
Chapter 5

Numerical models of horn loaded

loudspeakers

The accurate and timely prediction of far field acoustic pressure is important in the design

of horns. This chapter compares results from experiments ontwo representative horn

loaded loudspeakers with the numerical techniques described in the last chapter.

It has been found that the source superposition technique iscapable of modelling these

horns accurately over a wide range of frequencies, and is fast enough to become a com-

ponent of a further optimisation technique.

5.1 Introduction

The source superposition technique of Koopmann and Fahnline (1997), when combined

with a number of calculation speed enhancing modifications (described and verified in

Chapter 4), is an ideal candidate for calculations of the beamwidth of acoustic horns. It

is able to accurately model the far-field pressure from a spherical cap mounted on the

surface of a sphere. The technique is not limited to a one dimensional approximation
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128 Chapter 5. Numerical models of horn loaded loudspeakers

such as those traditionally used to model horns (Holland et al., 1991, McLean et al.,

1992, Mapes-Riordan, 1993), which has been shown to be invalid above a certain limiting

frequency in Chapter 3.

This chapter aims to validate (Babuska and Oden, 2004) the source superposition numer-

ical model by comparison to experiment, and to alternative numerical methods, such as

the direct BEM of Wu (2000). First, the experimental setup used is described and the

result obtained reported. These results are then compared to those obtained by the direct

BEM and the standard source superposition boundary elementmethod over a frequency

range limited by computational time of the direct BEM. Experimental results over a larger

frequency range are then compared to the source superposition method with the modifi-

cations described in the previous chapter. Finally conclusions are drawn as to the utility

of numerical modelling of horn loaded loudspeakers using the source superposition tech-

nique.

5.2 Experiments

The unbaffled horns described in Section 3.2.2 were placed onan indexed rotating plat-

form (turntable) on an elevated tower inside a large open space. The sensitivity, or pres-

sure frequency response for 2.828 Volt rms input (1 W rms into8Ω), of each horn was

measured at a distance of 3 m from the centre of the mouth of thehorn in 5◦ intervals

ranging from on-axis (0◦) to 90◦ off-axis. Figure 5.1 shows a diagram of both side and

plan views of the setup.

At each frequency of interest, a polar plot of the magnitude of the measured acoustic

pressure, normalised by the maximum pressure, was produced. Figure 5.2 shows the

sound field of the two step conical horn at three different frequencies: 550 Hz, which is a

low frequency for this size horn and shows a wide beam of sound; 2000 Hz, which shows

a narrowing of the sound field; and 4600 Hz, which shows a beam pattern with an on

The University of Adelaide. Department of Mechanical Engineering.



5.2. Experiments 129

axis null, and is evidence that a velocity distribution other than that corresponding to the

plane wave mode exists at the horn mouth. These experimentalresults give impetus for

the development of accurate numerical models of horn loadedloudspeakers.

Horn Loaded Loudspeakers. Richard C. Morgans.
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Figure 5.1: Experimental setup for measuring beamwidth. The horn sits on an indexed turntable
on a large tower. The sound pressure is measured at a large distance from the horn while the horn
is rotated in5◦ intervals.
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Figure 5.2: Polar plot of the magnitude of the measured pressure, normalised by the maximum
pressure at that frequency, for a two step conical horn at three different frequencies.
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Figure 5.3: Experimental measurements of the variation of beamwidth with frequency for expo-
nential and two step conical horns.
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132 Chapter 5. Numerical models of horn loaded loudspeakers

5.3 Comparison to standard numerical methods

Simulations of both the exponential and two step conical horns have been undertaken

for both the direct BEM and the standard source superposition techniques. Figure 5.4

shows the surface mesh used to discretise the exponential horn, at a nominal 6 elements

per wavelength. Figure 5.5 shows the same for the two step conical horn. Note the

quarter symmetry, to reduce computation time, and the need for the horn to be placed

in an artificial cylindrical volume for the direct BEM. This requirement is discussed in

Section 4.2.3 in detail (see Figure 4.6). A small volume is placed over the rear of the horn

throat in the source superposition mesh to stop sound radiating out the rear of the horn.

A unit velocity was placed at the throat of the horn, represented by the darker areas in

Figures 5.4 and 5.5.

As found in Chapter 4, the number of variables to be solved is critical for the perfor-

mance of the numerical methods based on boundary element techniques. The direct BEM

method discretises each element with a linear variation between each node and the num-

ber of variables is the number of nodes in the mesh. The sourcesuperposition technique

places a discrete source at the centroid of each element, andthe number of variables to be

solved is the number of elements. Table 5.2 compares the number of variables to be solved

for the direct BEM and the source superposition technique for both the exponential and

two step conical meshes. Matrix inversion is an orderN3 operation (Golob and Van Loan,

1996), and a speedup of between 3 and 5 would be expected basedon the reduction in

mesh size alone (i.e. excluding matrix assembly time). Thisis a significant advantage

of the source superposition technique in modelling thin structures such as horns. The

number of elements used in the direct BEM method could be reduced by decreasing the

size of the exterior volume. How to do this automatically is not clear, as the obvious

solution of a “thin” surface that conforms to the shape of thehorn introduces numerical

issues (Martinez, 1991), see Section 4.2.3. Of course othernumerical techniques such

as the direct mixed method of Wu (1995) and the variational indirect method of Hamdi

The University of Adelaide. Department of Mechanical Engineering.
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and Ville (1986), and Vlahopoulos and Raveendra (1998) could be used. Availability of

source code, along with no clear speed advantage, excluded the first choice and the need

for a time consuming double integration excluded the secondmethod.

Method Exponential Two step conical

Direct BEM 1216 1105
Source Superposition 849 631

Table 5.1: Comparison of matrix size produced by the direct BEM and source superposition tech-
nique.

The beamwidth of the horns was calculated for frequencies from 300 to 5000 Hz at 50

Hz intervals. The upper frequency was chosen to limit the runtime required for the direct

BEM method. Figure 5.6 shows a comparison with experimentalresults for both direct

BEM and the source superposition method. The agreement between both methods and

experiment is excellent. The trends exhibited by the experimental results are captured

by both numerical methods. Both horns exhibit different beamwidth behaviour above a

certain frequency, and this difference gives confidence that these techniques are capable

of modelling the far field response from a horn of arbitrary geometry. There is a larger

difference between the beamwidth calculated by the numerical techniques here than was

found in the previous chapter (see, for example Figure 4.43). The reason for this dif-

ference is the different meshing strategies needed for eachmethod when modelling thin

structures such as these horns.

The standard source superposition technique was found to produce results approximately

13 to 20 times faster than the direct BEM, with the simulations run on an Intel P4 1500

MHz with 512 Mb of RAM running Windows XP.

In conclusion, this section has shown that numerical modelsare capable of reproduc-

ing the sound field generated by horn loaded loudspeakers from a specification of the

horn geometry. The accuracy of the reproduction is adequatefor design purposes within

the given frequency range. Both the direct BEM and the standard source superposition

Horn Loaded Loudspeakers. Richard C. Morgans.
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Method Total Time / Freq Factor
[seconds] [seconds]

Direct BEM 27096 285 13
Source Superposition 1984 21 1

(a) Exponential

Method Total Time / Freq Factor
[seconds] [seconds]

Direct BEM 21137 222 20
Source Superposition 1055 11 1

(b) Two step conical

Table 5.2: Comparison of computational time using the direct BEM and source superposition
techniques,6 elements per wavelength at5000Hz.

technique are capable of reproducing the experimental beamwidth, however the source

superposition technique is considerably faster. A calculation time of 5 to 7 hours for 95

frequencies, such as that required for the direct BEM, is notfeasible for inclusion in any

sort of practical optimisation routine.

The University of Adelaide. Department of Mechanical Engineering.
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Figure 5.4: Surface mesh of the exponential horn,6 elements per wavelength at5000Hz.
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Figure 5.5: Surface mesh of the conical horn,6 elements per wavelength at5000Hz.
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Figure 5.6: Comparison of measured and calculated beamwidth for the direct BEM and source
superposition techniques,6 elements per wavelength at5000Hz.
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138 Chapter 5. Numerical models of horn loaded loudspeakers

5.4 Comparison at higher frequencies

The upper frequency considered in the previous section (5000 Hz) was limited by practical

consideration of the computational time required for the direct BEM. Using the techniques

developed in Chapter 4 for the source superposition technique, a more useful limit of

12000 Hz is investigated. This corresponds to aka≈ 36, with a the radius of the horn

mouth including the flange. Previous numerical studies of horn loaded loudspeakers that

model beamwidth appear to have been limited in their upper frequency range to below

ka≈ 15 (Section 2.3).

In this section, the source superposition technique is usedto simulate the horns with a

linear variation in frequency between 300 Hz and 12000 Hz. Atfrequencies higher than

the cut on of the first mode at the throat (> 610 Hz, see Table 2.1), the assumption of

a plane wave produced at the horn throat by the compression driver can be questioned,

and experimental evidence of this has been found by Behler and Makarski (2003). The

GMRES iterative solver with a loose (1×10−3) tolerance (Section 4.4.2) is used for all

simulations. Three different meshes are used, with variousmeshing strategies. Figure

5.7 shows a mesh for each horn at a nominal mesh density of 6 elements per wavelength,

Figure 5.8 shows a 3 elements per wavelength mesh and Figure 5.9 shows a 3 elements

per wavelength mesh, with 12 rotationally symmetric sectors, to take advantage of the in-

crease in assembly speed available with this symmetry (Section 4.4.3). For shapes that are

not rotationally symmetric, this last meshing strategy is not applicable. Horns used in the

cinema industry are not generally rotationally symmetric (they are generally quarter sym-

metric), and the numerical methods used in this thesis are general and hence applicable

to these horns. This is, in fact, a theme that runs through this thesis, that any optimisa-

tion method developed should be generally applicable, and is the reason an axisymmetric

BEM was not used.

The results obtained show a general excellent agreement between the numerical results

and the experimental results, as shown in Figure 5.10. The exponential horn shows good

The University of Adelaide. Department of Mechanical Engineering.



5.4. Comparison at higher frequencies 139

agreement to above 10000 Hz, where the experimental and numerical methods diverge

slightly. The results for the two step conical horn show excellent agreement over the

entire frequency range.

The reason for the disagreement between results in the exponential horn above 10000 Hz

is unclear. Figure 5.11 compares the measured and calculated directivity at a frequency

of 11000 Hz, where there is some disagreement. Both numerical results give a slightly

wider beamwidth than experiment. It is possible that higherorder modes generated by

the compression driver at these frequencies are able to propagate down the smooth vari-

ation in cross section of the exponential horn. This phenomenon would not be modelled

by the numerical method, because only a plane wave is input atthe mouth of the horn.

This behaviour is not exhibited by the two-step conical horn, and it is hypothesised that

the abrupt junction between the steps is already generatinghigher order modes, hence

the good agreement between experimental and numerical results. The degree of agree-

ment between the results is extremely good, given the resonance of the diaphragm in the

compression driver is probably below 10000 Hz, and the difference in path length of the

phasing plug (see Figure 2.4) is in the order of 3.4 cm.

The time taken to compute the solutions is shown in Table 5.3,showing the 3 elements per

wavelength, rotationally symmetric method is very computationally efficient, whilst still

giving sufficient accuracy for comparison to experimental results, at least to a frequency of

10000 Hz, above which deficiencies in modelling boundary conditions at the horn throat

may become a factor.

The total time required for simulation of these horns using the fastest method is still about

17 minutes. This time is a significant saving over the estimated 16.5 hours required by

the direct BEM for this same frequency range, however it is still too long for inclusion in

an optimisation method.

The frequency resolution of these simulation is quite fine, with a 50 Hz frequency spacing.

This can be reduced whilst still retaining information about the performance of the horn.

Horn Loaded Loudspeakers. Richard C. Morgans.



140 Chapter 5. Numerical models of horn loaded loudspeakers

Method Total Time / Freq Factor
[seconds] [seconds]

6EPW 14172 60 15
3EPW 1537 7 1.8

3EPW, rotational symmetry 992 4 1

(a) Exponential

Method Total Time / Freq Factor
[seconds] [seconds]

6EPW 14870 63 15.8
3EPW 1908 8 2

3EPW, rotational symmetry 1056 4 1

(b) Two step conical

Table 5.3: Comparison of computational time taken for different meshing strategies.

Figure 5.12 shows the results at different frequency resolutions. The results at the lowest

frequency resolution give the same broad trends as the finestresolution, whilst losing

some of the fine details; however in comparison to the experimental results, the agreement

is excellent. The estimated time required by the method at a linear frequency resolution

of 400 Hz is 2 minutes, making this technique suitable for optimisation of these horns

over this frequency range.

In summary, the source superposition technique, using a GMRES solver with a loose

(1×10−3) tolerance, 3 elements per wavelength, reducing assembly time by taking ad-

vantage of rotational symmetry and using a linear frequencyspacing of 400 Hz can sig-

nificantly reduce the time required to simulate horn loaded loudspeakers. It gives results

for beamwidths that are suitable for design purposes, although results above 10000 Hz

may not be accurate due to inadequacies of modelling the compression driver.

The University of Adelaide. Department of Mechanical Engineering.
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Figure 5.7: Surface mesh of the exponential and conical horns, 6 elements per wavelength at
12000Hz.
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Figure 5.8: Surface mesh of the exponential and two step conical horns,3 elements per wavelength
at12000Hz.
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Figure 5.9: Surface mesh of the exponential and conical horns, 3 elements per wavelength at
12000Hz with 12 rotationally symmetric sections.

Horn Loaded Loudspeakers. Richard C. Morgans.



144 Chapter 5. Numerical models of horn loaded loudspeakers

0 2000 4000 6000 8000 10000 12000
20

40

60

80

100

120

140

160

180

Frequency [Hz]

B
ea

m
w

id
th

 [D
eg

re
es

]
Experimental
6 elements per wavelength
3 elements per wavelength
3 elements per wavelength, rotationally symmetric

(a) Exponential

0 2000 4000 6000 8000 10000 12000
20

40

60

80

100

120

140

160

180

Frequency [Hz]

B
ea

m
w

id
th

 [D
eg

re
es

]

Experimental
6 elements per wavelength
3 elements per wavelength
3 elements per wavelength, rotationally symmetric

(b) Two step conical

Figure 5.10: Comparison of measured and calculated beamwidth for the source superposition
technique with different meshing strategies.
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Figure 5.12: Comparison of measured and calculated beamwidth for the source superposition
technique with different frequency resolutions.
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5.5 Conclusions

The aim of this chapter was to validate the source superposition numerical model by

comparison to experiment, and to alternative numerical methods, such as the direct BEM.

It has been shown that such models are capable of reproducingthe sound field generated

by horn loaded loudspeakers from a specification of the horn geometry. The accuracy of

the reproduction was found to be adequate for design purposes within the given frequency

range. Both the direct BEM and the standard source superposition technique are capable

of reproducing the experimental beamwidth, however the source superposition technique

is considerably faster.

Techniques to speed up the solution times the source superposition technique, reported in

Chapter 4, have been applied to the modelling of horn loaded loudspeakers. It was found

that using:

• a GMRES solver with a loose (1×10−3) tolerance;

• a mesh with 3 elements per wavelength;

• reducing assembly time by taking advantage of rotational symmetry;

• a linear frequency spacing of 400 Hz

can significantly reduce the time required to simulate horn loaded loudspeakers. It gives

results for beamwidth that are suitable for design purposesup to frequencies of about

10000 Hz for these horns. These numerical models are now suitable for use in optimisa-

tion techniques to be developed in further chapters.

Horn Loaded Loudspeakers. Richard C. Morgans.





Chapter 6

Frequency independent beamwidth

transducers

The “holy grail” of horn design is twofold; an easily specified frequency independent

beamwidth, and a smooth frequency response. Work performedon Constant Beamwidth

Transducers (CBT) for sonar applications both theoretically (Rogers and Van Buren,

1978) and experimentally (Van Buren et al., 1983) has both ofthese desirable features.

The concept used in the development of CBTs is explored in this chapter in relation

to horn design, giving cues as to how to design an optimum horn. An efficient semi-

analytical model of the transducer is used to develop methods for robust beamwidth opti-

misation.

6.1 Introduction

The concept of a Constant Beamwidth Transducer (CBT) was suggested by Rogers and

Van Buren (1978) with the primary aim of developing a sonar orultrasonic projector

that has a theoretically unlimited frequency independent beamwidth. The uses suggested
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150 Chapter 6. Frequency independent beamwidth transducers

for the transducer included broadband echo ranging, high data rate communications and

highly directive ultrasonic transducers. The claimed advantages for CBTs are extensive;

uniform acoustic loading, extremely low side-lobes, virtually no near-field, and an es-

sentially constant beam pattern for all frequencies above acertain cutoff frequency. The

CBT concept is not just theoretical, as a comprehensive paper was published (Van Buren

et al., 1983) on the design and implementation of such a device. An experimental CBT

sonar projector was constructed and results presented overa wide range of frequencies,

exemplifying the CBT advantages.

