
Laplace-Domain Analysis of Fluid Line Networks

with Applications to Time-Domain Simulation

and System Parameter Identification

by

Aaron C. Zecchin

B.E. (Civil) (Hons), B.Sc.

Thesis submitted to The University of Adelaide

School of Civil, Environmental & Mining

Engineering in fulfilment of the requirements for

the degree of

Doctor of Philosophy



References

Abate, J., and P. P. Valko, Multi-precision Laplace transform inversion, Interna-

tional Journal for Numerical Methods in Engineering, 60 (5), 979–993, 2004.

Abate, J., and W. Whitt, The fourier-series method for inverting transforms of

probability distributions, Queueing Systems Theory and Applications, vol. 10,

no. 1-2, 5–88, 1992.

Abate, J., and W. Whitt, Numerical inversion of Laplace transforms of probability

distributions, ORSA Journal on Computing, vol. 7, no. 1, 36–43, 1995.

Abate, J., and W. Whitt, Computing Laplace transforms for numerical inversion

via continued fractions, Informs Journal on Computing, 11 (4), 394–405, 1999.

Abate, J., and W. Whitt, A unified framework for numerically inverting Laplace

transforms, Informs Journal on Computing, 18 (4), 408–421, 2006.

Abate, J., G. L. Choudhury, and W. Whitt, On the Laguerre method for numerically

inverting Laplace transforms, INFORMS Journal on Computing, 8 (4), 413–27,

1996.

Abramowitz, M., and I. A. Stegun, Handbook of mathematical functions, Dover

Publications, 1964.

Almondo, A., and M. Sorli, Time domain transmission line modelling using a passiv-

ity preserving rational approximation of the frequency dependent transfer matrix,

International Journal of Fluid Power, 1 (7), 41–50, 2006.

Andersen, J. H., and R. S. Powell, Implicit state-estimation technique for water

network monitoring, Urban Water, 2, 123–130, 2000.

Anderson, B. D. O., and S. Vongpanitlerd, Network analysis and synthesis: a modern

systems theory approach, Prentice-Hall electrical engineering series, Prentice-Hall,

Englewood Cliffs, N. J., 1973.

237



References

Ansari, J. S., and R. Oldenburger, Propagation of disturbance in fluid lines, Journal

of Basic Engineering, ASME, 88 (2), 415–422, 1967.

Arfaie, M., K. Suwan, and A. Anderson, Stability and accuracy of pipe friction

approximations in method of characteristics solutions for waterhammer, Mathe-

matical Engineering in Industry, 4 (1), 265–281, 1993.

Ashton, S. A., and D. N. Shields, Fault detection observer for a class of nonlinear

systems, New Directions in Nonlinear and Observer Design, 244, 353–373, 1999.

Auslander, D. M., Distributed system simulation with bilateral delay-line models,

Transactions of the ASME, Journal of Basic Engineering, pp. 195–200, 1968.

Axworthy, D. H., Water distribution network modelling from steady state to water-

hammer, PhD thesis, University of Toronto, 1997.

Ayalew, B., and B. T. Kulakowski, Modal approximation of distributed dynamics

for a hydraulic transmission line with pressure input-flow rate output causal-

ity, Journal of Dynamic Systems Measurement and Control-Transactions of the

ASME, 127 (3), 503–507, 2005.

Baghdadi, A. H. A., and H. A. Mansy, A mathematical model for leak location in

pipelines, Applied Mathematical Modelling, 12 (February), 25–30, 1988.

Barber, A., Pneumatic handbook, 7th ed., Trade and Technical Press, Morden, Eng-

land, 1989.

Beasley, J. D., and S. G. Springer, Algorithm as 111, Applied Statistics, 26, 118–121,

1977.

Benkherouf, A., and A. Y. Allidina, Leak detection and location in gas pipelines, In-

stitution of Electrical Engineerg, Proceedings D, Control Theory and Applications,

135 (2, March), 142–148, 1988.

Billmann, L., and R. Isermann, Leak detection method for pipelines, Automatica,

23 (3), 381–385, 1987.

Black, P., A review of pipeline leak detection technology, in Pipeline Systems, edited

by B. Coulbeck and E. Evans, Fluids Mechanics and Its Application, pp. 287–297,

Kluwer Academic Publishers, 1992.

Boucher, R. F., and E. E. Kitsios, Simulation of fluid network dynamics by

transmission-line modeling, Proceedings of the Institution of Mechanical Engineers

Part C-Journal of Mechanical Engineering Science, 200 (1), 21–29, 1986.

238



References

Brillinger, D. R., Time series: data analysis and theory, International series in

decision processes, Holt Rinehart and Winston, New York, 1974.

Brown, F. T., The transient response of fluid lines, Journal of Basic Engineering,

ASME, 84 (3), 547–553, 1962.

Brown, F. T., A unified approach to the analysis of uniform one-dimensional dis-

tributed systems, Trans. ASME J. Eng., 89, 423–432, 1967.

Brown, F. T., and S. E. Nelson, Step responses of liquid lines with frequency-

dependent effects of viscosity, Journal of Basic Engineering, ASME, 87 (June),

504–510, 1965.

Brown, F. T., and S. C. Tentarelli, Dynamic behavior of complex fluid-filled tubing

systems - part 1: Tubing analysis, Journal of Dynamic Systems Measurement and

Control-Transactions of the ASME, 123 (1), 71–77, 2001.

Brunone, B., Transient test-based technique for leak detection in outfall pipes,

Journal of Water Resources Planning and Management, ASCE, 125 (5, Septem-

ber/October), 302–306, 1999.

Brunone, B., and M. Ferrante, Detecting leaks in pressurised pipes by means of

transients, Journal of Hydraulic Research, IAHR, 39 (5), 539–547, 2001.

Brunone, B., U. Golia, and M. Greco, Some remarks on the momentum equations

for fast transients, in Hydraulic Transients with Column Separation (9th and Last

Round Table of the IAHR Group), IAHR, edited by E. Cabrera and M. Fanelli,

Valencia, Spain, 1991.

Candy, J. V., and R. B. Rosza, Safeguards design for a plutonium concentrator - an

applied estimation approach, Automatica, 16, 615–627, 1980.

Chadwick, R. S., Pulse-wave propagation in an artery with leakage into small side

branches, Applied Mathematical Sciences, 82, 5237–5241, 1985.

Chaudhry, M. H., Resonance in pressurized piping systems, Journal of the Hydraulics

Division, ASCE, 96 (HY9, September), 1819–1839, 1970.

Chaudhry, M. H., Applied Hydraulic Transients, 2nd ed., Van Nostrand Reinhold

Co., New York, USA, 1987.

Chaudhry, M. H., and M. Y. Husssini, Second-order accurate explicit finite-

difference schemes for waterhammer analysis, Journal of Fluids Engineering,

107 (December), 523–529, 1985.

239



References

Chen, H. X., P. S. K. Chua, and H. L. Lim, Feature extraction, optimization and

classification by second generation wavelet and support vector machine for fault

diagnosis of water power hydraulic systems, International Journal of Fluid Power,

7 (7), 39–52, 2006.

Chen, W.-K., Linear Networks and Systems, Brooks/Cole Engineering Division,

Monterey, Calif, 1983.

Cole, S. E., Methods of leak detection: An overview, Journal of the American Water

Works Association, 71 (2), 73–75, 1979.

Collins, M., L. Cooper, R. Helgason, J. Kennington, and L. LeBlanc, Solving the pipe

network analysis problem using optimization techniques, Management Science,

24 (7), 747–760, 1978.

Contractor, D. N., The reflection of waterhammer pressure waves from minor losses,

Journal of Basic Engineering, ASME, 87 (June), 445–452, 1965.

Covas, D., and H. Ramos, Leakage detection in single pipelines using pressure wave

behaviour, in Water Industry Systems: Modelling and Optimisation Applications,

edited by D. A. Savic and G. A. Walters, Research Studies Press Ltd., Baldock,

Hertfordshire, England, 1999.

Covas, D., and H. Ramos, Hydraulic transients used for leakage detection in water

distribution systems, in 4th International Conference on Water Pipeline Systems:

Managing Pipeline Assets in an Evolving Market, pp. 227–241, BHR Group, York,

UK, 2001.

Covas, D., H. Ramos, and A. B. de Almeida, Leakage monitoring control and man-

agement of water distribution systems: A challenge for the 21st century, in 28th

Biennial Congress, IAHR, Graz, Austria, 1999.

Covas, D., H. Ramos, and A. Betmio de Almeida, Leak location in pipe systems

using pressure surges, in Safe Design and Operation of Industrial Pipe Systems:

8th International Conference on Pressure Surges, pp. 169–179, BHR Group, The

Hague, The Netherlands, 2000.

Covas, D., I. Stoianov, D. Butler, C. Maksimovic, N. Graham, and H. Ramos,

Leak detection in pipeline systems by inverse transient analysis - from theory to

practice, in Water Software Systems: Theory and Applications, vol. 1, edited by

B. Ulanicki, B. Coulback, and J. P. Rance, pp. 3–16, Research Studies Press Ltd.,

Baldock, Hertfordshire, England, 2001.

240



References

Covas, D., I. Stoianov, N. Graham, C. Maksimovic, H. Ramos, and D. Butler,

Hydraulic transients in polyethylene pipes, in 1st Annual Environmental & Water

Resources Systems Analysis Symposium in conjunction with ASCE Environmental

& Water Resources Institute Annual Conference, Roanoke, Virginia, USA, 2002.

Covas, D., H. Ramos, N. Graham, and C. Maksimovic, The interaction between vis-

coelastic behaviour of the pipe wall, unsteady friction and transient pressures, in

9th International Conference on Pressure Surges, pp. 63–78, BHR Group, Chester,

UK, 2004a.

Covas, D., I. Stoianov, J. F. Mano, H. Ramos, N. Graham, and C. Maksimovic,

The dynamic effect of pipe-wall viscoelasticity in hydraulic transients. part i -

experimental analysis and creep characterization, Journal of Hydraulic Research,

42 (5), 516–530, 2004b.

Covas, D., H. Ramos, and A. B. de Almeida, Standing wave difference method

for leak detection in pipeline systems, Journal of Hydraulic Engineering, ASCE,

131 (12), 1106–1116, 2005a.

Covas, D., I. Stoianov, J. F. Mano, H. Ramos, N. Graham, and C. Maksimovic, The

dynamic effect of pipe-wall viscoelasticity in hydraulic transients. part ii - model

development, calibration and verification, Journal of Hydraulic Research, 43 (1),

56–70, 2005b.

Crump, K. S., Numerical inversion of Laplace transforms using a Fourier-series ap-

proximation, J. ACM, 23, 89–96, 1976.

Datta, R. S. N., and K. Sridharan, Parameter estimation in water-distribution sys-

tems by least squares, Journal of Water Resources Planning and Management,

ASCE, 120 (4), 405–422, 1994.

De Salis, M. H. F., and D. J. Oldham, Determination of the blockage area function

of a finite duct from a single pressure response measurement, Journal of Sound

and Vibration, 221 (1), 180–186, 1999.

de Salis, M. H. F., and D. J. Oldham, The development of a rapid single spectrum

method for determining the blockage characteristics of a finite length duct, Journal

of Sound and Vibration, 243 (4), 625–640, 2001.

de Salis, M. H. F., N. V. Movchan, and D. J. Oldham, Characterizing holes in duct

walls using resonance frequencies, Journla of the Acoustical Society of America,

111 (6, June), 2583–2593, 2002.

241



References

del Valle, Y., G. K. Venayagamoorthy, S. Mohagheghi, J. C. Hernandez, and R. G.

Harley, Particle swarm optimization: Basic concepts, variants and applications in

power systems, IEEE Transactions on Evolutionary Computation, 12 (2), 171–195,

2008.

Dempster, A. P., N. M. Larid, and D. B. Rubin, Maximum likelihood from incom-

plete data set via the em algorithm, Journal of the Royal Statistical Society., B

39 (1), 1–38, 1977.

Desoer, C. A., and E. S. Kuh, Basic Circuit Theory, McGraw-Hill, New York, 1969.

Desoer, C. A., and M. Vidyasagar, Feedback Systems: Input-Output Properties, Aca-

demic Press, New York, 1975.

Diestel, R., Graph Theory, electronic edition ed., Springer-Verlag, New York, USA,

2000.

Digernes, T., Real-time pipeline detection and identification applied to supervision

of oil transport in pipelines, Modeling, Identification and Control, 1 (1), 39–49,

1980.

Dinis, J. M., A. K. Wojtanowicz, and S. L. Scott, Leak detection in liquid subsea

flowlines with no recorded feed rate, Journal of Energy Resources Technology,

ASME, 121, 161–166, 1999.

Elfadel, I. M., H. M. Huang, A. E. Ruehli, A. Dounavis, and M. S. Nakhla, A compar-

ative study of two transient analysis algorithms for lossy transmission lines with

frequency-dependent data, IEEE Transactions on Advanced Packaging, 25 (2),

143–153, 2002.

Emara-Shabaik, H. E., Y. A. Khulief, and I. Hussaini, A non-linear multiple-model

state estimation scheme for pipeline leak detection and isolation, Proceedings of

the Institution of Mechanical Engineers, Part I: Journal of Systems and Control

Engineering, 216 (6), 497–512, 2002.

Ferrante, M., and B. Brunone, Leak detection in pressurised pipes by means of

wavelet analysis, in 4th International Conference on Water Pipeline Systems:

Managing Pipeline Assets in an Evolving Market, pp. 243–255, BHR Group, York,

UK, 2001.

Ferrante, M., and B. Brunone, Pipe system diagnosis and leak detection by unsteady-

state tests 1. Harmonic Analysis, Advances in Water Resources, 26, 95–105, 2003a.

Ferrante, M., and B. Brunone, Pipe system diagnosis and leak detection by unsteady-

state tests. 2. wavelet analysis, Advances in Water Resources, 26, 107–116, 2003b.

242



References

Ferrante, M., B. Brunone, and A. G. Rossetti, Harmonic analysis of pressure sig-

nal during transients for leak detection in pressurized pipes, in 4th International

Conference on Water Pipeline Systems: Managing Pipeline Assets in an Evolving

Market, pp. 259–275, BHR Group, York, UK, 2001.

Ferrante, M., B. Brunone, S. Meniconi, and C. Almadori, Wavelet analysis of nu-

merical pressure signals for leak monitoring, in CCWI 2005, Water Management

for the 21-st Century, vol. 1, edited by D. Savic, G. Walters, R. King, and S.-T.

Khu, pp. 329–334, Exeter, UK, 2005.

Fijavz, M. K., D. Mugnolo, and E. Sikolya, Variational and semigroup methods for

waves and diffusion in networks, pp. 219–240, Springer, 2007.

Fox, J. A., Hydraulic Analysis of Unsteady Flow in Pipe Networks, The Macmillan

Press Ltd., London, UK, 1977.

Frank, P. M., and X. C. Ding, Frequency-domain approach to optimally robust

residual generation and evaluation for model-based fault-diagnosis, Automatica,

30 (5), 789–804, 1994.

Franke, P. G., and F. Seyler, Computation of unsteady pipe flow with respect to vis-

coelastic material properties, Journal of Hydraulic Research, IAHR, 21 (5), 345–

353, 1983.

Franklin, G. F., J. D. Powell, and M. L. Workman, Digital control of dynamic

systems, 3rd ed., Addison-Wesley, Menlo Park, Calif., 1998.

Franklin, G. F., J. D. Powell, and A. Emami-Naeini, Feedback control of dynamic

systems, 4th ed., Prentice Hall PTR, Upper Saddle River, N. J. London, 2001.

Fuchs, H. V., and R. Riehle, Ten years of experience with leak detection by acoustic

signal analysis, Applied Acoustics, 33 (1), 1–19, 1991.

Funk, J. E., and D. J. Wood, Frequency response of fluid lines with turbulent flow,

Journal of Fluids Engineering, ASME, (December), 365–369, 1974.

Furness, R. A., and J. D. Reet, Pipe line leak detection techniques, in Pipe Line

Rules of Thumb Handbook, edited by E. W. McAllister, 4 ed., pp. 476–484, Gulf

Publishing Company, Houston, Texas, 1998.

Gally, M., M. Gney, and E. Rieuford, An investigation of pressure transients in

viscoelastic pipes, Journal of Fluids Engineering, Transactions of the ASME,

101 (December), 495–499, 1979.

243



References

Ghidaoui, M. S., Analysis of discretization strategies in fixed grid method of char-

acteristics solution in closed conduits, Ph. d. thesis, University of Toronto, 1993.

Ghidaoui, M. S., and B. W. Karney, Equivalent differential equations in fixed-grid

characteristics method, Journal of Hydraulic Engineering, ASCE, 120 (10), 1159–

1175, 1994.

