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Chapter 6

Parameter Identification of

Hydraulic Networks

6.1 Introduction

In addition to design and analysis of real world systems, an important application

of theoretical models is the inverse modelling, or parameter identification, of real

systems [Ljung , 1999]. Inverse modelling aims to map from the system behavioural

space (data space) to the system’s parameter space, which is the opposite of standard

forward modelling which maps a system’s design to its behavioural responses. Sta-

tistically, parameter identification (or inverse modelling) aims to answer the question

what are the most likely parameter values of the system given the observed data?.

In the context of pipeline networks, many authors have proposed answers to this

question, particularly in the application of leak detection.

Within this chapter, two novel approaches, based on the Laplace-domain network

admittance matrix, are proposed. The first approach involves the derivation of a

system relating the measured nodal variables that is decoupled from the unmeasured

variables through the use of an oblique filter. This decoupled system is then used as

the base model for a maximum likelihood estimation (MLE) parameter identification

approach [Schoukens and Pintelon, 1991]. The second method is based on the

expectation-maximisation (EM) algorithm [Watanabe and Yamaguchi , 2004], where

the full system dynamics are retained, and the unmeasured states are dealt with in

a statistical framework.

This chapter is structured as follows. In Section 6.2, the prominent network

parameter identification methodologies are surveyed, with their relative merits and

limitations discussed. Section 6.3 presents the model framework for the two pro-

posed parameter identification methods, where the issues of node partitioning and

163



Chapter 6 – Parameter Identification of Hydraulic Networks

frequency-domain statistical methods are discussed. In section 6.4, the MLE de-

coupling method is derived, and discussed with numerical experiments. Section 6.5

derives the EM approach with a discussion and numerical experiments. Conclusions

and future directions are discussed in Section 6.6.

6.2 Background

The broad area of interest within this chapter is the identification of hydraulic net-

works based on fluid state measurements. There are two key components, first the

term identification of hydraulic networks generically means the mapping from the

data space (measurements of state variables) to a system information space, where,

the term information space connotates the inclusion of a broader class of methods

that aim to determine different levels of information about the physical character-

istics of the system. Second, the emphasis on fluid state measurements means that

the system identification process is based on measurements of the fluid states of

pressure and flow1. This distinction is important for the restriction of this literature

review as, particularly in the system identification area of leak detection, there exist

numerous methods whose diagnostic process is based on other system properties2.

The different classes of hydraulic network identification methodologies are pre-

sented and discussed here. For the sake of continuity, a more detailed discussion

of the methodologies with respect to their key differentiating properties is deferred

until Appendix C.

The class of the identification methodology refers to the a priori assumptions

that are made about the hydraulic system, and the nature of the system information

space that the data is mapped to. The methods can be classed in the following three

classes.

1. Parameter identification. The system structure is assumed to be known (i.e.

the topology of a network’s components is completely known), and the infor-

mation of interest is the actual parameter values of the system’s components

1Additionally, temperature measurements have been used by some authors (e.g. Thompson and
Skogman [1983] for applications to multi-product petroleum lines).

2The area of leak detection is a huge research area spanning over 70 years, and a detailed
treatment is not undertaken here. Examples of methods not addressed within the scope of this
chapter are visual inspection methods [Lee et al., 2005a], the use of tracer gases, odorant and
radioactive tracers, earth sensitivity changes [Emara-Shabaik et al., 2002], use of robotic pigs
[Furness and Reet , 1998], use of a correlation methods of acoustic signals in the pipe wall [Fuchs
and Riehle, 1991; Tafuri , 2000], magnetic resonance imaging , and statistical methods based on
material age and properties. For an overview and comparison of leak detection methods, the reader
is referred to Cole [1979]; Black [1992]; Fuchs and Riehle [1991]; Furness and Reet [1998]; Tafuri
[2000].

164



Background – Section 6.2

(e.g. wavespeed, friction factor, leakage rate). For this class, the diagnostic

space consists of the parameter space of the model’s components, and hence

the mapping is simply a parameter estimation process [Ljung , 1999].

2. System detection. A nominal system structure is assumed (the parameters

may or may not be known), and the information of interest is whether the

data has arisen from this nominal model. The most common example of

this class are fault sensitive filters [Willsky , 1976] or fault detection methods

[Venkatasubramanian et al., 2003] where the nominal model is the fault free

model, and the aim is to detect the point at which a fault occurs within the

system.

3. System detection and identification. For this case, the system structure is not

exactly known but is assumed to be one of a set of candidate system struc-

tures, and the information of interest is the most likely of these candidates

that the data has arisen from. So not only are some system parameters esti-

mated, but the actual configuration of the system is also identified. A common

example of this class are fault model filters [Willsky , 1976] or fault detection

and identification (FDI) methods [Venkatasubramanian et al., 2003], where the

aim is not only to determine when the system is operating in a faulty state,

but also the nature of the faults requires determination.

Examples of these methods are outlined below. The emphasis of classes 2 and 3

is not on accurate physical modelling, but on the robust detection of faults amidst

parametric, system and measurement uncertainties. The control engineering litera-

ture has dealt with methods from classes 2 and 3.

6.2.1 Class 1: Parameter identification

The emphasis within the methods of this class has been on the use of process based

models to estimate or calibrate system parameters. Typically, issues associated with

system uncertainties are not directly addressed as most methods in this category

implicitly assume that the system structure is known, the system is adequately

described by the process based mathematical model and the system measurements

are not significantly corrupted by noise. The hydraulic and acoustic engineering

literature has typically dealt exclusively with methods of this class.

Methods of this class can be divided into two categories, namely, analytic fault

signature studies, and numerical parameter estimation. Despite the fact that these

methods are often referred to as detection methods, they are not in classes 2 and 3

as no consideration of alternate model structures is undertaken.
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Analytic fault signature studies

Analytic fault signature studies deal with systems of a known configuration except

for an unknown anomaly, which is either a leak [Lee et al., 2005a], a block [Wang

et al., 2005b], a section of pipe wall degradation, or an air pocket [Stephens , 2008].

These methods involve a model of the anomalies dynamic behaviour (either analyt-

ical [Lee et al., 2005a], statistical [Isermann, 1984] or based on a heuristic [Liou and

Tian, 1995]) and assess the data for the presence of this pattern. Selected methods

from the literature are outlined below.

The most basic form of analytic signature matching methods of pipeline sys-

tems are the pressure wave reflection methods [Jönsson and Larson, 1992; Silva

et al., 1996; Brunone, 1999; Covas and Ramos , 1999; Brunone and Ferrante, 2001;

Stephens , 2008]. These methods directly exploit the phenomena, as noted in Con-

tractor [1965], that any minor loss element3 will reflect a fraction of an incident

pressure wave. As an anomaly causes a change in the impedance of a pipe, it par-

tially reflects energy from the incident wave, which is seen in the pressure response

as an uncharacteristic change in pressure. For a given step input, leaks and degraded

sections cause a negative reflection [Brunone, 1999; Stephens , 2008], blocks cause a

positive reflection, and air pockets cause an oscillatory reflection Stephens [2008].

The delay of this reflected wave is determined from the trace, and combined with

knowledge of the wavespeed, the location of the reflection’s origin can be determined

[Brunone, 1999]. Under varying assumptions, various authors have derived different

expressions from which the reflected wave magnitude is related to the anomaly size

[Jönsson and Larson, 1992; Brunone, 1999; Covas and Ramos , 1999]. The limita-

tion of these methods is that they are mainly only applicable to reaches of single

lines, as the methods cannot deal with the superposition of multiple higher order

reflections resulting from multiple components [Covas and Ramos , 1999].

An interesting extension to the single wave reflection methods is the acoustic

pulse reflectometry work of Sharp [1996]. Based on a discontinuities reflection and

transmission coefficients, Sharp [1996] determined the impulse response at the end of

a tube containing multiple discontinuities. This was applied to the identification of

holes in wood wind instruments [Sharp and Campbell , 1997], and bore reconstruction

[Sharp, 1998].

An alternative approach to determining the relationship between a system’s be-

havioural response and anomaly properties has been to analytically solve the system

equations with the inclusion of the anomaly dynamics. Based on a trigonometric

series solution to the waterhammer equations, Wang et al. [2002a] developed a novel

3A minor loss element is defined as a localised element within a fluid line model that causes a
step change in the pressure or flow.
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technique to estimate the parameters of a lumped anomaly. Wang et al. [2002a] de-

termined that an anomaly uniquely influenced the damping rate of the trigonometric

spatial modes, and that this pattern of influence was dependent on the anomaly size

and location. Using a time gating method to determine the damping rate of the

modes, this method was applied to single pipelines with leaks [Wang et al., 2002b],

blocks [Wang et al., 2005b] and dead end laterals [Wang et al., 2005a]. This work

was studied and extended to a 2-D unsteady friction model in Nixon et al. [2006].

Considering an acoustic duct, Wu and Fricke [1989] demonstrated that the pres-

ence of distributed blocks served to shift the eigenfrequencies of the duct. Based on

the wave equation, analytic expressions were derived relating the blockage properties

to the duct’s eigenfrequency shifts. This was extended to ducts with multiple blocks

[Wu and Fricke, 1990], and ducts with a single measurement point [Wu, 1994]. This

work was further extended in De Salis and Oldham [1999] and de Salis and Oldham

[2001] to increase the method’s noise immunity, which was also applied to ducts

with leaks [de Salis et al., 2002]. Considering higher order acoustic wave modes,

Muggleton et al. [2002] developed a wavenumber based method to determine leak

properties in an elastic pipe.

The frequency-domain behaviour of transient hydraulic pipes with anomalies has

been extensively studied. Given the convenient analytic framework of the transfer

matrix method [Chaudhry , 1970], there are different derivations of the anomaly

induced patterns in the system’s frequency response. Two main philosophies exist

in the literature, (i) the anomaly induces an additional resonant frequency, and (ii)

the anomaly induces oscillation in the magnitudes of the energies of the fluid line’s

harmonics.