Further evidence that the CBT theory could be fruitful in thedesign of horns lies with the

work of Keele (2000), who brought CBT theory to the notice of the audio community by

applying it to arrays of discrete sources on a spherical cap.The theory has been applied

to two dimensional arrays, such as those used in stadium sound (Keele, 2003), and also to

flat panel arrays by the use of signal delays (Keele, 2002). This flat panel implementation

is of interest to horn designers because it shows that the desired velocity profile can be

achieved by shapes other than spherical surfaces.

Of very great interest to practical horn designs is the ability to independently control the

two axes of beamwidth. Keele (2000) shows evidence that thisis possible with CBT

theory by showing the results of a calculation of a shaded array on the surface of a toroid,

giving the desired beamwidth control in each axis. A more rigorous solution could be

derived using spheroidal (Falloon et al., 2003) or ellipsoidal functions (Abramov et al.,

1995, Levitina, 1995) although that approach would not be a trivial exercise.

The work described in this chapter aims to examine the applicability of the concept used

in the development of constant beamwidth transducers to horn design using the numerical

methods developed in previous chapters, and to develop optimisation techniques to be

used in future chapters.

First, the theory of constant beamwidth transducers, whichis based on the sound radiated

by a specific velocity distribution on the surface of a sphere, is reviewed. The CBT

The University of Adelaide. Department of Mechanical Engineering.
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velocity distribution, as well as similar velocity distributions suggested by Jarzynski and

Trott (1978) and Geddes (2002) is examined. This is done by extending the numerical

technique developed in Section 4.2.1 to calculate arbitrary velocity distributions. Results

calculated using the semi-analytical method are compared with results calculated using

the source superposition technique (Section 4.2.4) to examine the effect of removing part

of the spherical surface of the CBT. Then various optimisation techniques are utilised to

find the optimum velocity distribution of a CBT. This is done as a precursor to finding an

optimum horn geometry, which is discussed in future chapters. Finally conclusions as to

the utility of CBT theory and its application in horn optimisation are drawn.

6.2 CBT Theory

Acoustic radiation from the surface of a sphere can be calculated analytically using an

infinite sum of orthogonal functions (Morse and Ingard, 1986). The derivation of the

pressure field produced by an arbitrary velocity profile on the surface of a sphere (a ve-

locity profile that varies with angular position, and given by U (r,θ)|r=a) was given in

Section 4.2.1, with Equation 4.21 for pressure and Equation4.19 for velocity coefficient

reproduced here for reference as Equations 6.1 and 6.2.

p = − jρc
∞

∑
n=0

UnPn(cosθ)
h(2)

n (kr)

h′(2)
n (ka)

(6.1)

Un =

(

n+
1
2

)Z π

0
U (r,θ)|r=a Pn(cosθ)sinθdθ (6.2)

CBT theory recognises that if the velocity profile,U (r,θ)|r=a, on the surface of the sphere

is a single complete Legendre polynomial,Pn, thenUm6=n = 0 due to the orthogonality

of Legendre polynomials, and the pressure profilep contains only a single term in the

summation. The angular variation in pressure is the same as the chosen velocity profile

at all frequencies. In fact, any other velocity profile will lead to a frequency dependent

Horn Loaded Loudspeakers. Richard C. Morgans.
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far-field response. Figure 6.1 shows the angular variation of two orders of Legendre

polynomials.
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Figure 6.1: Angular variation of Legendre polynomials of order (a) 5 and (b) 10.

Using these profiles to produce a far-field pressure distribution is not desirable because

of their lobed nature. Rogers and Van Buren (1978) have shownthat by truncating the

velocity profile atθ0, the angle made by the first zero of the Legendre function1 , i.e.

Pv(cos(θ0)) = 0, and setting the velocity to be zero for all angles greater than θ0, an

asymptotic form of frequency independent far-field response can be achieved.

The velocity profile for a CBT can be represented by Equation 6.3,

ucbt =











u0Pν (cosθ) , 0 < θ < θ0

0 , θ0 < θ < π
(6.3)

where the orderν must be found for eachθ0. Figure 6.2 shows these responses for the

same orders as Figure 6.1.

1It can now be a Legendre function of non-integer order (Pν) rather a Legendre polynomial of integer
order (Pn), because the restriction of single valued pressure aroundthe sphere is relaxed.

The University of Adelaide. Department of Mechanical Engineering.
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Figure 6.2: Constant Beamwidth Transducer velocity profilefor Legendre polynomial order (a) 5
and (b) 10.

This velocity profile was shown in Rogers and Van Buren (1978)to concentrate the energy

in the lower order terms of the Legendre expansion, achieving the asymptotic (frequency

independent) form quickly. This is the region of “geometricacoustics” as described by

Morse and Ingard (1986, Page 340), and the ratio of surface pressure to applied velocity

(specific acoustic radiation impedance) isρ0c over the entire surface of the sphere. One

consequence of this, since the velocity is prescribed to be zero over the surface of the

sphere at angles greater thanθ0, is that the physical surface of the sphere can be removed

at these angles, leaving a spherical cap as the active part ofthe transducer. This reduces

the size of the transducer, and gives hope to the design of horns using this theory by

applying these boundary conditions over an imaginary spherical cap represented by the

mouth of the horn. The problem then becomes how to shape the horn profile to give the

required velocity distribution.

The velocity profile for a CBT in Equation 6.3 is cumbersome touse. Rogers and Van

Buren (1978) give approximations forν as a function ofθ0, and Keele (2000) gives a

third order polynomial approximation to the velocity profile. This third order polynomial
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approximation does not have the same slope as a Legendre polynomial (∂ucbt
∂θ

∣

∣

∣

θ=0
= 0) at

θ = 0 . Following the example of Keele, a fourth order polynomialapproximation was

found. Using boundary conditionsucbt (0) = u0, ucbt (θ0) = 0 as well as∂ucbt
∂θ

∣

∣

∣

θ=0
= 0

this approximation follows the same boundary conditions asthe underlying Legendre

function. The Legendre functionPν was calculated using a hypergeometric series2 in

1
2 (1−cosθ) truncated at 100 terms, and the zeros found using the MATLAB function

fzero. There was a small variation in the shape of the function whennormalised byθ0,

over a range ofθ0 from 1◦to 50◦. A least squared fit between the normalised Legendre

functions and the 4th order polynomial gives Equation 6.4.

ucbt =











u0

(

1−1.471
(

θ
θ0

)2
+0.1951

(

θ
θ0

)3
+0.2756

(

θ
θ0

)4
)

, 0 < θ < θ0

0 , θ0 < θ < 180◦

(6.4)

The nominal design angle (θnom) is the angle at which the velocity profile reaches 0.5u0.

For the CBT velocity profile, ofθnom= 0.64θ0.

6.3 Other methods for obtaining a frequency indepen-

dent beamwidth

A review of the literature has found that methods other than those described in the previ-

ous section have been used to produce frequency independentbeamwidths. The frequency

independence of arrays has been addressed before (Chou, 1995, Van der Wal et al., 1996,

and references contained within) by utilising a series of “nested sub-arrays”. One array is

optimised for a single frequencyf0 and the next is optimised for a frequency of 2f0. The

size of the second array is half the first and the arrays are filtered so that the first is oper-

ating fully at frequencyf0 and is off at frequency 2f0, and vice versa for the second array.

2The hypergeometric series forPν can be written asa1 = −ν, a2 = ν + 1, z= 1
2 (1−cosθ), andPν =

1+a1a2z+ 1
(2!)2 a1 (a1 +1)a2(a2 +1)z2 + 1

(3!)2 a1 (a1 +1)(a1 +2)a2(a2 +1)(a2 +2)z3 + . . .

The University of Adelaide. Department of Mechanical Engineering.
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Constant beamwidth is then achieved over an octave range. This type of constant beam-

width control would be very difficult to implement in a singlehorn, and is not considered

further here.

Molloy (1968) describes a way to produce a prescribed far-field pressure pattern. The

pressure profile is specified as a Chebychev polynomial, which has a single main lobe

and many secondary lobes of the same height. The width of the main lobe and the ra-

tio between the primary and secondary lobes can be specified independently. The surface

velocity required to produce the far-field pressure can thenbe calculated. There is no com-

ment in this paper as to the frequency dependence of the required surface velocity, and it

is suspected that there is frequency dependence, unless thesame asymptotic assumptions

as the CBT can be made. It is not known how quickly the Chebychev polynomial reaches

the asymptotic regime as compared with the CBT. It would alsobe difficult to specify the

required side lobes when implemented as a horn, and again, this kind of transducer is not

considered further.

The work of Jarzynski and Trott (1978) applies a similar reasoning to Section 6.2 in the

design of a broadband constant beamwidth transducer array.They consider an acousti-

cally transparent surface, presumably for the design of receiving arrays, but the velocity

profile used should be equally applicable to a solid CBT. Theyuse a velocity profile that

is a linear combination of differing powers of cosnθ,

uJT =
n

2(2n+1)
cosn θ+

1
2

cosn+1 θ+
n+1

2(2n+1)
cosn+2 θ (6.5)

wheren is an integer. If a non-integern is used in Equation 6.5,uJT becomes complex,

and the absolute value should be used to describe the velocity variation. It was found that

n = 3.80 would give a good approximation toθnom= 30◦.

Geddes (2002, Section 6.6), in the context of horn (or waveguide) design, says that “it is

possible, and reasonable, to do a waveguide design backwardby specifying the desired
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polar response pattern, calculating the required mouth velocity;...”, and goes on to show

some very impressive results (Geddes, 2002, Figure 6.21 - Optimized velocity profile

and Geddes, 2002, Figure 6.22 - A Polar pattern with smooth angular variations) that

show a wide band constant beamwidth. The velocity profile, which has presumably been

calculated by some form of numerical optimisation, is similar to the Jarzynski and Trott

profile. The Geddes velocity profile has been digitised from the figure, and fitted using

least squares giving,

uG =











u0

(

1−cos

(

(

1− θ
θ0

)1.16
π
))

, 0 < θ < θ0

0 , θ0 < θ < π
(6.6)

andθnom = 0.45θ0. The main difference between the CBT and the Geddes / Jarzynski

and Trott profiles is the smooth decay as the profile approaches θ0 (i.e.∂u
∂θ

∣

∣

∣

θ=θ0

= 0).

Figure 6.4 shows the uniformly vibrating cap, CBT, Geddes and Jarzynski and Trott veloc-

ity profiles, all for the same nominal beamwidth (60◦, or a 30◦ half-angle). By definition,

the value of the velocity profile at the half angle is one half of the value on the axis (or

−6 dB down in SPL). It can be seen that the CBT, Geddes and Jarzynski and Trott veloc-

ity profiles extend beyond the nominal beamwidth angle due totheir gradually decaying

profiles. It is interesting to note that the first half of the Geddes and Jarzynski and Trott

profiles are remarkably similar to the CBT profile, with much smoother “tails”.

6.4 Semi-analytical calculation technique

Simulations using Equation 6.2 can be performed easily if the termUn (Equation 6.1)

can be calculated. In Section 4.2.1 these terms have been calculated analytically for a

uniformly vibrating spherical cap on the surface of a sphere(Equation 4.23), where the

The University of Adelaide. Department of Mechanical Engineering.
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Figure 6.3: Comparison of velocity profiles for the same nominal half-angle (30◦).

velocity of the vibrating cap is given by Equation 4.22, reproduced below as Equation 6.7.

uC =











u0 , 0 < θ < θ0

0 , θ0 < θ < π
(6.7)

Other velocity profiles do not have analytical solutions, and numerical techniques must

be used to integrate Equation 6.1. A robust numerical integration routine, capable of

integrating up to at least ordern = 400, has been written to calculate these values for

velocity profiles that may vary arbitrarily with angle. As the numerical integration can be

computationally expensive, an adaptive routine is used to calculate terms in the series to a

given tolerance, and a caching method used to avoid recalculation of expensive functions.

As a check of the semi-analytical numerical integration technique, a comparison between

the beamwidth calculated using the semi-analytical methodand that calculated using the

analytical method described in Equation 4.23 was made. The beamwidth is defined as the

“angle formed by the -6dB points (referred to the on-axis reading) and the source center”
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(Davis and Davis, 1997), and is a measure of the distributionof sound in the specified

plane (see Section 2.1.2). The calculations were undertaken for frequencies ranging from

300 to 20000 Hz for a 30◦ spherical cap with a uniform velocity distribution mountedon

the surface of a sphere with radius 0.165 m. The general size and frequency range are

similar to those of the horn loaded loudspeakers analysed inthis thesis. Figure 6.4 shows

no difference between the two solutions.
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Figure 6.4: Comparison of analytical and numerical beamwidth calculations for30◦ spherical cap
on the surface of a sphere with a uniform velocity distribution.

At very high frequencies, the angular variation in the normalised pressure field should

have the same angular variation as the underlying velocity field (Morse and Ingard, 1986,

Page 340). In other words the beamwidth at high frequencies should have the same under-

lying angular variation as the prescribed velocity profile.This is not the case for the 30◦

spherical cap mounted on the surface of the sphere (which should have a 60◦beamwidth),

even at 20000 Hz (aka of over 60). The reason behind this is the slow decay in magni-

tude of the velocity coefficients with increasing order (seeFigure 6.7 for a comparison of

velocity coefficient magnitude for different velocity profiles, and the discussion in Rogers

and Van Buren (1978) and Van Buren et al. (1983)).

The University of Adelaide. Department of Mechanical Engineering.
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In summary this section shows that the semi-analytical calculation technique developed

for calculating velocity coefficients (Equation 6.1) givesthe same results for beamwidth

as an analytical solution (Equation 4.23), and can be used for calculations where the

velocity profile has an arbitrary angular variation.
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6.5 Full sphere simulations

Simulations of the beamwidth produced by the four differentvelocity profiles shown in

Figure 6.3 are compared using the semi-analytical method. To provide a fair comparison

between each profile, the overall width of the spherical cap,b, was fixed at 0.330 m, the

same dimension as used in the experimental horns in Chapter 3. For the same nominal

half-angle, in this case 30◦, each profile has a different finishing angle (θ0). The radius

of curvature of the each sphere,a, was calculated bya = b/2sinθ0. The spherical cap

profiles are illustrated in Figure 6.5 and the spherical radii, a, given in Table 6.1. It should

be noted that the numerical integration technique will integrate over the entire sphere,

however for most profiles the velocity is zero outside the cap. The Jarzynski and Trott

profile is designed to fully cover the surface of the sphere, and never reaches zero. For

this case, the radius of curvature is chosen to be the same as that of the Geddes profile,

and a direct comparison of the change in velocity profile “tail” can be made.

-0.165

0

0.165

Cap CBT Geddes /

Jarzynski and Trott

C
a
p
 w

id
th

Figure 6.5: Comparison of spherical cap profiles for a constant cap width.

Calculations of the beamwidth generated by each profile wereperformed using the semi-

analytical integration scheme up to 20000 Hz, and appear in Figure 6.6 in both linear

The University of Adelaide. Department of Mechanical Engineering.
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Profile Radiusa
[m]

Piston 0.330
CBT 0.225

Geddes 0.180
Jarzynski and Trott 0.180

Table 6.1: Radius of curvature to keep a constant cap width.

and logarithmic form. The piston beamwidth does not reach the nominal angle as the

frequency increases. The CBT beamwidth overshoots then approaches from below with

rising frequency and reaches the nominal angle at high frequencies. The Geddes and

Jarzynski and Trott profiles smoothly approach the nominal angle from above at low fre-

quencies, and are superior in constant beamwidth performance to the CBT profile. The

Geddes profile reaches the nominal beamwidth at a lower frequency than the Jarzynski

and Trott profile. The low frequency performance of each velocity profile is different.

The frequency at which the beamwidth starts narrowing is lowest for the piston profile

(∼ 1400 Hz), next highest for the CBT profile (∼ 2000 Hz) and highest for the Geddes

(∼ 3000 Hz) and Jarzynski and Trott (∼ 5000 Hz) profiles. This implies that there may

be a trade off in low frequency performance for smooth beamwidth, and that the size of

the velocity profile “tail” also has an affect on low frequency performance.

Figure 6.7 shows the rate of decay of the Legendre mode strength (U2
n ) with increasing

ordern, calculated using the semi-analytical integration technique. The Geddes profile

decays most rapidly, followed by the CBT, then the piston. This shows that the energy

is contained in the lower order terms of the Legendre expansion, achieving asymptotic

(frequency independent) form with a rapid decay of the higher terms (Rogers and Van

Buren, 1978). The Jarzynski and Trott profile initially rapidly decays to levels below the

Geddes profile, but then the rate of decay decreases. This is possibly due to the profile

not decaying to zero velocity at extreme angles, or more likely due to a “non optimal”

velocity profile.
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The Jarzynski and Trott profile is not further considered in this thesis because the Geddes

profile is able to provide superior performance, and the specification of the Jarzynski

and Trott profile using Equation 6.5 is difficult, as new values of n are required for each

nominal design angle. It may be possible to analytically finda velocity profile that is

“more optimal” than the Geddes profile but that is not considered in this thesis; instead

robust numerical optimisation methods are needed to find optimum shapes of horn loaded

loudspeakers, not velocity profiles over spherical caps.

This section compared the full sphere calculations of a spherical cap on the surface of

a sphere with CBT, Geddes and Jarzynski and Trott velocity profiles. The frequency

independent beamwidth performance of each profile was assessed, with the Geddes profile

giving superior smoothness, possibly at the expense of low frequency performance.

