the simulation
statistics and theoretical results. A slight deviation can be ob-
served for the cases where . This is due to the decrease in
the statistical reliability of the autocovariance estimates needed
for solving the Yule–Walker equations (2); specifically, to the
increased number of needed parameter estimates for the given
sample size.

To gain a visual appreciation for the accuracy of the results,
the estimated means and variances of (dashed line) are
plotted against the theoretical results (solid line) for Case 1, as

given in Fig. 2. In particular, the accuracy of the spectral mean
and variance expressions of Theorem 4 is very high in the neigh-
borhood of the point spectrum.

VI. CONCLUSION

This work generalized the conventional large sample proper-
ties of an AR estimator for a regular process with an unspecified
continuous spectrum to those for a stochastic process containing
a mixed spectrum. In the process, asymptotic normality of the
AR coefficients, innovation variances, and AR spectral estimate
of a finite-order autoregression were derived. Numerical simu-
lations demonstrated the reliability of the analytical results. The
well-known statistics of the AR spectral estimator for regular
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TABLE II
CASE 2: SNR= �7.3221 dB,N = 1000

stochastic processes with continuous spectrum were obtained as
special cases of our general mixed spectrum results, and were
obtained using tools notably different than those used by others.

As noted at the beginning of this paper, mixed processes
are commonplace in application areas ranging from machinery
condition monitoring and communication systems, to climate
models and biomedical signal processing, to name a few. In
all of these areas spectral information has long played a key
role. In some areas (e.g., military specifications for machinery
noise and vibration levels) both sample mean and variance are
used routinely. AR spectra have been used as high-resolution
alternatives to averaged periodogram estimate for the last
three decades. For both types of spectral estimation, the mixed
process setting poses some complications which have been
largely ignored. This is especially true of related spectral
statistics. At frequencies sufficiently removed from sinusoid
frequencies the results of [1] and [3] can be used. But there is
the issue of what is meant by sufficient. This work provides the
tools to answer this question in a quantitative manner. The use
of spectral families, specifically the AR and MV families, as
demonstrated in [14]–[16], represents a relatively new and as
yet not popular approach to characterizing the spectral informa-
tion associated with a mixed process. The fact that the results in
this work apply to a wide range of model orders allows one to
use it to develop statistically robust sinusoid detection methods
for the case of arbitrary noise of unknown color, such as was
done in [17]. Such methods could be notably improved if one
could obtain the joint spectral statistics of family members, as
well as the behavior of the mean and variance of the family as

. Partial results along these lines are contained in
[18].

APPENDIX

Let denote transpose, denote complex conjugate.

Proof of Theorem 2:First note that since
converges in distribution, as stated by Theorem 1, it then fol-

lows [19] that . Define the following
quantities:

matrix with th off-diagonal elements

equal to and otherwise

vector with th element

equal to and otherwise.

Note in particular that is the identity matrix, is a
zero matrix, and is a zero vector. Then we have [20] for

Thus, by the chain rule

(14)

Applying [1, Proposition 6.1.6] we then have
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Fig. 2. Case 1: Theoretical (dashed) and estimated (solid) spectra’s means and variances of AR(p) model; Signal frequencies= 0.25 Hz, 0.375 Hz; SNR=
�7.3221 dB;N = 500.
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Letting for and , the result follows by using
Theorem 1 and by observing that

...
...

for

Proof of Lemma 1:The proof of this result is similar to
that of Theorem 2. First define the functionsuch that

Then, using the chain rule and (14), we have the following par-
tial derivative:

Using [1, Proposition 6.1.6], we have

where

with for and .

Proof of Theorem 3:Using (1b), (2b) and Lemma 1, we
have

(15)

and the limiting distribution with the time-domain expression
for follows from Theorem 1.

Proof of Corollary 1: The frequency-domain expression
for follows immediately as a consequences of Remark 1
and the frequency-domain expression (8) for.

Proof of Lemma 2:First recall from Remark 1 that

where with for
and . Using [1, Proposition 6.1.6], we now have

Now, since we then have

where the row vector of is just the th row of the matrix
. Then, (10) follows by a rearrangement in matrix notation.

Finally, (11) follows from some basic asymptotic results of [1,
Ch. 6].

Proof of Theorem 4:First note from (5) and Lemma 2 that

Then, together with (15), we have

Now, using yet again [1, Proposition 6.1.6], we obtain our final
result from
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