The existence of an additional resonant frequency for a pipeline with a leak was

first hypothesised by Jönsson and Larson [1992], who presented limited numerical

results confirming this, but their experimental results were inconclusive. This idea

was then developed further in a series of papers [Mpesha et al., 2001, 2002] where

estimates for the leak properties were derived semi-analytically (i.e. heuristic scal-

ing factors were used) based on the frequency and the magnitude of the new leak

associated harmonic in the frequency response 4.

4Despite the reported success with numerical studies in [Mpesha et al., 2001, 2002], a discussion
paper Lee et al. [2003b] brought serious doubt as to the validity of these results. Amongst other
criticisms by Lee et al. (i.e. harmonics of frequency response were not located at the theoretically
expected locations, violations of the linearity requirement by extreme valve movements, and the
improper extraction of the frequency response), in reproducing the frequency response for one of
the case studies Mpesha et al. [2002], (using a Fourier Transform of the method of characteristics
(MOC) time history of pressure and the transfer-matrix method), no additional peaks were noticed.
This discrepancy could not be explained by Mpesha et al. in their response to Lee et al. [2003b].
The assertion of Lee et al. [2003b] as to the nonexistence of an additional leak related harmonic was
also made clear in a series of papers [Ferrante et al., 2001; Ferrante and Brunone, 2003a]. In this
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Ferrante et al. [2001] and Ferrante and Brunone [2003a] noted that the presence

of the leak altered the magnitude of the original harmonics. Covas et al. [2002] ob-

served that the leak pattern on the harmonics was oscillatory and that the period of

these oscillations was indicative of the leak location. In a series of papers [Lee et al.,

2003a, 2004, 2005a], Lee et al. developed a frequency-domain estimation method

based on the patterned influence of the leak on the magnitude of the harmonics

of the frequency response. Lee et al. [2005a] showed analytically that the leak in-

duced an inverted sinusoidal pattern in the harmonics, and further that the period

and phase of this sinusoid indicated the leak location and the magnitude of this

sinusoid indicated the leak magnitude. A similar approach was adopted in Sattar

and Chaudhry [2008], and Mohapatra et al. [2006a,b] applied a similar technique to

estimate the parameters of a block for single and branched pipes.

Numerical parameter estimation

Within many applications, system behavioural features cannot be analytically re-

lated to system parameters. In such cases, the parameter estimates are defined as

those that minimise an adopted error function between the measured data and the

model predictions [Ljung , 1999], and are generally computed using numerical op-

timisation routines. Within the hydraulics literature, the parameter identification

methods have tended to focus on the estimation of pipe friction parameters and the

sizing of leaks. Within this category, many steady state methods exist (e.g. weighted

least squares methods [Pudar and Liggett , 1992; Datta and Sridharan, 1994; Reddy

et al., 1996; Greco and Del Giudice, 1999], Kalman filtering [Todini , 1999], systems

identification theory [Andersen and Powell , 2000], generalised likelihood ratio test

methods [Mukherjee and Narasimhan, 1996], and Bayesian methods [Kapelan et al.,

2007]), but are not covered here as the focus is on transient methods.

The foundational work of Liggett and Chen [1994] is widely considered as the

first attempt to use transient techniques for leak detection within a generalised net-

work. Within this work, the inverse transient method (ITM) was proposed which,

essentially, involved a coupling between a hydraulic MOC network model and the

Levenberg-Marquardt minimisation algorithm to iteratively compute the network

rigorous work, based on the frequency-domain representation of the linearised frictionless standard
water hammer equations, Ferrante et al. showed quite conclusively that for smaller leaks no new
leak-related harmonic would appear in the frequency response. They showed that additional peaks
would appear for larger leaks where, in effect, a new smaller reservoir-pipe-valve (R-P-V) system
is created due to the size of the leak. However, in this instance, the original harmonics would
disappear such that the original and leak related harmonics would never co-exist in the frequency
response. The explanation for this behaviour was given by the Laplace-domain analysis of Zecchin
et al. [2006], where the leak size was observed to shift the systems poles along an arc in the complex
plane.
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parameters that minimise the l2-norm of the difference between the model predic-

tions and the observed data. Formulated as a leak detection method, Liggett and

Chen [1994] estimated the leak sizes, assumed to occur at specified nodes, and the

pipe roughnesses.

The ITM has been applied by other authors of which the focus has been ei-

ther: the analytic determination of the error surface gradients for a special network

instance (i.e. series pipeline) [Nash and Karney , 1999]; the implementation of an al-

ternate optimisation engine to drive the inverse calibration (e.g. standard and hybrid

genetic algorithms [Vı́tkovský et al., 2000; Kapelan et al., 2003], or shuffled complex

evolution [Vı́tkovský , 2001]); the laboratory testing of the method [Vı́tkovský , 2001;

Covas and Ramos , 2001; Wang et al., 2002a; Vı́tkovský et al., 2007]; field application

of the method [Stephens , 2008]; or analysis of practical issues such as identifiability

[Vı́tkovský et al., 2003a] and parameter and model uncertainties [Vı́tkovský et al.,

2007; Jung and Karney , 2008].

There has been limited and only moderate success in the application of the ITM

to experimental and field networks. Vı́tkovský [2001] identified the main limitation

of the method as being the inability of the transient network model to accurately

predict the long time5 behaviour of the system. In addition to the system structural

uncertainties, this limitation arises from the unmodelled physical processes within

the system (i.e. unmodelled fluid dynamic processes such as transient turbulence,

and dissolved oxygen, and unmodelled fluid structure interactions such as pipe wall

and pipe restraint dynamics). As to be expected, these issues have been observed

to be greatly compounded in the field [Stephens , 2008]. Additionally, due to the

typically large number of parameters involved in networks, it has been found that

the ITM tended to attribute the behaviour of a system with only a single leak to

that containing a number of leaks [Liggett and Chen, 1994].

The development of an ITM based on frequency-domain models, either directly

[Lee et al., 2005a] or indirectly [Kim, 2007, 2008], has also been studied. Lee et al.

[2005a] developed an inverse method that utilised on a frequency-domain model to

select the set of parameters that yielded the best fit of the model power spectrum

to the measured power spectrum. In contrast, Kim [2007] used a frequency-domain

model as the basis of a time-domain model (by way of impulse response method

(IPREM) Suo and Wylie [1989]) for which the prediction errors were minimised

to produce parameter estimates. Aside from computational benefit in comparison

to discrete methods, the major advantage with frequency-domain models is that

wavespeed and leak location can be estimated as continuous variables (which is not

possible with the discrete methods) and thus eliminating the nonphysical model

5Long time being in the order of seconds.
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fitting of restricting leaks to occur at network nodes.

With regard to leak detection, an alternative to parameter estimation is state

estimation. Benkherouf and Allidina [1988] developed a single model approach that

assumed multiple leaks at a number of locations, where a Kalman filter was used

to estimate the leak quantities at these locations. Using a steady-state assumption,

a relationship was derived to determine the properties of an equivalent single leak

based on the multiple leak locations and values. In a similar vain to the ITM,

Reddy et al. [2006] formulated a state estimation method for a gas pipeline network.

By adopting the lumped transfer function model from Kralik et al. [1984a], the

method was based on minimising a constrained least squares problem, for which,

under certain observability criteria, an analytic expression for the optimal state

measurements was derived. This method was applied to the estimation of unknown

nodal demands.

6.2.2 Class 2: System detection

The focus of the detection methods of class 2 is on the reliable and robust detection

of faulty hydraulic systems based on measurements of the dynamic fluid behaviour,

amidst measurement and system uncertainties. These methods do not attempt to

determine the type of fault (i.e. block or leak), but rely on detecting the presence

of the fault based on deviations from nominal behaviour via some heuristic [Liou

and Tian, 1995] or statistical [Isermann, 1984; Billmann and Isermann, 1987; Wang

et al., 1993] analysis. Clearly an underlying assumption, fundamental to these meth-

ods, is that the nominal behaviour can be well described by a known model with

known parameters.

Liou and Tian [1995] presented two algorithms based on assessing the residu-

als between the measurements and model predictions for leak discrepancy patterns.

Based on a heuristic reasoning, Liou and Tian [1995] formulated a discrepancy

measure, as a function of the data, and deduced the onset of a leak based on this

measure. Based on the fault sensitive filter framework proposed in Willsky [1976]6,

Candy and Rosza [1980] proposed a transient fault detection scheme for a plutonium

6Fault sensitive filters [Willsky , 1976; Isermann, 1984] assess the discrepancy (residuals or
innovations) between the measured data and the model describing the nominal faultless system.
Given that the model is adequate and calibrated, the innovations between the system measurements
and the model’s prediction based on past data (typically involving a Kalman filter estimator),
should consist entirely of random fluctuations (typically modelled as an uncorrelated, zero mean,
and constant variance Gaussian sequence [Pintelon et al., 1994]). In this sense, the model acts as
a whitening filter, as it is used to extract the white noise sequence from the raw (correlated and
biased) data sequence. The innovation sequence is then subjected to a statistical test to determine
its significance, i.e. whether it is within the accepted level of random fluctuations or is indicative
of a behavioural deviation from the nominal state.
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nitrate concentrator.In this method, a simplified model of the process was developed

coupled with an extended Kalman filter to estimate the state of the process. The

error between the state estimate and the measured data was subjected to hypoth-

esis tests based on Chi-squared and likelihood-ratio statistics to detect significant

deviations from the nominal state. Wang et al. [1993] formulated an auto-regressive

model of a leaking and a non-leaking pipeline. A Kullback information approach

was used to determine similarity between models based on the estimated hydraulic

grade line slope. When the similarity exceeded certain bounds, a leak was concluded

to be present.

