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Appendix A

Experimental Results

Results from the experiments performed in Chapter 3 are presented here.

A.1 Exponential Horn

299
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Figure A.1: Exponential horn, frequency410Hz
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A.2 Conical Horn
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Appendix B

Optimisation techniques

This appendix describes the optimisation techniques used in this thesis. It discusses global

verses local optimisation, gradient based, non-gradient based global optimisation tech-

niques, surrogate modelling, space filling sampling and global optimisation techniques

for expensive objective function evaluations.

B.1 Global optimisation

Global optimisation strives to find the global minimum of an objective function, i.e. to

minimise a functionf (x), you must find a value ofx = x∗ such thatf (x∗) < f (x) for all

x. Most optimisation techniques strive to find a local minimum, a pointx = x∗ such that

f (x∗) < f (x) for |x−x∗| ≤ δ, whereδ > 0 (i.e. for all x in a bounded region nearx∗).

In many real world problems both local and global minima simultaneously exist. As an

example, consider the simple function (from Sasena 2002)

f (x) = −sin(x)−exp
( x

100

)

+10 (B.1)
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Figure B.1: Plot showing both local and global minimum of Equation (B.1).

Figure B.1 shows a plot of this function, which contains the global minimum (x= 7.86,f (x) =

7.92) and a local minimum (x = 1.58,f (x) = 7.98).

B.2 Gradient based techniques

There are many different types of optimisation methods available to solve many different

types of problems. A good overview of different optimisation techniques is given in

the introductory textbook by Belegundu and Chandrupatla (1999). A popular method of

optimisation makes use of both the objective function valueand derivatives with respect

to optimisation parameters. These gradient based optimisation methods search for local

minima in objective function space, starting from an initial guess. There are many types

of gradient based optimisation, and all methods answer two basic questions in their search

for a minima: which is the best direction to find a minima?; andhow far do I travel in this

direction?

The University of Adelaide. Department of Mechanical Engineering.



B.2. Gradient based techniques 319

Sequential Quadratic Programming (SQP) is a popular gradient based technique that

solves a locally quadratic approximation to the objective function surface to find the best

direction (the Quadratic Programming algorithm), and thenperforms a line search to find

out how far to move. The quadratic approximation is then madeagain around the new

point and the operation is performed repeatedly until convergence (the Sequential part

of the algorithm). The method is able to handle both linear and non-linear constraints.

Belegundu and Chandrupatla (1999) Section 5.10 has a good introduction to Sequential

Quadratic Programming. A robust implementation of SQP, based on the work of Schit-

tkowski (1985), is found in the MATLAB optimisation toolbox functionfmincon and used

in this thesis.

When applied to optimisation of Equation B.1, SQP will find either the local minimum

or the global minimum depending on which side of the local maximum (x = 4.70) the

minimisation technique is started. The inability to find theglobal minimum from any

starting point is a major failing of gradient methods such asSQP. They often have to be

run many times from different starting positions, and a globally optimum solution is not

guaranteed.

Gradient based methods also require the gradient of the function to be minimised. For

analytic functions such as Equation B.1, calculation of thegradient is not difficult. For

real engineering problems, such as those formulated in thisthesis, the analytic gradient is

not generally available. A number of approaches are used: numerical approximations to

the gradient, automatic differentiation programs and adjoint formulations.

The gradient is generally evaluated numerically by either forward or central differences.

A forward difference can be calculated thus

∂ f
(

x0
)

∂xi
=

f
(

x0
1,x

0
2, . . . ,x

0
i + ε, . . . ,x0

n

)

− f
(

x0
)

ε
, i = 1, . . . ,n

wherex0 =
{

x0
1,x

0
2, . . . ,x

0
i , . . . ,x

0
n

}

is a vector of input parameters, andε is the step size.

Horn Loaded Loudspeakers. Richard C. Morgans.
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This approximation to the true gradient requires an additional function evaluation for each

dimension considered, in addition to the original evaluation atx0 . The value of the gradi-

ent is also dependent on the choice of step sizeε. Most mesh based numerical techniques,

such as those used in this thesis, can produce relatively large changes in function value

for a small change in input, which makes numerically evaluated gradients problematic.

Automatic differentiation (Bischof et al., 1998) is an attractive scheme that provides

source code for analytic gradients from the source code of the function itself. It does

this by parsing the function source code and applying the chain rule automatically to the

individual operations contained within. As can be imaginedthis is a significant task and

these programs are not robust, not generally available and are limited to a single pro-

gramming language. They are a topic of current research and look promising for future

optimisation methods.