The University of Adelaide. Department of Mechanical Engineering.
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Figure 6.6: Beamwidth comparison for different velocity profiles.
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Figure 6.7: Legendre mode energy decay for different velocity profiles.
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6.6 Spherical cap simulations

One of the noted advantages of a CBT is the ability to remove the surface of the sphere

over which the velocity is zero. This cannot be tested using the semi-analytical integration

technique (Section 6.4), as this implicitly assumes a solidsurface over the entire sphere.

The source superposition technique (Chapter 4.2.4) is a general numerical technique and

can be applied in this situation. The source superposition technique was applied to sim-

ulating the uniformly vibrating spherical cap, CBT and Geddes velocity profiles, up to

12000 Hz in the absence of the part of the sphere that has zero prescribed velocity. A

rigid plate covers the rear of the spherical cap to stop soundradiating from the back of

the spherical surface. The mesh used for the spherical cap, coloured with normal velocity,

appears in Figure 6.8 (a). In this case, the red surface represents the uniform velocity over

the surface of a spherical cap, and the blue surface represents the plate covering the rear

of the spherical cap, with zero velocity. A comparison of calculated beamwidth with the

full sphere numerical simulation beamwidth appears in Figure 6.8 (b). There appears to

be little difference in beamwidth over the entire frequencyrange considered.

The mesh used for the CBT velocity profile, coloured with normal velocity, appears in

Figure 6.9 (a) and the calculated beamwidth compared to the full sphere numerical sim-

ulation beamwidth appears in Figure 6.9 (b). There is a smalldifference between the

beamwidths at low frequencies, and virtually no differenceover the rest of the frequency

range considered.

The mesh used for the Geddes velocity profile, coloured with normal velocity, appears

in Figure 6.10 (a) and the calculated beamwidth compared to the full sphere numerical

simulation beamwidth appears in Figure 6.10 (a). Again there is a small difference be-

tween the beamwidths at low frequencies, and virtually no difference over the rest of the

frequency range considered.

This section has shown numerically that constant beamwidththeory does not apply ex-
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clusively to spheres. As suggested in Rogers and Van Buren (1978), the surface over

which the velocity is zero can essentially be removed with noloss of performance. This

gives hope that a horn profile can be found that generates the same velocity profile over

an imaginary spherical surface that covers the mouth of the horn, producing a frequency

independent beamwidth above a certain limiting frequency.

The University of Adelaide. Department of Mechanical Engineering.
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Figure 6.8: Comparison between the full sphere semi-analytical solution and the cap only source
superposition technique for the spherical cap velocity profile.
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superposition technique for the Geddes velocity profile.
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6.7 Optimised Geddes velocity profile

From the previous sections it has been shown that the form of velocity profile described

by Equation 6.6 has characteristics that allow an “optimal”beamwidth response. A gen-

eralised version of this profile can be described by,

uopt =











u0

(

1−cos
((

1− θ
θ0

)n
π
))

, 0 < θ < θ0

0 , θ0 < θ < π
(6.8)

wheren is now a parameter that changes the shape of the profile as opposed to previously

being a constant. This velocity profile now has two variables, n andθ0.

Figure 6.11 shows the variation of the profile shape with the parametern varied from 0.2

to 2, whilst holding nominal design angle (θnom, the angle at which the velocity profile

reaches 0.5u0) constant. There is a large variation in normalised profile,from no tail for

n = 0.2 to a very large tail forn = 2.
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Figure 6.11: Comparison of velocity profiles asn changes from0.2 to 2, θnom constant.
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The obvious choice for optimisation of this profile, would beto setθnom= Bnom, the de-

sired beamwidth, as we know that the far field pressure profile(and hence the beamwidth)

will be proportional to the velocity profile in the asymptotic limit. Optimisation on the

parametern until a smoothness criterion is minimum would then ensure the asymptotic

limit is reached at the lowest possible frequency. However as a more general test of the

optimisation routines to be used in future chapters, bothn andθ0 will be varied.

6.7.1 Objective functions

For any optimisation, an objective function describing therelative merit of the current

solution must be calculated. The stated objective for designing horn loaded loudspeakers

is a smooth, frequency independent beamwidth. One type of objective function that is

commonly used is a least squares objective function (Objective function #1),

minΦ1

Φ1 = ∑(B (f ≥ fmin)−Bnom)2
(6.9)

whereB (f) is a vector of beamwidths calculated using the semi-analytical numerical

method over a range of frequencies described by the vectorf. The operatorf > fmin

selects only those frequencies abovefmin, Bnom is the nominal (or desired) beamwidth.

Examination of Figure 6.6 shows that for the “optimal” solution of Geddes, the beamwidth

is smooth only above a certain limiting frequency (fmin), in this case approximately 3000

Hz.

The reason for selecting frequencies above a lower limit (fmin) is that at low frequencies

the beamwidth is very wide. The inclusion of low frequency beamwidths would shift the

mean value of the beamwidth up, and increase the standard deviation, and the resulting

metrics would not represent “constant beamwidth behaviour”. Currently the lower fre-

quency limit is arbitrarily defined to befmin = 3100, based on experimental evidence of

the low frequency performance of horns with the same mouth size (Figure 5.10).
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Objective function #1 is attractive because it concisely states the objective for designing

horn loaded loudspeakers; that is, over the range of frequencies considered, any deviation

away from the nominal beamwidth is penalised. Conversely, if all values of the beam-

width are equal to the nominal beamwidth, then the objectivefunction is exactly zero.

The objective function also does not require any constraints (other than perhaps an up-

per and lower bound), which may be an advantage in implementation of the optimisation

algorithm.

To examine the potential performance this objective function, values ofΦ1 were calcu-

lated for a range of profile parameters,n varying from 0.2 to 2 andθ0 from 20◦ to 90◦.

Each parameter was calculated at 25 evenly spaced points, for a total of 625 samples. In

all cases, the diameter of the spherical cap on the surface ofthe sphere is held the same,

so the curvature is allowed to change (as exemplified in Figure 6.5). The variation of

Φ1 is very large, and it may be preferable for both visualisation and optimisation to use

the natural logarithm ofΦ1. This value is contoured in Figure 6.12, and shows multiple

minima, pointed to by black arrows. The global minimum is represented as a red dot.
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Figure 6.12: Contours oflnΦ1, the logarithmic least squared objective function.
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The presence of multiple local minima in the same vicinity isnot helpful in finding a

global minimum using gradient methods, and alternative objective functions are sought.

In returning to the original stated objective for designinghorn loaded loudspeakers; that is

a “smooth, frequency independent beamwidth”, the standarddeviation of the beamwidth

calculated over a desired frequency range is a measure of smoothness (the lower the bet-

ter), and the mean value of the beamwidth calculated over a desired frequency range will

give the target value for design (Bnom). Some combination of the above measures may

lead to a smoother objective function. Defining,

Φ2 = mean(B (f ≥ fmin)) (6.10)

Φ3 = std(B (f ≥ fmin)) (6.11)

wheremean(x) andstd(x) are the mean and standard deviation of vectorx, respectively.

Figure 6.13 shows the variation ofΦ2 andΦ3 over the same range of parameters used

to generate Figure 6.12. There is a very smooth variation inΦ2 and a relatively smooth

“optimal basin” forΦ3.

An ideal approach to finding an optimal solution would be a multi-objective optimisation

(Belegundu and Chandrupatla, 1999, Deb, 2001) where bothΦ2 andΦ3 would be opti-

mised simultaneously to obtain a set of solutions that wouldbe able to trade off smooth-

ness for a mean beamwidth angle. The designer could then choose a solution from this

set that was able to best meet their needs. However, full multi-objective optimisation is a

topic of current research and beyond the scope of this thesis.

A simple form of multi-objective optimisation is to turn themultiple objective functions

into a minimisation function and a secondary constraint. This is possible when there is

a known (and achievable) target function value. In this case, the smoothness parameter

(Φ3) is used as the minimiser, and the mean beamwidth value (Φ2) is used to constrain

the function to the required value. This objective function(Objective function #2) can be

Horn Loaded Loudspeakers. Richard C. Morgans.



174 Chapter 6. Frequency independent beamwidth transducers

written as,

minΦ3 (6.12)

with equality constraint

Φ2 = Bnom (6.13)

In some cases, it may be necessary to relax the equality constraint to a bounded or pseudo-

equality constraint such as,

Bnom− ε ≤ Φ2 ≤ Bnom+ ε (6.14)

whereε is a tolerance parameter that describes how close to the nominal beamwidth the

optimisation is constrained.

Equation 6.14 can be reformulated as two inequality constraints,

Bnom−Φ2 ≤ ε

Φ2−Bnom ≤ ε
(6.15)

Figure 6.14 shows the natural logarithm of the smoothness function,Φ3, overlaid with a

contour ofΦ2 = 60◦ (the black line). The red dot shows the minimum of this function,

and the black arrows show local minima of the smoothness function Φ3. The intersection

of the black line and the minimum value of the contoured function is a graphical solution

to objective function #2 withBnom= 60◦. The use of the natural logarithm in this case is

for visual acuity, as the range of variation of this functionis not as severe as parameter

Φ1.
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Figure 6.13: Contours ofΦ2 andΦ3, the mean and standard deviation of the beamwidth.
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The University of Adelaide. Department of Mechanical Engineering.



6.7. Optimised Geddes velocity profile 177

6.7.2 Optimisation

There are many different optimisation techniques that can be used to minimise the objec-

tive functions given in Section 6.7.1. Belegundu and Chandrupatla (1999) give a good

introduction to optimisation and Appendix B contains an overview of the optimisation

techniques used in this thesis.

All optimisation methods evaluate the objective functionsmany times during the search

for an optimal solution. Even though the semi-analytical numerical method is a relatively

fast way to calculate the beamwidth, and hence functionsΦ1 andΦ2, it is still time con-

suming. Because the solutions had already been calculated over a relatively fine rectangu-

lar grid to visualise the functions in Figures 6.12 and 6.13,an interpolation method called

Kriging (See Appendix B.4) was used approximate the functions between the known val-

ues. This was done using the MATLAB DACE toolkit (Lophaven et al., 2002b,a). This

technique effectively interpolates the function values and gradients between known val-

ues, and can be effective in reducing overall computationaltime when objective function

or constraint function evaluations are expensive to calculate.

It was found that the MATLAB optimisation toolbox functionfmincon, a Sequential

Quadratic Programming (SQP, see Appendix B.2) optimisation technique, was able to

find the optimal solutions for objective function #2 with equality constraints (Equation

6.13) for all initial starting positions tested. Dependingon the starting position, between

30 to 60 function evaluations were required. SQP optimisation of objective function #2

with inequality constraints (Equation 6.15) would converge some of the time, depending

on the constraint tolerance parameterε and the initial starting position. The robustness of

objective function #2 can be attributed to the fact that onlya single minima is encountered

when the optimisation is moves along the constrained path, even though functionΦ3 does

contain local minima.

Finding the optimal solution for objective function #1 was more difficult due to the mul-
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tiple local minima, and SQP would not converge robustly to the global minimum. A solu-

tion to the problem of robust convergence is to use a global optimisation technique, such

as DIRECT (See Appendix B.3). This technique found a global minimum for both ob-

jective functions. It could robustly find a global minimum for objective function #1 with

approximately 250 objective function evaluations. It was able to find the global minimum

for objective function #2 with the constraint tolerance parameterε = 1 in approximately

500 iterations. If the constraint tolerance parameter was set tighter,ε = 0.1, the solution

was still changing after 1000 iterations, and the DIRECT method appears inefficient for

pseudo-equality constrained optimisation. These resultsfor both SQP and DIRECT are

summarised in Table 6.2.

Equality constrained SQP DIRECT

OF #1 Would not robustly converge. 250
OF #2 30−60, depending on start point.500−1000

Table 6.2: Number of objective function evaluations required for robust optimisation.

These results imply that the DIRECT global optimisation technique is best for solving the

unconstrained minimisation of objective function #1, and that SQP would provide a robust

optimisation technique for the equality constrained minimisation of objective function #2.

The SQP algorithm performs well because, as can be seen from Figure 6.14, the minimi-

sation problem along the constraint is a smooth function with a single local minimum.

It has been found that the DIRECT algorithm’s behaviour for objective function #2 is to

rapidly find a solution close to the global minimum, then further iterations gradually im-

prove on this approximation. For more general optimisationproblems, it is suggested that

a few iterations of the DIRECT algorithm with a loosely (ε = 1) inequality constrained

objective function #2 will provide a good starting guess forthe SQP algorithm, solving

the equality constrained objective function #2. The numberof DIRECT iterations that are

needed will be problem dependent.

The previous optimisation results were obtained using interpolation methods (Kriging) to

The University of Adelaide. Department of Mechanical Engineering.



6.7. Optimised Geddes velocity profile 179

obtain objective function values between those pre-calculated on a rectangular grid. This

approach is untenable for general problems, especially in higher dimensions due to the

large number of objective function evaluations requires. The interpolation method was

used in this case to rapidly evaluate different objective functions. To examine the per-

formance of these chosen algorithms on exact objective functions, the DIRECT solution

for unconstrained minimisation of objective function #1 (as the SQP algorithm would not

converge to a global minimum due to multiple local minima), and the SQP algorithm solv-

ing the equality constrained objective function #2, with a few initial DIRECT iterations,

were calculated. The SQP algorithm used a finite difference approximation to the gradi-

ent, automatically calculated by MATLAB . The optimal values of the inputs,n andθ0,

along with the outputs,Φ1, Φ2 andΦ3 and number of function evaluations (N) required

appear in Table 6.3 for both objective function #1 and #2. Thesame parameters are given

for the Geddes profile (Equation 6.6). These show that optimisations performed with both

objective functions are able to find (marginally) better solutions than the original profile,

with measures of the “smoothness” of the beamwidth, ln(Φ1) andΦ3 having lower values

than the Geddes profile, and the average value of the beamwidth,Φ2 closer to the nominal

design beamwidth.

n θ0 ln(Φ1) Φ2 Φ3 N

Geddes 1.16 66.5 1.92 60.2 0.28 n/a
DIRECT, OF #1 1.12 65.1 0.75 60.0 0.22 1538

Equality constrained SQP, OF #21.13 65.2 0.83 60.0 0.22 61

Table 6.3: Parameter values found using optimisation of different objective functions.

There is an increase in the number of function evaluations from about 250 (Table 6.2) to

about 1500 (Table 6.3) when using exact rather than interpolated objective functions for

objective function #1. This is possibly because this objective function has many more

local minima than shown in Figure 6.12, and the interpolation function used was not able

to capture the fine detail.

Figure 6.15 (a) shows the velocity profiles obtained by the optimisation techniques, com-
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pared with the original Geddes profile, and Figure 6.15 (b) shows the beamwidths ob-

tained. Both the profiles and beamwidths are virtually indistinguishable. Given the sim-

ilarity of results obtained, and the difficulty that multiple local minima entail in finding

a global optimum, and the efficiency of the equality constrained SQP algorithm, it is

suggested that objective function #2 with equality constrained SQP be used for further

optimisations.

In summary, two objective functions for finding an optimal beamwidth have been com-

pared. Gradient based techniques (eg SQP) are not robust forobjective function #1 and

it requires a global optimisation techniques such as DIRECT. It is able to find a smooth

beamwidth at a desired nominal value, however at the expenseof an increase in the num-

ber of objective function evaluations. Objective function#2 with equality constrained

SQP is able to find the best solution robustly for this simple problem. It is suggested

that for more complicated problems that a hybrid technique be used, with the DIRECT

global optimisation technique used for a few iterations to find a location close to the

global minimum, and the SQP gradient based technique to refine the solution. The prob-

lem considered in this section is very simple, and more complicated problems with more

variables must be examined before moving to optimisation ofhorn loaded loudspeakers.

The use of SQP also requires the evaluation of the objective function gradient, as well as

the objective function itself. The semi-analytical numerical method used in this section

produces stable finite difference approximations to the gradient, as shown by the efficient

performance of equality constrained SQP. Other numerical methods, such as the source

superposition technique, may produce “noisy” numerical gradients (See Appendix B.2),

hence the development of efficient gradient free optimisation techniques are required.
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Figure 6.15: Comparison between original Geddes velocity profile and the results found by opti-
mising 2 different objective functions.
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6.8 EGO optimisation

Objective function #2 developed in Section 6.7 is able to successfully find the optimal

solution for a relatively simple problem using a gradient based Sequential Quadratic Pro-

gramming (SQP) optimisation routine. Whether this is able to be scaled to more com-

plicated and larger dimensional problems, possibly with noisy gradient information, is

another question. For the current application, the calculation times for each objective

function are large, and there has been much research into optimisation of problems where

the evaluation of the objective function is computationally expensive (Booker et al., 1998).

The main thrust of many of these techniques is to use a surrogate, or meta-modelling tech-

nique (Appendix B.4) where an expensive objective functionevaluation is replaced with

a technique that interpolates between sparse samples with low computational overhead.

In this thesis, the DACE surrogate modelling technique is adopted. DACE, or Design and

Analysis of Computer Experiments, takes its name from a seminal paper by Sacks et al.