6.2.3 Class 3: System detection and identification

The detection and identification methods of class 3 build on the purely detection

class 2 methods by not only detecting when the hydraulic system is operating in a

faulty operational state, but also identifying the particular faulty operational state

that the system is in [Willsky , 1976]. To undertake the identification process, these

methods typically adopt a multiple model framework using either filters [Digernes ,

1980; Emara-Shabaik et al., 2002], diagnostic observers [Verde, 2001], or residual

generators [Shields et al., 2001], each typically associated with a particular model,

and implement either thresholding [Verde, 2001], or statistical [Emara-Shabaik et al.,

2002] methods to determine the most likely operational model in real time. The

majority of the methods in this class are leak detection methods where the multiple

models consist of a leak-free model, and a bank of models associated with a leak in

a specific spatial domain.

Some of the earliest fault detection and identification developments for leak de-

tection within a pipeline was given by Digernes [1980]. In this work, Digernes [1980]

proposed a multiple model framework consisting of a bank of parallel Kalman fil-

ters, one for the nominal model, and one for each model corresponding to a leak at

a specific spatial location. The innovations sequences from the filters were tested

to determine the most likely operating model, where three different statistical tests

were used, a windowed Chi-squared, a log-likelihood ratio, and a semi-Markovian

test based on estimating the underlying hypothesis probabilities.

A Markovian structure was also adopted by [Loparo et al., 1991] in the develop-

ment of a multiple model non-linear filtering algorithm applied to leakage detection

of a heat exchanger. The identification process involved the estimation of models’

conditional probabilities (which involved solving a stochastic differential equation),

and a threshold was applied to determine when a specific probability was significant.

Emara-Shabaik et al. [2002] and Khulief and Emara-Shabaik [2006] developed

171



Chapter 6 – Parameter Identification of Hydraulic Networks

a leak detection and identification method for a single line based on a non-linear

multiple-model state estimation scheme. In this approach, the system fluid equations

where discretised (using a backward-time/centred-space finite difference scheme) and

formulated as a nonlinear state space model. Similar to Digernes [1980], modified

extended Kalman filters were used to generate model residuals, and a thresholding

technique was used to determine the onset of a leak.

Based on the development of a FDI for bilinear systems, Shields et al. [2001];

Ashton and Shields [1999] developed a method for detecting the onset of restrictions

or blockages in petroleum lines. Using a finite-dimensional, nonlinear state-space

model, a method was proposed to construct a robust nonlinear fault detection resid-

ual generator for each fault location (under certain conditions, proof of the existence

of such a generator was also given [Ashton and Shields , 1999]). The residuals are

tracked on line to determine the onset of the fault.

Motivated by analytic redundancy FDI methods, Verde [2001] developed a method-

ology for the detection and isolation of multiple leaks, at predefined locations within

a single pipeline, based on end measurements of pressure and flow. Using the work

of Hou and Muller [1994], Verde [2001] derived a bank of functional observers, each

designed to be robust to the influence of a respective leak7. The combined diag-

nosis of the residuals generated by the observers provides a strategy for detecting

and isolating multiple leaks. A simplified approach for pipelines with at most two

leaks was presented in Verde [2004, 2005]. This involved a two stage process that

first detected the onset of a leak and then estimated the leak location using two

independent residual generators.

Based on a frequency-domain model for a reservoir-pipe-valve system, Zecchin

et al. [2005] proposed a simple M -ary hypothesis testing method to determine the

existence and location of a leak. This method involved the estimation of pipeline

parameters for the nominal and faulty models and used the generalised likelihood

ratio framework to determine the most likely model.

In contrast to the process based models, Chen et al. [2006] proposed a FDI

method based on an empirical feature extraction for vibrational modes within a

hydraulic motor. The vibrational modes were characterised by wavelet coefficients

with which a support vector machines approach was used to detect their presence

(or otherwise) within a measured data trace.

In contrast to the multiple model methods, probably one of the simplest leak

detection methods in this class are the cross correlation methods of Isermann [1984];

Billmann and Isermann [1987]. These methods do not use a process based model

7That is, an observer is formulated for a subsystem that decouples the influence of a particular
leak from that of the other leaks.
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of the system, but simply monitor a time averaged correlation function of end flow

measurements of a single fluid line. Over a certain time period, end flow measure-

ments would be expected to be reasonably correlated. However, just after the onset

of a leak, the upstream flow increases and the downstream flow decreases, thus

causing a negative correlation in the flow. Therefore, comparing the correlation to

a threshold provides a means by which a leak can be detected.

6.3 Framework for Detection and Identification

The remainder of this chapter focuses on the development of statistically based

frequency-domain parameter identification methodologies for general hydraulic net-

works. In this sense, the proposed methodologies can be classified as numerically

based class 1 methods. However, in comparison to the existing methods, the pro-

posed methods distinguish themselves as they possess the advantages of frequency-

domain methods (in comparison to discrete based methods), without the limitations

that existing frequency-domain methods have to only simple first order looped sys-

tems.

Frequency-domain based methods have the advantages that the spatially related

parameters (such as leak location and wavespeed) can be represented in a continuous

sense, and the computational efficiency of the model makes them well suited for

combination with iterative optimisation algorithms that typically are required to

compute the parameter estimates. The discrete nature of parameter estimation

methods such as the ITM means that they do not possess these advantages. However,

the strength that methods such as the ITM have possessed is that they can be applied

to a broad class of hydraulic network types, since the majority of frequency-domain

methods have been formulated to deal only with R-P-V systems. Based on utilising

the general network models from Chapters 3 and 4, the proposed methodologies

present a frequency-domain approach to parameter identification that can be applied

to hydraulic networks of an arbitrary structure.

The detection and identification problem types presented in Section 6.2 are de-

fined below within the context of the network concepts and notation used within

this thesis. Despite the fact that only problems of the class 1 type are considered,

the problem types of all three classes are presented with additional preliminary

material. Firstly, a new general network type is defined that encompasses both

the network structures of Chapters 3 and 4. This facilitates a more general dis-

cussion of the detection and identification problems. In Section 6.3.2 the three

different class problems are defined with examples. Section 6.3.3 outlines a nodal

partitioning framework used in later sections to derive measurement state models

173



Chapter 6 – Parameter Identification of Hydraulic Networks

required for parameter identification, and Section 6.3.4 outlines background material

for frequency-domain identification.

6.3.1 The M -network and element parameterisation

To more easily deal with the network structures from both Chapters 3 and 4, a

general network type is defined here. This network type is termed a M -network, as

it is a network of interlinking multinode elements, which are defined below.

Definition 6.1. A linear multinode element is defined as an arbitrary hydraulic

element interlinking n nodes with the admittance relationship
q1(t)

...

qn(t)

 =

∫ t

0


Y11(t− τ) · · · Y1n(t− τ)

...
. . .

...

Yn1(t− τ) · · · Ynn(t− τ)



p1(τ)

...

pn(τ)

 dτ (6.1)

where Yij(t) are the impulse response functions of the nodal flow at node i from the

pressure at node j.

Clearly, both pipelines and compound nodes are special cases of multinode ele-

ments. A more detailed discussion and examples of multinode elements are given

in Appendix B.2, but are not included here for brevity. Given the definition of a

multinode element, a M -network can be defined.

Definition 6.2. A multinode element network (M -network) is a network consisting

of the pair

(G (N ,Ξ) ,M)

which is comprised of

1. the multi-link graph G (N ,Ξ) (N is the set of nodes, Ξ is the set of multi-links,

each associated with a M -element) combined with

2. the set of M -element admittance impulse response functionsM = {Yξ : ξ ∈ Ξ}.

The link end flow properties are related to the nodal flows and pressures by the simple

node relations from Definition 3.4.

A more detailed definition along with examples is given in Appendix B.2, but

the important point to note is that both a simple node network (G(N ,Λ),P) and a

compound node network (G(N ,Λ),P , C) are both special cases of the M -network.
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The M -network (G (N ,Ξ) ,M) with component dynamicsM = {Yξ : ξ ∈ Ξ} is

parameterised by the set

ϑ = {ϑξ : ξ ∈ Ξ}

where each ϑξ is the parameter set of the element admittance matrix Yξ (i.e.

Yξ(t) = Yξ(ϑξ, t)), consisting of the physical parameters such as diameter, length,

roughness height, etc., for a pipe, or degree of closure, valve loss coefficient, etc.,

for a valve. For the problems defined below, some or all of the parameters require

identification, but this set is always symbolised by ϑ.

Due to parametric reasons, the set ϑ is not always the set of physical parameters,

as not all the physical parameters are always identifiable (i.e. there exists a unique

map from the data space to the parameter space). In these cases, a reduced set of

identifiable parameters (which are functions of the physical parameters) are adopted

for ϑ. This is explained in the following examples for the L approximations of the

turbulent-steady-friction (TSF) and turbulent-unsteady-friction (TUF) pipe types.

Example 6.1. As discussed in Section 2.4, the dynamics for a L -line are completely

described by the propagation operator Γ and the characteristic impedance Zc. For

the TSF model from Example 2.4, these functions are given by8

Γ(s) = Γo
√
s (s+ ro), Zc(s) = Zco

√
s+ ro
s

where

Γo =
lo
co
, Zco = ρo

co
Ao
, ro =

fovo
Do

(6.2)

where co is the wavespeed, Do is the diameter, lo is the length, fo is the Darcy-

Weisbach friction factor, Ao is the cross-sectional area, vo is the operating point

velocity for the linearisation and ρo is the fluid density. The functions Γ and Zc

are dependent on five parameters co, Do, lo, fo and vo 6= 0 (assuming that the

density is known), however they only appear as the three terms (6.2). Therefore,

the nature of the functions Γ and Zc is completely described by the values of these

three terms. The fact that there is not a unique mapping from these three terms to

the five original parameters means that the five parameters cannot be used for the

purposes of identification. However, an identifiable parameter set for the TSF pipe

is ϑ = {Γo, Zco, ro}.
Example 6.2. For the TUF model from Example 2.7, the propagation operator and

characteristic impedance are given by

Γ(s) = Γo
√
s (s+ ro), Zc(s) = Zco

√
s+ ro + r(s)

s

8With reference to Example 2.4 Γo =
√
RoCo and Zco =

√
Ro/Co.
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where Γo, Zco, and ro are as defined above, but with fo as a function of εo, Do, vo 6= 0

and the kinematic viscosity νo, and r is the unsteady resistive function that is also

dependent on εo, Do, vo and νo. Given that the density and viscosity are known, Γ

and Zc are dependent on the five parameters co, Do, lo, εo and vo. Unlike the simpler

expressions for the TSF pipes, these parameters do not appear in these functions

consistently in a reduced number of terms, and hence an identifiable parameter set

for the TUF pipes is ϑ = {co, Do, lo, εo, vo}.

