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Adder Based Residue to Binary Number Converters
for (2" —1,2",2" + 1)

Yuke Wang, Xiaoyu Song, Mostapha Aboulhamidember, IEEEand Hong Shen

Abstract—Based on an algorithm derived from the New Chi-  Several conversion methods f@™ — 1,27,2" + 1) have
nese Remainder Theorem I, we present three new residue-to-bi- heen reported [6]-[11], [15]-[18]. Early converters [17] for such
nary converters for the residue number system(2™ — 1, 2", 2" +  modylj sets use ROM, which can be limited by the sizén re-

1) designed using2n-bit or n-bit adders with improvements on oo vears converters usilg-bit or n-bit adders have been

speed, area, or dynamic range compared with various previous h . . ial |
converters. The2n-bit adder based converter is faster and requires Proposed. These converters are designed using special formulas

about half the hardware required by previous methods. Forn-bit ~ rather than the general CRT algorithm, and improvement in
adder-based implementations, one new converter is twice as fast asterms of hardware complexity has been reported. Detailed com-
the previous method using a similar amount of hardware, whereas parisons of all those converters are presented in Tables | and II.
another new converter achieves improvementin either speed, area, | this paper, for the moduli ség” — 1,2",2" + 1), we
or dynamic range compared with previous converters. present new and uniform algorithms designed using the New
Index Terms—Adders, algorithm, arithmetic, circuit, residue  Chinese Remainder Theorems for the RNS to binary conversion.
number system. Three different converters using eith@g-bit or n-bit adders
are proposed. Then-bit adder-based converter is faster and re-
I. INTRODUCTION quires about ha_lf the hardware _required by t_he previous methods
. . . 71-[9]. For n-bit adder-based implementations, one new con-
T HERE has been interest in residue number system (R’\[érter is twice as fast as the previous method [6] using a similar
arithmetic as a basis for computational hardware since thgount of hardware, whereas another new converter achieves
1950s [1], [2]. During the past decade, the RNS has receivgghrovement in both speed and area. The amount of hardware
considerable attention in arithmetic computation and sign@ the new converters is similar for thebit adder-based con-
processing applications, such as fast Fourier transforms, digijg}er compared with the one in [9]. However, in [9], not the
fiItering,_ and image proc_essing [2], [3]. _The main reasonsntire dynamic range of numbers is used.
for the interests are the inherent properties of RNS such asp, the following, we first introduce background material and
parallelism, modularity, fault tolerance, and carry-free opeferive the formulas; then, we show an example and propose

ations [3]. The technology advantages offered by VLSI haygree different hardware implementations.
added a new dimension to the implementation of RNS-based

a_rchitectures. Several high-speed VLSI special—purpose digital Il. BACKGROUND
signal processors have been successfully implemented. ) ]

The two most important issues for the residue arithmetic areFOr any two numbers andF;, z; = X mod P; is defined
the choice of moduli sets and the conversion of the residue@®X = z: + bF; for some integeb such thatd) < z; < P;.
binary numbers. The residue number system based on the se¥gpod F; can be written as(p, or [X|p. _ .
moduli(2"—1, 2", 2" +1) has gained popularity and is expected An RNS is defined in terms of a set of relatively prime moduli
to play an increasing role in RNS digital signal processing [5{£1: £2, - - - k), whereGCD(F;, P;) = 1fori # j. Abinary
For general moduli sets, the residue to binary conversions &#mberX can be represented &= (z1,2,...,x), Where
traditionally based on the Chinese Remainder Theorem (CRF)= X mod F;, 0 < z; < F;. Such arepresentation is unique
or mixed-radix conversion. Some new general conversion alggl any integerY ¢ 0,M), M = [l,cic I
rithms called New Chinese Remainder Theorems have been re=or the RNS defined on the moduliset' —1,2",2" +1),a
cently proposed with smaller size modulo operations [13], [14}inary numbeiX’ ¢ [0,27(2"—1)(2"+1)) = [0,2°"~2") can

be represented as a tugle, 22, x3), wherez; andz, are two
n-bit binary numbersgs is an + 1-bit binary number, which is
denoted as
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TABLE |