Ghidaoui, M. S., B. W. Karney, and D. A. McInnis, Energy estimates for discretiza-

tion errors in water hammer problems, Journal of Hydraulic Engineering, ASCE,

124 (4), 384–393, 1998.

Ghilardi, P., and A. Paoletti, Additional viscoelastic pipes as pressure surges sup-

pressors, in 5th International Conference on Pressure Surges, pp. 113–121, BHRA,

Hannover, Germany, 1986.

Goldberg, D. E., and E. B. Wylie, Characteristics method using time-line interpo-

lations, Journal of Hydraulic Engineering, ASCE, 109 (5), 670–683, 1983.

Golub, G. H., and C. Van Loan, Matrix Computations, North Oxford Academic,

Oxford, 1983.

Goodson, R. E., Distributed system simulation using infinite product expansions,

Simulation, 15 (6), 255–263, 1970.

Goodson, R. E., and R. G. Leonard, A survey of modeling techniques for fluid line

transient, Journal of Basic Engineering, ASME, 94, 474–482, 1972.

Goodson, R. E., and M. P. Polis, Identification of parameters in distributed systems:

A synthesising overview, in Joint Automatic Control Conference, Identification of

parameters in distributed systems, pp. 1–30, ASME, Austin, Texas, US, 1974.

Greco, M., and G. Del Giudice, New approach to water distribution network calibra-

tion, Journal of Hydraulic Engineering, ASCE, 125 (8, August), 849–854, 1999.
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Appendix A

Admittance Representation for

Transfer Matrix

This appendix focuses on the most relevant form of the transfer matrix formula-

tions of Section 2.4.2, the admittance formulation. For a fluid line of length l, the

admittance form is given by[
Q(0, s)

−Q(l, s)

]
= Z−1

c (s)

[
coth Γ(s) − csch Γ(s)

− csch Γ(s) coth Γ(s)

][
P (0, s)

P (l, s)

]
. (A.1)

A novel analysis of this formulation is presented here, where the distribution of the

poles of the Laplace-domain representation are used to discuss important physical

characteristics. Section A.2 proposes an analytic inverse Laplace transform to the

admittance representation, which holds analogies to the work of Oldenburger and

Goodson [1964].

A.1 Some Physical Properties

The most important representation in this thesis is the admittance form (2.48). We

now look at some of its properties. The stability aspects of the following lemma

could be established from the passivity property of the admittance matrix, but the

following proof gives insight.

Lemma A.1. The admittance matrix form (A.1) is (1) reciprocal, (2) stable and

(3) has a stable inverse.

Proof. 1. The reciprocity (A.1) of is observed by its symmetry.
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2. The stability of (A.1) is demonstrated by showing that the elemental functions

of (A.1) are members of H∞, that is F (s) ∈ H∞ if

|F (s)| <∞ for all s ∈ C+.

To demonstrate this, the elemental functions are first shown to be finite as

|s| → ∞, and secondly it demonstrated that the pole locations of the elemental

functions lie in the open right hand plane. The finiteness of the elemental

functions as |s| → ∞ is observed by the fact that coth(s), and csch (s) are

finite at |s| =∞ [Abramowitz and Stegun, 1964], and given the form of Zc in

Corollary 2.3, it is seen that

lim
|s|→∞

Zc(s) =

√
R0

C0

,

which is alcso clearly finite. To study the nature of the pole locations, it is

insightful to express the transfer matrix as

1

Zc(s) sinh Γ(s)

[
cosh Γ(s) −1

−1 cosh Γ(s)

]
(A.2)

Now as coshx is bounded for finite x and Γ(s) is finite for |s| <∞, the poles

of this transfer matrix occur at the points

{s ∈ C : Zc(s) sinh Γ(s) = 0} (A.3)

Expanding this out as an infinite product [Abramowitz and Stegun, 1964] yields

Zc(s) sinh Γ(s) = R0[s+R(s)]
∞∏
k=1

(
1 +

Γ2(s)

(kπ)2

)
(A.4)

(where the identity Zc(s)Γ(s) = R0[s+R(s)] is used). Therefore the points in

the set (A.3) correspond to the points

{s ∈ C : s+R(s) = 0} ∪ {s ∈ C : Γ(s) = ±ikπ, k = 1, 2, . . .} (A.5)

where the second set corresponds to the infinite product term in (A.4). Con-

sidering these two sets further, it is clear from (A.5) that the admittance

matrix is a stable transfer function. It is noted that s+R(s) is a positive real

function (and strictly positive real for one of r0 > 0, r(t) 6= 0), therefore the

points s + R(s) = 0 must occur in closed (open) left hand plane. Similarly,

in Theorem 2.3 it was shown that Γ(s) is also a positive real (strictly positive
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real) function and hence points Γ(s) = ±ikπ at which the real part vanishes

must also lie in the left half plane.

3. A Laplace-domain matrix function A(s) possesses a stable inverse as long as

| detA(s)| > 0 for s ∈ C+ [Desoer and Vidyasagar , 1975]. The determinant

of (A.1) is given by
sinh Γ(s)

Zc(s)
,

which can be expanded as

sinh Γ(s)

Zc(s)
= C0 [s+ C(s)]

∞∏
k=1

(
1 +

Γ2(s)

(kπ)2

)

(where the identity Γ(s)/Zc(s) = C0 [s+ C(s)] is used). Therefore the points

at which the determinant becomes zero corresponds to the points

{s ∈ C : s+ C(s) = 0} ∪ {s ∈ C : Γ(s) = ±ikπ, k = 1, 2, . . .} (A.6)

which is the same as (A.5) except the first set is associated with the capacitance

C and not the resistance R. As with s+R(s), s+C(s) is a positive real (strictly

positive real) function and only vanishes in the closed (open) left hand plane.

Therefore, by appealing to the argument used in the preceding point of the

proof, it is demonstrated that the determinant has a nonzero magnitude on

s ∈ C+.

Remark: There is a very interesting structure to the positioning of the poles for a

fluid line, namely that the poles are aligned on a contour parallel to the imaginary

axis. It has been common knowledge for a long time [Wylie and Streeter , 1993]

that the frequency response of a fluid line consisted of an infinite series of evenly

spaced harmonics, this pole location structure was first realised in Zecchin et al.

[2005] where is was used to study the movement of the poles for a single line system

with varying leak properties.

A.2 Inverse Laplace Transform For The LR -Class

An important application of the Laplace-domain representation of fluid lines, that

has received much in the literature, is the inversion Laplace-transform of the immi-

tance forms (2.47)-(2.50). The inverse Laplace-transforms of these equations pro-

vides the impulse response functions that can be used in time-domain simulations.
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Due to the presence of the transcendental functions, and the general structure

of Γ(s) and Zc(s), the inverses Laplace-transforms can not be determined directly,

hence necessitating approximations to yield analytical inverses. A detailed overview

of the different approaches of approximating these inverses was given in Chapter 5,

where a general approach for inverting the Laplace representation of a general fluid

network is presented. But below, a novel approach for the inversion of the admit-

tance formulation (2.48) for the class of LR fluid lines is presented. The approach

is based on using the Mittag-Reffler expansions series expansions of the hyperbolic

functions csch and coth, which has been studied in the context of electrical trans-

mission lines by Tanji and Ushida [2004].

The Mittag-Leffler Expansions for coth and csch are

cothx =
1

x
+
∞∑
n=1

2x

x2 + (nπ)2

cschx =
1

x
+
∞∑
n=1

2x(−1)n

x2 + (nπ)2

Based on the series expansion of the hyperbolic functions coth and csch , the ad-

mittance matrix can be expanded as

Y (s) =
1

R0 [s+R(s)]

[
1 −1

−1 1

]
+
∞∑
n=1

2C0 [s+ C(s)]

Γ2(s) + (nπ)2

[
1 (−1)n+1

(−1)n+1 1

]
(A.7)

where the pole set specified by (A.5) clearly holds for (A.7). The expression above is

insightful as it demonstrates that the pipelines dynamics can be divided into a purely

frictional term and a series of pipeline modes which posses their own resistive and

capacitive behaviour. Employing the residue theorem [Kreyszig , 1999] to compute

the Bromwich integral for the inverse Laplace transform, the inverse to (A.7) can

be given by

Y(t) = Yo(t) +
∞∑
n=1

Yn(t) (A.8)

where Yo(t) is the purely resistive term and Yn(t) are the modal terms, which are

given by

Yo(t) =
1

R0

[
1 −1

−1 1

]∑
ζ∈Ωo

Res

[
1

[s+R(s)]
, s = ζ

]
eζ (A.9)

Yn(t) =

[
1 (−1)n+1

(−1)n+1 1

]
2C0

∑
ζ∈Ωn

Res

[
[s+ C(s)]

Γ2(s) + (nπ)2
, s = ζ

]
eζ , n = 1, . . . ,∞

(A.10)
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where the sets Ωo and Ωn, n = 1, . . . ,∞ indicate the pole locations for each term,

and are defined as

Ωo = {s ∈ C : s+R(s) = 0} (A.11)

Ωn =
{
s ∈ C : Γ2(s) + (nπ)2 = 0

}
, n = 1, . . . ,∞ (A.12)

where the existence Y is conditional on the sums in (A.9)-(A.10) converging.

Although (A.9)-(A.12) yield insight as to the nature of the impulse response of

the admittance matrix, then do not represent an easily computable system. For

the general L -class, the determination of the pole locations and the associated

residues is a nontrivial task. To facilitate further analysis, the LR -class is considered

from hereon. As discussed previously, this class encompasses most applied versions

of the unsteady shear stress/inelastic pipe water-hammer equations, and so the

consideration of this class does not represent an impractical restriction.

For the LR -class, the functions r(s) and c(s) can be expressed in the numera-

tor/denominator form

r(s) =
rN(s)

rD(s)
, c(s) =

cN(s)

cD(s)

where rN(s), rD(s), cN(s) and, cD(s) are all polynomials in s with

rD(s) =
Nr∏
k=1

(s+ νk), cD(s) =
Nc∏
k=1

(s+ µk)

where the orders of rN(s) and cN(s) are one less than rD(s) and cD(s), respectively.

The advantage of working with the LR -class is that it guarantees that all the poles

are simple, and hence analytic representations of the residues are straight forward.

Expressing Γ with these polynomials gives

Γ2(s) = R0

[
s+ ro + s

rN(s)

rD(s)

]
C0

[
s+ s

cN(s)

cD(s)

]
which leads to the rational expressions

1

s+R(s)
=

rD(s)

(s+ ro) rD(s) + srN(s)
(A.13)

s+ C(s)

Γ2(s) + (nπ)2
=

srD(s) [cD(s) + cN(s)]

[(s+ r0)rD(s) + srN(s)] [scD(s) + scN(s)] + rD(s)cD(s)(nπ)2
.

(A.14)

Considering the purely resistive term (A.13), the numerator it of order Nr and the
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denominator is of order Nr + 1 leading to the expression

1

s+R(s)
=

1

s− po0

Nr∏
k=1

s− zok
s− pok

. (A.15)

where the zok and pok are the zeros and poles of (A.13). Considering (A.14), the

numerator is of the order Nr+Nc+1 and the denominator is of the order Nr+Nc+2.

As recognised in Hullender and Healey [1981]; Hsue and Hullender [1983], two of the

poles are a complex conjugate pair corresponding to the mode frequency, and the

remaining Nr + Nc poles are real poles corresponding to the dissipation associated

with the mode, therefore (A.14) can be expressed as

s+ C(s)

Γ2(s) + (nπ)2
=

s− zn0

s2 − 2αns+ α2
n + ω2

n

Nr+Nc∏
k=1

s− znk
s− pnk

. (A.16)

The zeros of complex conjugate term are given by s = −αn + iωn,−αn − iωn, and

these values can be approximately given by

αn ≈
r0

2
, ωn ≈ i

nπ√
R0C0

,

which demonstrates the approximate dynamics associated with the n-th mode,

namely harmonic oscillatory term at radial frequency nπ/
√
R0C0 exponentially de-

caying according to the linear shear term r0/2.

Given this, the admittance impulse response functions can be expressed as

Y(t) = Yo(t) +
∞∑
n=1

YRn(t) + YHn(t)

where Yo(t) is the purely resistive term, YRn(t) is the resistive term associated

with mode n and YHn(t) is harmonic term associated with mode n. This functions

can be given as

Yo(t) =

[
1 −1

−1 1

]
Nr∑
k=0

aoke
pokt (A.17)

YRn(t) = 2

[
1 (−1)n+1

(−1)n+1 1

]
Nr+Nc∑
k=1

aRnke
pnkt (A.18)

YHn(t) = 2

[
1 (−1)n+1

(−1)n+1 1

] [
aRHn cos (ωnt)− aIHn sin (ωnt)

]
e−αnt (A.19)
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where the coefficients for the residues are

aok = ζo(pok), k = 0, . . . , Nr

aRnk = ζn(pnk), k = 1, . . . , Nr, n = 1, . . . ,∞
aRnk = 2Re {ζn(sn)} , n = 1, . . . ,∞
aInk = 2Im {ζn(sn)} , n = 1, . . . ,∞

 (A.20)

where sn = −αn + iωn. As the poles are all simple, the functions to generate the

residues can be given by taking the derivative of the denominator [Kreyszig , 1999],

which yields

ζo(s) =
rD(s)

∂

∂s
[denominator of (A.13)]

ζn(s) =
srD(s) [cD(s) + cN(s)]

∂

∂s
[denominator of (A.14)]

, n = 1, . . . ,∞.

The determination of the impulse response by this approach requires the solution

to multiple polynomials of a high order, hence no futher analytic reduction can be

achieved for the general case. The following example derives an analytic expression

for the impulse response function for a simple case for which only a quadratic requires

solution.

Example A.1. Consider the linear friction elastic pipe case for which

R(s) = R0(s+ r0), C(s) = C0s, rN(s), cN(s) = 0, rD(s), cD(s) = 0 (A.21)

the poles of this system are given by the characteristic equations

R0(s+ r0) = 0, R0C0s(s+ r0) + (nπ)2 = 0, n = 1, . . . ,∞ (A.22)

which yields the solutions

s0 = r0, sn = −r0

2
± i

√
(nπ)2

R0C0

−
(r0

2

)2

, n = 1, . . . ,∞. (A.23)

The residue functions are given by

ζo(s) =
1

R0

, ζn(s) =
s

R0 (2s+ r0)
, n = 1, . . . ,∞ (A.24)

As the unsteady shear stress and inelastic wall strain functions are zero (r(s), c(s) =

0), the modal functions YRn = 0, n = 1, . . . ,∞. The impulse response admittance
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matrix is given by

Y(t) = Yo(t) +
∞∑
n=1

YHn(t) (A.25)

where, given the pole locations (A.23) and the residue functions (A.24) and the

general forms (A.17), (A.17), and (A.20), the matrix terms are given by

Yo(t) =

[
1 −1

−1 1

]
e−r0t

R0

(A.26)

YHn(t) = 2

[
1 (−1)n+1

(−1)n+1 1

] [
cos (ωnt)−

r0

2

sin (ωnt)

ωn

]
e−

r0
2
t

R0

(A.27)

where ωn = Im {sn} , n = 1, . . . ,∞.
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Appendix B

The M -Network

B.1 Introduction

This appendix introduces the M -network which is essentially a generalisation of the

compound node network (G(N ,Λ),P , C) from Chapter 4. In contrast to considering

the different elements of links and compound nodes, the M -network is a network

of interlinking M -elements, where an M -element is a general element type that

encompasses both links with dynamics P and compound nodes with dynamics C.
The M -network is introduced as it provides a convenient framework to prove the

passivity properties used in Chapters 4 and 6, and it also provides a notationally

simpler way of defining the numerical inverse Laplace transform (NILT) method in

Chapter 5, and the detection and estimation problems in Chapter 6.

This Appendix is structured as follows. Section B.2 defines the M -network

and the associated mathematical objects. Section B.3 gives the important passivity

theorems and some transformations of M -networks. Section B.4 discusses the com-

parisons between M -networks and Kirchoff networks, where the equivalent Kirchoff

network of the specific case of a simple node network (G(N ,Λ),P) is given.

B.2 Definitions

B.2.1 Network definitions

The primary building block for M -networks are linear multinode elements, which

are defined as follows.

Definition B.1. A linear multinode element or M -element is defined as an arbi-
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ψ1(t)

[ξ ]

(ξ,1)

ψ2(t)

ψ6(t)

ψ5(t)

ψ4(t)
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θ6(t)θ1(t)

θ2(t)

θ3(t)

θ4(t)

(ξ,2)

(ξ,3)

(ξ,4)

(ξ,5)

(ξ,6)

Figure B.1: Example of an M -element.

trary hydraulic element interlinking n nodes with the admittance relationship
q1(t)

...

qnλ(t)

 =

∫ t

0


Y11(t− τ) · · · Y1n(t− τ)

...
. . .