(1989), and has become widely adopted. DACE uses a statistical interpolation technique

called Kriging, and the two names are used interchangeably in this thesis. It is used for

computer simulations where the results are deterministic,i.e. for the same inputs the

simulation gives the same output, which is a different philosophy from that of Design of

Experiments (Myers and Montgomery, 1995), where repetition of input conditions is used

to reduce random error. The Kriging method is described in more detail in Appendix B.4

but for the purposes of this thesis, Kriging can be considered as an efficient interpolating

technique that provides both a prediction of the mean value and the mean square error

between the known sample results.

Since the Kriging interpolation technique is computationally inexpensive to evaluate, the

question then becomes how best to sample the expensive objective functions, to allow ef-

ficient interpolation without sacrificing accuracy, and missing the global minimum. One

approach is to sample the function on a rectangular grid. Foroptimisations involving di-

mensions greater than 2, the cost of directly sampling the entire objective function space
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becomes prohibitively expensive. For example, to fit a Kriging model using a rectan-

gular grid spacing of 25 points varied linearly between the lower and upper bounds for

each dimension, the total number of points in two dimensionsis 252 = 625. Given the

results found in Section 6.7, it would have been more prudentto not use any form of

Kriging model and directly optimise the cost functions. However for the purposes of in-

vestigating different objective and constraint functions, the Kriging model allows rapid

evaluation. The Kriging model was also used to overcome difficulties in applying the

constraint function using the MATLAB SQP implementation,fmincon. In three dimen-

sions, which would be required if there were three parameters to optimise, the number of

samples jumps to 253 = 15625, which is prohibitively expensive.

An alternative solution would be to try to sample the points more efficiently. The Latin

Hypercube Sampling (LHS) strategy of McKay et al. (1979) is one such approach. It is a

constrained Monte-Carlo sampling technique that improvesthe sampling efficiency over

purely random (Monte-Carlo) sampling. Other techniques build on this approach, and

the one used in this thesis is the space filling Improved Distributed Hypercube Sampling

(IHS) of Beachkofski and Grandhi (2002). For a more completedescription of LHS and

IHS see Appendix B.5.

Whilst IHS will find a distribution of initial points that is more efficient at sampling higher

dimensions than a hyper-rectangular grid, once sampled, itis still not known how accu-

rately the Kriging meta-model represents the objective functions. Approaches such as

cross validation (Schonlau, 1997, Section 4.3) and bootstrapping (den Hertog et al., 2004)

go some way to ascertaining the accuracy of the Kriging model; however an automated

approach would be helpful.

The EGO and SuperEGO algorithms of Schonlau (1997) and Sasena (2002) respectively

go one step further than automatically improving the accuracy of a Kriging meta-model.

They search for a global minimum by using information about the error in the Kriging

approximation away from the sample points. They do this by performing a secondary
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optimisation on an auxiliary problem, defined as “find the next best point”. This is called

the Infill Selection Criterion (ISC) from the geostatistical literature and these techniques

use a statistical approach to find the next point that is most likely to improve the current

solution. Various forms of ISC are available with differentemphasis on global and lo-

cal searching. A simple example of EGO appears in Appendix B.6, along with further

explanation.

6.8.1 Kriging interpolation of objective function values

As an illustration of the process of the Kriging interpolation used in the EGO optimisation

method, the objective function #1 of Section 6.9 is used as anexample. The IHS sampling

method was used to generate 20 initial points, and the function Φ1 was calculated at

these points. A Kriging model was calculated for this very sparse point spacing for each

function, and both the full model and the approximation appear in Figure 6.16. The

points sampled using the IHS method are shown as cyan dots. The Kriging approximation

initially appears to be a poor approximation to the originalfunction, however on further

observation, it can be seen that the same general trends are evident.

Figure 6.17 shows contours ofΦ2 , the mean value of the beamwidth, for both the full

function, and the sparse Kriging approximation. The sparsesample points are shown as

cyan dots. Figure 6.18 shows similar contours forΦ3, the standard deviation of the beam-

width. BothΦ2 andΦ2 are used in objective function #2. Again the sparsely sampled

results show similar trends to the full approximation, giving hope that the EGO algorithm

will be able to find an appropriate solution.

By design, the values of the Kriging surrogate model at the sample points are equal to the

values at the sample points and Kriging is a true interpolation method. The advantage of

EGO is that the Kriging approximation only has to be good enough to indicate where to

sample next.
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(b) Sparse Kriging approximation

Figure 6.16: Contours oflnΦ3, logarithmic least squared objective function. Cyan dots show the
position of the initial sample points.

Horn Loaded Loudspeakers. Richard C. Morgans.



186 Chapter 6. Frequency independent beamwidth transducers

0.2 0.5 1 1.5 2
20

30

40

50

60

70

80

90

n

θ 0

20

40

60

80

100

120

140

160

(a) Full function

0.2 0.5 1 1.5 2
20

30

40

50

60

70

80

90

n

θ 0

20

40

60

80

100

120

140

160

(b) Sparse Kriging approximation

Figure 6.17: Contours ofΦ2, mean value of the beamwidth.
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(b) Sparse Kriging approximation

Figure 6.18: Contours ofΦ3, standard deviation of the beamwidth.
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6.8.2 Objective function#1

The application of the EGO algorithm with the Expected Improvement (EI) Infill Sam-

pling Criterion (ISC) for 80 iterations (for a total of 100 function evaluations) to Objective

function #1 is now examined.

The Expected Improvement (EI) function, given in Equation B.4 in Appendix B.6 and

repeated here as Equation 6.16, is able to find the next samplepoint that is most likely

to be an improvement over all previous samples. The EI ISC is defined as the expected

value of the improvement in the current prediction at a point, over the minimum value of

the current set of samples and is given as

EI = E [I ] = ( fmin− ŷ(x))CDFΦ3 ( fmin)+s(x)PDFΦ3 ( fmin) (6.16)

whereŷ(x) ands(x) are the mean and estimated standard deviation of the prediction of

variableΦ3 at pointx, PDFΦ3 is the probability density function of variableΦ3 andCDFΦ3

is the cumulative density function of variableΦ3.

Unlike other ISC described in the literature (Jones, 2001),the Expected Improvement (EI)

function is able to search implicitly for points likely to yield a local improvement where

uncertainty is low, but the objective function is also near aminimum, while retaining the

ability to search for global improvement where uncertaintyin the sampling is high.

In Figure 6.19, the cyan dots show the position of the initialsample points, the green dots

show the position of the samples chosen by the EGO algorithm using the EI ISC, and the

red dot shows the location of the best sample. Figure 6.19 shows the results of two runs

of the optimisation.

Table 6.4 gives the position of the best solutions found by the two runs of the EGO op-

timisation, and compares it to the values found by the DIRECToptimisation technique

used in Section 6.7 for objective function #1. The values found by the EGO optimisation
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highlight the multiple local minima nature of the least squares objective function because

each of the two EGO optimisation runs have reached differentlocal minima. The DI-

RECT method gives the best solution, measured by the lowest value of ln(Φ1) . The EGO

technique is sensitive to the choice of initial samples, although the method will find the

optimum given enough iterations (in the limit of dense sampling, see Jones 2001, Section

7).

n θ0 ln(Φ1) Φ2 Φ3 N

DIRECT 1.12 65.1 0.75 60.0 0.22 1538
EGO run #1 1.11 64.7 0.84 60.28 0.24 100
EGO run #2 1.19 67.4 0.91 60.0 0.39 100

Table 6.4: Optimal parameter values for EGO optimisation ofobjective function#1 using Ex-
pected Improvement (EI) Infill Sampling Criterion (ISC).
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(b) Run 2

Figure 6.19: Contours oflnΦ1 the logarithmic least squared objective function after application of
EGO algorithm. The cyan dots show the position of the initialsample points, the green dots show
the position of the samples chosen by the EGO algorithm usingthe EI ISC, and the red dot shows
the location of the best sample.
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6.8.3 Objective function#2

Objective function #2, a constrained minimisation, was found to be very efficient when

used to directly optimise the cost function. This section examines the behaviour of ob-

jective function #2 with EGO optimisation. There are a number of different methods of

applying constraints to the EGO algorithm, including a probabilistic constraint method

(Schonlau, 1997) and a constrained ISC subproblem (Sasena,2002). These methods are

examined in this section.

Probabilistic constrained Expected Improvement (EI) ISC

The method of Schonlau (1997) turns a constrained optimisation into an unconstrained

optimisation by multiplying the expected improvement criterion by the probability of the

constraint being active. The constraint used is Equation 6.14 and the probability of this

constraint occurring ifΦ2 is a random variable is given by

P(Bnom− ε ≤ Φ2(x) ≤ Bnom+ ε) = CDFΦ2 (Bnom+ ε)−CDFΦ2 (Bnom− ε) (6.17)

whereCDFΦ2 is the cumulative density function of variableΦ2.

Figure 6.20 shows the results of EGO inequality constrainedoptimisation of objective

function #2 withBnom= 60◦ andε = 1◦ using Schonlau’s probabilistic constraint method.

The expected improvement infill selection criterion is used, and the optimisation is run for

80 iterations, for a total of 100 objective function evaluations. Figure 6.20 shows initial

samples with cyan dots, the ISC samples with green dots and the best sample with a red

dot. The optimisation has performed poorly, with many function evaluations outside the

constrained area, and no convergence to a final solution. Thebest solution obtained is

reported in Table 6.6 with the label “Probabilistic constrained EI ISC”.
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Figure 6.20: EGO optimisation of objective function#2 using probabilistic constraint method.
Initial samples are shown with cyan dots, ISC samples with green dots and the best sample with a
red dot. The yellow lines represent the constraint bounds.

Constrained Expected Improvement (EI) ISC

Sasena (2002) has developed a constrained EGO optimisationmethod by using a con-

strained ISC technique. This method applies constraints directly to the ISC subproblem,

and uses the mean value of a Kriging approximation to the constraints when the evaluation

of the constraint function is expensive. It has been found tobe effective with the “regional

extreme” criterion of Sasena. This criterion is not used in this thesis for reasons described

in Appendix C. The expected improvement criterion was not found to perform well by

Sasena with constrained optimisation using the DIRECT method, and this is confirmed in

Figure 6.21. The initial samples are shown with cyan dots, the ISC samples with green

dots and the best sample with a red dot. This minimum point is given in Table 6.6, “Con-

strained EI ISC”. The points sampled by the ISC mainly fall within the constraints, but

there is no convergence or repeated sampling of results nearthe minimum. The arrow in

Figure 6.21 shows where repeated sampling has occurred, well away from the minimum.
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Figure 6.21: EGO optimisation of objective function#2 using ISC constraint method with ex-
pected improvement ISC. Initial samples are shown with cyandots, ISC samples with green dots
and the best sample with a red dot. The yellow lines representthe constraint bounds, and the arrow
shows where repeated sampling occurs.

Both these methods of constraint appear to have found a valueclose to the minimum by

essentially random sampling rather than some form of systematic search. Due to the poor

performance of both the Probabilistic constrained Expected Improvement (EI) and the

Constrained Expected Improvement (EI) Infill Sampling Criterion (ISC), alternative ISC

were sought.

Constrained Minimum Objective Function (MOF) (ISC)

Figure 6.22 shows the results of 20 initial sample with a further 20 iterations of the ISC

constrained EGO algorithm with a Minimum Objective Function (MOF) infill sampling

criterion. This criterion does not try to do any kind of global searching and simply min-

imises the mean value of the Kriging predictor, i.e.

MOF = ŷ(x) (6.18)

Horn Loaded Loudspeakers. Richard C. Morgans.



194 Chapter 6. Frequency independent beamwidth transducers

whereŷ(x) is the mean value of the Kriging predictor.

For this example, the results are very impressive, with the minimum value being found

in under 40 total objective function evaluations. The initial sample positions appear as

cyan dots, the green dots represent the minimum objective function sampling and the red

dot the optimum. This compares well with the performance of gradient based methods in

the previous sections. The best result from the optimisation is given in Table 6.6 ,“Con-

strained MOF ISC”. It is presumed that the results will be quite sensitive to the choice of

initial sample points, and that there would be no chance of achieving a global minimum

if the problem was not as simple as that posed in this section.
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Figure 6.22: EGO optimisation of objective function#2 using ISC constraint method with min-
imum objective function ISC. The initial sample positions appear as cyan dots, the green dots
represent the minimum objective function sampling and the red dot the optimum. The yellow
lines represent the constraint bounds.
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Constrained MAXimum VARiance (MAXVAR) / Minimum Objective Function (MOF)

ISC

A solution to the potential lack of global optimum robustness in the Constrained Mini-

mum Objective Function (MOF) ISC is to first focus the sampling to the feasible regions

within the constraints, and then to perform an optimisationonce the feasible region is

sufficiently sampled. This is essentially a one step “switching” criterion as described by

Sasena (2002). For the current problem, the global searching can be done efficiently be-

cause the constrained area is a small subset of the total search space. The optimisation

proceeds in two stages. First, a constrained optimisation with an infill sampling criterion

that finds the MAXimum VARiance (MAXVAR) efficiently samplesthe feasible space

for 20 iterations. The MAXVAR criterion is

MAXVAR= −s(x) (6.19)

wheres(x) is the estimated standard deviation of the prediction at point x. Minimising

the negative of the standard deviation is the same as maximising the standard deviation.

Once the MAXVAR sampling is completed, a further optimisation using the Minimum

Objective Function (MOF) efficiently finds the minimum within a further 20 iterations, for

a total of 60 objective function evaluations. The results ofthis simulation appear in Figure

6.23 and in Table 6.6 ,“Constrained MAXVAR/MOF ISC”. The initial sample positions

appear as cyan dots, the points selected by the constrained maximum variance sampling

phase appear as yellow dots, the green dots represent the minimum objective function

sampling, and the red dot the optimum. Most of the final stage optimisation (the green

dots) are tightly clustered around the optimal solution (the red dot), indicating a converged

solution. The optimum result is the same as the minimum objective function criterion, but

have added robustness because the entire feasible region isefficiently scanned.

For higher dimensional problems, the initial sampling may be very sparse. The perfor-
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Figure 6.23: EGO optimisation of objective function#2 using ISC constraint method with MAX-
VAR ISC followed by MOF ISC. The initial sample positions appear as cyan dots, the points
selected by the constrained maximum variance sampling phase appear as yellow dots, the green
dots represent the minimum objective function sampling, and the red dot the optimum. The yellow
lines represent the constraint bounds.

mance of the optimisation algorithm with a limited number ofinitial sample points (5)

is examined in Figure 6.24. The colouring of the sample points is the same as in Figure

6.23, and the optimum result found is the same as previous optimisation (“Constrained

MAXVAR/MOF ISC” in Table 6.6).

Table 6.6 summarises the results obtained by various methods of constrained optimisa-

tion of objective function #2 using the EGO method. Results obtained by the equality

constrained SQP from Table 6.3 are also presented again for reference. It can be seen

that the MAXVAR/MOF and MOF results have achieved the lowestvalue ofΦ3, and by

this measure have the best performance. However, due to the nature of the inequality

constraint used, the nominal beamwidthΦ2 is not exactly 60◦, and the measure ln(Φ1)

is higher than that of equality constrained SQP. This issue can be resolved by decreasing

the constraint tolerance parameter,ε, although if this is too small, the DIRECT method

used to find the minimum of the Infill Sampling Criterion (ISC)will have convergence
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Figure 6.24: EGO optimisation of objective function#2 using ISC constraint method with maxi-
mum variance ISC followed by minimum objective function ISC. This optimisation has a limited
number of initial sample points (5). The initial sample positions appear as cyan dots, the points
selected by the constrained maximum variance sampling phase appear as yellow dots, the green
dots represent the minimum objective function sampling, and the red dot the optimum. The yellow
lines represent the constraint bounds.

problems. The degree of constraint compliance is probably not an issue when comparing

the accuracy of the model with experimental measurements ofbeamwidth.

n θ0 ln(Φ1) Φ2 Φ3 N

Equality constrained SQP 1.13 65.2 0.83 60.0 0.22 61
Probabilistic constrained EI ISC 1.11 64.9 1.3 60.4 0.23 100

Constrained EI ISC 1.09 64.8 2.35 60.7 0.26 100
Constrained MOF ISC 1.12 66.1 2.87 61.0 0.21 40

Constrained MAXVAR/MOF ISC 1.12 66.1 2.87 61.0 0.21 60

Table 6.5: Optimal parameter values for constrained EGO optimisation of objective function#2
using different Infill Sampling Criterion (ISC).

In summary, a number of techniques that can efficiently and robustly find the global opti-

mum of expensive objective functions have been investigated. It has been found EGO op-

timisation of objective function #2, the constrained minimisation of the “smoothness” of

the beamwidth is the most efficient. When a constrained MOF ISC is used, the technique
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can be made robust by additional sampling of the feasible region using a MAXVAR ISC.

However the amount of additional sampling required for robustness is not knowna priori

and is quite problem dependent. Further research is required to make the constrained ISC

subproblem a robust general global optimisation technique. This current technique for

the problem considered in this thesis should be investigated further with more difficult

optimisation problems.
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6.9 Optimised Bézier velocity profile

A velocity profile described by a Beézier curve (See AppendixD) gives a much greater

control over the shape than Equation 6.8. This control is seen in Figure 6.25 with an

independent, two parameter, control of the upper profile curvature and the lower tail.