PERFORMANCE COMPARISON OF2n-BIT ADDER-BASED CONVERTERS
Converter {FAs | AND [XOR/ | CLAs | other Delay

/OR |XNOR | -2n
[8][11] 6n - ntl |2 - 2t cpaimy t 2 cpaany T 2lxor
91 6n 4n-2 | 2n 1 - 3teppam + Lror + 110821 I 4
[18] 6n n+3 n+l 1 2tpy + by Tlopgam T ux
[7]-CE 4n 2n-1 | 2n 1 2n+1 inverter 2, b+ 2y omy + 3
Converterl | 2n - 1 1 1HA, 2MUX by o T4 + 28 cpyan

2n+1 inverter

TABLE I
PERFORMANCE COMPARISON OFn-BIT ADDER-BASED CONVERTERS

FA |[MUX |XOR |AND [NV H |Me [CLA |Delay

/OR A |m
CH |2n |2n72 |1 2 Pt |10 |4 | o oo * Lox * Loram
CHI |2n |2n+2 | 2n-1 | 2%2n pnt7 |1 biw Flea t xor  Lavp + Eaux t lerany
6] |» |0 2 10 Wnt8 |0 |81 |4 | 3t +lon T Lxor * Lavp + 2lciam
[18] | 67 | 2n ntl | n+t3 0 |0 4 2tpg + 2tngnp + Tcpagn tiMux
[15] [ 2n | 2 0 0 2n 0 10 4 tor + Lanpor iy +20uux +1ra +icPam)

traditionally used. We definkal|P_ to be the multiplicative =~ New Chinese Remainder Theorem | (New CRT&)ven
inverse of; mod P, i‘e"|Pi_1|P_*Pi — 1mod P,. the residue numbefzy,zo,...,z,), the binary numberX
Chinese Remainder TheorerThe binary numbeX is com- \(/:viri]cr?ec;r?rrtl)zu:ae;siE/ys(iér}rzblisfir:e?ngsag)hesr%)vt\}r?n;totfhttah?)o?s)?r?’
— n a1 ) - ) !
puted by X' = ‘Ei:lNZ |NZ |R$”‘M’ whereN; M/P;, of the page, wheréy P, = 1mod P P, ko PP, =
and|N;Y|,, is the multiplicative inverse aN; mod P;. 1 mod Ps---P,,...,ky 1Pi--- Py 1 = 1 mod P,.
The CRT requires a moduld/ (large-valued) operation, Based on the New CRT-I, we have the following theorem for
which is not very efficient. Therefore, the converters proposed— 3.
in [6]-[11], [15], [16], and [18] use specially designed algo- Theorem 1: For a three moduli setP;, P», P3), the binary
rithms to remove the'modulM operation or to reduce t_he SiZ€nymberX = (x1,22,23) can be calculated as
of the modulo operation. For example, the converters in [6] and
[14] are based on the formul = D,*22" + D{*2" + o, X = x4 |ki(w2 — 21) + ko Po(23 — 22)|p,p, Pr (6)
and methods are required to compute the coefficiefits wherek, P, = 1 mod PyPs, andks PP, = 1 mod Ps.

and D.. In [7], [9], and [15], the converters are based on the |, section IIl, we apply (6) to the moduli sé” — 1,27, 2" +
formula X' = Y(92n_1) + 22, and methods for computingj

are needed in each paper. In [7], the numbeis calculated
as|A+ B+ C — Z|y2»_;, WhereA, B, C, andZ are2n-bit
numbers obtained froniz,x2,z3). On the other hand, the
third formula in [15] reduces the size of the modulo operation The following Theorem 2 is a direct application of The-
from M to N; at the expense that some part of the dynamarem 1.

1) to design the residue to binary converters.