...

Yn1(t− τ) · · · Ynn(t− τ)



p1(τ)

...

pnλ(τ)

 dτ (B.1)

where Yij(t) are the impulse response functions of the nodal flow at node i from the

pressure at node j.

Remark: The M -element presented here is akin to the multiport elements used

in electrical networks [Desoer and Kuh, 1969] where the adopted terminology is

purely for consistency. The advantage of considering multiport elements is that

each element can be considered as an input output black box.

The general form of an M -element is given in Figure B.1. Clearly a pipe, com-

pound node or even a network can be considered as a M -element, as demonstrated

in the following examples.

Example B.1. A L -class link is a M -element that interlinks two nodes where,
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with reference to (B.1), [
q1(t)

q2(t)

]
=

[
qu(t)

−qd(t)

]
,

[
p1(t)

p2(t)

]
=

[
pu(t)

pd(t)

]
,[

Y11(t) Y12(t)

Y21(t) Y22(t)

]
= L−1

{[
coth Γ(s) − csch Γ(s)

− csch Γ(s) coth Γ(s)

]}
(t)

Example B.2. A simple node network (G(N ,Λ),P) with node states ψ(t), θ(t) and

admittance matrix Y is a M -element where

q(t) = θ(t), p(t) = ψ(t), Y(t) = L−1 {Y (s)} (t).

Example B.3. A compound node i is a multinode element where

q(t) = θi(t), p(t) = ψi(t), Y(t) = L−1 {Yci(s)} (t).

Example B.4. A compound node network expanded into its simple node and simple

connection representation is a M -element with the multinode objects as defined in

Example B.2.

The topological connectivity of a M -element is described by a M -link can be

organised into a network by using the following multi-link graph concepts.

Definition B.2. 1. A M -link ξ connected to n nodes is a n-tuple comprised of

the nodes that it is connected to, that is ξ = (i1, . . . in), and

2. A M -graph G is given by G(N ,Ξ), where N is the set of nodes and Ξ is the

set of M -links.

Remark: This is not a conventional graph theory object, but it is adopted within

this research to facilitate the mathematical description of hydraulic networks com-

prised of both pipes and hydraulic elements. An example of a M -graph is given in

Figure B.2 where ξ3 = (2, 3, 6, 7) is a M -link.

Definition B.3. Consider the M -graph G(N ,Ξ) with nN nodes and nΞ multi-links

where M -link k has nΞk connections. A node-link incidence matrix is given by the

[0, 1]nN×
∑
k∈Ξ nΞk matrix

N =
[
N 1 · · ·NnΞ

]
(B.2)

where the N k are [0, 1]nN×nΞk matrices defined by

{N k}ij =

1 if the j-th connection of multi-link k is incident to node i.

0 otherwise
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Remarks:

1. This definition is clearly a generalisation of the standard node-link incidence

matrix.

2. Given that N has one and only one 1 in each column, it can be easily shown

that rankN k = nΞk (full column rank) and, if G is a single component graph,

that rankN = nN (full row rank).

The M -network is now defined as follows.

Definition B.4. A multi-element network or M -network is a network consisting

of the pair

(G (N ,Ξ) ,M)

which is comprised of

1. the M -graph G (N ,Ξ) (N is the set of nodes, Ξ is the set of multi-links, each

associated with a M -element) combined with

2. the set of M -element admittance impulse response functionsM = {Yξ : ξ ∈ Ξ}.

The link end flow properties are related to the nodal flow injections (θi : R+ 7→ R, i ∈
N ) and nodal pressures (ψi : R+ 7→ R, i ∈ N ) by the simple node relations∑

(ξ,j)∈Ξi

qξj(t) = θi(t) (B.3)

pξj(t) = ψi(t) (ξ, j) ∈ Ξ (B.4)

for i ∈ N where (ξ, j) identifies the j-th connection of element ξ and Ξi is the set

of all element connections incident to node i.

An example of an M -network is given in Figure B.2.

B.2.2 General systems concepts

In the following, some important definitions for dynamic systems are outlined. Only

linear time-invariant systems are considered here, however, more general systems are

considered in other texts (e.g. Desoer and Vidyasagar [1975]; Wohlers [1969]). In

the following, we consider input/output systems of the form y = G ∗ x with input

x ∈ Rn, output y ∈ Rm, and the system impulse response G ∈ Rn×m.
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Figure B.2: Example of an M -network.

Definition B.5. The system y = G ∗x is bounded input/bounded output (BIBO)

stable if x ∈ L∞ implies that y ∈ L∞.

Remarks:

1. Stability essentially means that G is a bounded operator, which practically

means that provided that the system input is bounded, then the output will

be bounded also.

2. The definition can be rephrased as: there exists a constant K such that ||G ∗
x||∞ ≤ K||x||∞,x ∈ L∞.

3. A necessary and sufficient condition for BIBO stability is that all the elements

Gij ∈ L1.

4. If G is stable, then its Laplace transform G(s) has poles in the open left half

plane.

Definition B.6. The system y = G ∗ x is causal if for any two inputs x1 and x2,

the condition

x2(t) = x1(t), t < t0

implies the relationship

y2(t) = y1(t), t < t0
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Remarks:

1. Causality essentially means that the output of the system is only a function

of the historical inputs to the system.

2. In terms of the impulse response terms, causality implies Gij(t) = 0 for t < 0.

Definition B.7. The system y = G ∗ x is reciprocal if for any two inputs x1, x2

and outputs y1, y2 (
xT1 ∗ y2

)
(t) =

(
xT2 ∗ y1

)
(t)

Remarks:

1. The significance of reciprocity is that the system outputs are, in some sense,

symmetric to the inputs. That is yk will respond to xj in the same manner as

yj will to xk.

2. Reciprocity implies that G is a symmetric operator, in the sense that Gk,j ≡
Gj,k.

Definition B.8. The system y = G ∗ x is strictly passive if∫ t

0

(
xTy

)
(τ)dτ > 0 for all t ∈ R+ (B.5)

for any ||x|| 6= 0. The system is termed passive if the inequality is not strict.

Remarks:

1. The physical significance of passivity is that energy cannot be produced within

the system. The passivity constraint can also be expressed as the energy stored

within the system is bounded by the energy input into the system.

2. Given the strictly passive system, y = G ∗ x, it is a common result that

the Laplace-transform of G possesses the following properties [Desoer and

Vidyasagar , 1975; Triverio et al., 2007]

(a) Each element of G is defined and analytic in Re {s} > 0

(b) G(s) +GH(s) is nonnegative definite for all s such that Re {s} > 0, and

(c) G(s) = G(s̄).

The following corollary to Definition B.8 demonstrates that strict passivity not only

implies nonnegative definiteness of G(s) +GH(s) in the open right hand plane, but

that it implies positive definiteness in the closed right hand plane. This result is

important for the existence of the inverse of the admittance matrix block matrices

performed within the thesis.
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Corollary B.1. Given the strictly passive system, y = G ∗x, the Laplace-transform

G(s) of G possesses the following property

G(s) +GH(s) is positive definite for all s such that Re {s} ≥ 0

Proof. The proof takes two steps. Firstly Parseval’s theorem is used to demonstrate

positive definiteness on the domain s = iω, and secondly, the second mean value

theorem is used to extend this to the whole open right hand plane.

For the domain Re {s} = 0: Parseval’s theorem can be used to yield the equalities

0 <

∫ t

0

xT (τ) (G ∗ x) (τ)dτ

=
1

2π

∫ ∞
−∞
XH(iω)G(iω)X(iω)dω

=
1

2π

∫ ∞
−∞
XH(iω)GH(iω)X(iω)dω

where X is the Laplace transform of x, and the second equality arises from express-

ing the term in the time-domain integrand as (G ∗ x)T x. Given that G(s) = G(s̄),

the imaginary component of the integrals disappears in the integration. As x is an

arbitrary function, the term in the integrand must be positive for all ω, this means

that

Re
{
XH(iω)GH(iω)X(iω)

}
,Re

{
XH(iω)G(iω)X(iω)

}
> 0 for all ω ∈ R.

A necessary condition that arises from the inequalities above is that the real part of

G is positive definite [Johnson, 1975], that is

GH(iω) +G(iω) is positive definite for all ω ∈ R.

For the domain Re {s} ≥ 0: Consider the system G̃a(s) = G(a+s), where a ≥ 0,

with the time-domain impulse response function G̃a. For this system, the following

identities hold for nonzero x:∫ t

0

xT (τ)
(
G̃a ∗ x

)
(τ)dτ

(1)
=

∫ t

0

xT (τ)

∫ τ

0

e−(τ−u)aG(τ − u)x(u)dudτ

=

∫ t

0

e−2τazT (τ) (G ∗ z) (τ)dτ, where z(t) = etax(t)

(2)
=

∫ t̃

0

zT (τ) where 0 < t̃ < t (G ∗ z) (τ)dτ

(3)
> 0 (B.6)

275



Appendix B – The M -Network

where (1) holds as G̃a = e−atG(t), (2) is a result of the second mean value theo-

rem for integration [Tong , 2002], and (3) holds as G is strictly passive and z is a

nonzero function. The interpretation of (B.6) is that G̃a is a strictly passive system.

Therefore, given the first part of this proof, it holds that

G̃a(iω) + G̃
H

a (iω)

is positive definite on ω ∈ R, which in turn implies that

G(a+ iω) +GH(a+ iω)

is positive definite on ω ∈ R and a > 0, which means that G(s) +GH(s) is positive

definite for Re {s} ≥ 0.

B.3 Network Theorems

The following theorem is a generalisation of the network admittance matrix models

model presented in Chapters 3 and 4.

Theorem B.1. For a M -network (G (N ,Ξ) , {Yξ : ξ ∈ Ξ}), the nodal flow injec-

tions θ = [θ1 · · · θnn ]T are related to the nodal pressures ψ = [ψ1 · · ·ψnn ]T by the

network admittance relationship

θ(t) =

∫ t

0

Y(t− τ)ψ(τ)dτ (B.7)

where the network admittance function is built from the element admittance functions

{Yξ : ξ ∈ Ξ} by

{Y(t)}i,j =


∑

{(ξ,k)∈Ξi}
Yξkk(t) for j = i∑

(ξ,k,m)∈Ξij

Yξkm(t) otherwise
(B.8)

where Ξij = {(ξ, k,m) : (ξ, k) ∈ Ξi, (ξ,m) ∈ Ξj} identifies the connections of ele-

ments connected to both node i and node j.

Proof. As this is a generalisation of the network model derived in Chapters 3 and 4,

the proof is kept brief. Organising the element connection flows and pressures, and
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admittance impulse response functions as follows

q(t) =


q1(t)

...

qnΞ
(t)

 , p(t) =


p1(t)

...

pnΞ
(t)

 , YΞ(t) =


Y1(t)

. . .

YnΞ
(t)

 (B.9)

a matrix representation of (6.1) is given by

q(t) =

∫ t

0

YΞ(t− τ)p(τ)dτ. (B.10)

As in Chapter 3, the nodal pressure and flow relationships (B.3)-(B.4) can be given

in a matrix form as

[
N 1 · · · NnΞ

]
q1(t)

...

qnΞ
(t)

 = θ(t) (B.11)


q1(t)

...

qnΞ
(t)

 =


NT

1
...

NT
nΞ

ψ(t) (B.12)

where the N i are node-element incidence matrices. Combining (B.10)-(B.12) yields

θ(t) =

∫ t

0

[
N 1 · · · NnΞ

]
YΞ(t− τ)


NT

1
...

NT
nΞ

ψ(t)dτ

where, in comparison to (B.7), shows

Y(t) =
[
N 1 · · · NnΞ

]
Y1(t)

. . .

YnΞ
(t)

[ N 1 · · · NnΞ

]T
(B.13)

for which the incidence matrix identities used in Chapter 3 can be used to show that

(B.13) is equal to (B.8).

A fundamental theorem for this class of networks is as follows.

Theorem B.2. Given a M -network (G (N ,Ξ) , {Yξ : ξ ∈ Ξ}) where G is a single

component graph with a network admittance matrix Y. If all the M -elements ξ ∈ Ξ

are (1) causal, (2) stable, (3) reciprocal, (4) passive, (5) strictly passive, then the

network admittance matrix inherits these properties respectively.
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Proof. Causality, stability and reciprocity are trivially shown (but included for com-

pleteness). Passivity and strict passivity are slightly more difficult and treated to-

gether. The passivity proof follows a similar line to that used in Desoer and Kuh

[1969] for passivity of lumped electrical networks.

1. Causality is dependent only on the elemental functions independently, so it is

clearly inherited.

2. The network admittance matrix is stable if the elemental functions are in the

function space L1. As the elemental functions are simply additions of the M -

elements elemental functions, they are clearly within L1 when the M -element

functions are in L1.

3. As the system is linear, the network is reciprocal if {Y}ij ≡ {Y}ij Wohlers

[1969]. Given the form of Y in (B.13), this clearly holds if Yξ ∈ Ξ are sym-

metric (reciprocal).

4. Given the definitions in Chapter 2, the network is passive if∫ t

0

(
xT ·Y ∗ x

)
(τ)dτ ≥ 0

for all x : R+ 7→ RnN , where the strict equality for ||x|| > 0 implies strict

passivity. Consider the following expansion

Y(t) =
∑
ξ∈Ξ

N ξYξ(t)N
T
ξ

which implies that
(
xT ·Y ∗ x

)
can be expressed as

∑
ξ∈Ξ

[
NT

ξ x(t)
]T ∫ t

0

Yξ(t− τ)
[
NT

ξ x(τ)
]T
dτ. (B.14)

defining yξ = NT
ξ x, the integral in (B.14) can be expressed as

∑
ξ∈Ξ

∫ t

0

(
yTξ ·Yξ ∗ yξ

)
dτ. (B.15)

Due to the passivity of each element ξ ∈ Ξ, each term in the summation

is nonnegative, hence the inheritance of passivity by the network from the

elements is demonstrated.

5. The system is strictly passive if the inequality in (B.14) is strict for all nonzero

functions x : R+ 7→ RnN . If each element ξ ∈ Ξ is strictly passive, then each
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term in the summation (B.15) is a positive number. Therefore (B.15) will be

a positive number for any x : R+ 7→ RnN only if each term in x appears in at

least one of the yξ. This criteria holds for the multi-graph G as no node in N
is disconnected. Therefore the inheritance of strict passivity by the network

from the elements is demonstrated.

Remark: These conditions are sufficient but not necessary. One could concoct a

scenario where individual M -elements do not possess the stated properties of causal-

ity, stability, reciprocity, and passivity, but the aggregated effect of the elements on

the network matrix could be such that the overall network still does possess these

properties.

This then leads onto the following theorem

Theorem B.3. Given a M -network (G (N ,Ξ) , {Yξ : ξ ∈ Ξ}) where G is a single

component graph. If the network admittance matrix Y is strictly passive, then the

network impedance matrix Z = Y−1 is well defined for all s within the right hand

plane, and is strictly passive.

Proof. Within the proof, we deal primarily with the properties of the Laplace trans-

form Z of Z.

1. Existence. Firstly, note that for A ∈ Cn×n with Re {A} positive definite, then

A is nonsingular [Johnson, 1975]. For a strictly passive system, Y (s)+Y H(s)

is positive definite on Re {s} ≥ 0, and hence Z(s) = Y −1(s) exists on Re {s} ≥
0.

2. Passivity. For the criteria (1), recognising the cofactor expansion of Z(s) =

Y −1(s), the elemental functions of Z(s) are comprised of additions and multi-

plications of the elemental functions of Y (s) divided by detY (s). Therefore,

as Yij(s) has poles only in the left open plane, and detY (s) > 0 on the left

open plane, then the elemental functions of Z(s) are in H∞, that is, they

are analytic in the left open plane. For the criteria (2), from Johnson [1975],

for A ∈ Cn×n with Re {A} positive definite, then Re
{
A−1

}
is also positive

definite, hence Z(s) + ZH(s) is positive definite on Re {s} > 0. Criteria (3)

follows from the cofactor expansion of the elemental terms.

Remarks:
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1. Here we still have the problem that Y −1(s) does not necessarily exist on s = iω.

We have the following simple corollary.

Corollary B.2. If a strictly passive network admittance matrix Y is causal, stable

and reciprocal then the network impedance matrix Z = Y−1 is causal, stable, and

reciprocal.

Proof. 1. Causality is implied by passivity [Triverio et al., 2007].