Remarks:

1. The organisations of the parameter sets in Examples 6.1 and 6.2 are not unique,

for example, the set {Ro, Co, ro} is also a valid identifiable parameter set for

the TSF pipe. In fact, computational studies demonstrated that a better

parameterisation for the TUF pipes is

ϑ = {co, Do, lo, Cε, CRe}

where the new parameters Cε and CRe are given by

Cε = log10

(
εo
Do

)
, CRe = log10Reo (6.3)

where Reo is the steady-state Reynolds number. This parameterisation is valid

as there is a unique mapping from this parameterisation to {co, Do, lo, εo, vo}.

2. The term identifiability here is used loosely in a deterministic sense to mean

that the minimal parameter set that uniquely parameterises the operators Γ

and Zc. The ability to accurately map to a parameter estimate from system

behavioural observations is discussed in the examples for Sections 6.4 and 6.5.

6.3.2 Problem definitions

Given the notation of the M -network, the class 1, 2, and 3 problem types discussed

in Section 6.2 can now be defined for an arbitrary hydraulic network. The detection

and identification problem type (class 3) is defined first, from which the parame-

ter identification problem (class 1) and the model detection problem (class 2) are

presented as special cases.

Definition 6.3. The M -network detection and identification problem is defined

as identifying the most likely model structure {G (N ,Ξα̂) ,Mα̂}, and associated pa-

rameter estimates ϑ̂α̂ from the measurements
{
ψ̃m(t), θ̃m(t) : t ∈ T

}
where α̂ ∈
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[0, 1, . . . , N ] uniquely identifies a component set such that

{Ξα̂,Mα̂} ∈ Ξ×M,

where Ξ is a finite set of possible component sets and M is the set of associated

dynamic functions, and

ϑ̂α̂ ∈ Υα̂ (6.4)

where Υα̂ is the set of component parameters for the α̂ model, and the measurements

at sample points t ∈ T are given by[
ψ̃m(t)

θ̃m(t)

]
=

[
ψm(t)

θm(t)

]
+

[
eψ(t)

eθ(t)

]
(6.5)

where ψm and θm are the actual values of the measured states and eψ and eθ are

the error terms. The actual measured states are related to the state vectors ψ and

θ by [
ψm(t)

θm(t)

]
=

[
Aψ 0

0 Aθ

][
ψ(t)

θ(t)

]
(6.6)

where Aψ and Aθ are binary matrices that pick out the relevant measured nodes

from the state vectors, which are related by the admittance relationship

θ(t) =

∫ t

0

Yα∗(ϑ
∗
α∗ , t− τ)ψ(τ)dτ (6.7)

where Yα∗(ϑ
∗
α∗ , ·) is the impulse response admittance matrix for the actual unknown

α∗ network G (Nα∗ ,Ξα∗).

Remarks:

1. The term most likely is not explicitly defined here, but the definition is given by

an adopted statistical diagnostic process, where the form of the process is based

on the properties of the measurement errors eψ, eθ. Note that a solution to this

problem, essentially involves using statistical reasoning to define a map from

the measurements
{
ψ̃m(t), θ̃m(t) : t ∈ T

}
to the identification and estimation

outcome
{
α̂, ϑ̂α̂

}
.

2. The problem above says that the configuration of the network G (N ,Ξ) is

known down to the nodal structure N of the network, but that the form of

the component set Ξ is uncertain. The component set is known to be one

of a finite number of sets within Ξ, which, for convenience, are labelled by

the integer α̂. For FDI methods, one set within Ξ0 ∈ Ξ corresponds to the
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nominal model, and the other sets Ξα̂, α̂ ∈ [1, . . . , N ] correspond to one of N

potential fault models, see the example below.

3. Equations (6.5) and (6.7) say that the measurements are assumed to be cor-

rupted measurements from the nodal state variables of the linear system de-

fined by the admittance matrix Y α̂. For problems where the modelling errors

are insignificant, eψ, eθ correspond to measurement errors only. However, in

the case where the true system dynamics are given by the nodal state rela-

tionship

[I + ∆] (θ) = [Y + ∆Y ] (ψ)

where ∆ and ∆Y are dynamic operators that symbolise the unmodelled fea-

tures in the network dynamics, then the errors also include modelling errors.

The following example demonstrates the form of the multiple models used in the

detection and identification problem, and a more comprehensive example, encom-

passing more aspects of the problem is given later.

Example 6.3. Consider the case of a FDI problem where it is known that there is

one leaking pipe within a network, and the problem is to determine which pipe is

leaking. Given the network topology G(N ,Λ), the nominal model is the fault free

L -line network (G(N ,Λ),P), and the potential fault models are the M -networks

(G(N ,Λ),Pλ) , λ ∈ Λ where Pλ is the set of system dynamics but with the normal

model for pipe λ replaced by the leaking model, that is

Pλ = P ∪
{
Ỹλ
}
/ {Yλ}

where Ỹλ represents the pipeline dynamics for pipe λ with a leak. Therefore for this

problem Ξ = {Λ} and M = {P ,Pλ : λ ∈ Λ}.

Given the definition of the detection and identification problem, the parameter

identification problem can be defined as follows.

Definition 6.4. The M -network parameter identification problem is defined as

a special case of definition 6.3 where Ξ and M are the singletons Ξ = {Ξ} and

M = {M}.

Remark: Definition 6.4 essentially states that the framework for M -network de-

tection and identification problem holds for the parameter identification problem,

but where the model structure is assumed to be known to be G(N ,Ξ). That is, as

there is no uncertainty concerning the model structure, the solution to the prob-

lem in Definition 6.4 is essentially to define the map from the measurements to the
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parameter estimate {
ψ̃m(t), θ̃m(t) : t ∈ T

}
7−→ ϑ̂. (6.8)

An example of the elements of the identification problem in Definition 6.4 are

given below.

Example 6.4. Consider the problem of estimating the pipeline parameters of the

L -line network (G(N ,Λ),P). Assuming that, for each pipe, only the wavespeed,

diameter, and steady-state friction factor require estimation, the parameter space is

given by Υ = ∪λj∈ΛΥj where Υj is the parameter set for pipe j and is given by

Υj = [cj,min, cj,max]× [dj,min, dj,max]× [fj,min, fj,max]

where the intervals correspond to the maximum and minimum values for the wavespeed,

diameter, and friction factor respectively. Given that a digital acquisition system is

used with sampling period ∆t, then the measurement points are T = {0,∆t, . . . , N∆t}.
Assuming that the model error is negligible, the error terms eψ and eθ are purely

measurement errors, which can be described as the independent normal variates[
eψ(t)

eθ(t)

]
∼ N

([
0

0

]
,

[
Σψ 0

0 Σθ

])
, t ∈ T .

For completeness, the detection problem is now defined

Definition 6.5. The M -network detection problem is defined as a special case of

definition 6.3 where α̂ ∈ {0, 1}, Ξ = {Ξo,Ξ
c
o}, M = {Mo,Mc

o} and Υ = {ϑo, ∅}
where α̂ = 0 implies the nominal model (G(N ,Ξ),Mo) with parameterisation ϑo,

and α̂ = 1 implies not the nominal model.

Remark: Simply put, the detection problem assesses the likelihood that the data

arose from the nominal network (G(N ,Ξo),Mo) model. This definition is purely con-

ceptual as the sets Ξc
o andMc

o are countably infinite and the network (G(N ,Ξc
o),Mc

o)

cannot be constructed.

6.3.3 Nodal partitioning and measurement state model

The treatment of the parameter estimation problem from Definition 6.4 is the main

focus of this chapter, as it is fundamental to all problem types. This problem can

be summarised as the estimation of the parameter set ϑ from the model defined by
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the admittance relationship Y between the nodal pressures ψ and flows θ

θ(t) =

∫ t

0

Y(ϑ, t− τ)ψ(τ)dτ (6.9)

where the estimation is based on the limited state measurements[
ψ̃m(t)

θ̃m(t)

]
=

[
Aψ 0

0 Aθ

][
ψ(t)

θ(t)

]
+

[
eψ(t)

eθ(t)

]
(6.10)

at time points t ∈ T . From this summary, it is clear that Definition 6.4 represents

an errors in variables problem [Pintelon et al., 1994; Ljung , 1999] as there exists

no distinction between the input and output variables as all the measurements are

assumed to be corrupted by errors. A natural approach to the treatment of this

problem is to combine the measurements with the model structure to formulate an

error function between the predicted and observed variables, for which the parameter

estimates are the minimisers [Pintelon et al., 1994]. However, the complications are

immediate, namely as

1. the model (6.9) relates the actual error free states ψ and θ, but only the

corrupted states ψ̃m and θ̃m are known, and

2. the model (6.9) relates the entire states ψ and θ, however only a limited

number of these states ψm and θm are measured.

The first point is treated in later in the chapter in the context of frequency-

domain estimation, and the second point is discussed here. To expand on this point,

as only a limited number of the states are observed, the network model (6.9) cannot

be used directly, as it relates the entire state, not just the measured variables.