Each profile has been normalised to a 30◦ nominal design angle, the angle at which the

velocity profile reaches 1/2 of the on-axis value.
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Figure 6.25: Comparison of velocity profiles for different parameters of the Bézier profile.

To test the optimisation method, the parameterisation of the geometry profile must be able

to reproduce an optimal, or near optimal, profile such as thatof Geddes (Equation 6.6).

These optimal parameters,{a,b,θ0}= {0.33,0.47,66.5}, found using a numerical fitting

procedure, make the Bézier profile as close as possible to theGeddes profile, as shown in

Figure 6.26.

Because the Bézier profile has more freedom to define the velocity profile, it is a more

difficult problem to optimise. Conversely, as it has more freedom it has more potential

to find a better solution. For problems where the gradient canbe calculated, Section 6.7
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Figure 6.26: Comparison of Bézier and Geddes profiles, showing that the Bézier profile has the
ability to approximate the Geddes profile very well.

found that the Sequential Quadratic Programming (SQP) algorithm with equality con-

strained objective function #2, after an initial search with the DIRECT algorithm is an

efficient method. For the 3 parameter Bézier profile, equality constrained SQP produces

an optimal solution inN = 120 objective function evaluations, with results given in Table

6.6 with the label “SQP optimum”. The original Geddes profilenumbers are included for

reference.

a b θ0 ln(Φ1) Φ2 Φ3 N

Geddes 0.33 0.47 66.5 1.65 60.1 0.57 n/a
SQP optimum 0.36 0.46 65.2 0.56 60.0 0.19 120
EGO optimum 0.36 0.45 65.6 1.63 60.5 0.18 100

Table 6.6: Optimal parameter values for Bézier profile optimisation.

For optimisations when the gradient is not easily calculated, the Enhanced Global Opti-

misation (EGO) technique with objective function #2, described in Section 6.8, can be
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used. A slight modification of the algorithm uses Adaptive Simulated Annealing (ASA)

(Ingber, 1993) as the optimiser for the ISC. This method was found to be more robust than

the DIRECT method for this problem.

A visualisation of the sample points chosen by the optimisation technique after 100 ob-

jective function calculations is given in Figure 6.27 in 3 dimensions. The calculation of

30 initial samples, shown by the cyan dots, was followed by the calculation of 50 samples

selected by the constrained MAXVAR (yellow dots), and then 20 samples using MOF

(green dots). The optimum is shown by the red dot, with repeated sampling near the op-

timum indicating some sort of convergence. A surface of constant Φ1 = 60◦ appears in

blue. The optimum results appear in Table 6.6 with the label “EGO optimum”.

Examination of Table 6.6 shows that both the SQP and EGO optimisations are able to find

a Bézier parameterisation of the velocity profile with marginally better performance than

the Geddes parameterisation. This is most probably due to the increased variability in the

velocity profile allowed by the Bézier curves. More importantly, this section has shown

that both the SQP and EGO optimisation techniques work on larger problems with more

that 2 dimensions.
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(a) 3d (b) b−θ0

(c) a−θ0 (d) a−b

Figure 6.27: Sampling of parameter space during EGO optimisation.
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6.10 Conclusions

A “Constant Beamwidth Transducer (CBT)” has been introduced, which is able to pro-

duce, with a special velocity profile over the surface of a sphere, a frequency independent

beamwidth with a smooth frequency response. These are desirable characteristics for a

horn used to produce sound in cinemas. The theory and literature on the CBT and also on

other methods of producing frequency independent beamwidths, including the velocity

profile of Geddes (2002) was reviewed.

Next, a semi-analytical calculation technique to calculate the beamwidth for a given ve-

locity profile was developed. This was used to calculate fourdifferent velocity profiles: a

constant velocity over a spherical cap mounted on the surface of a sphere; a CBT profile;

the profile of Jarzynski and Trott; and the Geddes velocity profile. This simulation showed

that the Geddes velocity profile produces the smoothest beamwidth response, possibly at

the expense of low frequency performance. The performance of the different velocity

profiles was examined in the context of CBT theory, with the best performing profiles

showing the highest rate of energy decay in the spherical Legendre modes.

CBT theory also suggests that the performance of CBT transducers is unaffected by the

removal of the inactive part of the sphere, i.e. the part overwhich the velocity profile

is zero. This is confirmed numerically by simulations using the source superposition

technique.

Finally, the optimisation of the velocity profile is considered. Two different objective

functions are described, one that uses least squares to drive the velocity profile to find

the best beamwdith performance, and the other that uses a constrained optimisation of a

smoothness parameter. For simulations where gradient information is readily available,

it was found that equality constrained Sequential Quadratic Programming (SQP), with an

initial search using the DIRECT global optimisation methodperformed best, and was able

to find an optimal solution in an acceptable number of objective function evaluations.

Horn Loaded Loudspeakers. Richard C. Morgans.



204 Chapter 6. Frequency independent beamwidth transducers

For simulations where gradient information is unavailableor “noisy”, the Enhanced Global

Optimisation technique was able to find an optimal solution in an acceptable number of

objective function evaluations. It does this by sampling the parameter space using a space

filling method, then fitting a Kriging meta-model to describeboth a prediction of the mean

and the error of the objective function between the samples.An auxiliary optimisation is

then performed using this efficient approximation to the true objective function to find the

next best point to sample. A number of different auxiliary objective functions, called the

Infill Sampling Criterion (ISC), have been tested with the two different primary objective

functions. For constrained optimisation it was found that astrategy that firstly reduces

the maximum error around the constraint, the MAXimum VARiance (MAXVAR) ISC,

followed by minimising the mean value of the predictor (Minimum Objective Function or

MOF) is an efficient method. For unconstrained problems, it was found that the Expected

Improvement (EI) algorithm gave a good balance between local and global searching.

Two different parameterisations of the velocity profile were investigated. One parameter-

isation was similar to the Geddes velocity profile was described by 2 parameters, and the

other, which allowed a more variable velocity profile, was described by Bézier curves and

contained 3 parameters. Both equality constrained SQP and the EGO optimisation meth-

ods were able to find solutions that were better than the existing Geddes profile, although

the improvements were marginal. More importantly, it showsthat robust optimisation

techniques are able to find global minima of expensive objective functions in a relatively

small number of evaluations with larger dimensional problems.

The idea behind constant beamwidth transducers, as well as the robust optimisation tech-

niques that have been developed, are now able to be applied tothe optimisation of the

profiles of horn loaded loudspeakers.
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Chapter 7

Horn geometry optimisation

The work described in this chapter draws together the work ofprevious chapters to de-

velop a method to optimise the geometry of a horn to give an easily specified frequency

independent beamwidth and to provide a smooth frequency response over a large band-

width, provided it is physically possible to do so.

The geometry of the horn is parameterised, and the source superposition technique that

was verified in Chapter 4 and validated in Chapter 5 is used to calculate the beamwidth.

Robust optimisation techniques, developed in Chapter 6 arethen used to systematically

modify the geometric parameters to find the optimum horn geometry.

7.1 Introduction

The Constant Beamwidth Transducer (CBT) investigated in Chapter 6 gives a frequency

independent beamwidth. The sound field is produced by a specific, in phase, velocity

profile defined over a small part of the surface of a sphere. Section 6.6 shows that the

surface of the sphere over which the velocity is not defined isirrelevant to the performance

of the transducer. This implies that if the mouth of a horn cangenerate the same velocity

205
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field as that of the CBT over the surface of an imaginary spherical cap then the same,

frequency independent, sound field will result.

Examination of the typical velocity profile required by a CBT, such as that shown in Fig-

ure 6.3, shows a gradual shading of the velocity profile away from the axis. Geddes (2002,

Section 6.6) suggests that by flaring the exit of the horn, a change in the velocity profile,

and hence beamwidth, will result. The tools to modify the flare of the horn in a system-

atic way have been developed, using the techniques outlinedin previous chapters. Hence,

the aim of the work described in this chapter is to use robust optimisation techniques to

produce an optimal horn geometry that achieves constant beamwidth performance. It is

also intended to investigate whether constant beamwidth performance can be achieved at

a desired nominal beamwidth. To achieve this aim, the sourcesuperposition technique,

which has been verified and validated in Chapters 4 and 5 respectively and is able to repro-

duce the sound field of a horn loaded loudspeaker, is coupled with the EGO optimisation

technique, developed in Chapter 6, to find the smoothest design with constant beamwidth

performance.

The original aims of this thesis were to provide a horn designprocedure characterised by:

an easily specified frequency independent beamwidth; and a smooth frequency response

over a large bandwidth. If constant beamwidth performance is achieved, then CBT theory

suggests that the second aim is automatically satisfied if the first is achieved, hence the

focus on constant beamwidth behaviour in this thesis. This hypothesis will have to be

tested either numerically or experimentally once a constant beamwidth horn design is

achieved.

This chapter begins with an investigation of a geometrically simple horn profile consisting

essentially of a conical horn, with a radiused entry at the horn throat and a radiused flare

at the horn mouth. The ability of this geometry to achieve thedesired nominal beamwidth

is investigated, as is the the effect of throat radius on the performance of the system.

More complicated geometry parameterisations are then investigated, and a Bézier spline
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based geometry is found to be flexible enough to find a shape that produces approximately

constant beamwidth behaviour, although it may not be able tofind a desired nominal

beamwidth. This geometry parameterisation is then solved repeatedly for a wide range

of lengths and throat dimensions, and the results used to develop a method that is able to

quickly find an optimum horn design.

7.2 Optimisation method

The optimisation techniques developed in Chapter 6 can be used with the source super-

position technique to calculate the optimum geometry profile for a given nominal beam-

width. It was found that objective function #2 provided a robust way of finding the op-

timum using constrained minimisation. This objective function is adopted here for the

current problem, and is repeated here for clarity.

Objective function #2 (Equation 6.12) can be written as,

minΦ3 (7.1)

with equality constraint (Equation 6.13)

Φ2 = Bnom (7.2)

whereΦ2 andΦ3 are defined as (Equations 7.3 and 7.4),

Φ2 = mean(B (f ≥ fmin)) (7.3)

Φ3 = std(B (f ≥ fmin)) (7.4)

wheremean(x) andstd(x) are the mean and standard deviation of vectorx, respectively,

B (f) is a vector of beamwidths calculated using the source superposition technique over
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a range of frequencies described by the vectorf. The operatorf > fmin selects only those

frequencies abovefmin andBnom is the nominal (or desired) beamwidth.

In some cases, it may be necessary to relax the equality constraint to a bounded or pseudo-

equality constraint such as,

Bnom− ε ≤ Φ2 ≤ Bnom+ ε (7.5)

whereε is a tolerance parameter that describes how close to the nominal beamwidth the

optimisation is constrained.

Equation 7.5 can be reformulated as two inequality constraints,

Bnom−Φ2 ≤ ε

Φ2−Bnom ≤ ε
(7.6)

The objective function #2 (Equation 7.1) requires that the mean (Φ2) and standard devi-

ation (Φ3) of the beamwidth be calculated over a range of frequencies,in this case from

3100 to 10000 Hz in steps of 400Hz, sofmin = 3100.

The definition of what constant beamwidth behaviour consists of is, however, not well

defined. In this chapter, a horn shows constant beamwidth behaviour if the beamwidth

approaches a constant nominal value smoothly from above (see for example the beam-

widths shown in Figure 6.15 (b), produced by the Geddes velocity profile over the surface

of a sphere). A more complete definition of what constitutes constant beamwidth be-

haviour should be investigated, and is recommended for future work (Section 8.3) in the

context of defining more relevant objective functions.

It was suggested in Chapter 6 that a useful optimisation strategy would involve the use

of the minimisation technique called Sequential QuadraticProgramming (SQP). It was

found that this technique was not suitable for the current problem because of difficulties
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in calculating the gradient using finite differences (See B.2). The source superposition

technique requires discretisation of a given geometry in order to calculate the beamwidth,

and small changes in the mesh distribution or density can give relatively large changes

in the beamwidth. This would be the case if a small change in curvature led to a change

in the length of a line, which led to a step change in the numberof elements used in the

mesh. A small change of input can lead to a large change in output. The perturbation in

parameters required by the finite different method was very sensitive to these changes and

was not able to provide a sensible approximation to the gradient of the solution, hence

a gradient free method such as DIRECT or EGO is required. Further research on an

efficient method to calculate the gradient of the source superposition solution would be

very valuable, and should be considered for future work (Section 8.3).

It was found in Chapter 6 that the DIRECT technique is not suitable for a constrained

minimisation problem. It is, however, probably quite a goodchoice for an unconstrained

minimisation of functions with a small number of local minima. It was found in Section

6.8.2 that the method required a large number of iterations with the many local minima of

objective function #1.

The EGO optimisation technique (Chapter 6) is the best choice for constrained minimi-

sation of the horn geometry problem because it was able to robustly find a constrained

global minimum of objective function #2 with an acceptable number of objective func-

tion calculations, without requiring gradient information. A brief outline of the technique

used here follows. The parameter space is sampled using Improved Hypercube Sampling

(Beachkofski and Grandhi, 2002), the objective function evaluated at each sample point

and then a Kriging method used to interpolate the data, as well as give an approximation

to the error in the prediction. This information is then usedto calculate the next best place

to sample, by solving the Infill Sample Criteria (ISC) auxiliary problem. The interpo-

lated surface is updated using the objective function calculated at the sample point, and

the sampling process continued until a stopping criterion is reached (usually a maximum
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number of samples).

The original EGO algorithm of Schonlau (1997) used an Expected Improvement ISC;

however, this was found to be difficult to solve for a constrained minimisation (Sasena,

2002). A simple approach is adopted here. A number of iterations of solving a MAXi-

mum VARiance (MAXVAR) ISC, with constrained minimisation,efficiently samples the

feasible region of the objective function. This process aims to reduce the uncertainty in

the interpolation of the objective function, but only within the constraint boundaries. A

Minimum Objective Function (MOF) constrained minimisation samples the mean value

of the interpolated objective function and then searches for a minimum value of the ob-

jective function within the constrained region. This technique can find a global minimum,

provided that the sampling along the constraint is sufficient. The amount of sampling,

which is problem dependent and cannot be determined a priori, is set by trial and error.

In Section 6.9 both the DIRECT technique and Adaptive Simulated Annealing (ASA)

were used to solve the constrained ISC auxiliary problem. Both these techniques can

require many thousands of function evaluations, and hence are not suitable for solving the

objective function directly. When solving the ISC subproblem, the objective function is

efficiently evaluated using Kriging interpolation, and thecost is minimal. For the problem

described in Section 6.9, the DIRECT technique was found unsuitable and ASA was used.

However, for general problems, neither technique has been found to be superior, and here

a pragmatic approach is taken. Both the DIRECT technique andASA are used to find a

minimum of the ISC, using an inequality constrained approach. Then equality constrained

SQP is used, starting with the solution of each global minimisation technique, to both

enforce the equality constraint and improve the solution ifpossible. The best result is

then used find the next sample position. There are no problemscalculating the gradient

numerically of the ISC using SQP1. This may seem complex, but the overhead required is

1It should be possible to derive an analytical gradient for all ISC objective functions as the MATLAB

DACE toolbox predictor function supplies the gradient for both the mean prediction and the mean square
error. It was found that numerical gradient estimations were efficient enough for the current problem.
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minimal for small dimensions compared to the cost of calculating the objective function

and it was found to provide a very robust search restricted tothe feasible region.

7.3 Simple flared horn

A very simple horn profile is considered in this section. For comparison with the available

existing small horns, the radius of the mouth of the horn is held constant (Rm = 82.5 mm)

for all the simulations performed in this chapter. Keeping the mouth radius constant

simplifies the construction of the cost function, and does not limit the analysis in any

way as results can simply be scaled for different frequencies. The performance of horns

with alternate mouth dimensions can be readily scaled from the existing results. Figure

7.1 shows a schematic of the geometry parameterisation. Theangle of the conical horn,

θ, and the length of the flange (F) govern the overall length of the horn as the mouth

dimension is constant. A simple fillet of constant radius, that is tangent to both the conical

horn and the end of the flange, flares the conical horn and provides some control over the

horn mouth velocity profile. The radius of this curve is a function of the flange length.

Finally, the horn is attached to the compression driver of radiusRt using another constant

radius fillet.

7.3.1 Two inch throat

An optimisation of the geometry was undertaken for a constant horn throat diameter,

Dt = 2Rt = 50 mm (2 inches), a standard dimension for compression drivers. The desired

nominal beamwidth wasBnom = 60◦. The two free variables,θ andF (expressed as a

percentage of the mouth radius), were normalised to lie between 0 and 1 using the upper

and lower bounds given in Table 7.1.

Figure 7.2 shows the variation in geometry achieved by the parameterisation used. The
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D =2R
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Figure 7.1: Simple horn geometry parameterisation. Consisting of a conical horn of angleθ with
a flange of lengthF with fillets of constant radius.