2. Stability. From the passivity proof above, it was shown that the elemental

functions of Zij(s) ∈ H∞, implying that Zij ∈ L∞, which means that the

system is Lp stable for 1 ≥ p <∞, that is x ∈ Lp ⇒ Z ∗ x ∈ Lp.

3. Reciprocity. The inverse of a symmetric matrix is symmetric, hence Z(s) is

reciprocal.

Lemma B.1. Given a M -network (G (N ,Ξ) , {Yξ : ξ ∈ Ξ}) with a strictly passive

admittance impulse response matrix Y. Then any principal minor of Y represents

the impulse response matrix for a strictly passive system.

Proof. The requirement for strict passivity
∫ t

0
(xTY ∗x)(τ)dτ ≥ 0 for all ||x|| > 0 is

only satisfied if all the principal minors of Y are themselves strictly passive.

Remark: The physical interpretation of this lemma is that if a subnetwork is

removed or considered in isolation, then, despite the additional pressure dependent

outflow terms along the diagonal, then this subnetwork is itself strictly passive.

The useful aspect of this lemma is in the following corollary

Corollary B.3. Given a M -network (G (N ,Ξ) , {Yξ : ξ ∈ Ξ}) with a strictly passive

admittance impulse response matrix Y. Any principal minor of its transform Y (s)

has a nonsingular strictly passive stable inverse.

Proof. This follows simply from the lemma above, but could also be shown from the

property that Y (s) + Y H(s) is strictly positive definite.

The following network reduction theorem presents an application of the theory

developed within this section. This theorem holds analogies with the development

of the computational models in Sections 3.5 and 4.6.
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Theorem B.4. Consider the M -network (G (N ,Ξ) , {Yξ : ξ ∈ Ξ}) with a strictly

passive admittance impulse response matrix Y. Say that the nodes are partitioned

into three sets ( i.e. N = NA ∪ NB ∪ NC each consisting of nA, nB and nC nodes)

such that no node i ∈ NA is connected to any node j ∈ NC, that is Ξij = ∅ for all

i ∈ NA, j ∈ NC. (In this instance the impulse response matrix can be partitioned as

Y(t) =

 YAA(t) YAB(t) 0

YBA(t) YBB(t) YBC(t)

0 YCB(t) YCC(t)


where YXY is a nX × nY matrix, X, Y = A,B,C.) Say that the nodal injections

θi, i ∈ NC are all controlled at zero, then a dynamically equivalent network is given

by the M -network

(G (NA ∪NB, {ξo} ∪ Ξ/ΞC) , {Yξo} ∪ {Yξ : ξ ∈ Ξ/ΞC}) (B.16)

where ΞC is the set of elements connected to any node in NC, ξo = (iB1, . . . , iBnB)

is an M -element connected to all the nodes in NB ( i.e. {iB1, . . . , iBnB} = NB) with

the element admittance matrix

Yξo(t) = YBB+C
(t)− (YBC ∗ZCC ∗YCB) (t)

where YBB+C
is the contribution to YBB resulting from the elements in ΞC, and

ZCC = Y−1
CC is an impedance matrix where the inverse is in the sense of a convolu-

tion. The impulse response matrix for the network (B.16) is given by[
YAA(t) YAB(t)

YBA(t) YBB(t)− (YBC ∗ZCC ∗YCB) (t)

]
(B.17)

which is strictly passive.

Proof. To undertake the proof, firstly it will be demonstrated how (B.16) is con-

structed from (B.17) under the assumption that θi(t) = 0, t ∈ R, i ∈ NC , secondly

it will be shown how this relates to the M -network (B.16) and finally is will shown

that the M -network (B.16) is strictly passive.

1. Given θi(t) = 0, t ∈ R, i ∈ NB, the admittance expression for the M -network

(G (N ,Ξ) , {Yξ : ξ ∈ Ξ}) is θA(t)

θB(t)

0

 =

∫ t

0

 YAA(t− τ) YAB(−τ) 0

YBA(t− τ) YBB(t− τ) YBC(t− τ)

0 YCB(t− τ) YCC(t− τ)


 ψA(τ)

ψB(τ)

ψC(τ)

 dτ
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From Lemma B.1, it is known that, for a strictly passive network, all princi-

pal minors of Y are themselves impulse response matrices for strictly passive

systems and hence have well defined inverses. Therefore ZCC = Y−1
CC exists

and hence, the nodal pressures ψC can be expressed as

ψC(t) = − (ZCC ∗YCB ∗ψB) (t) (B.18)

from which (B.17) is easily derived.

2. The matrix YBB can be expressed as YBB = YBBC + YBB+C
where YBB−C

is constructed from elements not within the set ΞC and YBB+C
is constructed

from elements within the set ΞC , that is

YBB−C (t) =
∑

ξ∈Ξ/ΞC

N ξBYξ(t)N
T
ξB

YBB+C
(t) =

∑
ξ∈ΞC

N ξBYξ(t)N
T
ξB.

Given this, (B.17) can be expressed as[
YAA(t) YAB(t)

YBA(t) YBB−C (t)

]
︸ ︷︷ ︸

term I

+

[
0 0

0 YBB+C
(t)− (YBC ∗ZCC ∗YCB) (t)

]
︸ ︷︷ ︸

term II

.

(B.19)

Term I in (B.19) is recognised as the admittance matrix for the M -network

(G (NA ∪NB,Ξ/ΞC) , {Yξ : ξ ∈ Ξ/ΞC}) , (B.20)

and term II can be expressed as[
0

I

] [
YBB+C

(t)− (YBC ∗ZCC ∗YCB) (t)
] [

0 I
]

which, from the proof to Theorem B.2, can be recognised as the expression

for an M -element included in a M -network with a node element incidence

matrix [0 I]T and an element admittance matrix Yξo (B.18). As recognised

by the form of the incidence matrix, this element is connected to all nodes in

NB. Calling this additional element ξo leads to the form of the M -network in

(B.16).

3. By Theorem B.2, the M -network (B.16) is strictly passive if the M -network

(B.20) and the element ξo are both strictly passive. The network (B.20) is

strictly passive as, by assumption, all its elements are strictly passive (Theorem
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B.2). The passivity of the element ξo can be demonstrated as follows. Consider

the Laplace transform of Yξo

Y ξo(s) = Y BB+C
(s)− Y BC(s)Y −1

CC(s)Y CB(s) (B.21)

this is recognised as being the Schur complement of the matrix[
Y BB+C

(s) Y BC(s)

Y CB(s) Y CC(s)

]
(B.22)

which in turn is the Laplace transform of the admittance matrix for the

M -network (G (NB ∪NC ,ΞC) , {Yξ : ξ ∈ ΞC}). By Theorem B.2, the matrix

(B.22) is strictly positive definite for s in the closed right hand plane, there-

fore, its Schur complement Y ξo(s) is also strictly positive definite for s in the

closed right hand plane [Horn and Zhang , 2005]. The other passivity criteria

(in the remarks to Definition B.8) for Y ξo(s) are easily demonstrated, and

hence Y ξo(s) is strictly passive.

B.4 Kirchoff Network Equivalents

Within this section, the connection between Kirchoff networks networks and M-

networks is further explored. This is undertaken by deriving a Kirchoff type repre-

sentation of the simple node network structure (G(N ,Λ),P) from Chapter 3, which is

a special case of aM-network. To facilitate the discussion, the one dimensional (1-

D) system terminology of Brown [1967] is adopted here. That is, a 1-D system

possesses two different types of variables that are

• Symmetric variables, which refer to variables that have the same sense when

viewed from either direction. Examples of such variables are voltage and

pressure.

• Asymmetric variables, which refer to variables that have the opposite sense

when viewed from different directions. Examples of such variables are flows

and currents.

Brown [1967] highlights that the product of associated symmetric and asymmetric

variables yields a power term.

The primary difference between Kirchoff networks, as defined in Section B.4.1,

and the networks considered within this thesis is that Kirchoff networks deal with
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links that possess a constant asymmetric variable state, whereas the networks con-

sidered in this thesis deal with links with distributed parameter states for both the

symmetric and asymmetric states. How this difference manifests itself is that Kir-

choff network links can be represented by two states (e.g. current and voltage drop)

that are related by a single function. However for the hyperbolic partial differen-

tial equation (PDE) links considered within this thesis, the spatial distribution is

governed by the boundary conditions, yielding a link representation of four states

(i.e. upstream and downstream flow and pressure), which are related by a 2 × 2

transfer matrix relationship. Despite these differences in the link types, the nodal

constraints are essentially the same. This section explores the relationship between

the two network types.

B.4.1 Kirchoff networks

Before a Kirchoff network (K-network) can be defined, a few definitions are required

first.

Definition B.9. For a directed graph G (N ,Λ) comprised of nn + 1 nodes and nλ

links, the complete nodal incidence matrix is defined as the nn × nλ matrix

{
Á
}
i,j

=


1 if node i is upstream of link j

−1 if node i is downstream of link j

0 if link j is not incident to node i

Definition B.10. For a directed graph G (N ,Λ) comprised of nn + 1 nodes and nλ

links and nm + 1 loops, the complete loop incidence matrix is defined as the nn× nλ
matrix

{
Ḿ
}
i,j

=


1 if link j has a positive orientation in loop i

−1 if link j has a negative orientation in loop i

0 if link j is not within loop i

An important result for the above matrices is given in the following lemma.

Lemma B.2. [Desoer and Kuh, 1969] Given the graph matrices as defined above,

then the following identities hold

1. rank Ń = nn,

2. there are nm = nl − nn + 1 independent loops and rankḾ = nm.
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In many applications, only full rank equivalents of the node and loop incidence

matrices are used Chen [1983], that is the nn×nλ node incidence matrix N and the

nm×nλ loop incidence matrix M . These matrices are constructed from the original

complete matrices by the removal of a single row. This operation is equivalent to

defining a reference node or outer loop that is not required within the calculations.

A K-network is defined below.

Definition B.11. The pair (G (N ,Λ) ,K) comprised of the graph G (N ,Λ), and the

link function set K = {y1, . . . , ynΛ
}, whose links posses the asymmetric states vj and

symmetric states uj (λj ∈ Λ) with the admittance relationship vj(t) = yj (uj) (t) (y−1
j

exists) is termed a Kirchoff-network (K-network) if the following network properties

hold

1. Ńv = 0 (Kirchoff’s current law)

2. Ḿu = 0 (Kirchoff’s voltage law)

where v = [v1 · · · vnΛ
]T and u = [u1 · · ·unΛ

]T .

The two primary examples of K-networks are steady-state water distribution

system (WDS)s and temporarily varying lumped parameter electrical circuits. For

the WDS (electrical circuit) network types, the asymmetric variable is the pipeline

flow rate (current) and the symmetric variable is the pressure (or voltage) drop along

the pipe (line). Kirchoff’s current law is interpreted as a nodal continuity expression

for either mass (summation of inflows is equal to the summation of outflows) for

WDSs, or current (summation of incoming currents is equal to the summation of

outgoing currents) for electrical circuits. Kirchoff’s voltage law is interpreted as an

energy conservation expression in either pressure (the cumulative change in pressure

about a loop is zero) for WDSs, or voltage (the cumulative change in voltage about

a loop is zero) for electrical circuits. The discussion here is simplified, somewhat

as there are important technicalities associated with incorporating different source

types [Chen, 1983].

To compute the network state (u,v), the above identities admit two popular

types of network equation formulations. The first approach, termed the nodal equa-

tions [Desoer and Kuh, 1969] involves resolving the network equations into a series

of nn equations in terms of a set of nn unknowns U called the nodal variables which

are defined by u = NTU . The second approach involves resolving the network

equations into a series of nm equations in terms of nm unknowns V called the loop

variables, which are defined by v = MTV .
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B.4.2 Equivalent Kirchoff networks

Given the apparent difference and similarities between K-networks and the dis-

tributed parameter networks considered within this thesis an interesting question is

whether there is an equivalent K-network representation of a distributed parameter

network of the type (G(N ,Λ),P) from Chapter 3. It turns out that there is quite a

natural representation.

Generalising the admittance mapping (2.48) for fluid lines, here reciprocal lines

are considered, that is, each link admittance function is of the form[
Qu(s)

−Qd(s)

]
λ

=

[
Y1(s) Y2(s)

Y2(s) Y1(s)

]
λ

[
Pu(s)

Pd(s)

]
λ

(B.23)

where Y1 = Z−1
c coth Γ and Y1 = Z−1

c csch Γ for L -lines. Networks comprised of

such links are termed reciprocal networks, and are symbolised also by (G(N ,Λ),P)

where P is the set of Y1 and Y2 functions for each link. For such networks, the

upstream and downstream flows can be expressed as[
Qu(s)

Qd(s)

]
λ

=

[
Quu(s)

Qdu(s)

]
λ

+

[
Qud(s)

Qdd(s)

]
λ

(B.24)

where the vectors on the right correspond to the contributions to the upstream and

downstream flow driven by the upstream and downstream pressure respectively.

The following definition outlines a form of a constant link state network (of the

form required for K-networks) for a reciprocal distributed parameter network. This

network representation will later be shown to a K-network.

Definition B.12. Given a reciprocal distributed parameter network (G (N ,Λ) ,P),

with node states Ψ, and Θ, and link upstream and downstream states Pu, Pd, Qu,

and Qd, the equivalent constant link state network is given by the graph Ge (Ne,Λe)

with link admittances Yeλ, λ ∈ Λe and link states Pe, and Qe where

1. The node and link sets for the graph Ge are given by

Ne = {0} ∪ N
Λe = Λ ∪ {(1, 0), . . . , (nn, 0)}

2. The link pressure and flow states are given by

Pe(s) =

[
Peo(s)

Pea(s)

]
, Qe(s) =

[
Qeo(s)

Qea(s)

]
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where Pe and Qe are length (nλ + nn) × 1, Peo and Qeo are the partitions

corresponding to the nλ original links and Pea and Qea are the partitions

corresponding to the nn artificial links. These are defined as

Peo(s) = Pu(s)− Pd(s)

Qeo(s) = Qud(s) +Qdu(s)

Pea(s) = Ψ(s)− P0(s)1

Qea(s) = Nu (Quu −Qdu)−Nd (Qdd −Qud)−Θ(s)

3. The admittance functions are defined as

Yeλ(s) =

−Y2λ(s) if λ ∈ Λ∑
l∈Λi

Y1l(s) + Y2l(s) if λ ∈ {(1, 0), . . . , (nn, 0)}

for λ ∈ Λe.

Remarks:

1. Ge has the same topology as G except that it has an additional node 0 and

there are nn additional links connecting each node in N to node 0.

2. Ordering the nodes with node 0 first, and the links with the additional nn

links last, the incidence matrix for graph Ge is given by

Ńe =

[
0(1×nλ) −1(1×nn)

Nu −Nd I

]

but in most applications, only a full rank submatrix of Ńe is of interest, this

is achieved by removing the first row to yield

Ne =
[
Nu −Nd I

]

3. Diagonally aligning the admittance functions leads to the matrix representa-

tion

Ye(s) =

[
Yeo(s) 0

0 Yea(s)

]
where Yeo = diag {Ye1, . . . , Yenλ} and Yea = diag

{
Ye(1,0), . . . , Ye(nn,0)

}
, which,
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in matrix representation is expressed by

Yeo(s) = −Y2(s)

Yea(s) = Nu [Y1(s) + Y2(s)]Nu
T +Nd [Y1(s) + Y2(s)]Nd

T

4. Noting that

Yea(s)Pea(s) = Nu [Quu(s)−Qdu(s)]−Nd [Qdd(s)−Qud(s)]

it can be demonstrated that the flow variable in the artificial links is expressed

as the addition of two terms

Qea(s) = Yea(s)Pea(s)︸ ︷︷ ︸
term I

−Θ(s)︸ ︷︷ ︸
term II

(B.25)

where Yea is the link admittance relationship for the artificial links. The in-

terpretation of (B.25) can be made by analogy with electrical circuits [Desoer

and Kuh, 1969]. The current from a general link within an electrical circuit

contains two terms, a passive term and an active term. The passive term is

purely a function of the voltage difference across the link and the active term

arises from the presence of a current source located on the link. Hence, by

analogy, term I in (B.25) is the pressure dependent passive term and term II

is the controlled active term. Therefore, within the constant link state frame-

work, the controlled nodal outflows for the network G become the controlled

flow sources on the artificial links for the network Ge.

5. The flow variable for the original links Qeo considers the influence of the

pressure at the upstream point to the flow at the downstream point Qdu

and the influence of the pressure at the downstream point to the flow at the

upstream point Qud. As such, Qeo neglects local influences. These local

influences (as described by Quu and Qdd) are captured in the artificial link

flow variables Qea.