This presents two options, either state estimation methods must be implemented

to compensate for the unmeasured states and allow for the model to be used, or a

subsystem that is robust to the unmeasured variables must be derived. Techniques

addressing these issues are developed in Sections 6.4 and 6.5, but a framework for

the manipulation of the state model (6.9) required for these sections, based on a

nodal partitioning, is presented below.

To enable the development of a usable model for the measured variables from

the complete model (6.9), it is useful to categorise the nodes of N into disjoint node

sets depending on whether the nodal variables are known, measured or unknown.

This leads to the following definition.

Definition 6.6. For a given M -network (G(N ,Ξ),M), a network nodal partition-

ing is defined as a partitioning of the nodal set N into three disjoint subsets
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Table 6.1: The M -network nodal partitioning and associated state classifications from
Definition 6.6

Nodal set
Nodal state classification

Known Measured Unknown/unmeasured

A1 - ψ, θ -
A2 - ψ θ
A3 - θ ψ
A4 - - ψ, θ

B1 θ ψ −
B2 θ - ψ

C1 ψ θ -
C2 ψ - θ

1. A, the set of nodes for which neither of the variables of pressure and flow are

known,

2. B, the set of nodes for which the nodal flow is known, and

3. C, the set of nodes for which the nodal pressure is known.

This partitioning can be further refined by considering combinations for which the

nodal states are either measured or unmeasured. This results in the 8 unique sets

that are tabulated in Table 6.1. Note that the following relations hold, A = A1 ∪
A2 ∪ A3 ∪ A4, B = B1 ∪ B2, and C = C1 ∪ C2.

Remark: These 8 sets do not represent an enumeration of the possible combina-

tions of known, measured, and unknown nodal properties, but rather they represent

a complete partitioning covering all realistic combinations for which the nodal vari-

ables are simultaneously known and unknown. The only omission is the case of

known pressure and known flow, which is an unrealistic case as only one of these

variables can be controlled and hence known (i.e. at a junction the outflow can be

controlled, and hence it is known to be zero, but the pressure must be measured,

and at a reservoir, the pressure can be controlled and is known, but the outflow

must be measured).
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Given the sets in Table 6.1 from Definition 6.6, the network nodal state space

can be partitioned as

ψ(t) =



ψA1
(t)

ψA2
(t)

ψA3
(t)

ψA4
(t)

ψB1
(t)

ψB2
(t)

ψC1(t)

ψC2(t)


, θ(t) =



θA1(t)

θA2(t)

θA3(t)

θA4(t)

θB1(t)

θB2(t)

θC1(t)

θC2(t)


where, similarly, the network admittance matrix from (6.7) can be partitioned as

follows

YA1A1(t) YA1A2(t) YA1A3(t) YA1A4(t) YA1B1(t) YA1B2(t) YA1C1(t) YA1C2(t)

YA2A1(t) YA2A2(t) YA2A3(t) YA2A4(t) YA2B1(t) YA2B2(t) YA2C1(t) YA2C2(t)

YA3A1(t) YA3A2(t) YA3A3(t) YA3A4(t) YA3B1(t) YA3B2(t) YA3C1(t) YA3C2(t)

YA4A1(t) YA4A2(t) YA4A3(t) YA4A4(t) YA4B1(t) YA4B2(t) YA4C1(t) YA4C2(t)

YB1A1(t) YB1A2(t) YB1A3(t) YB1A4(t) YB1B1(t) YB1B2(t) YB1C1(t) YB1C2(t)

YB2A1(t) YB2A2(t) YB2A3(t) YB2A4(t) YB2B1(t) YB2B2(t) YB2C1(t) YB2C2(t)

YC1A1(t) YC1A2(t) YC1A3(t) YC1A4(t) YC1B1(t) YC1B2(t) YC1C1(t) YC1C2(t)

YC2A1(t) YC2A2(t) YC2A3(t) YC2A4(t) YC2B1(t) YC2B2(t) YC2C1(t) YC2C2(t)


where the matrices YAB can be interpreted to be the admittance mapping from the

nodal pressures from set B to the nodal flows for the nodes in set A. The known,

measured and unmeasured variables are

ψk(t) =

[
ψC1(t)

ψC2(t)

]
, ψm(t) =

 ψA1
(t)

ψA2
(t)

ψB1
(t)

 , ψu(t) =

 ψA3
(t)

ψA4
(t)

ψB2
(t)

 (6.11)

for pressure, respectively, and

θk(t) =

[
θB1(t)

θB2(t)

]
, θm(t) =

 θA1(t)

θA3(t)

θC1(t)

 , θu(t) =

 θA2(t)

θA4(t)

θC2(t)

 (6.12)

for the nodal flows, respectively. Considering these divisions, the admittance func-

tions can be written as in (6.13), which, by reorganising the block rows, can be more
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



YA1C1 YA1C2
YA2C1 YA2C2
YA3C1 YA3C2
YA4C1 YA4C2
YB1C1 YB1C2
YB2C1 YB2C2
YC1C1 YC1C2
YC2C1 YC2C2


∗
[
ψC1
ψC2

]


(t)

+





YA1A1 YA1A2 YA1B1

YA2A1 YA2A2 YA2B1

YA3A1 YA3A2 YA3B1

YA4A1 YA4A2 YA4B1

YB1A1 YB1A2 YB1B1

YB2A1 YB2A2 YB2B1

YC1A1 YC1A2 YC1B1

YC2A1 YC2A2 YC2B1


∗

 ψA1

ψA2

ψB1




(t)

+





YA1A3 YA1A4 YA1B2

YA2A3 YA2A4 YA2B2

YA3A3 YA3A4 YA3B2

YA4A3 YA4A4 YA4B2

YB1A3 YB1A4 YB1B2

YB2A3 YB2A4 YB2B2

YC1A3 YC1A4 YC1B2

YC2A3 YC2A4 YC2B2


∗

 ψA3

ψA4

ψB2




(t)

=



0
0
0
0

θB1(t)
θB2(t)

0
0


+



θA1(t)
0

θA3(t)
0
0
0

θC1(t)
0


+



0
θA2(t)

0
θA4(t)

0
0
0

θC2(t)



(6.13)
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compactly expressed as
 Yk1

Yk2

Yk3

 ∗ψk

 (t) +


 Ym1

Ym2

Ym3

 ∗ψm

 (t) +


 Yu1

Yu2

Yu3

 ∗ψu

 (t)

=

 0

θk(t)

0

+

 θm(t)

0

0

+

 0

0

θu(t)


where the new matrices are interpreted as follows: Yxy describes the admittance

map from the nodal pressures in nodal set x = k,m, u to the nodal flows in the node

sets y = 1, 2, 3, and are given by

Yk1(t) =

 YA1C1(t) YA1C2(t)

YA3C1(t) YA3C2(t)

YC1C1(t) YC1C2(t)(t)

 , (6.14)

Yk2(t) =

[
YB1C1(t) YB1C2(t)

YB2C1(t) YB2C2(t)

]
, (6.15)

Yk3(t) =

 YA2C1(t) YA2C2(t)

YA4C1(t) YA4C2(t)

YC2C1(t) YC2C2(t)

 , (6.16)

for the admittance matrices acting on the known nodal states,

Ym1(t) =

 YA1A1(t) YA1A2(t) YA1B1(t)

YA3A1(t) YA3A2(t) YA3B1(t)

YC1A1(t) YC1A2(t) YC1B1(t)

 , (6.17)

Ym2(t) =

[
YB1A1(t) YB1A2(t) YB1B1(t)

YB2A1(t) YB2A2(t) YB2B1(t)

]
, (6.18)

Ym3(t) =

 YA2A1(t) YA2A2(t) YA2B1(t)

YA4A1(t) YA4A2(t) YA4B1(t)

YC2A1(t) YC2A2(t) YC2B1(t)

 , (6.19)
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for the admittance matrices acting on the measured nodal states, and

Yu1(t) =

 YA1A3(t) YA1A4(t) YA1B2(t)

YA3A3(t) YA3A4(t) YA3B2(t)

YC1A3(t) YC1A4(t) YC1B2(t)

 , (6.20)

Yu2(t) =

[
YB1A3(t) YB1A4(t) YB1B2(t)

YB2A3(t) YB2A4(t) YB2B2(t)

]
, (6.21)

Yu3(t) =

 YA2A3(t) YA2A4(t) YA2B2(t)

YA4A3(t) YA4A4(t) YA4B2(t)

YC2A3(t) YC1A4(t) YC1B2(t)

 . (6.22)

for the admittance matrices acting on the unknown and unmeasured nodal states.

Without loss of generality it can be assumed that the known variables are zero.

This is a reasonable assumption as either the pressure is held constant (in the case

of a reservoir) or the flow injection is zero (in the case of a junction) which means

that the transient fluctuations in both these cases are zero. All other nodal controls

(e.g. flow injections or nodal demands) require measurement and are not known

exactly. This means that the important terms within the system equation are only

the measured and unmeasured variables, that is
 Ym1

Ym2

Ym3

 ∗ψm

 (t) +


 Yu1

Yu2

Yu3

 ∗ψu

 (t) =

 θm(t)

0

0

+

 0

0

θu(t)

 . (6.23)

As discussed above, (6.23) cannot be used directly as it contains the unmeasured

variables ψu and θu. Two different approaches are adopted to tackle this, the first

method derives a full rank dynamic system relating the measured variables ψm and

θm uncoupled from the unmeasured variables. This first case, termed the decoupled

MLE method, applies to the case where A4 = ∅ (that is, there are no nodes for which

the pressure and flow are unknown9, see Table 6.1). The second approach is based on

the EM algorithm [Watanabe and Yamaguchi , 2004], where the unmeasured states

are statistically integrated out. This approach is more general in that it can deal

9At first this restriction may seem limiting but in most instances either pressure of flow are
known. For example, at an an unmeasured junction point, the nodal flow (the flow injected into
the network from an external source) is known to be zero. Similarly, at a point of on open pipe
outfall, the nodal pressure is known to be the atmospheric pressure. In fact the only common case
of an i ∈ A4 node is when the network of interest is a subnetwork of a larger network, and i is an
unmeasured connection point between the two.
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with the case of nonempty A4.