The adjoint technique (Noreland, 2002, Jameson, 1995, 2003, Ghayour and Baysal, 2000,

Belegundu and Chandrupatla, 1999) can be used in certain problems to efficiently evaluate

the gradient of the objective function. It uses a mathematical technique that forms an

“adjoint” problem that calculates the gradient with the same cost as a single extra function

evaluation, no matter the dimension of the minimisation to be performed. This technique

has not been applied to the source superposition method before, and will not be considered

further in this thesis.

B.3 Non-gradient based global optimisation techniques

The issues associated with gradient based methods such as local minimisation and diffi-

cult evaluation of the function gradient have been overcomeby non-gradient based, non-

deterministic global methods such as genetic algorithms (Goldberg, 1989, Deb, 2001) or

simulated annealing (Ingber, 1993). It has been found that such techniques can require
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many thousands (or even tens of thousands) of objective function evaluations. For expen-

sive cost function evaluations, non-deterministic methods can lead to intractable solution

times. One solution for the efficient calculation of such problems is parallel computing

(Howard et al., 2004).

An alternative to non-deterministic global optimisation is the deterministic sampling DI-

RECT algorithm (Jones et al., 1993). This method requires noknowledge of the objective

function gradient. It samples points in the domain, and thenuses these points to decide

where to sample next, with equal merit given to both local andglobal searches. For a

proof of convergence of the algorithm in the dense sampling limit see Finkel and Kelley

(2004).

The implementation of DIRECT used in this thesis is the MATLAB implementation of

Finkel (2003), which allows constrained minimisation. When applied to minimising

Equation B.1, the DIRECT algorithm finds an acceptable global minimum within 333

function evaluations. This is a much larger than the 20 function evaluations required to

reach a global optimum for SQP (this is, of course, provided that the starting point of the

SQP procedure is already near the global minimum). The DIRECT algorithm does find

the global minimum basin in a small number of function evaluations, and this suggests a

hybrid strategy where a small number of DIRECT iterations are performed to find a point

near a global optimum and the SQP engaged to efficiently find the global minimum. The

success at finding a true global minimum using this strategy will depend on the function

optimised. Sasena (2002, Appendix A.3.4) describes an implementation of DIRECT that

contains a local search option, using SQP but embedded in theDIRECT algorithm, which

seems a promising augmentation to the DIRECT algorithm.
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B.4 Surrogate modelling techniques

The idea of surrogate modelling techniques (or meta-modelling) is to replace the ex-

pensive cost function evaluation with a model that is both cheap to construct and eval-

uate. There are many such techniques available, including polynomial response sur-

face methods (Myers and Montgomery, 1995), artificial neural networks (MacKay, 1992,

Belegundu and Chandrupatla, 1999), Multivariate AdaptiveRegression Spline (MARS)

(Friedman, 1991), and the one used in this thesis, Kriging (Cressie, 1991, Santner et al.,

2003).

Kriging techniques, developed in the geostatistics and spatial statistics fields, fits a surface

to values from a set of data points. It models the variation ofthe unknown function

ŷ(x) as a constant value plus the variation of a normally distributed stochastic variable.

The Kriging model used in this thesis is from the MATLAB DACE toolkit (Lophaven

et al., 2002b), and allows the simple creation of a Kriging model with a wide variety of

regression and correlation functions, with predictions ofthe mean function value, ˆy(x),

mean square error of the function,σ̂2(x), the gradient of the function ,∂ŷ(x)
∂x , and also

the gradient of the error,∂σ̂2(x)
∂x , from this model. This thesis uses a constant regression

function and a general exponential correlation function (Lophaven et al., 2002b). The

details of the modelling process are beyond the scope of thisthesis, as there are many

references to the derivation of the Kriging interpolation process (Cressie, 1991, Santner

et al., 2003, Lophaven et al., 2002b, Jones, 2001, Jones et al., 1998).

As example of Kriging, Equation B.1 is predicted by a subset of points evaluated atx =

{0,3.4,5.9,6.7,7.6,10}. The Kriging approximation is shown in Figure B.2, the true

value is shown in black, the blue dots are the points at which the function is calculated

exactly. The red line is the Kriging approximation to the mean value of the prediction.