I1l. BAsIC FORMULAS

rangeX € [0, M) will not be useable. Theorem 2: For the moduli se(2” — 1,2*,2" + 1), the
Recently, some alternative general conversion algorithms [themberX can be computed frorfxy, z2, x3) by the formula
New Chinese Remainder Theorems (New CRT-I, Il, and IlI "
[13], [14]] have been proposed, which reduce the size of the = *2 +2
modulo operation required by the CRT. w2 — z3) + (21 — 202 + 23)2" (2" + 1) (220 1). (7)
X = |oy + k1 Pi(z2 — 21) + ko PLPo(w3 —22) + -+ kneyPLP2 -+ Py 1 (T — Zn1)| Py Py 4)

X =a1+ Pilki(xs —z1) + ko Po(zs —22) + -+ ko1 P - Po_1 (2 — 1) pyop, 1 1, (5)

7
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Proof: Using Theorem 1 and assuming thdt = 2%, Proof: LetY = |(xg —x3)+ (21 — 2wy +23)2" 71 (2" +
P, = 2"+1,andP; = 2" — 1, we havek; = 2" andky =  1)|p2._1) in (7); then, we haveX = =z, + 2""Y, and
2n~l such that;2" = 1 mod (22" — 1) andk2™(2" +1) = Y = |(wa — z3) + (21 — 272 + 23)2" 1 +(z1 — 222 +
1 mod (2" — 1). Therefore, we have the first equation at thes)2°" | 520 _1).

bottom of the page. Since(w, — 202 + x3) = 2° |(w1 — 202+ x3)/2] + (21 —
Proposition 1: For any integera andb, we have a /2| +b = 2,. +3)2, We denoter = (21 — 22 +x3)2 = (10 B T30),
L@+ 2b)/_2J' ) z = [(x1 — 222 + x3)/2], and therefore, we have the last
Proof: Lettmgaao = amod 2, we have that equation at the bottom of the page, i.e., we have= {4 +
0 =2 bJ +ao, 27 B} o _y). QED.
.la L /la Next, we present an example using the above formulas.
a+2b=2" bJ +ap+20=2" (bJ + b) + ag Example: Consider the example shown in [6]. L& —
and therefore, we have the following proposition. 1,27, 2" +1) = (7,8,9) and a number 407, which can be rep-

Proposition 2: X can be computed by (8.1)—(8.4), shown aesented as (1, 7, 2) in the moduli set (7, 8, 9).
the bottom of the page, wheig, andzs, are the least signifi-  Now, given (1, 7, 2)= (001, 111, 0010), we have the equation
cant bits ofz; andzs, respectively, and1o ¢ x3o denotes the at the bottom of the next page. Compared with the long calcu-
XOR operation, i.e.gx19 @ x30 = 10 XOR z30. lation on [6, p. 56], the above process is much simpler.

X =242V 2" (w3 — z2) + 2" (2" + 1) (w1 — #3)| o _,
=22+ 2" |2"(x3 — Z9) + (27" — V(w3 — x2) + 2" 12" + 1) (2 — x3)|22n_1
=z, 42" |(a:2 —x3) + (27" + 2" (23 — w2) + 212" + 1)(zy — x3)|22n71
=y + 2" (w2 —w3) + 2771 (2" + 1) (w1 — 222 + x3)|22n_1 .

X oty 1)
whereY =|A + 2" B2 _y) (8.2)
A {(371 + (210 P 730)"27) +2(2" —1—z3)+ (2" — 1)J (8.3)
B = {(3?1 + (210 ® 3730)*2")24- r342(2" —1— 3?2)J (8.4)

~
Il

Ty — x3) + 22" + (310 B w30) 2" + 2727 + (w10 B ws0) 27" '] |(22n_1)
Ty — @3+ 2) + (#10 B 30) 2" 1 + 2*2" + (w10 D w30) 27" ] |(22n_1)

J + (z10 B xzo)*22n_l}

* * -2
(129 g e (=2

{(l’l - xz)J n 20*271,_1} Lom H(xl — 252 + xz)J n 20*271,_1} }
2 2
(.’L’l — .’L’g) + ZO*Zn + gn (.’L’l — 21’2 + .’L’g) + ZO*Zn
L 2 2 (227 1)