The equivalent constant link state network is now shown to be a K-network.

Theorem B.5. Given the equivalent constant link state network Ge (Ne,Λe) with

admittance functions Pe = {Yeλ : λ ∈ Λe} based on the reciprocal distributed pa-

rameter network (G (N ,Λ) ,P), then the network described by (Ge (Ne,Λe) ,Pe) is a

K-network

Proof. This proof involves showing that the two criteria of the definition of a K-

network hold for the constant link state network. Firstly, consider Kirchoff’s current
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law

NeQe(s) =
[
Nu −Nd I

] [ Qeo(s)

Qea(s)

]
=
[
Nu −Nd I

]
×
[

Qud(s) +Qdu(s)

Nu [Quu(s)−Qdu(s)]−Nd [Qdd(s)−Qud(s)]−Θ(s)

]
= Nu (Quu(s) +Qud(s))−Nd (Qdd(s) +Qdu(s))−Θ(s)

= 0

where the last step arises purely from the properties of the original reciprocal net-

work. Considering now the second criteria, Kirchoff’s voltage law. Considering any

loop through the graph Ge whose positively oriented links are given by the set A+

and negatively oriented links are in the set A−. Summating the pressure changes

about the loop gives the expression∑
λ∈A+

Peλ(s)−
∑
λ∈A−

Peλ(s)

which can be expanded in terms of the upstream and downstream pressures from

the original reciprocal network to yield∑
λ∈A+

(Puλ(s)− Pdλ(s))−
∑
λ∈A−

(Puλ(s)− Pdλ(s)) . (B.26)

Now, the loop traverses a set of nodes An where each node is visited only once. This

means that exactly two pressure terms in (B.26) correspond to the pressure Ψi for

each i ∈ An as these pressures are equal to the upstream or downstream pressures

in the links. If one of these pressures has a positive sign, then it is either the

upstream node in a positively oriented link or the downstream node in a negatively

oriented link. A negative sign corresponds to a downstream node in a positively

oriented link or an upstream node in a negatively oriented link. Enumerating the

combinations of the pairs of scenarios that can occur (e.g. node i is downstream

of a positively oriented link (negative term) then it must either be upstream of a

positively oriented link (positive term) or downstream of a negatively oriented link

(positive term)) reveals that the terms always appear in opposite sign. Hence (B.26)

is equal to zero.

The equivalent constant link state network is now shown to yield an equivalent

nodal admittance map to the original reciprocal network.
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Theorem B.6. The equivalent constant link state network (Ge (Ne,Λe) ,Pe) derived

from the reciprocal network (G (N ,Λ) ,P), yields the same admittance map from the

nodal pressures to the nodal flows Ψ 7→ Θ as the original reciprocal network.

Proof. The link relationship for the network Ge is

Qe(s) = Ye(s)Pe(s)−
[

0

Θ(s)

]
(B.27)

Noting that NeQe = 0 and Pe = Ne
TΨ, (B.27) can be rearranged to yield

Θ(s) = NeYe(s)Ne
TΨ.

Expanding out the matrix expression yields

NeYe(s)Ne
T =− [Nu −Nd]Y2(s) [Nu −Nd]T

+Nu [Y1(s) + Y2(s)]Nu
T +Nd [Y1(s) + Y2(s)]Nd

T

=NuY1(s)Nu
T +NuY2(s)Nd

T +NdY1(s)Nd
T +NdY2(s)Nu

T

=
[
Nu Nd

] [ Y1(s) Y2(s)

Y2(s) Y1(s)

] [
Nu Nd

]T
which is the exact admittance matrix expression for the original reciprocal network.

Thus the dynamics of the equivalent K-network network are equivalent to the orig-

inal reciprocal network.

These theorems lead onto the following important corollary

Corollary B.4. Any reciprocal distributed parameter network (G (N ,Λ) ,P), can be

transformed into a dynamically equivalent K-network given by (Ge (Ne,Λe) ,Pe).

Proof. This is a direct result from Theorems B.5 and B.6.

The significance of this proposition is that any reciprocal distributed parameter

network can be described by an equivalent K-network of an equivalent topology,

with an additional reference node and nn additional artificial links connecting this

node to each of the original nodes. What this means is that any theorems relating

to K-networks can be applied to reciprocal distributed parameter networks through

this transformation. The next section discusses an important application.
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B.5 Loop equations of a M -Network

In the previous section, it was demonstrated that for any reciprocal distributed

parameter network, there exists an equivalent K-network. The benefit of this is that

work that applies to K-networks can be applied to the K-network representation

of the reciprocal distributed parameter network. Possibly the most fundamental of

these theories is the loop equation representation of the network.

The two common representations of lumped parameter electrical networks are

the node equations or the loop equations [Desoer and Kuh, 1969; Chen, 1983]. The

node equations arise from the application of Kirchoff’s current law, and the loop

equations arise from the application of Kirchoff’s voltage law. The admittance ma-

trix formulation from Chapter 3 is essentially a node formulation of the equations,

and it arises naturally from the application of the nodal continuity equations to cou-

ple the pipeline end states. Dealing directly with the distributed links has meant

that no construction of the loop equations has been possible, as there is no clear

representation of the distributed link states as a function of loop based variables.

However, working with the K-network equivalent of a reciprocal distributed param-

eter network means that standard approaches for deriving the loop equations (e.g.

Chen [1983]) can be followed.

The link impedance relationships for the equivalent K-network can be expressed

as

Pe(s) = Ze(s)

(
Qe(s) +

[
0

Θ(s)

])
(B.28)

where the link impedances are given by Ze = Ye
−1. The loop method, involves

applying Kirchoff’s voltage law to reduce (B.28) into a system of nm = nλ equations

in nm unknowns termed the loop variables. These are defined as

Qe(s) = MTΦ(s) (B.29)

where, as per prior notation, M is the loop incidence matrix, and Φ(s) is the

nm× 1 loop variable, which in this instance is interpreted as loop flows. Employing

Kirchoff’s second law (MPe = 0) and (B.29) yields the loop equations

MZe(s)

[
0

Θ(s)

]
= −MZe(s)MTΦ(s) (B.30)

where MZeM
T is known as the loop impedance matrix [Desoer and Kuh, 1969].

Equation (B.30) holds for a completely arbitrary loop incidence matrix. The con-

struction of a loop matrix for any graph is not unique [Chen, 1983], as it requires
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only linear independence of the loops that it is constructed from. The following

sections identify two alternative constructions and discuss their properties.

B.5.1 Loop construction 1

Equation (B.28) can be expanded as[
Peo(s)

Pea(s)

]
=

[
Zeo(s) 0

0 Zea(s)

]([
Qeo(s)

Qea(s)

]
+

[
0

Θ(s)

])
(B.31)

where Zeo = Yeo
−1 and Zea = Yea

−1.

A feasible loop matrix is

M =

[
M 11 0

M 21 M 22

]

where M 11 is a (nλ − nn + 1) × nλ loop incidence matrix corresponding to the

original graph G and
[
M 21 M 22

]
is a (nn− 1)× (nλ +nn) loop incidence matrix

corresponding to the nn − 1 loops in graph Ge that are independent from the (nλ −
nn + 1) loops described by M 11, where the partition corresponds to the incidence

matrix sections for the original and artificial links. The feature of this formulation is

that it utilises a maximum set of independent loops that do not involve the artificial

links. The loop flow set is likewise partitioned as

Φ(s) =

[
Φo(s)

Φa(s)

]

where Φo corresponds to the nλ−nn + 1 loops involving only the original links, and

Φa corresponds to the nn − 1 loops involving the artificial links. Given (B.29), the

link flows are expressed as[
Qeo(s)

Qea(s)

]
=

[
MT

11 MT
21

0 MT
22

][
Φo(s)

Φa(s)

]

Applying these realisations of M and Φ to (B.30) yields[
0

M 22Zea(s)Θ(s)

]
=

−
[
M 11Zeo(s)MT

11 M 11Zeo(s)MT
21

M 21Zeo(s)MT
11 M 21Zeo(s)MT

21 +M 22Zea(s)MT
22

][
Φo(s)

Φa(s)

]
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from which it can be deduced that the original loop flows are uniquely identified

from the artificial loop flows as

Φo(s) = −
[
M 11Zeo(s)MT

11

]−1
M 11Zeo(s)MT

21Φa(s)

where M 11ZeoM
T
11 can be interpreted as a loop impedance matrix for the original

graph. We then get the relationship between Θ and Φa as

M 22Zea(s)Θ(s) =[
M 21Zeo(s)MT

11

[
M 11Zeo(s)MT

11

]−1
M 11Zeo(s)MT

21

−
(
M 21Zeo(s)MT

21 +M 22Zea(s)MT
22

) ]
Φa(s)

.

B.5.2 Loop construction 2

An alternative construction of the loop incidence matrix is

M =
[
I −NT

]
(B.32)

where I is clearly nλ×nλ and N is the node incidence matrix. Equation (B.32) has

the interpretation of involving one and only one original link in each defined loop

where each loop is completed by two artificial links corresponding to the upstream

and downstream nodes of the original link. That is, the path of every loop involves

the artificial reference node 0. With this construction, loop flows are given by the

actual link flows, that is [
Qeo(s)

Qea(s)

]
=

[
I

−N

]
Φ(s) (B.33)

which implies the relationships Qeo = Φ and Qea = −NΦ (which reflects the

continuity relationship NeQe = 0). Premultiplying (B.31) by (B.32) yields the

expression for the loop flow variable as a function of the nodal outflows

Φ(s) =
[
Zeo(s) +NTZea(s)N

]−1
NTZea(s)Θ(s). (B.34)

A corresponding relationship can be derived between the nodal properties of Ψ and

Θ. Noting from (B.31) and (B.33) that

Ψ(s) = Zea(s) [NΦ(s) + Θ(s)] . (B.35)
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which substituting in (B.34) yields

Ψ(s) =
[
Zea(s)−Zea(s)N

[
Zeo(s) +NTZea(s)N

]−1
NTZea(s)

]
Θ(s). (B.36)

It can be observed that as (B.36) maps from the nodal flows to the nodal pressures,

it is an impedance mapping, and in fact the matrix in (B.36) is actually the in-

verse of the network admittance matrix (3.13) derived in Chapter 3. An interesting

connection between the impedance matrix in (B.36) and the network admittance

matrix (3.13) is that (B.36) is a form of the Woodbury-Sherman-Morrison formula

[Golub and Van Loan, 1983] for the inverse of (3.13).

294



Appendix C

Extended Review of the Hydraulic

Network Identification Literature

From the large body of literature on hydraulic network identification methods, five

key differentiating properties of the surveyed methods have been identified. These

properties are (i) the class of the methodology in terms of the system characteristics

that are identified, (ii) the system configuration that the methods are designed to

deal with, (iii) the information required by the methodology, (iv) the application

of the methodology to the hydraulic system, and (v) the data processing involved

in the methodology. The different classes of the methodologies was discussed in

Chapter 6, and the remaining properties (ii)-(v) are discussed within this appendix.

The literature review presented here is organised as a discussion of the forms

these properties take within the methods surveyed. It is important to note that

the review is heavily biased toward leak detection. The reason for this is that the

practical importance of this problem has meant that it has been a major focus in hy-

draulic system identification research. Additionally, the review is mainly concerned

with transient methods, however steady-state methods are discussed where relevant.

C.1 System Configuration

Within the hydraulic network identification literature, different methods are de-

signed to be applied to systems of different configurations, where a systems config-

uration is defined by the type of hydraulic network, the boundary conditions to this

network, and the nature and complexity of the components to be identified. Meth-

ods designed for more general system types are more powerful in terms of breadth

of application, but methods designed for simpler system types have the advantage

of exploiting particular properties of their system type.
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C.1.1 Hydraulic system type

Hydraulic network systems are categorised as either (in order of simplicity), (i) a

simple line, which is a continuous line of uniform cross-sectional properties, (ii)

a compound line, which is a line comprised of pipes in parallel, pipes in series,

branches, valves and any other configuration that does involve second order looping

[Fox , 1977], or (iii) a network, which is any generalised nodal layout with interlinked

fluid lines. Due to the inherent complexities in modelling transient state fluid net-

works, and the subtleties associated with anomaly detection in such networks, the

vast majority of methods have dealt only with simple or compound lines.

The class 1 analytic methods and most of the class 2 and 3 techniques deal only

with uniform lines, despite the fact that, in some cases, their formulation could be

generalised to deal with networks1 (e.g. [Digernes , 1980; Benkherouf and Allidina,

1988; Zecchin et al., 2006; Chen et al., 2006]). Extensions to the single line are

considered in Emara-Shabaik et al. [2002] and Kiuchi [1993], where a distribution of

demands is assumed. Further complications are considered in Mpesha et al. [2001,

2002] where pipes in series, loops and branches are incorporated into the system

under study. The only transient hydraulic network identification methods that have

been applied to generalised networks are the class 1 numerical methods (e.g. the

inverse transient method (ITM) [Liggett and Chen, 1994; Vı́tkovský et al., 2000;

Covas et al., 2001; Wang et al., 2002a]).

Despite their limited system type, the methods designed for single lines are

more robust to the uncertainties of real world systems (particularly classes 2 and

3), owing to their simplicity (e.g. [Isermann, 1984]) or utilisation of particular

system attributes (i.e. Verde [2001]). The general network methods are known to

be extremely sensitive to modelling errors [Vı́tkovský et al., 2007].

C.1.2 Boundary conditions

There are two main types of required boundary conditions adopted within the hy-

draulic parameter identification literature, namely modellable hydraulic boundary

conditions, and measurement stations that bound the system section of interest. A

vast majority of the methodologies that have arisen from the civil engineering field

(class 1) deal with the simplified system of a reservoir-pipe-valve (R-P-V) configu-

ration [Lee, 2001; Lee et al., 2003a, 2002, 2003b, 2004, 2005a; Covas and Ramos ,

1The analytic methods (i.e. reflectometry methods [Silva et al., 1996], transient damping [Wang
et al., 2002b], the patterned frequency response methods [Lee, 2001; Lee et al., 2003a,b, 2004,
2005a], and the steady state methods of Baghdadi and Mansy [1988]; Dinis et al. [1999]) do not
possess this potential as the physics of the single line are tightly intertwined in the diagnostic
process.
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1999; Covas et al., 1999; Wang et al., 2002b], where the valve has been the source

of generation of the transient conditions. The majority of the methods from the

control literature (classes 2 and 3) deal with measurement stations as boundary con-

ditions, of either just pressure [Billmann and Isermann, 1987; Wang et al., 1993],

just flow [Thompson and Skogman, 1983; Isermann, 1984] or combinations of ei-

ther [Digernes , 1980; Verde, 2001]. An additional method of dealing with unknown

boundary conditions is to time gate the data trace [Silva et al., 1996; Brunone,

1999]. This allows for the consideration of a partition of the data that corresponds

to sections of the network that are under investigation.

The advantage of modelling the boundary conditions is that a reduced number

of measurement stations are required [Zecchin et al., 2005], and the entire system is

considered, rather than just the section between the measurement stations. How-

ever, the use of measurement stations as a boundary condition eliminates the need

to model the boundary, and hence removes the modelling error associated with the

boundary model and simplifies the modelling. This attribute is extremely benefi-

cial when dealing with complex boundaries or sub-networks of larger networks. For

example, if, for operational reasons or otherwise, the sub-network of interest can-

not be isolated with valves, and the wider network is not desired, or able, to be

modelled, the utilisation of measurement stations as boundaries would be required.

Some criticism of the use of measurement stations as boundary conditions exists.

Vı́tkovský [2001] found that the use of a measurement station as a boundary condi-

tion disguised important physical phenomena (i.e. unsteady frictional effects, and

leak induced effects). This was attributed to the fact that the boundary condition

was not independent of the system’s dynamic behaviour.

C.1.3 Anomaly configuration

Anomaly configuration refers to the number and types of anomalies that a method-

ology can deal with. Some methodologies can only deal with systems with a single

leak, others are designed to deal with multiple faults. The methodologies are dis-

cussed with reference to the anomaly configurations they are designed to deal with

and their ability to be extended to deal with arbitrary anomaly configurations.

Most of the leak detection methods surveyed have been applied to systems with

only one leak. Some methods are specifically designed to detect only the influence

of a single leak, and rely only on the existence of only one leak for their diagnosis

to operate correctly [Wang et al., 2002a; Benkherouf and Allidina, 1988].