Kriging also gives information about the error in prediction between the known values (at

which the true function is known and the error goes to zero), and the orange envelope gives

95% confidence intervals for the prediction. It should be noted that the variance calculated
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by the Kriging function is only a prediction of the true variance, and is underestimated by

the usual Kriging techniques such as those found in the Matlab toolbox DACE (Lophaven

et al., 2002b). The reasons behind this and a description of amore sophisticated statistical

technique (bootstrapping) may be found in den Hertog et al. (2004). This underestimation

may explain why the true value of the function plotted in Figure B.2 is actually outside

the lower bound atx≈ 1.5. For the purpose of this thesis, the standard Kriging prediction

of variance is deemed acceptable, as it is generally only used to find the next most likely

position to sample.
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Figure B.2: Kriging approximation to Equation (B.1) with95%confidence interval for prediction
from a subset of points.

Kriging has been found to be a very useful tool for Design and Analysis of Computer Ex-

periments (DACE), and for optimisation of expensive objective functions. The technique

can become computationally expensive for a large number of data points (np ≥ 1000).

Horn Loaded Loudspeakers. Richard C. Morgans.



324 Appendix B. Optimisation techniques

B.5 Improved Distributed Latin Hypercube Sampling

When producing a Kriging model, it is imperative for the accuracy of the predictions

made that the underlying points evenly sample the parameterspace. A simple choice

would be a regular grid of points, however this soon becomes prohibitively expensive as

the number of dimensions increase. To find an even distribution of sample points inn

dimensional space is not a trivial task, and is the topic of current research (Cioppa, 2002,

Romero et al., 2003).

The technique of Latin Hypercube Sampling (LHS) was introduced by McKay et al.

(1979) and is commonly used in DACE. A purely random (Monte-Carlo) sampling tech-

nique samples directly from the joint probability distribution of the input variables. For

all cases considered in this thesis, the input variables areconsidered uniformly distrib-

uted (equally likely). This method is not very efficient whensmall numbers of samples

are used to find the distribution of the output variables, andLHS was developed to over-

come these shortcomings. LHS is a constrained Monte-Carlo sampling technique, that

divides the input space up into a number of equally likely “bins”. These bins are then

sampled without replacement (Matlab functionrandperm) in each dimension and a point

chosen within each bin. While this technique produces better sampling distributions that

the Monte-Carlo sampling, it has been found to produce inferior distributions when a

one dimensional uniform random distribution is projected onto more than one dimension

(Beachkofski and Grandhi, 2002).

The Improved Distributed Latin Hypercube Sampling technique of Beachkofski and Grandhi

(2002) overcomes this issue by trying to sample points such that the distance between

them is close to the optimal spacing for the number of points.This technique can become

computationally expensive for a large number of sample points (np ≥ 1000). Figure B.3

shows a comparison between LHS and IHS for 21 sampled points.It is evident from vi-

sual inspection that the IHS has “less space” than LHS. The IHS method is used in this

thesis to evenly sample points for the Kriging meta-models.
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(b) Improved Latin Hypercube Sampling

Figure B.3: Comparison between space filling sampling techniques with 21 points sampled.

B.6 Enhanced Global Optimisation (EGO)

There has been much research into finding a method of efficiently optimising functions in

which the evaluation of the cost function is extremely expensive, where they are typically

expensive numerical methods such as Computational Fluid Dynamics, FEA simulations

or a combination of both (Booker et al., 1998). The work of Jones et al. (1998), refined by

Sasena (2002) into the algorithmsuperEGO, has developed an efficient method for global

optimisation, called Enhanced Global Optimisation1.

This technique uses a Kriging meta-model to predict the values of the objective function

at a few, sparsely distributed sample points. Instead of trying to optimise the value of the

mean prediction directly, information about the error in the prediction from the Kriging

meta-model is utilised, and a optimisation performed on an auxiliary subproblem to pick

the next position for the (expensive) function evaluation.Solving the Infill Selection Cri-

teria (ISC) subproblem finds a position that is “most likely”to obtain a better function

1Originally called SPACE in Schonlau (1997).
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evaluation, taking into account the error in the meta-model. Direct optimisation of the

Kriging meta-model implicitly assumes that the meta-modelaccurately represents the ob-

jective function. Sasena (2002) developed the ideas of Schonlau by examining a variety

of ISC, as well as extending the algorithm to constrained optimisation. He used the DI-

RECT method (Finkel, 2003) to optimise the ISC subproblem. Jones (2001) also gives a

good overview of various ISC, including more sophisticatedtechniques that look ahead

to include the potential error of the Kriging model in findingthe next best sample.