{l
{
{
_ {(_(ggl —x3)+;0*2n+2n+lJ _2n> o q(ggl —2x2+$3;i—2"+1)+zo*2"J _2n>}
{
i
{

(22 —1)

(22m-1)

(@ -1)

(371 —$3)+70*2n+2n+1J ) Py < (371 —2$2+$3+2n+1)+20*2nJ _ 1)}
2 2
(371 — 373) + 2" 2" + 2n+1 2 Lon (371 — 2z + 23+ 2n+1) + 2p*2" — 2
2 2 (2271_1)

(21 + 20*27) + (27 —1_3”3 T2 >+2" <{($1+Zo*2")+xz+ 2(2n_1_x2)J>}

(227 —1)

(22 1)
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Zo X3(n-1) X3(n—2) XSI n 0 0
e e - X
Xiny | Xan Xinay | X3 X | X, 2 o MU MU X, X,
XIO
FA FA |———| FA FA nFA1
Sn Cn—l Sn—l Cn—2 Sn—2 Cl Sl CO SO Al AZ
(a) (b)
Fig. 1. Computed usingn FAs.
IV. NEw CONVERTERS i.e., we have
In Section Ill, we presented the necessary formulas for

residue to binary conversion. In this section,
converters usin@n-bit or n-bit adders based on the formulas

(8.1)—~(8.4).

A. Basic Operations to Computéand B

We have to compute the numbérs + z*2") + (2" — 1 —

t

(2" —1—z3)+ (2" = 1)
=T3(n-1) " T310 + T3, - 'l-f3n 0+ (T30 +1).

n—

we propose new
(10)

Therefore, we have

if

T3n = 1

.’L’g) —+ (2n — 1) and(.’L’l —+ 20*271) + x3 + 2(2” -1 - .’L'Q) in

order to obtain the values of

(371 + 20*271) + (2” —-1- .’173) + (2” — 1)

= (21 +20"2") + T3(n—1) - T310 + Tan - - T30

. {(wl + 2072 + (2" — 1) + (20— 1)
2

B— \‘(371 + 20*271) + 3+ 2(2” —1- .’172)
2
Lett = (2" — 1 —23) + (2" — 1).
If z3 = 27, thenxs, = 1, x30,_1) = -~
0;t = (2™ — 2), which implies that,,_; = -
-7_73(n—1) - ...

t=1t,_1---t1ito+0= Za(n_1) ** %3104 T3y, - - - T3,0. (9)

If z3 < 2%, i.e.,x3, = 0, we have
t=(2" —1—x3)+ (2" - 1)

=T3(n-1) " T31T30 +1 o 1

=T3(n-1) - T310+ T3n

n

= T31 = T30

- Tgn 04 (T30 + 1)
—1

J and
else

J : (.’L’l +ZO*2n)+(2n_ 1—.T3)+(2n— 1)

(1 4+ 20"2") + T3n—1) - - - 7310
+ Zap - T3n0 4+ (T30 + 1).

:tlz]_

= 31, tp = 0. Therefore, we have

The addition of(z; + #0*2") + (2" — 1 — x3) + (2" — 1)
is shown in Fig. 1(a) and (b). Fig. 1(b) shows the block dia-
gram of the unit. It consists of FAs, two MUXs, onexor
gate, andn + 1 inverters. The delay of this unit is the delay
of the FA plus the delay of an inverter and the delay of a MUX.
The circuit produces two numbef,S,, 15,2 --+515¢ and
Cr_1Ch_a---C1Cp0. We denoteAl = S, 5._-15,_2---5]1
andA4; = C,,_1Cp_o---C1Cy, and thenA; + A, = A.