Some methods are designed to deal with multiple leaks, for example: the inverse

transient method can (in theory) deal with an arbitrary number of leaks [Liggett
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and Chen, 1994]; under the linearity assumptions of the adopted base model, Lee

et al. [2005a]; Mpesha et al. [2001] extended their frequency domain techniques

to identify the influence of two leaks on the frequency response. The difficulty

in differentiating between single and multiple leaks is noted in the literature for

single lines [Benkherouf and Allidina, 1988], and networks [Liggett and Chen, 1994;

Wang et al., 2002a]. Only one paper has addressed the issue of identifiability of

simultaneous leaks [Verde, 2001] by the use of specialised observers [Hou and Muller ,

1994] that are are able to isolate the influence of individual leaks. This methodology

was designed for a single line only.

No methodology has been designed to deal specifically with different types of

fluid line anomalies. The closest, is the work of Digernes [1980] where the adopted

methodology was designed to differentiate between sensor failure and the onset of

leaks. As this methodology can deal with multiple failures of different types, it

could clearly be extended to deal with blockages or other anomalies. Similarly, all

methods that use a generic hydraulic model as the basis of their signal processing

(i.e. inverse methods, and fault detection methods of Section C.4) could be easily

adapted to deal with different anomalies with the use of specific anomaly models.

With regard to this, a concern would be that the continuous monitoring methods

may not be as able to detect a blockage as it may have a too subtle influence on the

mildly transient nominal conditions.

The fault signature methods of Section C.4, rely exclusively on the physical

characteristics of a leak for their detection diagnosis (i.e. frequency response char-

acteristics, [Lee et al., 2005a; Mpesha et al., 2001], influence on damping rates [Wang

et al., 2002b], wave reflection behaviour Brunone [1999] etc.), and as such are de-

signed only for leaks. The advancement of these methods to deal with anomalies of

different types requires a similar analysis as that used for leaks in terms of deter-

mining the signature of the influence of the anomaly. Such work had been shown

in Wang et al. [2002a] where a block was modelled as an impulse function in the

momentum equation as opposed to the continuity equation for a leak, and in Lee

et al. [2005a] where the the anomaly transfer function of a block was used instead

of a leak.

C.2 System Information

System information refers to the nature of the information required by the method-

ology in terms of (i) data acquisition (the number and types of sensors, and noise

within measurements), and (ii) a priori system knowledge (system configuration

and parametric uncertainties).
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C.2.1 Sensor types and identifiability

There is a close relationship between the type of required boundary conditions and

the sensor layout design. Many of the methodologies that deal with known boundary

conditions utilise only single pressure sensors [Lee et al., 2005a; Covas and Ramos ,

1999; Wang et al., 2002a] (Mpesha et al. [2001, 2002] uses flow measurements also).

Many of the methods that use measurement stations as boundary conditions use

measurements of pressure [Billmann and Isermann, 1987; Wang et al., 1993], flow

[Thompson and Skogman, 1983; Isermann, 1984] or both [Digernes , 1980; Verde,

2001], at the boundaries combined with one or more measurement stations of pres-

sure [Billmann and Isermann, 1987; Wang et al., 1993], flow [Thompson and Skog-

man, 1983; Isermann, 1984] or both [Digernes , 1980; Verde, 2001] throughout the

length of the fluid line.

There are important practical and theoretical concerns associated with the sen-

sor layout design. The practical constraints are the points at which measurement

stations can be set up within a system, and the accuracy and cost associated with

the number and type of each sensor. The theoretical concerns are primarily to do

with the observability and identifiability of a system [Ljung , 1999]. For the success

of any inverse or system identification method, it is fundamental that the system

is identifiable. A system is identifiable if there exists a unique solution to the in-

verse or system identification problem (i.e. a one to one mapping exists from the

data sets to the parameter space). Observability is closely related to identifiability,

however, with reference to distributed parameter systems, Goodson and Polis [1974]

state that the constraint of identifiability is less severe than that of observability,

and further that

A measurement location could be chosen where the data would not con-

tain all the information necessary to determine the dependent variable

[state] but would contain sufficient information to determine the param-

eters.

Goodson and Polis [1974] cites three available techniques to aid in the placement

of measurement locations, namely sensors should be placed in locations which (i)

avoid zeros of eigenfunctions of processes that can be expressed as series expansions

of such functions, (ii) intersect the full manifold of characteristic lines for hyperbolic

systems (i.e. long enough measurement time so as to account for the longest delays),

and (iii) maximise the sensitivity with respect to the parameter variations.

Largely, the leak detection methods do not formally consider the issues of ob-

servability or identifiability, except for Verde [2001]; Ashton and Shields [1999]. The
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issues encountered within the literature associated with identifiability are (i) the

inability to differentiate between single and multiple leaks [Benkherouf and Allid-

ina, 1988; Wang et al., 2002a; Verde, 2001], (ii) insufficient information to ensure a

unique solution to the inverse problem [Liggett and Chen, 1994; Wang et al., 2002a],

(iii) the sensitivity of sensors to leak locations [Ferrante et al., 2001; Ferrante and

Brunone, 2003a; Lee et al., 2005a; Wang et al., 2001], and (iv) the effect of parameter

uncertainty [Verde, 2001; Emara-Shabaik et al., 2002].

In agreement with the recommendations of Goodson and Polis [1974] and in

keeping with traditional inverse theory, Liggett and Chen [1994] argued that the

measurement stations should be placed at those locations that are most sensitive

to parameter variations2. The consideration of these issues was studied further in

Vı́tkovský et al. [2003b]. Drawing on a number of formulations of measurement point

sensitivities to parameters, Vı́tkovský et al. [2003b] formulated a heuristic approach

to optimising the informational value of the data collected for a given number of

measurement stations.

The issue of sensitivity of sensors to leak location was mainly noted in the fre-

quency based methods [Ferrante et al., 2001; Ferrante and Brunone, 2003a; Lee

et al., 2005a; Covas et al., 2005a] for single line problems. Ferrante et al. [2001];

Ferrante and Brunone [2003a] identified shadow zones where the leak influence was

hidden. Lee et al. [2002] commented that the influence the leak location has on the

harmonics of the frequency response is due to the harmonic mode shapes. By use of

a standing wave methodology [Covas et al., 2005a] observed that the leak influence

was unnoticeable when the leak was located near or at an anti-node of the harmonic

modes. This problem can be related to the guidelines set out by Goodson and Polis

[1974] in that the shadow zones correspond to the zeros of the eigenfunctions (which

in this case are sinusoids) of the linearised equations.

C.2.2 Parameter uncertainty

Most methods assume that the base parameters are known or can be identified off-

line. For all process based leak detection methodology surveyed within this section,

sufficiently accurate knowledge of the system parameters is essential. The reason for

this is that the methods depend on a sufficient description of the behaviour of the

system so as to provide meaningful processing of the data in the diagnosis phase.

As an indication of the sensitivity of methods to parameter uncertainty, Lee et al.

[2005a] reported that lack of robustness to parameter uncertainty is a serious lim-

2Sensitivity is measured by the gradient of the pressure at each node with respect to each
parameter.
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itation to the ITM, and Emara-Shabaik et al. [2002] reported a degradation in the

performance of their methodology for even a 1 % error in the (real as opposed to

model) friction factor and wave speed. Within the literature, the system uncertain-

ties are related to limited properties of the conduit material, namely the resistance

coefficients (or friction factors, dependent on the internal roughness of the line) and

the wavespeed (dependent on the material properties of the pipeline).

It has been noted by many authors [Billmann and Isermann, 1987; Verde, 2001;

Vı́tkovský , 2001; Covas and Ramos , 2001; Wang et al., 2002a] that an accurate

knowledge of the resistance coefficient is paramount to leak detection. The reason

for this is that leaks and friction both act as energy loss mechanisms and, despite the

difference in the nature of the energy loss (i.e. lumped as opposed to distributed),

their impact on pressure transients is similar [Dinis et al., 1999; Wang et al., 2001].

Based on limited experiments with errors in friction factor values, Emara-Shabaik

et al. [2002] recommended that leak detection techniques would need to involve

online parameter identification methods. In an attempt to combat the uncertainty

associated with unknown friction factors, various authors have adopted different

measures: Billmann and Isermann [1987] used a least squares updating estimation

of the friction factor; the ITM [Liggett and Chen, 1994] treats friction factors as

parameters to be calibrated.

Accurate knowledge of the transient wavespeeds is important for many meth-

ods in determining locations of anomalies. Covas et al. [2001] reported that ex-

perimental determination is straight of wavespeeds for single lines is straight for-

ward, but for networks their determination is a lot more difficult as wavespeeds can

change from line to line and there are typically links within the network that are

not bounded by sensors. Variations in wavespeeds arise from conduits of different

material strength properties, and diameter. An additional complication with deter-

mining the wavespeed is the impact of dissolved oxygen [Wang et al., 2002a] and

entrapped air within the system.

C.2.3 Model uncertainty

Modelling error is identified by many authors as a problem for the practical im-

plementation of identification within hydraulic networks, particularly leak detection

methods.

In terms of generalised fault detection and isolation, many different formulations

are proposed that deal with system uncertainties in the form of unmodelled physical

processes [Zhong et al., 2003; Han et al., 2005]. Frank and Ding [1994] highlights

three approaches to modelling uncertainty, namely additive perturbations, input
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multiplicative, and output multiplicative perturbations. Han et al. [2005] deals with

process uncertainties by considering errors in the system matrices.

C.2.4 Measurement uncertainty

Measurements of any real dynamical system involve noise of some description. The

sources of noise within measurements from a fluid network are (i) random changes

in boundary conditions to the fluid network lines (e.g. noise from pumps or random

domestic use), (ii) noise from the containing environment of conduits (e.g. ground

vibrations from traffic), (iii) random state perturbations from turbulence, and (iv)

measurement noise.

Few methodologies give a formal recognition of noise in the development of their

diagnostic methods [Candy and Rosza, 1980; Digernes , 1980; Benkherouf and Al-

lidina, 1988; Wang et al., 1993; Emara-Shabaik et al., 2002]. There have been,

however, many ad hoc approaches to robustifying methods to the presence of noise:

the use of a matched filter approach to estimate the spectral densities [Lee et al.,

2005a]; quadratic error minimisation for parameter calibration [Liggett and Chen,

1994]; wavelet filtering methods [Ferrante and Brunone, 2003b]; flow correlation

techniques [Billmann and Isermann, 1987];

Methods based on state estimation approaches typically involve the assumption

of additive white Gaussian measurement noise, in conjunction with Gaussian input

(or system) noise. No leak detection methodologies have considered the issue of

noise entering the system from random boundary effects, which effectively serve as

unknown inputs [Zhong et al., 2003].

C.3 Mode of Application

The mode of application refers to the manner in which the hydraulic network iden-

tification methodologies are applied to the networks in terms of online or offline

application, active or passive approaches and the nature of the required transient

state.

C.3.1 Continuous monitoring versus batch application

An important descriptor of a hydraulic network identification method is whether it is

designed for continuous monitoring, or for batch applications. Continuous monitor-

ing methods are those that track and diagnose the systems behaviour continuously
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whilst the system is online, whereas batch methods are designed to be employed for

finite length testing periods and essentially analyse a frozen time-invariant snapshot

of the system. Clearly, batch methods could be applied in a continuous fashion (i.e.

repeat the testing with a high frequency), but there are basic differences, namely

that batch methods are designed to deal with time-invariant systems.

A fundamental difference between the methods is the time scales at which the

dynamic system is observed and hence the physical processes of the system that the

diagnostic process is based on. Continuous monitoring methods have sample rates

of the order of seconds [Isermann, 1984; Baghdadi and Mansy , 1988; Dinis et al.,

1999; Venkatasubramanian et al., 2003] to minutes [Isermann, 1984; Baghdadi and

Mansy , 1988; Dinis et al., 1999; Venkatasubramanian et al., 2003], whereas the

batch methods have sampling rates of the order of 10−3 to 10−2 seconds. Due to

the different time scale considerations, different phenomena are being observed. The

continuous monitoring methods typically monitor continuity in mass and momentum

between a series of two or more measurement stations. Conversely, batch methods

focus on the detailed pressure history response of a line or network from an induced

transient (e.g. [Liggett and Chen, 1994]). As pressure waves travel at speeds of 300

m/s (in gas) to 1,400 m/s (in liquids), a high sampling rate is needed to accurately

resolve the detail of reflections and transmissions within the wave passage. In these

methods, it is primarily the anomalies influence on the passage of an induced wave

front that is considered, not the longer time scale influence of the anomaly on mass

or momentum continuity.

Due to the different time scales of consideration, different levels of model com-

plexity are required. As the continuous monitoring methods do not consider the finer

details of the pressure response, the standard 1-D waterhammer equations [Wylie

and Streeter , 1993] are used to model essentially, the fluid line inventory (i.e. time

varying accumulation of mass within the reach, similar to the direct inventory tech-

niques [Thompson and Skogman, 1983; Kiuchi , 1993]). For the batch methods, as

the diagnosis is based on the details in the pressure response, more complex models

are required to capture and mimic the details.

Despite the apparent appeal of continuous monitoring methods, there are advan-

tages and disadvantages to each approach. Continuous methods generally require the

development of some state of normality to calibrate the system parameters [Emara-

Shabaik et al., 2002; Billmann and Isermann, 1987] (or remove the influence of the

initial Kalman filter covariance matrix) and the diagnostic process involves track-

ing the system response to identify deviations from the nominal behaviour [Loparo

et al., 1991]. The presupposition of this application is that the system is initially

operating in a fault free state. With new or highly regulated systems, this is not a
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problem. However, the prime system of interest within much research, water dis-

tribution system (WDS)s, are typically old and not highly regulated or maintained.

Therefore, continuous monitoring methods generally will only detect the onset of

new anomalies and not those already in existence. Additionally, since the continu-

ous monitoring techniques involve the tracking of some performance statistic, they

usually require a period of time to detect a fault after its onset, e.g. seconds [Wang

et al., 1993] to minutes [Billmann and Isermann, 1987; Digernes , 1980] to hours

[Isermann, 1984], depending on the sampling rate, fluid type and flow regime.

C.3.2 Flow regime and input type

The flow regimes that hydraulic network identification methods operate in are either

steady state, oscillatory, mildly transient, or transient. For the unsteady methods,

to estimate the state or identify the parameters of the fluid network, some form of

input is needed to excite a response from the system. The type of input dictates the

assumed flow regime for the identification method. Four categories of input types

are observed here, three active input methods, and a passive method.

In all cases, the batch methods use an active input. The reason for this is to

stimulate and excite the system so that more detail of its structure can be seen and

the output made more information rich. For linear systems, only the frequencies in

the input are seen in the output, therefore there is benefit in inputting a broader

range of frequencies into the system [Lynn, 1982]. Active methodologies typically

start with the system in steady state [Liggett and Chen, 1994; Lee et al., 2005a; Covas

et al., 2000], and inject some signal into the system (usually via a valve perturbation).

The three types of inputs are step inputs [Silva et al., 1996], oscillatory inputs [Covas

et al., 2005a] and arbitrary inputs [Liggett and Chen, 1994].

The step input methods are typically based on detecting the reflections after the

passage of the first wave, and as such, they require the simple input to allow for

the detection of these reflections. Examples of step inputs are found in Silva et al.

[1996] and Brunone [1999]. Oscillatory inputs have either been pseudo-random bi-

nary signals [Liou, 1998] or pure sinusoids [Mpesha et al., 2001]. The oscillatory

input methods aim excite the system over a long enough period to achieve a steady

oscillatory state. The oscillatory nature of the system aids in determining the sys-

tems impulse response [Liou, 1998], frequency response [Mpesha et al., 2001] or

standing wave behaviour [Covas et al., 2005a], all of which can be used to detect

the presence of leaks. Due to the ease of generation, most acoustic methods use

sinusoidal inputs (e.g. [Sharp, 1996; de Salis et al., 2002]).

The arbitrary input methods require measurement (or modelling) of the input
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so as to enable correct modelling of the system. Typically the arbitrary inputs are

step changes in discharge (as this is the most convenient type of signal generated),

but are considered as arbitrary input methodologies, as the methodologies can deal

with inputs of arbitrary form (e.g. [Liggett and Chen, 1994]). Other common input

types used are discharge pulses [Lee et al., 2005a].

Passive methods do not involve the inducement of any signals into the system,

but use the existing natural fluctuations in the systems boundaries, that exist in

nominal operation, as the source of excitation for the system [Verde, 2001; Billmann

and Isermann, 1987]. All the continuous monitoring methods are passive. Even

though the passive methodologies do not excite the system across an as broad range

of frequencies as the active methods do, longer time traces are used to gain sufficient

information for the diagnosis.

C.4 Data Processing

The data processing of a hydraulic network identification refers to the way that the

system measurements are processed, how the base model is used to interpret the

data, and the transformation or preprocessing of the data.