6.3.4 Frequency-domain identification

The focus of this chapter in on the development of a new frequency-domain param-

eter identification methodology. The motivation in this application is due to the

flexibility and numerical efficiency of the Laplace-domain model as opposed to the

time-domain model, but additional known benefits are [Pintelon et al., 1994] (i) easy

noise reduction by removing non-excited frequencies, (ii) data reduction from long

time series to a small number of frequencies, (iii) convenient statistical properties of

the transform’s data, and (iv) it is easy to combine data from different experiments.

An additional benefit for pipeline identification is that the use of frequency-domain

data in combination with persistent inputs provides data that is not effected by the

uncontrolled underlying transients that can affect time-domain methods [Stephens ,

2008]10.

As explained in Chapter 3, the Laplace-transform of dynamic systems serves

as the basis for frequency-domain models. The Laplace-transform of (6.23) can be

arranged to yield Y m1(s)

Y m2(s)

Y m3(s)

Ψm(s) +

 Y u1(s)

Y u2(s)

Y u3(s)

Ψu(s) =

 I0
0

Θm(s) +

 0

0

I

Θu(s) (6.24)

where the frequency-domain model is obtained by restricting s = iω, ω ∈ R+. Noting

the connection with (6.5) that the actual measured states are[
Ψm(s)

Θm(s)

]
=

[
Aψ 0

0 Aθ

][
Ψ(s)

Θ(s)

]

the frequency-domain corrupted measurements are[
Ψ̃m(iω)

Θ̃m(iω)

]
=

[
Ψm(iω)

Θm(iω)

]
+

[
eΨ(iω)

eΘ(iω)

]
.

In practice, temporal digital acquisition systems are used for transient pipeline

measurements, and hence the measurements (6.5) occur at discrete points t =

n∆t, n = 0, 1, . . ., thus creating a sampled data system [Franklin et al., 1998]. The

10Persistent inputs induce a response within a system of effectively constant oscillatory (or
statistical) properties [Ljung , 1999]. In this instance, if a sufficiently long time series is recorded,
any transient excitations (i.e. those that are not a part of the persistent input) have a negligible
affect on the computed frequency response.
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frequencies of interest within hydraulic systems are typically orders of magnitude

below the sampling frequency (e.g. tens or hundreds of Hertz compared to thou-

sands of Hertz), and so aliasing effects from constructing the frequency-domain data

from the time-domain data are negligible [Franklin et al., 1998]. For sampled data

systems, the discrete Fourier transform (DFT) of the the time-domain signal is used

to estimate the frequency distribution of a measured signal. The following theorem,

adapted from Brillinger [1974] outlines the connection between temporal stochastic

processes and their DFTs.

Theorem 6.1. [Brillinger, 1974]: Let x(t), t = n∆t, n ∈ N, be a strictly station-

ary vector valued series with covariance function Σ(t), t = n∆t, n ∈ N. Consider

the normalised DFT

X(ω) =
1

N

N−1∑
n=0

x(n∆t)e−iωn∆t

As N →∞ it holds that for j = 1, . . . , N − 1 the variates X(ωj) are asymptotically

independent and distributed as

X(ωj) ∼ Nc
(

0,
1

N
S(ωj)

)
where Nc is the complex normal distribution, ωj are the Fourier frequencies ωj =

2πj/N∆t and S(ωj) is the the power spectrum of x(t), t = n∆t, n ∈ N ( i.e. DFT

of the covariance function Σ(t), t = n∆t, n ∈ N).

Remarks:

1. The advantage of dealing with the frequency-domain data can be seen to be

threefold. Firstly, the data at each frequency point ωj, j = 1, . . . , N − 1 are

all independent, thus greatly simplifying the joint distribution of the data.

Therefore, the only correlation that exists is between the variate element terms

at the same frequencies. Secondly, regardless of the distribution of the time-

domain data, the distribution of the frequency-domain data is the convenient

zero mean complex normal. Lastly, an increasing number of terms included in

the construction of X reduces the variance at a rate of 1/N .

2. The zero frequency term ω0 = 0 gives the mean of the stochastic process.

Therefore, given a sufficiently long data sequence ψ̃(t), θ̃(t), t = 0,∆t, . . . , (N −
1)∆ t, and that the error terms eψ(t), eθ(t), t = 0,∆t, . . . , (N − 1)∆t are stationary

processes with power spectrums Sψ(iω) and Sθ(iω), the frequency-domain data at

187



Chapter 6 – Parameter Identification of Hydraulic Networks

the Fourier frequencies ωj = 2πj/N∆t, j = 1, . . . , (N − 1) is distributed as[
Ψ̃m(iωj)

Θ̃m(iωj)

]
∼ Nc

([
Ψm(iωj)

Θm(iωj)

]
,

1

N

[
Sψ(iωj) 0

0 Sθ(iωj)

])
, j = 1, . . . , N.

(6.25)

It is important to note that the distribution mean values in (6.25) (i.e. the

actual measured state values Ψm and Θm) are unknown, and hence they serve as

additional parameters that also require estimation [Pintelon et al., 1994] in addition

to the network parameters ϑ. The power spectra are also unknown, however, in the

case that the error is a measurement error arising from imperfections in the data

acquisition system, approximations for these can be assigned a priori.

6.4 Decoupled System and Maximum Likelihood

Estimation

This section concerns the development of a maximum likelihood estimation (MLE)

frequency-domain parameter identification methodology based on the construction

of a measurement system decoupled from the unmeasured nodal variables. This

involves two main steps. Firstly, Section 6.4.1 derives a new decoupled measurement

model, where the nature and existence conditions for a system of the form

G(ϑ, s)

[
Ψm(s)

Θm(s)

]
= 0 (6.26)

from (6.24) are determined. The second step in Section 6.4.2 involves the use of this

form to determine the MLEs for the network parameters ϑ.

As explained, for practical identification within an M -network, there is no mean-

ingful differentiation between input and output variables and hence (6.26) is the

most natural way to express the relationship between the measured state variables.

Therefore, rather than the model describing the system in an input/output, the

model (6.26) can be interpreted as describing the frequency-dependent vector space

that the vector-valued state variable exists in. That is, (6.26) states that the state

vector u(s) is orthogonal (in a complex vector inner product sense) to every column

of the matrix GH(ϑ, s) for every s ∈ C. Or more compactly

u(s) ⊥ span
{
GH

1 (ϑ, s), . . . ,GH
n (ϑ, s)

}
, s ∈ C (6.27)

where Gi are the rows of G.
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6.4.1 Decoupled network measurement model

Collecting the measured and unmeasured variables, (6.24) can be reorganised as

Gm(s)

[
Ψm(s)

Θm(s)

]
+Gu(s)

[
Ψu(s)

Θu(s)

]
= 0 (6.28)

where

Gm(s) =

 Y m1(s) −I
Y m2(s) 0

Y m3(s) 0

 (6.29)

and

Gu(s) =

 Y u1(s) 0

Y u2(s) 0

Y u3(s) −I

 . (6.30)

It is seen that a decoupled system for the measured states independent of the un-

measured states relies on the existence of a decoupling filter defined in the following

and discussed in the ensuing remarks.

Definition 6.7. The complex matrix function L(s) : C 7→ CK×n is described as a

decoupling filter for the M -network (G(N ,Ξ),M) if the following conditions hold

1. L(s)Gu(s) = 0, for all s ∈ C+

2. L(s)Gm(s) 6= 0, for some s ∈ C+

3. L(s) is stable

4. rankL(s) ≥ K on s ∈ C+

where the nodal partitioning and submatrix notation is as defined in Section 6.3.3.

Remarks:

1. The first property is, essentially, the definition of the filter L(s), which re-

quires that the filter removes all the dynamics of the unmeasured variables

(mathematically, the rows of L(s) must lie in the left nullspace of the matrix

operator Gu that acts on the unmeasured variables for all s ∈ C+).

2. The second property ensures that after the dynamics of the unmeasured vari-

ables are removed, there are some residual dynamics (mathematically, the rows
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of L(s) cannot lie in the left nullspace of the matrix operator that acts on the

measured variables for all s ∈ C+). That is, with reference to (6.26)

G(s) = L(s)Gm(s). (6.31)

3. The requirement of stability is one of practical utility.

4. Finally, property 4 states that L(s) cannot have a diminishing rank on s ∈ C+.

This ensures that each row of L(s) describes a unique property of the dynamics

of the decoupled system, and satisfies a necessary requirement that G(s) is of

full row rank on s ∈ C+.

This definition is now used to formulate the existence of a system for the mea-

sured states, decoupled from the unmeasured states.

Theorem 6.2. Consider the M -network (G(N ,Ξ),M) with the nodal partitioning

as defined in Section 6.3.3 where A4 = ∅. Given that there exists some strictly

passive ξ ∈ Ξi for each i ∈ A3 ∪ B2, then a decoupled system of the form (6.31)

exists where L(s) is a decoupling filter (Definition 6.7) and is given by

L(s) = UT
O −UT

OY u(s)
[
UT
I Y u(s)

]−1
UT
I (6.32)

where where UO and U I are block identity matrices that pick out the appropriate

submatrices from the matrix Y u(s) and are given by

UO =
[
UT
O1 UT

O2 0
]T
, U I =

[
UT
I1 UT

I2 0
]T

where the partitions are organised so as to act on submatrices Y u1(s), Y u2(s), and

Y u3(s) where

UO1 =

 I 0 0

0 0 0

0 0 I

 , U I1 =

 0 0

I 0

0 0

 ,
UO2 =

[
0 I 0

0 0 0

]
, U I2 =

[
0 0

0 I

]
where the identities are sized according to the block matrix partitions in (6.29)-(6.30).