(371 + Zo*2n) + 3+ 2(2” —-1- .’172)

20 =T10® T30 = 1
(371 + Zo*2n) =+ (2” -1 .’173) =+ (2”

_ 1)
=100141014111 = 10101 = 21

0 2" + (20 —1 — on 1
A= |Etz2) +( > 73) +( )J:1010:10
—=1001 + 00104+ 0 = 1011 = 11

s 2(2n — 1 —
B | FLta )+9«"32+ ( $2)J:101:5

Y ={104 85} pes_, = 2+ 86 = 50
X =7+ 8Y = 407.
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XZ(n—l) X2(n—2) X2(n—3) Xzo
X3n X3(n—1) X3(n—2) X3l Xzo
Z, X1y Xl(n—2) X X XX, X,
FA FA FA |———| FA HA nFA2
Cn+n Cn—1+n C'n—2+n C1+n C0+n Bl BZ Cn+n
Sn+n n=l+n Sn—2+n S1+n S0+n
(a) (b)
Fig. 2. ComputeB usingn FAs.
XX X X, X | 2nbitCSAwithEAC |
_NFA | nFA2 | 2nbit CSAwthEAC |
Al A2 C
} 2n-bit 1's complement adder l ‘ 2n-bit 1's complement adder
X, X,
Y Y
(a) Converter | (b) Converter in [7]

Fig. 3. 2n-bit adder-based converters.

Next, we perform the additiofw; + 20*2"™) +x3 + 2(2" — B. 2n-Bit Adder-Based Converter—Converter |
1—x,) using FAs. The signal, is connected to the carry-in bit
of the full adder at the last FA in Fig. 2(a). Fig. 2(b) shows thﬁ]
block diagram of the unit. It consists aof inverters, one HA,
andn FAs. The delay of this unit (nFA2) is the delay of a full
adder plus the delay of an inverter. The circuit produces two

In the following, we present the new Converter | imple-
enting the addition in (11) using2x-bit adder.

Y = (A1 + A2 + Crgp) + 277 (B1 + Ba)lgze 1

NUMbETS Sy 410Sn— 1405241 - - S14nS04ns CrgnCh—14m =|Chn + (A1 +2"B1) + (A2 + 2" Ba)g2n 1
Cn—2+n' o Cl-l—nCO-I—n- We den0t$1 :Sn-l—nsn—l-l—nsn—Q-l—n = |Cn+n + Sn+nSn—l+nSn—2+n T
<+ S14nandBs = Cp_147,Cr—21n -+ - C14nCotn, and then, S14nSnSn-18n_2 51+ Cp—14nCr—zn -

Bl + B2 + Cn—l—n*zn = B.

ThereforeY, as defined in (8.2), now becomes CranCotnCn-1Chz - C1Coln 1)

Y = |A + 2n*B|22n_1 WhereSn—I—nSn—l—l—nSn—Q—l—n T Sl—l—nSnSn—l Sn—? e Slv and
N com Cn_1+nCn_2+n s Cl+nCo+nCn_1Cn_2 R Clco are two
=|(A1+ A2) + 2°7(B1 + By + g 2% 2201 2n-bit numbers, and’,...,, is a one-bit number.
=[(A1 + Az + Crgn) + 277 (B1 + Ba) |22 1 In Fig. 3(a), the units nFA1 and nFA2, which are used to pro-
duceA;, A,, By, and B,, are connected to Zn-bit 1's com-
ie., plement adder. Then-bit adder produces the valaé, which

forms the2n MSBs of the numbeX’, whereasc, forms then
Y = (A1 + A2 4+ Cpyn) + 2" (B1 + Ba)|ozn 1 (11) LSBs of X.

The hardware required in the new Converter | shown
where A;, A,, By, and B, are alln-bit numbers;C,.+,, isa in Fig. 3(a) is as follows:2n FAs, one HA, two MUXs,
one-bit number. one XOR gate, 2n 4+ 1 inverters, and on&n-bit 1s com-

The addition in (11) can be done in many different ways usimjement adder. The delay of the convertgy,,., is the sum
2n-bit or n-bit adders. These different implementations will bef the delay of the FAtr.4, the delay of an invertet;,.,
shown in the following. the delay of MUX typx, and the delay of then-bit
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Xl Xz X3 X1 X3

Hy o 1oy Ty I
[ I I nFA2 I I [ I I nFA1 I I |
Bl |B: B, B, Al 14 Al 14,
| CLA3 | L rClaa 1 CLA }Cj CLA? |
1
A n D, D, l D I D, ‘

™ L) M 2

rn— MUXs [ MUXs |

I | x,

r 4

. I

C,

11

Fig. 4. Converter Il—using four-bit adders.

