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Abstract

Horn loaded loudspeakers increase the efficiency and control the spatial distribution of the

sound radiated from the horn mouth. They are often used as components in cinema sound

systems where the sound can be broadcast evenly onto the audience at all frequencies,

improving the listening experience. The sound distribution, or beamwidth, is related to

the shape of the horn and is not predicted adequately by existing analytical horn models.

The aim of the work described in this thesis is to develop a method to optimise the shape

of the horn to give a specified beamwidth, which is ideally frequency independent, thus

giving a high quality listening experience.

This thesis begins with a thorough review of the literature relevant to modelling and op-

timising horn loaded loudspeakers. It gives an introduction to horn loaded loudspeakers,

and describes traditional modelling approaches and their limitations. The applications of

alternative modelling techniques to horn loaded loudspeakers, which have been found in

the literature, are critiqued as are horn optimisation techniques.

To examine the validity of the plane wave radiation assumption made by a number of

horn models, experiments were undertaken to measure the sound field at the mouth of

two small horns. These horns are representative of the size and design required for cin-

ema loudspeaker systems, but are axisymmetric. The sound field was measured by an

automated microphone traverse with almost 3500 measurements made across the face of

each horn, providing a high spatial resolution.
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The results of the measurements showed that at low frequencies the sound fields from

both the conical and exponential horns were similar and thatabove a certain frequency the

sound field became more complex. An analysis of the data, using a modal decomposition

with cylindrical duct modes of the same diameter as the mouthof the horns, revealed that

almost all of the energy in the system existed in modes with nocircumferential variation,

and that above a certain limiting frequency, plane waves ceased to exist at the mouth

of each horn. This work showed that any numerical model developed must be capable

of efficiently modelling variations in the sound field acrossthe mouth of the horn, and

that models based on plane wave approximations should not beused for modelling these

experimental horns, at least above a certain critical frequency.

Numerical models able to accurately and quickly calculate the far field pressure from ar-

bitrary shapes are also investigated. Calculations of the beamwidth from the analytical

solutions for a 45◦ vibrating spherical cap, mounted on the surface of a unit sphere, were

compared with those obtained from an implementation of the direct Boundary Element

Method (BEM) and a source superposition technique. The investigation found excellent

agreement between these results for mesh densities of 6 elements per wavelength, the

generally recommended minimum mesh density for BEM simulations. The source super-

position technique was significantly faster than the directBEM for comparable accuracy

in the far field.

There was also excellent agreement between analytical calculations and all of the numeri-

cal methods for a mesh density of 3 elements per wavelength. This is a significant finding

as it allows a reduction in mesh density, and hence matrix size and solution time, for a

given accuracy of far field solution. Alternatively, higherfrequencies can be reached for

a given mesh density. It was also found that the source superposition technique produced

matrices that are highly diagonally dominant, and well suited to fast iterative solution

techniques.

The validation of the numerical methods for modelling the beamwidth of horn loaded
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loudspeakers was undertaken by comparing the source superposition technique to experi-

ment, as well as with an alternative numerical method, the direct BEM. It was shown that

such models are capable of modelling the sound field generated by a horn loaded loud-

speaker from a specification of the horn geometry. This accuracy of the model is adequate

for design purposes within the given frequency range. Both the direct BEM and the source

superposition technique are capable of modelling the experimental beamwidth; however,

the source superposition technique is considerably fasterand hence more suitable for use

in optimisation techniques.

During the literature review, a type of sonar transducer called a Constant Beamwidth

Transducer (CBT) was found that was able to produce an easilyspecified frequency in-

dependent beamwidth. These are desirable characteristicsfor the design of a horn. The

concept used in the development of these transducers, a specified velocity profile over the

surface of a sphere, is explored in this thesis in relation tohorn design.

A semi-analytical technique, using solutions to the Helmholtz equation in spherical co-

ordinates and numerical integration of Legendre functions, was developed to efficiently

calculate the beamwidth for an arbitrary velocity profile over the surface of a sphere. It

was used to calculate the beamwidth for four different velocity profiles: a spherical cap

mounted on the surface of a sphere; a CBT profile; and two smooth tailed CBT velocity

profiles. The results showed that the smooth tailed CBT velocity profiles produce the

smoothest beamwidth, possibly at the expense of low frequency performance. It was also

found that the performance of each velocity profile is consistent with CBT theory, with the

best performing profile having the highest rate of energy decay in the spherical Legendre

modes.

CBT theory also suggests that the performance of the CBT transducers is unaffected by

the removal of the inactive part of the sphere, i.e. that partover which the velocity profile

is zero. This was confirmed numerically by simulations usingthe source superposition

technique.
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The numerical model developed to investigate the CBT was used to test robust optimisa-

tion techniques suitable for optimising horn loaded loudspeakers. Two different objective

functions were considered, one that uses least squares to drive the velocity profile to a

minimum, and the other that uses a constrained optimisationof a smoothness parameter.

It was found that constrained optimisation was able to robustly find an optimal solution

in an acceptable number of objective function evaluations.As the cost of evaluating the

objective function for horn loaded loudspeakers is high, the potential of surrogate mod-

elling techniques, designed to reduce the overall number ofobjective function evaluations,

was investigated. Optimal solutions were found for two different parameterisations of the

velocity profile. One parameterisation was similar to the smooth tailed CBT velocity pro-

files and the other, which allowed a more variable velocity profile, was defined by Bézier

curves.

The idea of CBT theory, that is, defining an optimal velocity profile over a spherical

cap, was applied to the optimisation of horn loaded loudspeakers. A number of different

horn geometry parameterisations were developed, with the aim of producing an optimal

velocity profile over the mouth of the horn. The robust optimisation techniques devel-

oped previously were applied, and an optimal horn geometry calculated. It was found

that a very simple geometry parameterisation could producenear constant beamwidth

performance while keeping the desired design (or nominal) beamwidth, and that a more

complicated parameterisation (using splines) could not keep the nominal beamwidth but

provided superior constant beamwidth performance. A series of optimisations using the

spline parameterisation were undertaken to map the design space, with the result being a

design chart for constant beamwidth horns. The desired performance characteristics of a

constant beamwidth horn such as length, mouth to throat ratio or nominal beamwidth can

be specified, and the horn performance and specifications easily read from a chart.

The overall aim of this thesis was to develop fast and reliable optimisation techniques

for horn loaded loudspeakers to achieve a robust horn designmethod for cinema loud-
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speakers. This thesis achieved this aim for axisymmetric horn geometries by: developing

fast and well validated numerical methods for calculating the beamwidth of horn loaded

loudspeakers; by examining how optimal beamwidth control is achieved in CBTs, and

how this can be achieved in horn loaded loudspeakers; by developing robust objective

functions and optimisation techniques capable of finding anoptimal beamwidth from a

parameterised geometry; and by developing a design chart for constant beamwidth horns.
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