To examine the performance of the EGO technique, the Krigingapproximation to Equa-

tion B.1 shown in Figure B.2 will be optimised using the lowerconfidence bounding ISC

(Sasena, 2002),

LCB= ŷ−bσ̂ (B.2)

whereŷ is the mean value and̂σ2 is the mean squared error of the prediction, andb is a

user defined parameter describing the emphasis between local (b= 2) and global (b= 2.5)

search.

Figure B.4 shows the results of 4 iterations for the local search, and Figure B.5 shows the

global search results. The ISC minimum, used to select the next candidate for updating

the Kriging meta-model, is shown as a red dot.

As the iteration proceeds for the search for the best next location, the ISC does not sample

near the local minimum, and all selected points are near the global minimum. If the search

is terminated at 4 iterations, then a total of 9 function evaluations have been completed,

compared to 20 for SQP and 333 for DIRECT.

Whenb = 2.5 (Figure B.5 ), the search proceeds more globally. Figure B.5 (b) shows

the second ISC selection near the local minimum. By Figure B.5 (d) the ISC selection is

back near the global minimum, having removed uncertainty that the local minimum could

have been a global one. To reach the same point as the locally biased search, the globally

biased search required 12 function evaluations.
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(c) Iteration 3
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(d) Iteration 4

Figure B.4: EGO optimisation of Equation (B.1) using a lowerconfidence bounds ISC, with em-
phasis on local search (b = 2).

It should be clear that the optimisation procedure will still tend to a global minimum with

a locally biased search, however if the initial sampling is too sparse, a potential global

minimum may be missed. Jones (2001) states that a there is no guarantee of finding a

global minimum if the lower confidence bound ISC is used with aconstant parameterb.

It may be prudent to focus on strategies that include a globalsearch component, such as

starting with largeb early in the search, later transitioning to a local one with small b to

speed up convergence, similar to the “cooling” schedule of Sasena (2002, Table 4.1). Al-

ternatively cycling between various values ofb throughout the optimisation process would
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Figure B.5: EGO optimisation of Equation (B.1) using a lowerconfidence bounds ISC, with em-
phasis on global search (b = 2.5).

allow both a local and global search. Questions could then arise as to which values ofb

should be used. Adopting a technique similar to Jones (2001)in his “Enhanced Method

4”, where in a single iteration a number of different values of b are tried, producing a

number of potential sample sites. Many of these sample points will be the similar, and

they can then be clustered into a number of distinct groups using a statistical technique

such as the k-means test. A representative of each group is then sampled, leading to both

local and global searching.
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Alternative ISC are given in Schonlau (1997), Jones (2001) and Sasena (2002). One

important criteria is the Expected Improvement (EI) function, as this contains both local

and global search components. The improvement function is defined as the improvement

of the current prediction, ˆy(x), at pointx over the minimum value of the current set of

samples,fmin, i.e.

I = max( fmin− ŷ(x) ,0) (B.3)

The expected improvement ISC, defined as the expectation of the improvement, is given

by

EI = E [I ] = ( fmin− ŷ(x))Φ
(

fmin− ŷ(x)
s(x)

)

+s(x)φ
(

fmin− ŷ(x)
s(x)

)

(B.4)

WhereΦ(x) is the standard normal cumulative density function,φ(x) is the standard

normal probability density function ands(x) is the estimated standard deviation of the

prediction at pointx. This criteria contains two terms, a local term related to the difference

between the current smallest value and the prediction and a global term related to the

standard deviation. When the expected improvement has found many local values and

the difference between the current smallest value and the prediction is small, the standard

deviation will dominate and a global search will ensue. Thisbehaviour is exemplified in

Jones (2001, Figure 20).

Appendix C compares the interpretation by Sasena (2002) of the Regional Extreme (RE)

criteria with the criteria originally proposed by Watson and Barnes (1995). It finds this

new interpretation different, and that the original implementation, the minimisation of a

“regional minimum extreme” is equivalent to Schonlau’s expected improvement. It also

finds that an alternative implementation of Sasena’s criteria (which cannot be called a re-

gional extreme criteria) may not find the global optimum. Forthese reasons the Regional

Extreme Infill Sampling Criteria is not used in this thesis.