Name Variable Lower Upper

x(1) θ 20◦ 40◦

x(2) F
Rm

5% 40%

Table 7.1: Upper and lower bounds of parameters used to describe the simple flared horn geometry.

parameters (x(1) andx(2), representingθ andF) are both systematically varied between

the lower limit (x = 0), the mid range value (x = 0.5) and the upper limit (x = 1), and the

resulting horn profile shown.
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(x(1)=0.00,x(2)=0.00)

(θ=20°,F= 8mm)

(x(1)=0.00,x(2)=0.50)

(θ=20°,F=37mm)

(x(1)=0.00,x(2)=1.00)

(θ=20°,F=66mm)

(x(1)=0.50,x(2)=0.00)

(θ=30°,F= 8mm)

(x(1)=0.50,x(2)=0.50)

(θ=30°,F=37mm)

(x(1)=0.50,x(2)=1.00)

(θ=30°,F=66mm)

(x(1)=1.00,x(2)=0.00)

(θ=40°,F= 8mm)

(x(1)=1.00,x(2)=0.50)

(θ=40°,F=37mm)

(x(1)=1.00,x(2)=1.00)

(θ=40°,F=66mm)

Figure 7.2: Variation in simple horn geometry with a 2 inch throat. Parameters vary between upper
and lower bounds,0≤ x(1) ≤ 1 and0≤ x(2) ≤ 1.

Figure 7.3 shows the optimisation trajectory of an EGO optimisation. The filled contour

is Φ3, and the black line a contour of the constraint,Φ2 = 60◦. The cyan dots are the

positions of the initial samples (50) that initially characterise the objective function space.

The yellow dots (50) show the MAXVAR sampling, used to reducethe uncertainty in
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predictions, but only when the mean beamwidth constraint isachieved. The minimum

objective function method is then used, and shown by the green dots (50). This finds

the minimum, given by the red dot. It was found that the methodrepeatedly sampled the

same position, which caused problems with robust fitting of the Kriging model (Lophaven

et al., 2002b, Eldred et al., 2003). The solution to this problem is to merge the data set

based on sample proximity before fitting the Kriging model. The MATLAB Dace toolbox

functiondsmerge was used with a coarse tolerance (1×10−2).
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Figure 7.3: Optimisation trajectory for the simple horn geometry with a 2 inch throat. The cyan
dots show the initial samples, yellow dots show the MAXVAR sampling, green dots the MOF
sampling and the red dot shows the global minimum. The black line shows the constraint.

The numerical values of the optimal solution arex(1) = 0.67 (θ = 33◦) andx(2) = 0.72

(F = 50 mm). The mean value of the beamwidthΦ2 = 60◦. The parameterS, defined as

S=
Φ3

Φ2
(7.7)

is an objective measure of how smooth the function is, where the smaller the value ofS,

the smoother the beamwidth over the range of frequencies considered. For the current
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optimal solution, the value ofS is 4%. The beamwidth produced by the optimisation is

shown in Figure 7.4 (a) where the red line is the beamwidth evaluated over a full frequency

range from 300 to 12000 Hz, the blue crosses are the frequencies over which the objective

function is calculated, and the dashed line is the nominal beamwidth achieved (in this case

60◦). The horn profile that generates this beamwidth is shown in Figure 7.4 (b). Even

with this very simple geometry parameterisation, a reasonable approximation to constant

beamwidth behaviour is achieved, if only over a limited bandwidth. The high frequency

performance of this design decays with frequency above 9000Hz, and this shows that

true CBT behaviour has not been achieved.
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Figure 7.4: Results of the constrained optimisation ofΦ3 for the simple horn geometry with a 2
inch throat.

Referring to Figure 7.3, we can see that while the solution finds a minimum, if the con-

straint were removed the solution would most probably change and a smoother solution

would be found. Relaxing the constraint, and using the DIRECT optimisation technique

to find an unconstrained minimum ofΦ3, leads tox(1) = 0.59 (θ = 32◦) andx(2) = 0.68

(F = 48 mm). The mean value of the beamwidth (Φ2) is 57◦ and the parameterS is

3.9%, only marginally smoother than the results for the constrained optimisation (4%).

The beamwidth produced is shown in Figure 7.5 (a), and the horn profile in Figure 7.5
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(b). This profile generates a beamwidth than is only marginally smoother than the pre-

vious constrained minimisation, and there is still a ’droop’ in beamwidth at the higher

frequencies.
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Figure 7.5: Results of the unconstrained optimisation ofΦ3 for the simple horn geometry with a 2
inch throat.

Experimental evidence from Figure 5.10 suggests that deficiencies in the compression

driver may be blamed for poor experimental correlation above 10000 Hz. Notwithstand-

ing the limitations of the numerical model when compared to experiment, this poor per-
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formance is inherent to the design of the horn and should be investigated further.

To try to find a solution that reduced the high frequency “droop”, the frequency range

over which the minimisation is performed is increased to 12000 Hz. The optimal solution

for unconstrained minimisation with the new cost function is x(1) = 0.48 (θ = 30◦) and

x(2) = 0.69 (F = 48 mm), the mean value of the beamwidthΦ2 = 53◦ and the parameter

S is 4.8%. The beamwidth produced is shown in Figure 7.6 (a), and thehorn profile in

Figure 7.6 (b). This profile generates a beamwidth that is less smooth than the previous

constrained minimisation and does not achieve the desired nominal beamwidth. It does,

however, minimise the high frequency “droop”, and it is suggested that this cost function

be implemented for future calculations wanting to achieve CBT performance.

In summary, this section shows that near constant beamwidthperformance for horn loaded

loudspeakers can be achieved using the optimisation techniques developed in this thesis,

even with a very simple horn geometry parameterisation. It also finds that, in order to

minimise a high frequency “droop”, the frequencies over which the objective function is

calculated should be extended to the highest possible frequency of interest.
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Figure 7.6: Results of the unconstrained optimisation ofΦ3 for the simple horn geometry with a 2
inch throat. The objective function function upper frequency limit is now 12000Hz, minimising
high frequency “droop”.
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7.3.2 One inch throat

The geometry described in the previous section has a fixed throat radius. In this section

the same method of geometry parameterisation is investigated, but with a smaller 25 mm

(1 inch) throat diameter, another standard dimension for compression drivers. Figure 7.7

shows that variation in geometry achieved by changing each parameter systematically

between the lower limits, a mid range value and the upper limit.

The EGO optimisation technique is used to find the optimum geometry. Figure 7.8 shows

the results of the optimisation. In this case, only 25 initial samples (cyan dots) are calcu-

lated, then 25 MAXVAR samples along the constraint (yellow dots) and 25 MOF samples

(green dots). The minimum solution to the constrained optimisation is shown by the red

dot. In Section 7.3.1 the DIRECT minimisation technique wasused to find the uncon-

strained minimum function value. A simple modification to the objective functions to

remove constraints in EGO allows for an efficient way to find the minimum ofΦ3, as

shown by the black dot. Examination of the range of values achieved by this geometry, as

shown in Figure 7.8, in comparison with Figure 7.3 shows thatthe 1 inch horn results are

nowhere near as smooth as the 2 inch horn.

The optimal solution isx(1) = 0.56 (θ = 31◦) andx(2) = 0.46 (F = 35 mm), the mean

value of the beamwidthΦ2 = 60.3◦ and the parameterS is 12.5%. Figure 7.9 (a) shows

the beamwidth of the constrained minimisation resulting from the geometry shown in

Figure 7.9 (b). The desired value of nominal beamwidth is obtained at the expense of

smoothness, and this design is not as smooth as the 2 inch hornresults.

Relaxing the constraint on nominal beamwidth to investigate the smoothest solution pos-

sible shown by the black dot on Figure 7.8,x(1)= 1.00 (θ = 40◦) andx(2)= 0.43 (F = 33

mm), the mean value of the beamwidthΦ2 = 80◦ and the parameterS is 6.9%. Figure

7.10 (a) shows the beamwidth of the unconstrained minimisation result, and the profile is

shown in Figure 7.10 (b). The resulting nominal beamwidth isvery large, with a large dip

The University of Adelaide. Department of Mechanical Engineering.



7.3. Simple flared horn 221

below the nominal beamwidth at low frequencies. This performance in horns has been

documented in the literature (Henricksen and Ureda, 1978).If the lowest frequency at

which the objective function is calculated were raised above 4000 Hz, then this technique

and geometry parameterisation could be used to design hornsthat perform well at very

wide angles, at the expense of low frequency performance. They would not exhibit the

characteristic CBT behaviour, and may have large variations in acoustic impedance due

to reflections from the horn mouth.

The conclusions that can be drawn from this section are that the horn throat dimension

with a simple flare into a conical horn is not an independent variable, and that a simple

parameterisation is limited in its ability to generate optimal solutions. A parameterisation

that includes the throat radius as a variable in the optimisation is required.
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Figure 7.7: Variation in simple horn geometry with a 1 inch throat. Parameters vary between upper
and lower bounds,0≤ x(1) ≤ 1 and0≤ x(2) ≤ 1.
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Figure 7.8: Optimisation trajectory for the simple horn geometry with a 1 inch throat. The cyan
dots show the initial samples, yellow dots show the MAXVAR sampling, green dots the MOF
sampling, the red dot shows the constrained global minimum with the black line showing the
constraint. The black dot shows the unconstrained global minimum.
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Figure 7.9: Results of the constrained optimisation ofΦ3 for the simple horn geometry with a 1
inch throat.
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Figure 7.10: Results of the unconstrained optimisation ofΦ3 for the simple horn geometry with a
1 inch throat.
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7.3.3 Variable throat

Optimisation of the simple flared horn with a variable throatradius is now investigated.

Table 7.2 shows the upper and lower bounds of the variables used. The constrained EGO

method finds an optimal solutionx(1) = 0.66 (θ = 33◦), x(2) = 0.69 (F = 48 mm) and

x(3) = 0.39 (D1 = 22 mm), the mean value of the beamwidthΦ2 = 60◦ and the parameter

S is 5.7%. Figure 7.11 (a) shows the beamwidth of the constrained minimisation result

resulting from the geometry shown in Figure 7.11 (b). The geometry found is similar to

that of Figure 7.4 (b). This horn design appears to have a “drooping” beamwidth at high

frequencies, and does not appear to achieve constant beamwidth behaviour. The horn

geometry shown in Figure 7.4 (b) whilst not achieving constant beamwidth behaviour has

achieved the aim of being as smooth as possible for a given nominal beamwidth.

Name Variable Lower Upper

x(1) θ 20◦ 40◦

x(2) F
Rm

5% 40%
x(3) Rm 12.5 mm 37.5 mm

Table 7.2: Upper and lower bounds of parameters used to describe the simple flared horn geometry
with a variable throat radius.

Performing an unconstrained minimisation onΦ3 finds the optimal solutionx(1) = 0.14

(θ = 23◦), x(2) = 0.52 (F = 38 mm) andx(3) = 0.94 (D1 = 72 mm), with the mean

value of the beamwidth,Φ2 = 37◦ and the parameterS= 3.4%. The beamwidth is shown

in Figure 7.12 (a), and the profile in Figure 7.12 (b). This profile appears to closely ap-

proach constant beamwidth behaviour; however, the nominalbeamwidth achieved is not

that specified (60◦). This suggests that either constant beamwidth behaviour may only

occur over a limited range of nominal beamwidths, and that our goal of achieving con-

stant beamwidth behaviour at a nominal angle of 60◦is not possible, or that the geometry

parameterisation used is too restrictive. Hence investigation into more flexible parame-

terisation is required for further progress toward constant beamwidth behaviour with a

specified nominal beamwidth.
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In summary, this section has used optimisation of a relatively simple 3 parameter horn

geometry to find the horn shape that produces a relatively smooth beamwidth with a 60◦

nominal angle. However, this result, shown in Figure 7.11 shows a distinct “droop” at

high frequencies, and cannot be considered to show constantbeamwidth behaviour. It has

also found a horn geometry that closely approached constantbeamwidth behaviour at the

expense of achieving a 37◦ nominal beamwidth instead of the specified 60◦ (Figure 7.12).

Horn Loaded Loudspeakers. Richard C. Morgans.
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Figure 7.11: Results of the constrained optimisation ofΦ3 for the simple horn geometry with a
variable throat dimension.
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Figure 7.12: Results of the unconstrained optimisation ofΦ3 for the simple horn geometry with a
variable throat dimension.
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7.4 Bézier horn

Bézier curves were introduced in Section 6.9 to provide moreflexibility in specifying the

velocity profile over the surface of a sphere. The Bézier spline is specified by two vectors,

with the curve tangent to the head of each vector, and the “strength” of attachment to the

vector determined by the length of the vector. They are described in detail in Appendix

D.

The horn geometry has been parameterised using Bézier curves. The length (L = 235

mm), mouth radius (Rm = 82.5 mm) and throat radius (Rt = 25 mm) are held constant.

The head of one Bézier vector is at(Rt ,0), with the tail placed at fractionx(1) between the

head and(Rm,L). Similarly the head of the second Bézier vector is placed at(Rt ,L), with

the tail placed at fractionx(2) between the head and(Rm,L). The parametersx(1) and

x(2) control the shape of the horn. Figure 7.13 shows the variation in geometry achieved

by changing the parameters systematically.

The EGO constrained minimisation technique was unable to find a solution with a nom-

inal beamwidthBnom = 60◦. This is because the current geometry parameterisation is

physically unable to produce a beamwidth of this magnitude.The EGO unconstrained

minimisation ofΦ3 was able to find a smooth solution with a nominal beamwidth of 53◦

and the parameterS is 5.7%, shown in Figure 7.14 (a), from the profilex(1) = 0.28 and

x(2) = 0.29, shown in Figure 7.14 (b). This geometry profile does not produce a partic-

ularly smooth beamwidth compared to the unconstrained minimisation of a simple flared

horn. This parameterisation does not appear to exhibit constant beamwidth behaviour,

with a large undershoot of the nominal beamwidth at low frequencies. Other parame-

terisations with different control over the geometry profiles are investigated in the next

section.
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(x(1)=0.00,x(2)=0.00) (x(1)=0.00,x(2)=0.50) (x(1)=0.00,x(2)=1.00)

(x(1)=0.50,x(2)=0.00) (x(1)=0.50,x(2)=0.50) (x(1)=0.50,x(2)=1.00)

(x(1)=1.00,x(2)=0.00) (x(1)=1.00,x(2)=0.50) (x(1)=1.00,x(2)=1.00)

Figure 7.13: Variation in Bézier horn geometry with a 2 inch throat and horn length235 mm.
Parameters vary between upper and lower bounds,0≤ x(1) ≤ 1 and0≤ x(2) ≤ 1.
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Figure 7.14: Results of the unconstrained optimisation ofΦ3 for the Bézier horn geometry with a
2 inch throat and horn length235mm.
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7.5 Spline based horns

As a simple Bézier curve is unable to produce fine enough control over the shape of the

geometry profile, the use of Bézier splines to describe the horn geometry is investigated.

Bézier splines, as implemented in the ANSYS (Kohnke, 2001) APDL commandbspline,

allow any number of points to control the curve, as well as tangency conditions at each

end point. Much greater variation in geometry can be achieved than was possible using

the simple parameterisations described in previous sections.

7.5.1 Simple spline horn

This section investigates a relatively simple spline parameterisation. The horn throat ra-

dius was held constant atDt = 2Rt = 50 mm (2 inches), the length of the horn fixed at

L =235 mm and the radius of the mouth fixed atDm = 2Rm = 165 mm.

The start and end points of a parametric cubic spline are given by the points(Rt ,0) and

(Rm,L) respectively. Tangency is enforced at the start and end points in the directions

(0,1) and(−1,0) respectively. A point in the spline curve is allowed to move in a rec-

tangular box aligned along the start and end points. One parameter,x(1), controls the

major axis position, the other parameterx(2) controls the minor axis. Figure 7.15 shows

the range of geometries possible with this parameterisation, along with the position and

shape of the box.

Figure 7.16 shows the results of the optimisation, with 25 initial samples (cyan dots), 25

MAXVAR samples along the constraint (yellow dots) and 25 MOFsamples (green dots).

The solution to the constrained optimisation ofΦ3 is shown by the red dot,x(1) = 0.01

andx(2) = 0.81, and the solution of the unconstrained optimisation ofΦ3 shown by the

black dot,x(1) = 1 andx(2) = 1.
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(x(1)=0.00,x(2)=0.00) (x(1)=0.00,x(2)=0.50) (x(1)=0.00,x(2)=1.00)

(x(1)=0.50,x(2)=0.00) (x(1)=0.50,x(2)=0.50) (x(1)=0.50,x(2)=1.00)

(x(1)=1.00,x(2)=0.00) (x(1)=1.00,x(2)=0.50) (x(1)=1.00,x(2)=1.00)

Figure 7.15: Variation in simple spline horn geometry with a2 inch throat and horn length235
mm. Parameters vary between upper and lower bounds,0≤ x(1) ≤ 1 and0≤ x(2) ≤ 1.