C.4.1 Base model

As discussed, for the diagnostic process to relate artifacts in the data series to system

anomalies, some form of model of the physical system is required (both fluid line

models, and anomaly models). The two main types of models used to filter the

data are process based models, and empirical models. To extract a greater degree of

information from the data as to the location, type and size of the anomaly, process

based models are generally required. However, to simply detect the onset of an

anomaly, empirical models calibrated to the nominal system behaviour can be used.

For process based models there exists no analytical solution to the system equations,

thus approximation techniques must be employed. The only two approximation

methods are time-domain discretisation schemes, and linearised frequency-domain

methods. These models are discussed below.

Time-domain approximate models

Benkherouf and Allidina [1988] outlined two typical approaches to discretising a

distributed parameter system to make it numerically solvable, (i) a continuous-

time/discrete-space approach where the ∂/∂x operator is approximated by an ap-
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propriate finite difference scheme, or (ii) a discrete-time/discrete-space where both

the ∂/∂x and ∂/∂t operators are replaced with appropriate discretisation schemes.

Examples of these approaches include the continuous-time/discrete-space approach

of Loparo et al. [1991] who formulated the problem in a stochastic differential

framework (maintaining the time derivative) and used a backward difference to

approximate the space derivative. For the discrete-time/discrete-space, two alterna-

tives adopted in leak detection are the backward-time/centred-space [Emara-Shabaik

et al., 2002] or the method of characteristics (MOC) [Benkherouf and Allidina, 1988;

Liggett and Chen, 1994; Vı́tkovský et al., 2000].

For the solution of transient flow in fluid lines, the MOC is generally the pre-

ferred method as it solves the hyperbolic system almost exactly3 along the systems

characteristic lines. Other discretisation schemes have been shown to induce nu-

merical dissipation into the solution [Ghidaoui and Karney , 1994]. However, for

systems whose nodal points do not exactly coincide with the intersection points of

the characteristic lines, interpolation methods are required for the application of

MOC to such systems [Goldberg and Wylie, 1983; Sibetheros et al., 1991; Verwey

and Yu, 1993; Wiggert and Sundquist , 1977; Karney and Ghidaoui , 1997; Chaudhry

and Husssini , 1985]. In these situations, these methods suffer similar numerical

artifacts as other discretisation schemes [Ghidaoui et al., 1998].

Time-domain models of differing complexity have been used for the detection of

leaks. The processed based continuous monitoring methods use only the simplest

1-D water hammer equations where quasi-steady friction is assumed [Benkherouf

and Allidina, 1988; Emara-Shabaik et al., 2002; Verde, 2001]. For the batch ap-

plications, due to the induced transient state, the ∂q/∂t term is more significant,

hence unsteady frictional effects required consideration [Zielke, 1968]. In addition to

unsteady friction, viscoelasticity has been cited as an important model component

when using inverse methods on some case studies [Covas et al., 2004a,b, 2005b].

Frequency-domain approximate models

In the pioneering work of Brown [1962], an analytic Laplace-domain transfer function

relating the pressure and flow at two points in a reflectionless non-turbulent line was

derived. Exploiting the linearity assumption, this has since been generalised to fluid

lines of arbitrary boundary conditions [Goodson and Leonard , 1972]. This framework

provides a basis for which a number of transmission line operators, derived from

different fundamental fluid dynamic assumptions (i.e. frictionless line, friction linear

3Approximation methods are still involved to solve the integration of the quadratic flow term∫
C
q|q|dt along the characteristic C.
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with flow, compressible fluid, isothermal conditions etc., see Goodson and Leonard

[1972] and Stecki and Davis [1986] for an overview).

Despite, its exact nature for laminar flow, a source of error in using Laplace-

domain models when dealing with transitional and turbulent flow is the require-

ment of the linearisation of the resistance term (i.e. for turbulent flow, the re-

sistance is quadratic in flow). The hyperbolic system is usually linearised about

the steady-state variables [Wylie and Streeter , 1993; Chaudhry , 1987]. Many au-

thors have successfully used the linear frequency domain model [Wylie and Streeter ,

1993; Chaudhry , 1987; Lee et al., 2005a; Mpesha et al., 2002], however, no general

guidelines or thorough error analysis exists to determine the range of flow regimes

appropriate for linearised modelling. The only guide is the qualitative requirement

that the disturbance about the steady-state not too large.

The Laplace-domain models have three underlying axioms [Stecki and Davis ,

1986]: (i) upstream and downstream variables of pressure and flow in a reflection-

less line are related to one another via a complex exponential transfer function; (ii)

in a reflectionless line, the pressure and flow at a single point are related to one

another via the characteristic impedance; (iii) the net pressure and net flow are de-

pendent on the addition and difference, respectively, of their counterpart quantities

in the positive and negative travelling waves (essentially, the principal of super-

position applies here). For hydraulic modelling, these axioms are organised into

three different frameworks, namely, the impedance method [Wylie, 1965; Wylie and

Streeter , 1993], the transfer matrix method [Chaudhry , 1970, 1987], and a block

diagram approach [Johnson and Wandling , 1967]. For application to leak detection,

the transfer matrix method has been used by Mpesha et al. [2001]; Lee et al. [2005a]

the impedance method used by Ferrante et al. [2001] and Ferrante and Brunone

[2003a], and a developed form of the block diagram approach used by Zecchin et al.

[2005].

A significant advantage of the Laplace-domain models is that, as direct expres-

sions for the transformed pressure and flow are achieved, they are computationally

insignificant in comparison to their time-domain counterparts. Additionally, as the

Laplace-domain methods do not require any spatial or temporal discretisation, the

true distributed nature of the system is retained [Schoukens and Pintelon, 1991].

The main advantages of time-domain over Laplace-domain modelling is that the

non-linearities in the system equations can be included in the model (most impor-

tantly the friction term, but to a lesser extent, the convective velocity terms). This

is clearly only required for transitional and turbulent flow models.
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Empirical models

Empirical models provide no insight into the physics of the system, but they can be

used online to detect abrupt changes in the system behaviour. Examples of empirical

models applied to leak detection is the end flow correlation method of Isermann

[1984] and Billmann and Isermann [1987], the auto-regressive method of Wang et al.

[1993], and the artificial neural network method of Stoianov et al. [2002b]. Empirical

models are a lot simpler to use than process based models, however, they require

a sufficient amount of data of the nominal behaviour to calibrate their parameters

[Wang et al., 1993], and learn the structure of fault patterns [Stoianov et al., 2002b].

C.4.2 Domain of diagnosis

Methodologies either consider the system in its time-domain form or perform some

transformation to consider the behaviour in either the frequency-domain [Lee, 2001;

Lee et al., 2003a, 2002, 2003b, 2004, 2005a; Covas and Ramos , 1999; Ferrante et al.,

2001; Ferrante and Brunone, 2003a; Mpesha et al., 2001, 2002] or in some discrete

wavelet-domain [Stoianov et al., 2002a,b; Ferrante and Brunone, 2001, 2003b; Fer-

rante et al., 2005]. The issues associated with the differing domains of diagnosis are,

firstly, the ability to model the system in the different domains, and secondly, the

ability to see the impact of an anomaly in each domain and estimate its parameters.

Aside from the long time scale influences of anomalies on the continuity of mass

and momentum, two main phenomena are observed, on shorter time scales, that

indicate the presence of a leak. First, is the high frequency artifacts in the transient

response due to the reflections created by the presence of the leak [Lee et al., 2005a].

Second is the increase in the damping rate of the energy within the system [Wang

et al., 2002b]. As the leak acts as an additional loss mechanism, it causes the energy

of any signal within the system to decay at a faster rate.

All of the continuous monitoring techniques operate on time-domain data as this

is a more natural domain to consider the time evolution of system statistics or testing

for uncharacteristic system changes that are indicative of sudden faults [Willsky ,

1976]. Similarly, reflectometry methods [Silva et al., 1996] based on the arrival

times of reflections require time-domain information. Also, due to the existence

of time-domain models for generalised networks, the parameter calibration of the

inverse methods has typically been done using time domain data and models [Liggett

and Chen, 1994; Vı́tkovský et al., 2002].

A well known approach to modelling the resonant behaviour of fluid lines is the

use of transfer function methods (i.e. the transfer matrix method, or the impedance
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method [Chaudhry , 1987; Wylie and Streeter , 1993]) to relate the frequency response

of pressure and flow at two sections. These methods have been utilised by numerous

authors [Jönsson and Larson, 1992; Covas and Ramos , 2001; Mpesha et al., 2001,

2002; Ferrante and Brunone, 2003a; Lee et al., 2003a, 2004, 2005a] in an attempt

to develop leak detection measures based on anomalous behaviour in the frequency

response. Two major, yet different opinions exist in the literature as to the influence

of a leak on a fluid line frequency response, namely that the presence of the leak

(i) creates a new harmonic sub-system that in turn creates the appearance of a new

resonant frequency in the frequency response [Jönsson and Larson, 1992; Mpesha

et al., 2001, 2002], or (ii) induces a pattern in the magnitudes of the harmonics

of the nominal frequency response [Covas and Ramos , 2001; Ferrante et al., 2001;

Ferrante and Brunone, 2003a; Lee et al., 2003a, 2004, 2005a]. Limitations of the

existing frequency domain methods are that (i) they have only been applied to

compound R-P-V systems where relatively large leaks are assumed, and (ii) the

detection of the leakage is dependent of the leak location, as, due to the harmonics

of the system, there are zones where the leak influence is undetectable [Covas and

Ramos , 2001; Ferrante et al., 2001; Ferrante and Brunone, 2003a].

An emerging methodology for leak detection within pipelines is the use of wavelets

[Ferrante and Brunone, 2003a; Stoianov et al., 2001; Ivetic and Savic, 2002], the ad-

vantage of wavelets is their ability to localise the frequency spectrum in time. This is

important in leak detection as it is noted that a leak induces a frequency dependent

damping in time [Ivetic and Savic, 2002] that is overlooked in the time averaging

approach of the traditional Fourier methods.

The uses of the wavelet transform for the detection of leaks in fluid lines is

varied. Ferrante and Brunone [2003a] used the ability of the wavelet transform

to clearly highlight discontinuities in the pressure trace due to the reflected wave,

and then used standard wave reflection techniques to estimate the leak location.

In a novel application, Stoianov et al. [2001] used the wavelet transform to extract

the mid-level frequency characteristics of a pressure trace, and used a pre-trained

artificial neural network as a pattern recognition tool to estimate the leak size and

location. Ivetic and Savic [2002] presented a more illustrative approach showing the

more obvious impact of the leak in the wavelet coefficient space as opposed to the

frequency response. The wavelet approach is an interesting area that has a lot of

potential, but it is still in the early stages of development.
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Appendix D

Numerical Example Details

The parameteric details for the numerical examples are given in this Appendix.

For all numerical examples, the physical parameters of water were taken as density

ρ = 999.1 m3/kg, gravity g = 9.81m/s2, and kinematic viscosity ν = 1× 10−6 m2/s.

All computational procedures were undertaken as outlined in Appendix E.

The network data tables are contained in the following. Unless otherwise stated,

the wavespeed was taken as 1000 m/s, the friction factor1 as 0.02 (for the turbulent-

steady-friction (TSF) pipes), and the relative roughness as 0.001 (for the turbulent-

unsteady-friction (TUF) pipes).

The 11-pipe network, given in Figure 5.9, is based on the 11-pipe network used

by [Pudar and Liggett , 1992]. The adopted nodal and link properties are given in

Tables D.1 and D.2.

The 35-pipe network, given in Figure 5.10, is based on the 35-pipe network used

by [Pudar and Liggett , 1992]. The adopted nodal and link properties are given in

Tables D.3 and D.4.

The 51-pipe network, given in Figure 3.6, is based on the 51-pipe network used

by [Vı́tkovský , 2001]. The adopted nodal and link properties are given in Tables D.5

and D.6.

The 94-pipe network, given in Figure 3.9, is based on the 94-pipe network used

by [Datta and Sridharan, 1994]. The adopted nodal and link properties are given in

Tables D.7 and D.8.

1The term friction factor refers to the Darcy-Weisbach friction factor [Streeter et al., 1997].
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Table D.1: Nodal properties for the 11-pipe network.

node base demand (L/s) elevation (m)

1 reservoir 30
2 0.00 0
3 0.00 0
4 126.18 0
5 0.00 0
6 0.00 0
7 0.00 0

Table D.2: Link properties for the 11-pipe network.

link start node end node length (m) diameter (mm)

1 1 2 1371 254
2 1 3 762 254
3 2 3 609 254
4 2 5 1066 254
5 2 4 457 254
6 4 5 762 254
7 5 6 762 254
8 6 7 914 254
9 5 7 1219 254
10 3 7 762 254
11 3 5 609 254
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Table D.3: Nodal properties for the 35-pipe network.

node base demand (L/s) elevation (m)

1 reservoir 182.88
2 22.65 0
3 116.67 0
4 70.79 0
5 102.51 0
6 16.99 0
7 50.12 0
9 0.85 0
10 2.83 0
11 6.80 0
12 16.99 0
13 20.67 0
14 16.99 0
15 66.54 0
16 25.49 0
17 11.33 0
18 5.38 0
19 14.16 0
20 22.09 0
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Table D.4: Link properties for the 35-pipe network.

link start node end node length (m) diameter (mm)

1 1 2 1554 1524
2 1 13 1798 1524
3 2 3 1143 762
4 2 14 1706 762
5 2 13 914 508
6 3 4 2286 1016
7 3 5 914 762
8 3 15 1219 1067
9 4 5 1676 1219
10 5 6 1524 762
11 5 16 1219 762
12 6 7 1981 762
13 6 17 914 508
14 6 16 1219 610
15 7 8 1219 610
16 7 18 1371 508
17 8 9 914 508
18 8 19 1752 914
19 8 18 1524 508
20 9 10 914 508
21 10 11 3108 762
22 10 20 1097 762
23 11 12 1493 762
24 11 14 914 508
25 12 13 944 762
26 13 14 1493 762
27 14 15 883 508
28 14 19 2072 254
29 14 20 1889 762
30 15 16 914 610
31 15 17 1219 508
32 15 19 1828 762
33 17 18 1036 508
34 18 19 914 508
35 19 20 914 508
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Table D.5: Nodal properties for the 51-pipe network.

node base demand (L/s) elevation (m)

1 reservoir 132.4
2 113.26 0
3 169.90 0
4 141.58 0
5 226.54 0
6 84.96 0
7 113.26 0
9 226.54 0
10 226.54 0
11 226.54 0
12 113.26 0
13 113.26 0
14 169.90 0
15 226.54 0
16 0.00 0
17 226.54 0
18 0.00 0
19 169.90 0
20 0.00 0
21 reservoir 121.92
22 113.26 0
23 169.90 0
24 113.26 0
25 169.90 0
26 113.26 0
27 283.18 0
28 56.64 0
29 113.26 0
30 169.90 0
31 0.00 0
32 113.26 0
33 169.90 0
34 169.90 0
35 reservoir 121.4
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Table D.6: Link properties for the 51-pipe network.

link start node end node length (m) diameter (mm) friction factor

1 1 2 870 1524.0 0.0247

2 2 3 450 609.6 0.0248

3 3 4 460 457.2 0.0274

4 4 5 895 304.8 0.0289

5 5 6 457 304.8 0.0338

6 6 7 467 304.8 0.0400

7 2 8 457 609.6 0.0243

8 3 9 457 457.2 0.0276

9 4 10 467 304.8 0.0356

10 5 11 450 304.8 0.0400

11 6 12 450 304.8 0.0198

12 7 13 460 457.2 0.0392

13 8 9 450 457.2 0.0298

14 9 10 450 457.2 0.0340

15 8 14 467 609.6 0.0262

16 9 15 457 609.6 0.0289

17 10 16 457 304.8 0.0341

18 11 18 934 304.8 0.0357

19 12 19 914 304.8 0.0400

20 13 20 914 609.6 0.0362

21 14 15 467 457.2 0.0162

22 15 16 457 457.2 0.0298

23 16 17 914 304.8 0.0340

24 17 18 934 304.8 0.0322

25 18 19 457 304.8 0.0320

26 19 20 457 304.8 0.0400

27 20 21 934 914.4 0.0400

28 14 22 885 609.6 0.0268

29 16 24 885 457.2 0.0298

30 17 25 905 609.6 0.0355

31 18 26 885 609.6 0.0400

32 19 27 885 304.8 0.0393

33 20 28 905 609.6 0.0337

34 22 23 457 304.8 0.0345

35 23 24 457 304.8 0.0400

continued on the next page
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link start node end node length (m) diameter (mm) friction factor