One good reason for Sasena’s adoption of his “regional extreme” criteria is that its smooth

variation helps the constrained minimisation technique used (the DIRECT global optimi-
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sation technique) find a suitable solution easily. ISC such as the expected improvement

have large plateaus with values close to zero, making constrained minimisation difficult

Sasena (2002, Page 101). The RE of Sasena is not a good choice for finding a global

optimum. The LCB criteria (Equation B.2) has a relatively smooth variation, although

with points of inflection at the sample positions. Although not used in this thesis, it is

suggested that the LCB criteria with multipleb values (similar to Jones (2001) in his “En-

hanced Method 4”) be tested for problems with constraints, and that constrained EGO is

still very much a current research topic.

The use of surrogate models with probabilistic ISC has the potential to reduce the number

of objective function evaluations significantly, providedthe evaluation of the objective

function is expensive. However the cost of fitting the Kriging model and the DIRECT

optimisation of the ISC subproblem may not warrant the extraoverhead if the cost func-

tion evaluation is cheap. The crossover point between usingEGO and DIRECT will be

problem dependent.
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Appendix C

Regional Extreme Infill Sampling

Criteria

The Regional Extreme (RE) Infill Sampling Criteria (ISC) of Sasena (2002) is quoted as,

RES = ŷ(x)+( fmin− ŷ(x))Φ
(

fmin−ŷ(x)
s(x)

)

+s(x)φ
(

fmin−ŷ(x)
s(x)

)
(C.1)

Whereŷ(x) is the current prediction at pointx, fmin is the minimum value of the current set

of samples,Φ(x) is the standard normal cumulative density function,φ(x) is the standard

normal probability density function ands(x) is the estimated standard deviation of the

prediction. This criteria can be written in terms of the current prediction, ˆy(x), at pointx

plus the expected improvement (Equation B.4) at that point,

RES = ŷ(x)+EI (C.2)

For a minimisation problem, this form of ISC is inconsistent, as the EI term is generally

positive, and large when either the probability of a point being better than the current
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minimum point is large, or the standard deviation is high. The addition of a positive term

that describes the improvement to the mean value of the prediction in a minimisation

problem will not find a value near the best expected value.

Sasena (2002) reports that the RE criteria performs well on the problems considered. One

hypothesis for this is that the RE ISC in effect minimises thevalue of the predictor ˆy(x) as

the magnitude of the EI may be many times smaller. The relative magnitudes of the mean

value and EI depends on the function to be minimised, and the ability to find a global

minimum depends on the initial sampling and the accuracy of the initial Kriging model.

For the example given in Sasena Figure 4.5, (and reproduced in Figure (B.2) of this thesis)

the EI is very small in comparison to the mean value of the predictor. A minimisation of

the mean value of the predictor may not find a global optimum for the same reasons that

Jones (2001) found the LCB criteria may not, because minimising the predictor is the

same as minimising the LCB criteria forb = 0.

Further evidence of the anomalous performance of the RE ISC is given in Siah et al.

(2004) where the RE criteria fails to find improvement after anumber of iterations, and the

value of the predictor is then optimised directly. The reasons behind this poor performance

need to be further investigated, but is beyond the scope of the current study.

Referring to the original paper of Watson and Barnes (1995),their second criteria, a re-

gional extreme, is derived for finding a regional maximum extreme. The derivation is

repeated here. Given a known constantβ and a normally distributed continuous random

variableZ with meanµ, standard deviationσ and probability density function

f (x) =
1

σ
√

2π
e
−(x−µ)2

2σ2 (C.3)

find the expected value of the maximum ofZ or β, i.e.

E [max(Z,β)] =

Z ∞

−∞
max(t,β) f (t)dt (C.4)
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Following the definition of the max function, and thatβ is a constant, the integral in

Equation C.4 can be partitioned into two integrals,Z ∞

−∞
max(t,β) f (t)dt =

Z ∞

β
t f (t)dt+

Z β

−∞
β f (t)dt (C.5)

Next, using Z ∞

−∞
t f (t)dt =

Z β

−∞
t f (t)dt+

Z ∞

β
t f (t)dt (C.6)

we can write,

E [max(Z,β)] =

Z ∞

−∞
t f (t)dt−

Z β

−∞
t f (t)dt+

Z β

−∞
β f (t)dt (C.7)

The first integral term is just the mean valueµ of the random variableZ. We want to

express the second two integrals in terms of the standard normal probability density func-

tion,

φ(x) =
1√
2π

e
−x2

2 (C.8)

and the standard normal cumulative density function,

Φ(x) =

Z x

−∞

1√
2π

e
−t2

2 dt (C.9)

where the standard normal distribution has a mean of 0 and a standard distribution of 1.