1s complement addeticai2n) = 2tcpacn) [7], i.€., lllforthe operation. Compared with Converter Il, Converter 11
teonv = tra + tine + 2tcpacan) +tMux. achieves faster speed while using more hardware.

Inthe literature, one of the best converters u@nepitadders ~ Converter Il: In Fig. 4, we use two carry look ahead (CLA)
is presented in [7]. In order to compare the performance, vaeders to perform the operatioh + A; andA; + A +1in
show the main components used in the converter proposedgarallel. The results are denotedidg andD;» with carryry;

[7] as Fig. 3(b). The delay in [7] i8 ;.4 + tine + 2tcpacen) + andria, respectively. Ifr;; # r12, we haveD;; = 2" — 1
3t x - FOr simplicity reasons, we only compare one versicand D, = D;; + 1 = 2™. Similarly, two CLAs are used to
of the implementation in [7]. The second implementation haerform B; + B; and B; + B; + 1, whereas the results are
the same result. From the side-by-side comparison, it is easyd#noted ad)s; and Dyo with carryrs; andros. If ro1 # 799,
see that we save or2a-bit CSA with end around carry (EAC). we haveDy; = 2" — 1 andDsyy = Doy +1 = 27,

Detailed comparison of the other related converters are sumThe selector module selects the correct carry and the correct
marized in Table |, where the data for [8], [9], and [11] are froraum for the numbek; andY>. The function of the selector is
[7, Table I]. In summary, Converter | is the best converter usirdgscribed in the following.
2n-bit adders, using about half of the hardware used in [7]. The
reason for such improvement is that the converters in [8], [91,

[11], and [18] use the formulgd + B + C — Z|yen_;, where T 711 #Z 712 @nd 7oy # 720, then 7 = rp = 0.
A, B, C, andZ are2n bit numbers obtained frorfxy, z2, z3), Else if 711 = r12, then 7 = 7.
whereas the new Converter | is derived based on the New Chi- If 71 = 0, 72 = 72

nese Remainder Theorem | and is computedby= |(A4; + else 7y = 2.
Ay + Cpyn) + 27 (By + By)|sen_1, which reduces the four- EIS€ if 721 = 722, then 7y = 7y
number operation into two numbers. It re =0, r=rn

else 1 = T12.
C. n-Bit Adder Based Converters—Converter Il and Il

The addition in (11) can also be done it adders. Inthis  Therefore, the carry; = 1if (r11 = r12 = 1) or (ra1 =
section, we propose two such converters. The performance igtep = 0 andry; = 1) or (r21 = 722 = 1 andr, = 1),
be compared with the performance of the converter in [6], [15]e., 71 = 711712 + To1F22711 + 7To1722712. Similarly, 7o =
and [18], which usen-bit adders as well. Since we can onlyra; 799 + 711712721 + 711712722,
generaten-bit numbers using-bit adders, we therefore obtain The selector implements these two functions. Note here that
the valueY” in the formY = Y; + 2™*Y5, whereY; andY; are the selector does not introduce any extra delay since CLAs are
bothn-bit binary numbers. used, and the carriesy, 712, 721, andrqo are generated during
Recallthatt” = [(A; + A+ Chyyn) +27"(B1+B2)|2»_1, the carry-generation phase of the CLAs and are available for
where A4, A,, By, and B, are alln-bit numbers;C, 4, is a evaluation to the selector while the CLAs perform the summa-
one bit number. Using an-bit adder, we can add; and A, tion.
together withC,,,,, which generates a suim; and a carry;. The hardware required in Fig. 4 includga FAs, one HA,
Similarly, we can add3; and B using ann-bit adder, which 2 + 2n MUXs, onexoRr gate,2n + 5 inverters (including four
generates a su); and a carry-. Since the addition is module inverters for the selector), twaND gates for the selector, and
227 _ 1 addition, the carry-, represents a number that shouldn-bit CLAs. The delay of the converteris, ., = tino+tra+
be added to the numbet; + Az + C,4,,. For the case where tcp s(n) + tyox.
the carryrs is 0, the sumD); is the valuey; . For the case where  Converter Ill: Considering the fact thab,» = Dy + 1
the carryr, is 0, the sumD;, is the valueY; such thaty” = andDy; = Ds; + 1, we can replace the CLA2 and CLA4 in
Y; + 2™*Y,. However, when the carriegs andrs are not 0, the Fig. 4 by other combinational circuits that perform the operation
value D; and D, must be modified to obtain the correct valueD,> = D;; +1andDy; = Ds; + 1. Fig. 5 shows such a
of Y7 andY>. In the following, we propose Converter Il andconverter.