Figure 7.17 shows the beamwidth and geometry profile of the constrained minimisation

of Φ3, and Figure 7.9 shows the same for the unconstrained minimisation. Neither beam-

width is particularly smooth, and this geometry parameterisation is not particularly useful.
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Figure 7.16: Optimisation trajectory for the simple splinehorn geometry with a 2 inch throat and
horn length235 mm. The cyan dots show the initial samples, yellow dots show the MAXVAR
sampling, green dots the MOF sampling and the red dot shows the constrained global minimum
with the black line showing the constraint. The black dot shows the constrained global minimum.
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Figure 7.17: Results of the constrained optimisation ofΦ3 for the simple spline horn geometry
with a 2 inch throat and horn length235mm.
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Figure 7.18: Results of the unconstrained optimisation ofΦ3 for the simple spline horn geometry
with a 2 inch throat and horn length235mm.
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7.5.2 Complex spline horn

A more complex spline based horn geometry is considered in this section. The horn throat

radius was held constant atDt = 2Rt = 50 mm (2 inches), the length of the horn fixed at

L =235 mm and the radius of the mouth fixed atDm = 2Rm = 165 mm. A spline is fit

using the same start, end and tangency conditions as those inSection 7.5 and two control

points also control the shape of the curve. The position of each point is controlled by

lines starting1
8 and 2

3 of the distance between the start and end point, and extending 80

mm vertically from each point. The fractionx(1) controls the position of the first control

point between its start and end points, andx(2) the position of the second control point.

Figure 7.19 shows the range of geometries possible with thisparameterisation, with the

control points shown as red dots and the start and end points by blue dots.
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(x(1)=0.00,x(2)=0.00) (x(1)=0.00,x(2)=0.50) (x(1)=0.00,x(2)=1.00)

(x(1)=0.50,x(2)=0.00) (x(1)=0.50,x(2)=0.50) (x(1)=0.50,x(2)=1.00)

(x(1)=1.00,x(2)=0.00) (x(1)=1.00,x(2)=0.50) (x(1)=1.00,x(2)=1.00)

Figure 7.19: Variation in complex spline horn geometry for with a 2 inch throat and horn length
235mm. Parameters vary between upper and lower bounds,0≤ x(1) ≤ 1 and0≤ x(2) ≤ 1.

EGO optimisation of this geometry is not able to find a constrained solution with nominal

beamwidthBnom= 60◦. Figure 7.20 (a) shows the beamwidth found by minimisingΦ3

without imposing beamwidth constraints. This horn has an acceptable constant beam-

width behaviour, although it does not reach the desired nominal beamwidth. To change

the nominal beamwidth it appears as though both the length ofthe horn and the throat

radius are required as parameters. The horn profile that generates this beamwidth is given

in Figure 7.20 (b), withx(1) = 0.58 andx(2) = 0.69, the nominal beamwidth 49.8◦ with

parameterS= 3.9%. The profile appears similar to the simple flared horn designs (c.f.

Figure 7.6 (b)), with the spline points controlling the entry and exit flare rates.
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To examine the hypothesis that the horn length has an effect on the nominal beamwidth,

a number of unconstrained optimisations ofΦ3 were performed using the complex spline

horn geometry using different values of horn length,L. Figures 7.21,7.22 and 7.23 show

the results forL = 260 mm,L = 285 mm andL = 210 mm respectively. Varying the length

does not seem to have a consistent effect on the nominal beamwidth, with the 260 mm

and 280 mm horns having almost identical nominal beamwidths, although they both have

different values of the smoothness parameterS. TheL = 210 mm horn profile, shown in

Figure 7.23 (b), has an optimum with both control points at close to the limits. This forces

the flange to curve over, or become re-entrant. This phenomena is examined further in

Section 7.5.4.
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Figure 7.20: Results of the unconstrained optimisation ofΦ3 for the complex spline horn geometry
with a 2 inch throat and horn length235mm.
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Figure 7.21: Results of the unconstrained optimisation ofΦ3 for the complex spline horn geometry
with a 2 inch throat and horn length260mm.
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Figure 7.22: Results of the unconstrained optimisation ofΦ3 for the complex spline horn geometry
with a 2 inch throat and horn length285mm.
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Figure 7.23: Results of the unconstrained optimisation ofΦ3 for the complex spline horn geometry
with a 2 inch throat and horn length210mm.
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7.5.3 4 parameter optimisation

The complex spline based parameterisation appears to be a promising approach to finding

an optimum horn shape. The existing parameterisation is notflexible enough to find a

optimum that is constrained to the nominal beamwidth. To make the shape more flexi-

ble, both the horn length (L) and throat radius (Rt) are made parameters, along with the

existing spline control points. The length of the control lines is increased from 80 mm to

100 mm to allow greater movement. Table 7.3 gives the upper and lower bounds on the

variables used in this simulation.

Name Variable Lower Upper

x(1) Spline control point 1 0 1
x(2) Spline control point 2 0 1
x(3) Rt 12.7 mm 82.5 mm
x(4) L 200 mm 400 mm

Table 7.3: Upper and lower bounds of parameters used to describe the 4 parameter horn geometry.

The application of the constrained EGO optimisation technique is able to find an optimum

solution, although with the MAXVAR / MOF sampling ISC there is no way of deciding if

a global optimum has been found. It is possible that some formof sampling regime (the

auxiliary optimisation performed by the EGO optimisation method, see Section 7.2) that

switches automatically between MAXVAR and MOF could be implemented, although

it may be preferable to work on improving the constrained optimisation of the EI ISC

(Section 8.3).

Figure 7.24 (a) shows the optimum beamwidth (59.4◦) with a smoothness of 3.5%. This is

generated by the profile shown in Figure 7.24 (b) withx(1) = 0.40,x(2) = 0.47,Rt = 12.7

mm andL = 218 mm. This design has the smallest possibleRt andL, making the in-

cluded angle of the horn as wide as possible. The beamwidth dips beneath the nominal

beamwidth at low frequencies, indicating that this design,while reasonably smooth, only

exhibits marginally constant beamwidth behaviour. A suggested area of future research is
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the development of cost functions that do not choose a low frequency cut off, instead re-

warding constant beamwidth behaviour that smoothly approaches the nominal beamwidth

and penalising other behaviour (Section 8.3).
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Figure 7.24: Results of the constrained optimisation ofΦ3 for the complex spline horn geometry
with a variable throat dimension and horn length.

OptimisingΦ3 and removing the constant beamwidth constraint produces a re-entrant

flange condition, although this solution may not be the true global minimum because

the Infill Sampling Criteria (ISC) used is the Minimum Objective Function (MOF), and
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this does not guarantee that a global minimum will be found. Switching to the Expected

Improvement (EI) ISC (Equation B.4) will make the solution more robust, and is recom-

mended for future unconstrained optimisations. The re-entrant flange is obtained when

the control line is pushed out beyond the mouth of the horn, and the geometry is able

to form a smooth curve. It appears to effectively make the mouth of the horn smaller.

This condition requires further investigation to decide whether it is a true optimum, or

attributed to poor geometry parameterisation.
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Figure 7.25: Results of the unconstrained optimisation ofΦ3 for the complex spline horn geometry
with a variable throat dimension and horn length.
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7.5.4 Re-entrant flange

The re-entrant flange is an interesting phenomena which is seen in the previous section

in Figure 7.25 (b) as well as in theL = 210 mm horn in Figure 7.23 (b). The flange

is curved over (re-entrant) outside the horn mouth, effectively changing the horn mouth

dimension. To see if the flange is important to the performance of the horn, the re-entrant

part of the flange was removed from the model used to generate Figure 7.23 (b), leaving

the mouth dimensionDm = 2Rm = 251 mm. The horn geometry is shown in Figure 7.26

(b) and resulting the beamwidth shown in Figure 7.26 (a). Thesuperior performance of

this configuration (S= 5.5% overS= 6.3%) , without any extra optimisation, implies that

the re-entrant flange should be suppressed from future geometric parameterisations.
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Figure 7.26: Results of the unconstrained optimisation ofΦ3 for the complex spline horn geometry
with a 2 inch throat and horn length210mm. The re-entrant part of the flange has been removed,
which results in superior performance (S= 5.5%) to that seem with the flange in Figure 7.23
(S= 6.3%).
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7.5.5 Smooth Expected Improvement optimisation

An issue with the previous unconstrained optimisations is that the standard deviation of

the beamwidth (Φ3) has been optimised, instead of a measure of variance normalised by

the mean value of the beamwidth (Φ2), such as the parameterS (Equation 7.7). For the

original, constrained optimisation, finding a minimum ofΦ3 is equivalent to minimising

the parameterS, asΦ2 , which S depends on, is held fixed by the constraint. However

for an unconstrained optimisation, the minimum ofΦ3 is not necessarily the minimum

of S, asΦ2 can now vary. The differences in the minima found by optimising S instead

of Φ3 are not expected to be great, but parameterS gives a better measure of constant

beamwidth horn behaviour, and should be adopted for future calculations.

Another issue involves the optimisation technique used. For constrained EGO optimisa-

tion it was found in Section 6.8 that it was necessary to use a number of iterations using the

constrained MAXVAR ISC to efficiently search the constrained objective function space,

followed by more iterations using the constrained MOF ISC tofind the global minimum.

Using this method to find a global minimum for an unconstrained problem is inefficient

as the search for a global optimum performed with two separate searches. It was found

in Section 6.8 that the Expected Improvement (EI) ISC is ableto efficiently balance local

and global searches for unconstrained minimisation, and this approach is adopted here.

Changing the parameterisation of the horn, so that the end point of the lines that govern

the position of the spline control points are now made a function of the horn length rather

than being fixed, eliminates the potential of a re-entrant flange. The fractionsx(1) and

x(2) control the position of the control points between the startand end points of the

control lines. The positions of the lines are still1
8 and 2

3 of the distance between the start

and end points, but the end point of the first control line is1
2 of the axial distance between

the start point and the horn mouth, which can be seen in Figure7.28 (b). The end point of

the second control line is in line with the horn mouth. This scales the control lines with

the length of the horn.
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The results of the EGO EI optimisation ofS for a horn with fixed lengthL = 260 mm

and 2 inch throat appear in Figure 7.27. The 25 cyan dots show where the initial points

are sampled, and the 25 green dots show the sample points chosen by the EI ISC, bal-

ancing both local and global optimisation. A convergence tothe global minimum can be

seen with repeated sampling (many green dots) around the global minimum (red dot) at

x(1) = 0.49 andx(2) = 0.69. We can now be reasonably certain that the global mini-

mum of an unconstrained 2 parameter optimisation ofScan be found within 50 function

evaluations. The beamwidth is shown in Figure 7.28 (a) with anominal beamwidth of

47.1◦ with parameterS= 3.1%. The profile is shown in Figure 7.28 (b). This calculations

should compare directly with that in Figure 7.21. Both parameterisations are capable

of producing the same geometry, but the EGO optimisation with EI ISC finds a better

solution, and should be adopted for future unconstrained optimisations.

Extending the geometry to include a third control point between the two existing points

gives finer control over the shape of the horn. The fractionsx(1), x(2) andx(3) control

the positions of the three control points between the start and end points of the control

lines. The unconstrained EGO with EI ISC is able to find a global minimum,x(1) = 0.48,

x(2) = 0.43 andx(3) = 0.70, shown as the red dot in Figure 7.29. The 35 cyan dots show

the initial samples, and the 65 green dots show the samples chosen by the EI ISC. There

is a large amount of sampling around the red dot, showing dense sampling and likely

convergence to a global minimum.

The beamwidth produced by this optimal solution is shown in Figure 7.30 (a). The nomi-

nal beamwidth is 46.8◦ with a parameterS= 2.8%. The profile, shown in Figure 7.30b is

remarkably similar to the 2 parameter version shown in Figure 7.28 (b). The smoothness

of the beamwidth indicates that constant beamwidth behaviour likely to be achieved with

this design.

Figure 7.31 (a) and (b) show the absolute and percentage differences between the radial

profiles of the 2 and 3 parameter complex spline horns, as shown in Figure 7.28 (b) and

The University of Adelaide. Department of Mechanical Engineering.
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Figure 7.27: Optimisation trajectory for the 2 parameter complex spline horn geometry with a 2
inch throat andL = 260mm. The cyan dots show the initial samples, green dots the EI sampling
and the red dot shows the unconstrained global minimum.

.

Figure 7.30 (b) respectively. This very small difference ingeometry is probably smaller

then the manufacturing tolerances of production horns, andthe tiny improvement in the

predictions of the numerical model probably do not warrant the extra computation effort

required.

7.5.6 Conclusions

In summary, for a fixed set of general parameters (such as throat radius and horn length),

it is possible to find simple 2 and 3 parameter horn geometriesthat are able to produce

nearly constant beamwidth behaviour, at least over the frequency range studied. Efficient

optimisation of parameterS, with approximately 50 objective function evaluations, isper-
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formed with the Expected Improvement (EI) Infill Sampling Criteria (ISC) and the EGO

optimisation algorithm, and the results are superior to theunconstrained optimisation per-

formed in previous sections.

With the fixed parameters and unconstrained optimisation used in this section, the beam-

widths found were unable to satisfy the nominal beamwidth constraint. This is most

probably because the horn length and throat dimension, factors that control the overall

angle of the horn, were fixed, and further investigation is required into ways to achieve

constant beamwidth behaviour at the desired nominal beamwidth.
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Figure 7.28: Results of the unconstrained EI optimisation of Φ3 for the 2 parameter complex spline
horn geometry with a 2 inch throat and horn length210mm.
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Figure 7.29: Optimisation trajectory for the 3 parameter complex spline horn geometry with a 2
inch throat andL = 260mm. The cyan dots show the initial samples, green dots the EI sampling
and the red dot shows the unconstrained global minimum.
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Figure 7.30: Results of the unconstrained EI optimisation of Φ3 for the 3 parameter complex spline
horn geometry with a 2 inch throat and horn length210mm.
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Figure 7.31: Difference between the 2 parameter and 3 parameter radial profiles shown in Figure
7.28 (b) and Figure 7.30 (b) respectively.
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7.6 Constant beamwidth horns

The work described in this section considers the design of a range of constant beamwidth

horns. The work described in section 7.5.5 found that for a fixed throat radius and horn

length, a 2 parameter Bézier spline based horn geometry was able to produce approxi-

mately constant beamwidth behaviour using EGO with an unconstrained EI ISC but the

nominal beamwidth was not achieved. Unlike Section 7.3, with the specification of a de-

sign angle, it is not clear how the nominal beamwidth produced by this optimisation is

controlled by the throat radius and horn length.

The technique described in Section 7.5.3 uses the constrained EGO approach to find the

smoothest beamwidth possible for the geometry by varying 4 parameters including the

throat radius and horn length. As can be seen from the beamwidth shown in Figure 7.24,

the solution found is not particularly smooth. It is not known whether this is limited by

the geometry (likely because one parameter is at the minimum) or by the optimisation

procedure. Using a large multi-dimensional optimisation also limits possible insight into

the visualisation and nature of the optimisation landscape.

One possible approach to this problem would be to embed an optimisation that found the

smoothest possible geometry for a given throat radius and horn length as an objective

function for a second optimisation. This optimisation would then vary the throat radius

and horn length until it found the desired nominal beamwidth. An unconstrained EGO

optimisation would be able to perform the optimisation quite simply, provided that the de-

sired nominal beamwidth is physically realisable for the given ranges of throat radii and

horn lengths. The cost of a single objective function evaluation for the second optimisa-

tion is extremely large (in the order of 1 hour for a Pentium 4 2.8 GHz running Windows

XP). If an optimisation was performed using this approach, with up to 50 objective func-

tion evaluations would be used to find a single solution. If different value of nominal

beamwidth was required, then another expensive optimisation must be performed.
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The solution adopted in this thesis does not perform a secondoptimisation. Instead the

results of a series of constant beamwidth optimisations at anumber of different throat

radii and horn length parameters are interpolated using thesame technique as used in the

EGO optimisation method (Kriging). The entire range of throat radii and horn length

parameters is sampled, with parameters chosen using space filling sampling techniques

(Appendix B.5). This solution is possible because the dimension is small (2 parameters),

and the Kriging interpolator is very efficient. This solution effectively produces a “design

chart” for axisymmetric constant beamwidth horns where thehorn designer can “look up”

designs and make trade offs between horn dimensions and nominal beamwidths.

The upper and lower bounds of the variables, the mouth to throat radius ratio,Rm
Rt

, and the

horn length,L, are given in Table 7.4. A set of 50 parameters between the upper and lower

bounds has been selected with using the space sampling Improved Hypercube Sampling

(IHS) method. At each of these parameters, a second optimisation to find the smoothest

possible beamwidth with the throat radius and horn length held constant is performed.

Kriging models were fit to the results of the second optimisation (parameterS, nominal

beamwidthΦ2, as well as the values of the constant beamwidth optimisation, x(1) and

x(2)) and the mean square error of the resulting approximations examined by hand to find

appropriate places to sample next, because the dimension ofthe current problem is small,

and visualisation is easy. For more complicated problems, or for a more automatic way

of finding new places to sample, the MAXVAR ISC could be used. Anumber of new

sample points was chosen, and further constant beamwidth optimisations performed, to

reduce the error in the interpolation. Overall 81 constant beamwidth optimisations were

performed.