36 24 25 905 304.8 0.0357

37 25 26 885 304.8 0.0308

38 26 27 450 304.8 0.0314

39 27 28 460 304.8 0.0352

40 22 29 895 609.6 0.0286

41 24 30 885 457.2 0.0385

42 25 31 905 609.6 0.0298

43 26 32 885 304.8 0.0320

44 27 33 457 304.8 0.0313

45 28 34 905 304.8 0.0319

46 29 30 450 609.6 0.0296

47 30 31 885 609.6 0.0298

48 31 32 905 609.6 0.0261

49 32 33 450 457.2 0.0269

50 33 34 450 457.2 0.0315

51 31 35 994 914.4 0.0279
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Table D.7: Node properties for the 94-pipe network.

node base demand (L/s) elevation (m)

1 reservoir 940

2 reservoir 940

3 reservoir 940

4 0 0

5 0 0

6 106 0

7 0 0

9 0 0

10 0 0

11 126 0

12 0 0

13 0 0

14 0 0

15 84 0

16 0 0

17 84 0

18 126 0

19 0 0

20 0 0

21 0 0

22 126 0

23 0 0

24 0 0

25 0 0

26 0 0

27 0 0

28 0 0

29 378 0

30 126 0

31 104 0

32 62 0

33 0 0

34 358 0

35 0 0

36 0 0

continued on the next page
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node base demand (L/s) elevation (m)

37 0 0

38 0 0

39 0 0

40 0 0

41 0 0

42 126 0

43 0 0

44 0 0

45 400 0

46 0 0

47 0 0

48 0 0

49 0 0

50 0 0

51 0 0

52 0 0

53 0 0

54 0 0

55 420 0

56 42 0

57 0 0

58 0 0

59 0 0

60 0 0

61 148 0

62 126 0

63 316 0

64 126 0

65 0 0

66 0 0

67 0 0

68 0 0

69 42 0

70 42 0

71 42 0

72 0 0

continued on the next page
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node base demand (L/s) elevation (m)

73 reservoir 900

74 reservoir 900

75 reservoir 900

76 reservoir 900

77 reservoir 900

78 reservoir 900

79 reservoir 900

80 reservoir 900

81 reservoir 900

82 reservoir 900

83 reservoir 900

84 reservoir 900

85 reservoir 900

86 reservoir 900

87 0 0
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Table D.8: Link properties for the 94-pipe network.

link start node end node length (m) diameter (mm)

1 1 4 3660 1200

2 4 5 50 582

3 5 82 120 300

4 5 6 1000 300

5 6 67 30 300

6 7 83 30 600

7 4 8 2600 1200

8 8 9 500 400

9 9 10 10 500

10 8 11 700 1200

11 11 12 1000 900

12 12 81 50 600

13 12 13 1800 900

14 13 14 100 600

15 14 15 400 600

16 15 16 500 600

17 16 17 1500 600

18 12 18 3200 900

19 18 80 50 600

20 18 19 1800 675

21 19 20 10 500

22 20 21 40 300

23 20 40 6000 300

24 11 22 30 750

25 22 23 570 750

26 23 24 400 600

27 24 86 600 600

28 22 25 30 600

29 25 26 1800 600

30 26 27 2100 600

31 27 28 800 400

32 28 29 800 300

33 27 30 1000 300

34 30 31 30 300

35 27 32 2500 600

continued on the next page
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link start node end node length (m) diameter (mm)

36 32 33 10 500

37 2 34 3660 1200

38 7 34 1000 600

39 34 35 1100 1200

40 35 36 2200 1200

41 36 37 6600 1750

42 37 38 4000 675

43 38 79 4000 675

44 79 39 1500 250

45 39 40 10 500

46 40 41 1500 250

47 37 42 1500 675

48 42 43 1600 675

49 43 71 500 600

50 42 44 1350 450

51 44 75 1900 600

52 75 45 800 600

53 45 74 3000 600

54 45 46 200 675

55 46 77 100 300

56 46 47 1600 675

57 37 47 10 500

58 37 78 15 375

59 36 48 600 600

60 48 49 5 450

61 49 84 440 450

62 48 50 450 600

63 24 50 5 600

64 50 51 170 600

65 51 52 270 600

66 86 52 840 600

67 52 53 1000 600

68 53 54 10 500

69 54 55 1000 600

70 55 56 3200 600

71 56 85 30 600

continued on the next page

322



link start node end node length (m) diameter (mm)

72 3 57 3140 1129

73 57 58 150 600

74 58 7 800 600

75 58 59 200 600

76 59 60 2200 600

77 77 61 30 300

78 60 33 1400 400

79 33 62 800 400

80 62 63 800 400

81 57 64 1300 1129

82 64 73 100 586

83 72 65 500 600

84 65 66 460 600

85 66 67 10 500

86 67 68 30 225

87 67 69 1000 400

88 69 70 200 400

89 64 74 1700 1129

90 74 71 5200 600

91 71 76 2200 600

92 37 87 10 500

93 87 74 4800 900

94 37 85 750 600
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Appendix E

Computational Procedures

The computational procedures for every numerical example given in this thesis

were performed by software created by the author. The source code for the soft-

ware was written in Fortran 90/95, and consists of over 60 files and over 15,000

lines of code. The software was designed as a multi-purpose hydraulic network

solver, aimed at computing the steady-state, transient-state, and Laplace-domain

behaviour of an arbitrarily configured network comprised of over 13 different hy-

draulic element types. These primary operations of the software were designed to

be implemented in different ways so as to be able to perform the following proce-

dures: steady-state simulation, transient-state simulation, steady-oscillatory-state

simulation (both sinesweeps and multisine simulations), frequency-response simula-

tions, time-domain simulation by the numerical inverse Laplace transform (NILT),

and parameter estimation procedures by both the decoupled maximum likelihood

estimation (MLE) and expectation-maximisation (EM) methods of Chapter 6.

This appendix outlines the computational details of the hydraulic elements, the

three different types of hydraulic network solvers and the resulting computational

procedures adopted within this thesis.

E.1 Hydraulic Elements

The software was designed to deal with networks of an arbitrary structure com-

prised of 13 different element types. Given the three different hydraulic solver types,

each element possessed steady-state routines, transient-state routines and Laplace-

domain routines. The elements are detailed below.

1. Reservoir. The steady-state, transient-state and Laplace-domain routines were

based directly on those used in Wylie and Streeter [1993].
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2. Junction. As with the reservoir, the steady-state, transient-state and Laplace-

domain routines for the junction type were based directly on those used in

[Wylie and Streeter , 1993]. The junctions served as the transient generators

through the adoption of controlled time dependent flow injections, namely:

(a) step perturbations, including sharp steps, linear ramps and sinusoidal

ramps;

(b) pulse perturbations, including rectangular, triangular, and windowed si-

nusoidal pulses;

(c) oscillatory inputs, including pure sinusoids and multisine signals, where

the phase distribution for the multisines was computed according to the

Schroeder algorithm [Schroeder , 1970].

For each of the different outflow types, both the discrete-time and analytic

Laplace-domain representations were incorporated.

3. Laminar steady-state friction (LSF) pipe. The steady-state, transient-state

and Laplace-domain routines were based directly on those used in Wylie and

Streeter [1993].

4. Turbulent steady-state (TSF) friction pipe. For this pipe type, the Darcy-

Weisbach friction factor was taken as a constant. The standard steady-state

headloss model was used Streeter et al. [1997], the transient-state routines

were based on the linear-implicit approximation Arfaie et al. [1993], and the

Laplace-domain routines were based on those used in [Wylie and Streeter ,

1993].

5. Viscoelastic (VE) pipe. An extension of the laminar-steady-friction (LSF), this

pipe type uses the standard steady-state routines Streeter et al. [1997], the

transient-state routines are taken from [Covas et al., 2005b], and the Laplace-

domain routines were derived by this author and are given in Section 2.4. The

following viscoelastic (VE) material types are incorporated into the software:

(a) PVC [Gally et al., 1979];

(b) different PE functions from [Ghilardi and Paoletti , 1986; Covas et al.,

2005b];

(c) mild-steel-mortar-lined field pipes [Stephens , 2008].

For the PVC and PE materials, the wavespeed function was taken from [Gally

et al., 1979].
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6. Laminar unsteady-friction (LUF) pipe. An extension of the LSF, this pipe type

used the standard headloss routines from Streeter et al. [1997], the transient-

state model was based on the [Vı́tkovský et al., 2002] approximation (the 5 and

10 term models), and the Laplace-domain model was taken as the Laplace-

transform of the [Vı́tkovský et al., 2002] approximation (see Section 2.4). De-

spite the fact that exact analytic forms for the Laplace-domain model exist

Goodson [1970], the transform of the [Vı́tkovský et al., 2002] approximation was

used for the purpose of comparison between the time- and frequency-domain

models.

7. Turbulent unsteady-friction (TUF) pipe. An extension of the turbulent-steady-

friction (TSF) pipe, this model used the Streeter et al. [1997] steady-state

routines but where the friction factor was computed by the explicit Romeo

et al. [2002] approximation, the transient state-routines were as for the TSF

but where the unsteady-friction term was modelled according the Vardy and

Brown [2007] model (the 7, 10 and 13 term models), and the Laplace-domain

routines were taken as the Laplace-transform of this model. As with the

laminar-unsteady-friction (LUF), analytic forms of the unsteady term exist

[Vardy and Brown, 2007], but for the sake of comparison, the transform of the

Vardy and Brown [2007] model was used.

8. Emitter. The emitter was modelled as an orifice exhausting to the atmosphere.

Standard steady-state routines were used Streeter et al. [1997], a custom de-

rived, case based analytic model was used for the transient-state model (basi-

cally a junction with a pressure dependent outflow, where the direction of flow

invoked different model equations), and the standard Laplace-domain model

was used Chaudhry [1987].

9. Inline valve. Standard steady-state orifice routines were used Streeter et al.

[1997], as with the emitter, a custom derived, case based analytic model was

used for the transient-state model, and the standard Laplace-domain model

was used Chaudhry [1987].

10. Capacitor (or dead end). This element type did not impact the steady-

state behaviour, standard time-domain and Laplace-domain routines were used

[Chaudhry , 1987].

11. Accumulator (or air chamber). This element type did not impact the steady-

state behaviour, the transient state-model was a custom developed Newton

solver based on the original three equation model [Wylie and Streeter , 1993],

and standard Laplace-domain routines were used [Wylie and Streeter , 1993].
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12. Linear compound node. This is an introduced compound node model con-

sisting of an arbitrary number of links connected to a node through linear

loss elements (linearised orifice equations), where the node has a pressure de-

pendent outflow involving a linear term (linearised emitter equations) and a

capacitive term. Custom derived analytic time-domain and Laplace-domain

routines were implemented.

13. Compound node. A nonlinear version of the linear compound node where the

pipes are connected by the nonlinear orifices, and the node has a nonlinear

emmitter-based pressure dependent outflow. The transient-state routines in-

volved the use of a Newtons solver, and the Laplace-domain model was similar

to that used for the linear compound node.

E.2 Hydraulic Network Solvers

The details of the three different solver types are outlined below.

Steady-state solver. For the steady-state solver, an extension to the Todini-

Pilati algorithm was used Todini and Pilati [1988]. This extension involved the

implementation of custom derived terms for the nodal elements involving pres-

sure dependent outflow terms. Custom derived analytic derivatives were imple-

mented for all element types. The matrix inversion routine was sourced from

http://www.algarcia.org/nummeth/Fortran/.

Transient-state solver. The transient state solver routines were based on the

method of characteristics (MOC) [Wylie and Streeter , 1993], where a diamond com-

putational grid was adopted. The elemental routines were as outlined above, but the

interaction between the link types (those hydraulic elements that are distributed or

involve temporal delays) and the node types was designed such that a common time

grid existed for all nodal computations. This necessitated that the discretisation

of the distributed elements was an even number of reaches of a temporal step half

that of the temporal step experienced at the nodes. That is to say that at each

time-step, the characteristic information from the previous time point (both from

the discrete points along the link and from the nodes at the link boundaries) was

used to, (i) solve the state values at the interior points of the link, and then (ii)

solve for the characteristic information propagating to the next time step and out to

the nodes at the link boundaries. The characteristic information propagating from

the line boundaries was then used to solve for the state values at the nodal points,

from which the characteristic information propagating to the next time step was

determined.
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Laplace-domain solver. The Laplace-domain solver was based on the computable

models derived in Sections 3.5 and 4.6. The admittance block matrices were con-

structed as complex variable matrices, where the analytic form of these block ma-

trices, from Chapters 3 and 4, were used to set pointers from the network ele-

ments to the appropriate positions in the network matrices (the diagonal terms

were computed separately). At each desired point s ∈ C, the complex admit-

tance function values for each network element was computed, followed by the net-

work matrix operations. The complex matrix inversion routine was sourced from

http://www.algarcia.org/nummeth/Fortran/.

As the three hydraulic network solvers are entirely independent in their computa-

tional routines, they were able to be conveniently used for validation and verification

of each other, and of the different element types. That is, the steady-state solver

was compared to the transient solver, where the steady-state was used as the initial

condition for the transient-solver and the boundary conditions were kept constant.

The transient-solver was compared to the Laplace-domain solver in the frequency-

domain, where the frequency-response was calculated from the transient-solver via

the discrete Fourier transform (DFT) and from the Laplace-domain solver by re-

stricting s to the imaginary axis (see Section 3.6 for further details).

E.3 Simulation Types

The hydraulic solvers were organised to perform different types of simulations as

outlined below.

The three basic simulation types(steady-state simulation, transient-state simula-

tion and frequency-domain simulation) are based on direct applications of the three

different hydraulic solvers (The Laplace-domain solver with s = iωi, i = 1, . . . , N

performing the frequency-domain simulation) to specific networks and hydraulic

scenarios. The steady-state solver was implemented as a first step for both the

transient-state and Laplace-domain solvers as it provided the initial conditions for

the transient-state solver, and the operating point about which the Laplace-domain

solver was linearised.

Steady-oscillatory simulation. The steady-oscillatory simulations involved the

use of junctions with either sinusoudal (single frequency) or multisine (multiple

frequencies) flow perturbations, with the intention of exciting the network into a

steady-oscillatory state. This process involved a lead in simulation time with the

transient-state network solver, after which window lengths of the time-domain data

were periodically tested for convergence in their DFTs (phase adjustments were
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made to allow for the different delays of the data windows). The window length

of the time-domain data was specially designed so that the Fourier frequencies of

the DFT of the window of data corresponded to the frequencies of the oscillatory

excitations. An overlap of 50% was used for consecutive windows. The network

was considered to be in an oscillatory state once the DFTs were consistent within a

specified tollerance for a number of consecutive windows.

The NILT time-domain simulation. The mathematical expressions for the NILT,

upon which the software development was based, are given in Chapter 5, and the

computational procedures are as follows. Firstly the Laplace-domain network solver

was computed at the points s = a + in∆ω, n = 1, . . . , N for given a, ∆ω and

N . Given these fixed complex valued function points, the Fourier-Crump algorithm

[Crump, 1976] was used to compute the time-domain value at the set of desired time

points.

Parameter estimation simulations. Numerical routines for the two types of net-

work parameter estimation methods (decoupled MLE method from Section 6.4 and

the EM method from Section 6.5). The routines for both these methods were organ-

ised similarly and are outlined in the following. The first step involved the creation

of the time-domain network data from the steady-oscillatory simulator. For each

trial, a different independent Gaussian sequence was added to the time-domain data

to create the noisy measured data (where the Gaussian variates were generated by

the AS 111 algorithm [Beasley and Springer , 1977]), of which the DFT was used to

compute the noisy frequency-domain data (the DFT was computed by the Cooley-

Tukey radix-2 fast Fourier transform [Sorensen et al., 1987]).

The second step involved the computation of the parameter estimates by solving

of the minimisation problems in Sections 6.4 and 6.5 for the MLE and EM meth-

ods respectively. This was done using the evolutionary computational framework

of particle swarm optimisation (PSO) [Kennedy and Eberhart , 1995]. The form of

the PSO implemented within the software is a single objective, velocity constrained

algorithm that implements the inertial weight method [del Valle et al., 2008]. The

neighbourhood structures incorporated within the software are the global best, the

von Neumann toroidal grid, and the unself von Neumann toroidal grid [del Valle

et al., 2008]. The unself von Neumann toroidal grid was found to be the best struc-

ture for the applications within this thesis. Additionally, the PSO also contained a

custom developed feature that was implemented to improve its performance. This

feature is essentially a random perturbation method (an analogue to real mutation

in real valued genetic algorithms [Herrera et al., 1998]) introduced at late stage in

the search aimed at increasing the algorithms explorative ability within the near

optimal regions found in these mature stages of the search.
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