1778 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 50, NO. 7, JULY 2002

X2=(A1+43)/2- A2
Cl =(Al+ A3)mod?2
M5 Ll=m2* =1)/2-n* +1)/2 (m,n) 6
L2=m(2* -1)/2+n(2" +1)/2 evaluator
M3| Dp2=x2+12 | | Dl=X1+Ll |M4
Dy In, Do 'n, Fig. 6. Converter proposed in [6].
r—{  MUXs |rn— MUXs | X
I I ? Btinw +tra+txor +tanp + 2tcpam) = 8+ 2logn. The
Y Y delay of Converter Il is almost half of the delay of the converter
2 1 .
in [6].
Fig. 5. Converter lll—using Z-bit adders. Assume the straightforward implementation of the CLA,

which consists of a carry look-ahead unit and a summation
The circuitpluslperforms the function of adding 1 torabit ~ Unit, which, in total, requiren + (1/2)n(n + 1) AND gates,
input number. ConsideD = d,,_d,_>---didy, D + 1 = 2n XOR gates, anch OR gates. The hardware requirement in
dp_1dp_2--dido+1 = epen_1en_o---c1eo. We have the [6] is even higher than the hardware required in Converter I,
following equations, which imply that the circyituslrequires Whereas its delay is longer.

n — 1 XOR gates anch AND gates plus 1 inverter.
- V. CONCLUSION
eo =do; e1=dy®dido; ¢ = d;®d;i1---do;

Three different residue-to-binary converters for the special
Cn—1 =dp_1 éBdn—Q"'dO; en = dpn_1dn_2---do. y P

moduli (2™ — 1,2™, 2™ 4 1) have been presented in this paper.
The hardware required in Fig. 5 includés FAs, 2 + 2»  Compared with various previous proposed converters, the new
MUXs, 1+ 2(n — 1) XOR gate,2n + 5 + 2 inverters (including converters proposed here have better performance in terms of
four inverters for the selector and two for the plus-1 circuitgpeed and area. The new converters are designed based on the
2 + 2n AND gates for the selector and tipéus-1circuit, one recently introduced New Chinese Remainder Theorems. Itis ex-
HA, and 2n-bit CLAs. The delay of the converter ts,,,, = Pected that for other moduli sets, the New Chinese Remainder
tine ttra +txoRrR ttcram) +tanp +tnux. Theorems will also improve the design of residue-to-binary con-
In order to make clear comparison, the Fig. 6 shows the maiarters.
components for the converter proposed in [6]. No detailed im-
plementation is given for each module in [6]. We evaluate the ACKNOWLEDGMENT

performance based on [4]. Recently, the results in [4] are alsorpg gthors kindly acknowledge detailed comments from ref-

used to evaluate the performance in [7]. Modules M1 and Mgees, which have improved the quality of the manuscript.
require two CLAs and one CSA, where all atebit adders,

one XOR for generating C1, an@n inverters for 2s comple-
ment operation. M3 and M4 require two additional CPAs and .
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