Variable Description Lower Upper
Rm
Rt

Mouth to throat ratio 2 13
L Horn length 200 mm 400 mm

Table 7.4: Upper and lower bounds of parameters used to describe the constant beamwidth horn
geometry.
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Results for the parameterS are shown in Figure 7.32 as a contour plot. Low values

of the parameterS means that the standard deviation of the beamwidth normalised by

the mean value of the beamwidth is low, and close to constant beamwidth behaviour

is achieved. The 50 cyan dots represent the initial sample positions, and the 31 green

dots represent additional samples chosen to improve the Kriging interpolation. The value

of the parameterS is low, across most of the plot, except for low values ofRm
Rt

. The

reason for these large values ofS, and non-constant beamwidth behaviour, is evident

when examining typical geometries produced for low values of Rm
Rt

such as those shown in

Figure 7.33. The smoothest profile found by the optimisationroutine for the low values

of Rm
Rt

is one where the value of the parameter that controls the firstspline control point,

x(1), is small, and the horn profile has a point of inflection near the throat. To suppress this

anomalous behaviour, only the values ofSbelow 4 are to be considered, the approximate

boundary between the red (bad) and blue (good) areas on Figure 7.32. It is suggested that

future studies examine different objective functions to eliminate this behaviour (Section

8.3).

Figure 7.34 shows contours of parameterSfor varying throat radius and horn length, with

the black mask covering the anomalous horn shapes. This plot, along with Figure 7.35,

a contour of the nominal beamwidth, can be considered the main results of this thesis.

They provide a method to design a horn that is as smooth as possible for a given nominal

beamwidth. Figure 7.36 overlays a contour line plot of nominal beamwidth over a plot of

smoothness. Picking a particular contour of nominal beamwidth and moving along it un-

til the minimum smoothness is chosen gives the values ofRm
Rt

andL. These design charts

have been generated by a Kriging interpolator, a computer model that can easily be inter-

faced with optimisation techniques to find a minimum solution automatically. However,

visualisation of the search space allows the designer to seemany potential solutions and

pick the best one. These can then be used with the plots in Figure 7.37 to find the optimal

value ofx(1) andx(2). These values can then be used to construct the horn profile. No

expensive optimisation using the EGO and the source superposition technique is needed.
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Figure 7.32: Contour of parameterS. The cyan dots show the initial samples and the green dots
additional sampling to reduce uncertainty in the interpolation. The red contours show anomalous
behaviour and should be suppressed.

The MATLAB DACE Kriging interpolation system (Lophaven et al., 2002b)is able to

calculate vector interpolations, and the beamwidth of the system can also be stored. To

check the validity of the optimum interpolation system, a design for a 60◦ beamwidth

horn is undertaken. Figure 7.36 is used to estimate the performance of a 60◦ horn. A point

Rm
Rt

= 12.45 andL = 220 mm is selected as a good design. The Kriging approximation

then givesx(1) = 0.43 andx(2) = 0.68 as predictions of optimal solutions. The horn

profile calculated using these values is shown in Figure 7.38(b). The true solution is

calculated using this profile and shown in Figure 7.38 (a), plotted with non-dimensional

frequencykRm (wherek = 2π f/c), along with the Kriging prediction of the beamwidth.

As can be seen, the Kriging approximation to the beamwidth and the true beamwidth

are very similar. The performance of the horn is good enough for design purposes, and

because all parameters are scaled by the horn mouth dimension Rm, the results can be

easily scaled to any frequency range.
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=55.0mm,L=265mm)
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(R
t
=61.2mm,L=223mm)

Figure 7.33: Typical optimum horn profile for small values ofRm
Rt

.

Another use of the design tools is presented. Suppose a fixed length of horn is required of

L = 260 mm. By fixing this dimension, then picking a good dimension for Rm
Rt

from Figure

7.36 (in this caseRm
Rt

= 10.8, givingx(1) = 0.50 andx(2) = 0.69), an optimal solution is

found. This is shown in Figure 7.39, a good design for a horn restricted toL = 260 mm.
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Figure 7.34: Contour of the parameterS, where small values imply better “constant beamwidth
behaviour”. The black contour masks anomalous behaviour.

2 4 6 8 10 12
200

250

300

350

400

R
m

/R
t

L 
[m

m
]

30

35

40

45

50

55

60

Figure 7.35: Contour of the nominal beamwidthΦ2, showing the range of constant beamwidth
horns achieved. The black contour masks anomalous behaviour.

The University of Adelaide. Department of Mechanical Engineering.



7.6. Constant beamwidth horns 265

2 4 6 8 10 12
200

250

300

350

400

R
m

/R
t

L 
[m

m
]

25

25

30
30

30

30
30

35

35

35

40

40

40

40

45

45

45

50

50

50

55

55

60

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Figure 7.36: Constant beamwidth horn “design chart”. A contour of the parameterS is overlaid
with contour of the nominal beamwidthΦ2. The black contour masks anomalous behaviour.
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Figure 7.37: Contours of the parametersx(1) andx(2) that define the shape of the constant beam-
width horns.
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width horn of lengthL = 260mm calculated using the design chart.
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7.7 Conclusions

Optimisation techniques have been developed that can find the smoothest possible beam-

width response as a function of frequency for a given horn parameterisation, and often

this behaviour can be considered to approach “constant beamwidth behaviour”. If the

horns are exhibiting true constant beamwidth behaviour then the frequency response of

the horn will be smooth (Rogers and Van Buren, 1978). This remains to be tested both

numerically and experimentally (Section 8.3).

If the geometry is physically able to create the desired nominal beamwidth, then opti-

misation techniques are available that will find the smoothest possible beamwidth. One

approach is to use the constrained EGO technique to find a single point in space that both

satisfies the beamwidth constraint and is as smooth as possible. This technique, while it

does find an optimum solution, is time consuming and tells nothing about how the para-

meters vary. A more satisfying approach is to calculate the smoothest possible beamwidth

for a range of horn throat dimensions and lengths, and then fita Kriging interpolator to

find the values in between. This way, the information calculated can be reused, and new

designs calculated without further expensive optimisation.

There is much more that can be done with the optimisation of horn loaded loudspeakers:

• Objective functions that better capture constant beamwidth behaviour would pro-

vide more robust optimisation. One possible approach wouldbe to fit a function

that describes constant beamwidth behaviour with a number of parameters, such as

nominal beamwidth and low frequency beamwidth performance. A least squares

fit to the beamwidth data would give the parameters, and the correlation coeffi-

cient (Weisstien, 2004) would be a non-dimensional measureof how close constant

beamwidth behaviour was achieved.

• More general horn geometry parameterisations may allow smoother horn beam-

widths.

Horn Loaded Loudspeakers. Richard C. Morgans.
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• The horns investigated had uniform velocity distributionsapplied at the throat,

however this is known not to be the case above a certain frequency (Behler and

Makarski, 2003). The effect of real compression drivers should be investigated.

• It should be possible to tailor the compression driver response to help achieve con-

stant beamwidth behaviour (Geddes, 2002) or to design horn loaded tweeters.

• Horns with different beamwidths for different axes (3D horns) would be more in-

dustrially relevant.

However, these problems are beyond the scope of the current study (see Section 8.3).

The University of Adelaide. Department of Mechanical Engineering.



Chapter 8

Conclusions and recommendations

This chapter reiterates the aims given in the first chapter and summarises the work com-

pleted in this thesis. It clearly states the contributions to current knowledge in the optimi-

sation of horn loaded loudspeakers, and gives recommendations for future work.

8.1 Introduction

The introductory chapter describes the aims of horn design for cinema loudspeakers: to

produce an easily specified frequency independent beamwidth, and to provide a smooth

frequency response over as large a bandwidth as possible. The overall aim of this thesis

was to develop fast and reliable optimisation techniques for horn loaded loudspeakers to

achieve a good horn design method for cinema loudspeakers.

This aim was achieved by first examining the literature to findout what techniques had

been used previously. It was found that there are no analytical or semi-analytical tech-

niques suitable for the design of horns for cinema loudspeakers, that fast numerical tech-

niques are necessary and that the numerical method chosen must be able to include the
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effects of higher order modes propagating within the horn. It was also found that al-

though studies had previously attempted to optimise horn loaded loudspeakers, none of

these techniques were suitable for cinema loudspeaker systems.

The specific aims of this thesis were to;

• Examine experimentally the nature of the sound field at the mouth of repre-

sentative axisymmetric horns (near field) and the horn beamwidth (far field).

The experimental results for the near field sound pressure generated by a horn found

that above a certain limiting frequency, plane waves ceasedto exist at the mouth of

the horn, and the sound field is quite complex. This implies that any numerical

method used must be able to model this complex field implicitly. Far field experi-

mental results have been used to validate the numerical methods. This aim has been

achieved.

• Develop fast and accurate numerical models of horn loaded loudspeakers.

Of the many numerical techniques available, the source superposition technique of

Koopmann and Fahnline (1997) is a good choice for modelling the sound field ra-

diated by horns. Work described in this thesis demonstratedit to be significantly

faster than traditional BEM techniques and also suitable for modelling thin struc-

tures such as horns. The technique is capable of reproducingthe sound field gen-

erated by a horn loaded loudspeaker from a specification of the horn geometry, and

the accuracy of the reproduction is adequate for design purposes within the speci-

fied frequency range. This aim has been achieved.

• Develop fast and reliable optimisation techniques for hornloaded loudspeak-

ers.

A theory used to design a Constant Beamwidth Transducer (CBT) for sonar appli-

cations has been examined in the context of horn design. Thishas shown that a

frequency independent beamwidth is physically realisable. The theory also states

The University of Adelaide. Department of Mechanical Engineering.
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that the frequency response of such a transducer, once it hasachieved a frequency

independent beamwidth, will be smooth. This implies that a horn that has achieved

a frequency independent beamwidth in the same manner at the CBT transducer

will also have a smooth frequency response, and that the major aim of horn design

should be to produce a frequency independent beamwidth.

Fast and reliable gradient free optimisation techniques for expensive objective func-

tion evaluation have been developed, along with objective functions that quantify

the aims of a horn designer. These have been applied to horn loaded loudspeak-

ers and horn geometry based on a 2 parameter Bézier spline hasbeen developed.

The optimisation techniques have been used to develop a design method for horn

loaded loudspeakers. The optimum beamwidth for a wide rangeof sizes have been

pre-calculated and a series of design graphs created, allowing optimal designs to be

quickly and easily created. This aim has been achieved.

8.2 Contributions to current knowledge

The work in this thesis makes the following contribution to the state of current knowledge

in acoustic horn theory:

• Foremost from an industrial perspective, the work described in this thesis provides

an optimisation method for the design of constant beamwidthhorn loaded loud-

speakers. This provides smooth control of the beamwidth over a range of frequen-

cies governed by the size of the horn. A design method that allows an optimal

design to be chosen quickly and easily from a series of graphsor a simple computer

programme has been developed.

• Fast numerical methods have been developed and validated for analysing horn

geometries. This has been done using the source superposition method, a numerical

Horn Loaded Loudspeakers. Richard C. Morgans.
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technique that is similar to traditional BEM but is significantly faster. Comparisons

have been made with experimentally measured sound pressuredata in the far field

and other numerically based sound pressure predictions, such as boundary element

techniques, to find the limits of validity for this approach.An extensive literature

search failed to find any evidence that this technique has previously been applied to

the numerical modelling of horns.

• Constant Beamwidth Transducer (CBT) theory has been reviewed in the context

of acoustic horns, and an optimum velocity profile developedusing an optimisa-

tion technique. This shows that the aim of a frequency independent beamwidth is

physically realisable under some circumstances.

• The nature of the near field of the horn has been examined. The existence of higher

order modes above a limiting frequency has been demonstrated, which has impli-

cations for the technique chosen to model the horn.

The work in this thesis makes the following contribution to the state of current knowledge

in numerical methods in acoustics:

• For both the source superposition technique and the traditional BEM, it has been

found that accurate far field sound pressure results can be obtained with a much

reduced mesh density than has been reported previously in the literature, at least

for the cases considered here. This is a significant finding, as the efficiency of both

techniques decreases rapidly with increasing model size.

• The source superposition technique has been found to generate matrices that are

extremely diagonally dominant, and hence are well suited tosolution with an itera-

tive technique such as GMRES. Traditional BEM has had to use apreconditioning

technique (Migeot et al., 2000, Chen, 1999) to effectively use iterative solution tech-

niques. The advantage of this finding will become more apparent as the problem

The University of Adelaide. Department of Mechanical Engineering.
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size becomes larger. For the problems considered in this thesis, element assembly

time is as dominant as solution time.

The work in this thesis makes the following contribution to the state of current knowledge

in global optimisation methods:

• The Regional Extreme (RE) Infill Sampling Criteria (ISC) of Sasena (2002) has

been compared with the criteria originally proposed by Watson and Barnes (1995).

Sasena’s interpretation was found to be different to that ofthe original implemen-

tation of the Regional Extreme criteria. The original interpretation is found to be

exactly equivalent to Schonlau’s (1997) Expected Improvement. It was also found

here that an alternative implementation of Sasena’s criteria (which cannot be called

a regional extreme criteria) may not find the global optimum.

8.3 Recommendations for future work

From an industrial perspective, there are a number of tasks that would be very useful:

• The most pressing need would be the construction and measurement of horn designs

given in Chapter 7 to experimentally verify constant beamwidth behaviour.

• A procedure directed at the design of horns that allow independent control of the

beamwidth in different axes. This is not possible with an axisymmetric geometric

specification described in Chapter 7. However an extension of this geometry to a

second axis should be relatively simple. CBT theory has beenshown to be extend

in a simple manner to the second axis (Keele, 2000), so independent axis control

is physically realistic. A question remains as to the efficiency of the optimisation

technique, as the number of variables to be optimised doubles.

Horn Loaded Loudspeakers. Richard C. Morgans.
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• The development of a simple computer program that embodies the “design chart”

given in Section 7.6 would be very useful for the design of axisymmetric horn

loaded loudspeakers.

• Modifications to the boundary conditions at the throat of thehorn, by changing the

design of the compression driver, may help achieve constantbeamwidth behaviour.

This was first suggested by Geddes (2002). The design of constant beamwidth horn

loaded tweeters is a related problem.

From an academic perspective, much work can be done with the optimisation technique.

• The objective function can be improved to better represent constant beamwidth

behaviour. By fitting a suitable parameterised curve through the calculated beam-

width points, the correlation coefficient (Weisstien, 2004) can be used as a scale free

measure of the smoothness of the beamwidth. This would provide a more robust

optimisation.

• The constrained EGO algorithm is not robust. The method developed here for con-

strained optimisation works well for the applications described in this thesis, as the

MAXVAR sampling of the constrained area is generally restricted to a small subset

of the whole parameter space. A more general Infill Sampling Criteria (ISC) such

as Schonlau’s (1997) Expected Improvement (EI) is not amenable for constrained

optimisation with either DIRECT or Adaptive Simulated Annealing. Research into

optimisation methods able to perform constrained optimisation of the Expected Im-

provement ISC would be most valuable.

• Alternatively, as the equality constrained SQP algorithm has been found to be very

efficient when robust gradient information is available, further research on an effi-

cient method to calculate the gradient of the source superposition solution would

be very valuable.

The University of Adelaide. Department of Mechanical Engineering.
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Modelling horn loaded loudspeakers can be improved in a number of ways.

• A simple modification to the acoustic power calculation algorithm in the source su-

perposition code to include 1/4 symmetry planes would allowthe rapid calculation

of the power response of horn loaded loudspeakers. The frequency response of a

constant beamwidth horn could then be investigated.

• The choice of boundary conditions can be questioned. It has been found that above

a certain frequency, plane waves do not exist at the throat ofthe horn (Behler and

Makarski, 2003). The plane wave boundary condition did not effect the results of

the conical horn model when compared to experimental beamwidth results, possibly

due to the sharp interface at the step generating higher order modes. However the

exponential horn shows a discrepancy above a certain frequency. The inclusion of

a more accurate model of the compression driver should remove this discrepancy.

The source superposition technique is an efficient technique for predicting the power out-

put from radiating structures, and in this thesis it has beenfound to be an excellent tool for

modelling the far field pressure distribution of horn loadedloudspeakers. There is much

potential for the technique to be extended and investigation into similar boundary element

like techniques may result in better numerical methods.

• The source superposition technique can be extended immediately to predicting scat-

tering from rigid structures (see Ochmann 1999, Section 1) and the technique in

combination with the GMRES iterative solver would be very efficient. Further work

would be necessary to extend the technique to general impedance boundaries.

• To further increase the efficiency of the source superposition technique for multiple

frequency calculations, a matrix interpolation techniquesuch as described in Sec-

tion (4.4.4) should be investigated further, especially inlight of the Kriging (Appen-

dix B.4) interpolation method, which is a fast and efficient interpolation technique

used as a component of the global optimisation method developed here.

Horn Loaded Loudspeakers. Richard C. Morgans.
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• The choice of linear elements in the source superposition technique is also an issue

in accurately resolving the surface area at low element densities (Koopmann and

Fahnline, 1997). The use of quadratic elements and shape functions would elimi-

nate this problem.

• An “element agglomeration” technique (Fahnline, 1995) canbe used to reduce the

size of the matrix generated by the source superposition technique, especially at

low frequencies. This process does not eliminate the expensive integration of the

singular functions on the surface, but does reduce the matrix size. A problem with

this is the automatic selection of these larger agglomerated super-elements. Tech-

niques such as those used in multigrid solvers (Moulitsas and Karypis, 2001) and

graph partitioning (Karypis and Kumar, 1998) may go some of the way to providing

an automatic solution.

The University of Adelaide. Department of Mechanical Engineering.
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