The proof to this theorem is constructive.

Proof. To facilitate the proof, the the matrix operator Gu(s) that acts on the un-

measured variables is expanded out into the block matrix forms of the primary sets
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as

Gu(s) =



Y A1A3(s) Y A1A4(s) Y A1B2(s) 0 0 0

Y A3A3(s) Y A3A4(s) Y A3B2(s) 0 0 0

Y C1A3(s) Y C1A4(s) Y C1B2(s) 0 0 0

Y B1A3(s) Y B1A4(s) Y B1B2(s) 0 0 0

Y B2A3(s) Y B2A4(s) Y B2B2(s) 0 0 0

Y A2A3(s) Y A2A4(s) Y A2B2(s) −I 0 0

Y A4A3(s) Y A4A4(s) Y A4B2(s) 0 −I 0

Y C2A3(s) Y C1A4(s) Y C1B2(s) 0 0 −I


(6.33)

which suggests the following partition for the decoupling filter[
LA1(s) LA3(s) LC1(s) LB1(s) LB2(s) LA2(s) LA4(s) LC2(s)

]
.

where the matrix functions LX(s) : C 7→ CK×nX , X = A1,A3, C1,B1,B2,A2,A4 and

C2. This partitioning enables the construction of L(s) based on the properties the

submatrices. Due to the identities in block rows A2, A4 and LC2(s), it is clear that

for Point 1 in Definition 6.7 to hold

LA2(s),LA4(s),LC2(s) = 0 (6.34)

implying the following relationship between the remaining free matrix functions[
LA1(s) LA3(s) LC1(s) LB1(s) LB2(s)

]

×



Y A1A3(s) Y A1A4(s) Y A1B2(s)

Y A3A3(s) Y A3A4(s) Y A2B2(s)

Y C1A3(s) Y C1A4(s) Y C1B2(s)

Y B1A3(s) Y B1A4(s) Y B1B2(s)

Y B2A3(s) Y B2A4(s) Y B2B2(s)


= 0

for all s within the right hand plane. Under the restriction A4 = ∅, the central block

row can be neglected from consideration and the requirement for the free matrices

LA1(s), LA3(s), LB1(s), and LC1(s) is[
LA1(s) LA3(s) LC1(s) LB1(s) LB2(s)

]

×



Y A1A3(s) Y A1B2(s)

Y A3A3(s) Y A3B2(s)

Y C1A3(s) Y C1B2(s)

Y B1A3(s) Y B1B2(s)

Y B2A3(s) Y B2B2(s)


= 0

(6.35)

191



Chapter 6 – Parameter Identification of Hydraulic Networks

for all s within the right hand plane. The matrix on the right in (6.35) contains the

following principal minor of the network admittance matrix Y (s)[
Y A3A3(s) Y A3B2(s)

Y B2A3(s) Y B2B2(s)

]
(6.36)

which, given Lemma B.1, is full rank on s ∈ C+. Therefore the matrix on the right

in (6.35) has the form [
B(s)

A(s)

]
(6.37)

where A(s) is a square full rank matrix on s ∈ C+. Given that both A(s) and B(s)

are analytic in s ∈ C+, the left nullspace of a matrix of the form (6.37) on s ∈ C+

is of the dimension of the number of rows in B. This implies that

= nullity





Y A1A3(s) Y A1B2(s)

Y A3A3(s) Y A3B2(s)

Y C1A3(s) Y C1B2(s)

Y B1A3(s) Y B1B2(s)

Y B2A3(s) Y B2B2(s)



T
= nA1 + nB1 + nC1 ,

for Re {s} ≥ 0. As the partitions of L(s) in (6.35) span the left nullspace of the

matrix on the right in (6.35), it is observed that the full row rank matrix L(s) has

rank

rank {L(s)} = nA1 + nB1 + nC1 , s ∈ C+.

Simple algebraic manipulations show that a left nullifier for (6.37) can be constructed

from the partitions in (6.37) as[
I −B(s)A−1(s)

]
where A−1(s) exists on s ∈ C+ by assumption of the full rank of A(s) on s ∈ C+.

By analogy, suitable candidates for the partitions of L(s) can be constructed as the

constant matrices

LA1 =

 I0
0

 ,LB1 =

 0

I

0

 ,LC1 =

 0

0

I

 ,
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and the s dependent matrix functions

LA3(s) = −

 Y A1A3(s) Y A1B2(s)

Y C1A3(s) Y C1B2(s)

Y B1A3(s) Y B1B2(s)

[ ZA3A3(s)

ZB2A3(s)

]
,

LB2(s) = −

 Y A1A3(s) Y A1B2(s)

Y C1A3(s) Y C1B2(s)

Y B1A3(s) Y B1B2(s)

[ ZB2A3(s)

ZB2B2(s)

]

where the impedance matrices are submatrices of the inverse of the principal minor

(6.36) [
ZA3A3(s) ZA3B2(s)

ZB2A3(s) ZB2B2(s)

]
=

[
Y A3A3(s) Y A3B2(s)

Y B2A3(s) Y B2B2(s)

]−1

which, from Theorem B.3 exists for all s ∈ C+. Given the form of LA1 , LC1 , and LB1 ,

L(s) is clearly full row rank. This representation is observed as being equivalent to

(6.32) by recognition of the relations

UO =
[
LA1 0 LC1 LB1 0 LA2 LC2

]T
UT
I Y u(s) =

[
Y A3A3(s) Y A3B2(s)

Y B2A3(s) Y B2B2(s)

]
. (6.38)

Remarks:

1. The system above is of the dimensions

(nA1 + nB1 + nC1)× (2nA1 + nA2 + nA3 + nB1 + nC1),

and is hence always under determined by the degree nA1 + nA2 + nA3 . The

number nA1 + nB1 + nC1 is the number of nodes for which both the nodal

pressure and flow is known or measured. The number nA1 + nA2 + nA3 is the

number of nodes for which there are measurements but no known values.

2. Within this theorem, the set A4 is omitted from consideration. This nodal

set corresponds to nodes for which there are no known or measured variables.

Obtaining a reduced state model in the presence of such node types is sig-

nificantly more complex than that outlined here, and is treated later in the

context of the EM algorithm.

3. An interesting interpretation for L(s) exists by considering it as a projection.
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The expression

P (s) = Y u(s)
[
UT
I Y u(s)

]−1
UT
I (6.39)

is interpreted as an oblique projection matrix [Hansen, 2004] onto the vector

space defined by the two requirements{
P (s)x ∈ range {Y u(s)}, for each s ∈ C+, and x ∈ Cn

P (s)x = 0 if x ∈ range {U I}⊥ for each s ∈ C+

(6.40)

where the range refers only to vector operations and for a matrix function

A(s) : C 7→ Cm×n analytic on s ∈ C+, the range is defined at each s ∈ C+

simply as

range {A(s)} = span {A•1(s), . . . ,A•n(s)}

where A•i is the i-th column of A. Stated simply, P is an oblique projector

that at each s ∈ C+ projects onto the vector space that is spanned by the

columns of Y u, and possesses the nullspace defined by range {U I}⊥. As P is

a projection matrix, the matrix

P (s) = I − P (s) = I − Y u(s)
[
UT
I Y u(s)

]−1
UT
I (6.41)

is also a projection matrix, this time defined by the properties{
P (s)x ∈ range {Y u(s)}⊥ ∩ range {U I}⊥, for each s ∈ C+, and x ∈ Cn

P (s)x = 0 if x ∈ range {Y u(s)} for each s ∈ C+

(6.42)

which can be demonstrated from (6.40) and (6.41). Straight forward algebraic

operations demonstrate that

range {U I} ⊥ range {UU} ∪ range {UO}

where

UU =

[
0

I

]
where the I is an (nA2 + nC2)× (nA2 + nC2) identity matrix. This means that

P projects onto part of the space given by range {UU}∪ range {UO}. Noting

that also

range {UO} ⊥ range {UU}

it is observed that the matrix operator UT
OP (s) possesses a nullspace defined

by

range {Y u(s)} ∪ range {UU}
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and is full row rank with

rank
{
UT
OP (s)

}
= nA1 + nB1 + nC1

at each s ∈ C+, where the full row rank is ensured as P projects onto the

range of UO. This is related to the decoupling filter L by realising that

L(s) = UT
OP (s).

As in Definition 6.7, it is required that the columns of Gu are within the

nullspace of L for s ∈ C+, where given (6.33), it holds that

range {Gu(s)} = range {Y u(s)} ∪ range {UU}

which is exactly the nullspace of UT
OP .

With reference to the primary node sets, a computationally useful expression of

the decoupled measured system is

G(s) =

 GA1A1(s) GA1A2(s) GA1B1(s) −I GA1A3(s) 0

GB1A1(s) GB1A2(s) GB1B1(s) 0 GB1A3(s) 0

GC1A1(s) GC1A2(s) GC1B1(s) 0 GC1A3(s) −I

 (6.43)

where the first three block columns are associated with the measured nodal pressure

variables ΨA1(s), ΨA2(s), and ΨB1(s), and the last three are associated with the

measured nodal flow variables ΘA1(s), ΘA3(s), and ΘC1(s), and the block expres-

sions are given by the submatrices

GXY (s) =


Y XY (s)− G̃XY (s)

for X = A1,B1, C1,

and Y = A1,A2,B1

−
[
Y XA3(s) Y XB2(s)

] ZA3A3(s)

ZB2A3(s)

 for X = A1,B1, C1,

and Y = A3

where

G̃XY (s) =
[
Y XA3(s) Y XB2(s)

] [ ZA3A3(s) ZA3B2(s)

ZB2A3(s) ZB2B2(s)

][
Y A3Y (s)

Y B2Y (s)

]

for X = A1,B1, C1, and Y = A1,A2,B1. Equation (6.43) represents a computation-

ally preferable expression to (6.31) and (6.32) as the overall matrix computations

are resolved down to operations involving the smaller submatrices.
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Remark: In terms of parametric dependency, it can be demonstrated that

GXY |s = fn (ΞX ,ΞY ,ΞA3 ,ΞB2) (6.44)

which means that for a given s ∈ C, GXY is a function of the parameters of the

elements in the sets ΞX , ΞY , ΞA3 , and ΞB2 . Clearly the system is more sensitive

to variations in ΞA3 , and ΞB2 as these feature in all functions. It is seen that the

system is totally insensitive to any elements exclusively in ΞC2 . But this is not a

problem, as links within this set correspond to links connected only to reservoirs,

where the flows are not measured.