To do this, we will introduce the transformations

x =
t −µ

σ
(C.10)

dx =
dt
σ

(C.11)
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and defineξ, the value ofβ normalised by the distribution mean and standard deviationas

ξ =
β−µ

σ
(C.12)

Substituting transformation C.12, as well as the definitionof the probability density func-

tion (C.3) into C.7 gives

E [max(Z,β)] = µ−
Z β−µ

σ

−∞

t
σ

1√
2π

e
−x2

2 dx σ+

Z β−µ
σ

−∞

β
σ

1√
2π

e
−x2

2 dx σ (C.13)

= µ+σ
(Z ξ

−∞

β
σ

φ(x)dx−
Z ξ

−∞

t
σ

φ(x)dx

)

(C.14)

= µ+σ
(Z ξ

−∞

β−µ
σ

φ(x)dx−
Z ξ

−∞

t −µ
σ

φ(x)dx

)

(C.15)

= µ+σ
(Z ξ

−∞
ξφ(x)dx−

Z ξ

−∞
xφ(x)dx

)

(C.16)

Knowing thatξ is a constant, the first integral becomes a standard cumulative density

function. The second integral can be shown to beZ ξ

−∞
xφ(x)dx = −φ(ξ) (C.17)

This gives

E [max(Z,β)] = µ+σ(ξΦ(ξ)+φ(ξ)) (C.18)

= µ+(β−µ)Φ(ξ)+σφ(ξ) (C.19)

Replacing the general random variableZ with the random variableY that describes the

Kriging prediction, andβ with the maximum value of the current sample setfmax leads to

REmax = ŷ+( fmax− ŷ)Φ
(

fmax− ŷ
s

)

+sφ
(

fmax− ŷ
s

)

(C.20)

6= ŷ+EI (C.21)
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6= RES (C.22)

which is the same as Equation C.1 withfmin replaced byfmax, but not equal to the predic-

tion added to the expected improvement, which is Sasena’s regional extreme (Equation

C.2) as the expected improvement involves the minimum existing sample value, not the

maximum.

Similarly, we can work out the regional minimum extreme, as suggested by Watson and

Barnes (1995),

E [min(Z,β)] =
Z ∞

−∞
min(ξ,β)φ(ξ)dξ (C.23)

=

Z β

−∞
tφ(t)dt+

Z ∞

β
βφ(t)dt (C.24)

= µ−
Z ∞

β
tφ(t)dt+

Z ∞

β
βφ(t)dt (C.25)

= µ+σ
(Z ∞

ξ
ξφ(x)dx−

Z ∞

ξ
xφ(x)dx

)

(C.26)

= µ+σ(ξ(1−Φ(ξ))−φ(ξ)) (C.27)

= β−σ(ξΦ(ξ)+φ(ξ)) (C.28)

= β− ((β−µ)Φ(ξ)+σφ(ξ)) (C.29)

This gives

REmin = fmin−
(

( fmin− ŷ)Φ
(

fmin− ŷ
s

)

+sφ
(

fmin− ŷ
s

))

(C.30)

= fmin−EI (C.31)

So the regional minimum extreme is equal to the negative of the expected improvement

criteria, plus a constant value (fmin). Minimisation of this function will lead to the same

minimum as maximising the expected improvement.

In conclusion, the interpretation by Sasena (2002) of the Regional Extreme (RE) criteria
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has been compared with the criteria originally proposed by Watson and Barnes (1995). It

finds this new interpretation different, and that the original implementation, the minimisa-

tion of a “regional minimum extreme” is equivalent to Schonlau’s expected improvement.

It also finds that an alternative implementation of Sasena’scriteria (which cannot be called

a regional extreme criteria) may not find the global optimum.
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Appendix D

Bézier curves

The Béezier spline is specified by two vectors, with the curvetangent to the head of each

vector, and the “strength” of attachment to the vector determined by the length of the

vector.
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Figure D.1: Bézier curve (black line) with control vectors (blue lines).

The position of the curve is given by the cubic polynomialsx(t) = axt3+bxt2+cxt +x0

andy(t) = ayt3+byt2+cyt +y0, wheret varies between 0 and 1 between the start(x0,y0)
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and end(x3,y3) points. (Plant, 1996). The coefficient values can be calculated from the

given points as;

cx = 3(x1−x0) (D.1)

bx = 3(x2−x1)−cx

ax = x3−x0−cx−bx

and

cy = 3(y1−y0)

by = 3(y2−y1)−cy (D.2)

ay = y3−y0−cy−by
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