The representation (6.43) also facilitates the following corollary concerning the

rank of G(s).

Corollary 6.1. The decoupled system matrix G(s) constructed as in (6.43) under

the assumptions of Theorem 6.2, is full row rank, and has a nondiminishing rank on

s ∈ C+ provided that there exist some strictly passive j ∈ Ξi for each i ∈ A3∪B1∪B2.

Proof. Given the presence of the identities in the first and third block rows of (6.43),

it remains to show that the second block row is of full row rank on s ∈ C+. This is

done by showing that the second block row possesses a submatrix of size nB1 × nB1

that is strictly positive definite on s ∈ C+. Consider the nB1 × nB1 submatrix

GB1B1(s) = Y B1B1(s)− G̃B1B1(s),

this is recognised as being the Schur complement of
Y B1B1(s)

[
Y B1A3(s) Y B1B2(s)

][
Y A3Y (s)

Y B2Y (s)

] [
Y A3A3(s) Y A3B2(s)

Y B2A3(s) Y B2B2(s)

]  . (6.45)

which is a principal minor of the network admittance matrix. Being a principal

minor of a matrix that is positive definite on s ∈ C+, (6.45) is itself positive definite

on s ∈ C+, and further, this positive definiteness is strict due to the strict passivity

of all of its principal minors (resulting from a strictly passive element being incident

to each node in A3, B1, and B2). The Schur complement of a strictly positive definite

matrix is itself strictly positive definite [Rao, 2006], therefore, GB1B1(s) is strictly

positive definite on s ∈ C+.

Remark: The development of the MLE process in the next section requires that the

rank of the resulting system matrix to be full row rank. The intuitive interpretation
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of this requirement is that each row of the decoupled system matrix describes a

unique relationship between the measured states.

6.4.2 Maximum likelihood estimation for decoupled system

The expression for the MLE of the decoupled system is presented in two steps.

Firstly the statistical problem is framed and solved in a general context as a complex

Gaussian MLE process given linear constraints on the unknown means. Secondly,

the specific problem instance for the decoupled system (6.43) is given.

Theorem 6.3. Consider the data set of complex vectors Ũ = {ũi : i = 1, . . . ,M}
distributed as

ũi ∼ Nc (ui,Σi) , i = 1, . . . ,M (6.46)

where the Σi are positive definite real matrices and the ui are unknown means sub-

jected to

Gi(ϑ)ui = 0, i = 1, . . . ,M (6.47)

where the Gi are complex valued matrices and of full row rank on the entire param-

eter space ϑ ∈ Υ ⊂ Rn where n is the dimension of the parameter space Υ. Given

these conditions, the MLE for the parameter ϑ is given by the minimiser

ϑ̂ = arg min
ϑ∈Υ

M∑
i=1

ũHi G
H
i (ϑ)

[
Gi(ϑ)ΣiG

H
i (ϑ)

]−1
Gi(ϑ)ũi. (6.48)

Proof. The probability density function of the entire data set Ũ = {ũi : i = 1, . . . ,M}
can be expressed as

f
(
Ũ
∣∣∣U ,S) =

M∏
i=1

π−n |Σi|−1 exp
{
− (ũi − ui)H Σ−1

i (ũi − ui)
}

(6.49)

where U and S are the sets mean values

U = {ui : i = 1, . . . ,M}

and the error variance matrices

S = {Σi : i = 1, . . . ,M} .

The parameters requiring estimation are elements of the mean set U and the system

parameter set ϑ. Therefore, the MLEs Û and ϑ̂ can be expressed as the solution to
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the following constrained optimisation problem

arg max
U ,ϑ

f
(
Ũ
∣∣∣U ,S) , subject to: Gi(ϑ)ui = 0, i = 1, . . . ,M. (6.50)

The solution to (6.50) involves two steps. Firstly the MLEs Û are determined analyt-

ically using a Lagrange multiplier method based on a multidimensional extension of

the method implemented in Schoukens and Pintelon [1991]. Secondly, the analytic

expression for the Û are used to express ϑ̂ as the minimiser (6.48).

To use the Lagrange multiplier technique to determine an expression for Û ,

the differentiability of f
(
Ũ
∣∣∣U ,S) with respect to the elements of U is required.

Therefore, to avoid issues with the Hermitian operator, the real and imaginary

components of U are dealt with separately. To do this, the operator ˘ is defined as

performing the following concatenations of the real and imaginary parts of complex

matrices and vectors

Ă =

[
Re {A} −Im {A}
Im {A} Re {A}

]
, ă =

[
Re {a}
Im {a}

]
.

where A is a complex matrix, and a is a complex vector. Given this definition of the

operator ,̆ the cost function resulting from the logarithm of the likelihood function

f
(
Ũ
∣∣∣U ,S) can be written as

M∑
i=1

[
˘̃ui − ŭi

]T
Σ̆
−1

i

[
˘̃ui − ŭi

]
. (6.51)

where the constant terms are neglected. Considering the constraints in (6.50), the

Lagrange multiplier cost function can be expressed as

K (U ,S,ϑ,L) =
M∑
i=1

[
˘̃ui − ŭi

]T
Σ̆
−1

i

[
˘̃ui − ŭi

]
+ λTi Ği (ϑ) ŭi (6.52)

where λi ∈ R2N are the Lagrange multiplier vectors and L = {λ1, . . . ,λM}. As

(6.52) is clearly a continuous function of ŭ and λ, the extrema of K with respect to

these variables satisfies the stationarity conditions

∂K

∂ŭi
= 0,

∂K

∂λi
= 0, i = 1, . . . ,M, (6.53)

where the derivatives with respect to the vectors are the usual matrix calculus

operations [Magnus and Neudecker , 1999]. From the first derivative in (6.53), it
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holds that

ŭi = ˘̃ui −
1

2
Σ̆iĞ

T

i (ϑ)λi. (6.54)

The second derivative in (6.53) resolves down to the condition that Ğiŭi = 0,

therefore, premultiplying (6.54) by Ği yields the following expression for the i-th

Lagrange multiplier

λi = 2
[
Ği (ϑ) Σ̆iĞ

T

i (ϑ)
]−1

Ği (ϑ) ˘̃ui. (6.55)

Combining (6.55) and (6.54), the MLE ˘̂u for ŭ can then be expressed as

˘̂ui =

[
I − Σ̆iĞ

T

i (ϑ)
[
Ği (ϑ) Σ̆iĞ

T

i (ϑ)
]−1

Ği (ϑ)

]
˘̃ui. (6.56)

As defined by the ˘ operator, the first n rows of (6.56) correspond to Re {û} and

the last n rows correspond to Im {û}. Therefore, carefully dividing (6.56) into these

two sets of rows and recombining the expressions in terms of complex variables, the

complex MLE û is given as

ûi = ûi (ϑ) =
[
I −ΣiG

H
i (ϑ)

[
Gi(ϑ)ΣiG

H
i (ϑ)

]−1
Gi(ϑ)

]
ũi. (6.57)

for i = 1, . . . ,M . The expression (6.57) holds the interesting interpretation that it

is the Σi weighted projection of the measured data ũi onto the null space of Gi(ϑ).

To undertake the second step and determine the MLE for ϑ, it is recognised that

as Û = Û(ϑ), then ϑ̂ is then given as

ϑ̂ = arg max
ϑ∈Υ

f
(
Ũ
∣∣∣ Û (ϑ) ,S

)
which, under the usual approach of taking the negative of the log-likelihood function

f and ignoring the constant terms, is equivalent to

ϑ̂ = arg min
ϑ

M∑
i=1

[ũi − ûi (ϑ)]H Σ−1
i [ũi − ûi (ϑ)] .

Substituting in (6.57) yields the minimiser expression (6.48).

Remark: Under the interpretation that Gi(ϑ)ũi is the residuals of the system

measurements that do not lie in the space defined in (6.27), Equation (6.48) can be

interpreted as a weighted sum of the squared residuals, with the weighting function[
Gi(ϑ)ΣiG

H
i (ϑ)

]−1
.

This leads us to the expression for the MLE for the parameters of a M -network.
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The following corollary is the main result for this section.

Corollary 6.2. Consider the M -network (G(N ,Ξ),M) with the nodal partitioning

as defined in Section 6.3.3 where A4 = ∅, for which there exists the measurement

set
{
ψ̃m(t), θ̃m(t) : t = 0,∆t, . . . ,M∆t

}
where

[
ψ̃m(t)

θ̃m(t)

]
=

[
ψm(t)

θm(t)

]
+

[
eψ(t)

eθ(t)

]
(6.58)

where ψm and θm are as defined in Section 6.3.3 and are periodic with fixed frequency

distribution (with negligible spectral energy above (2∆t)−1 Hz), and eψ(t), eθ(t), t =

0,∆t, . . . are stationary processes with power spectrum’s Sψ(iω) and Sθ(iω). Given

that there exists some strictly passive ξ ∈ Ξi for each i ∈ A3 ∪ B2, then the MLE

solution to the network parameter estimation problem in Definition 6.4 is given by

(6.48) in Theorem 6.3 with the following substitutions

ũi =

[
Ψ̃m(iωi)

Θ̃m(iωi)

]
(6.59)

Gi(ϑ) = G(ϑ, iωi) (6.60)

Σi =
1

M

[
Sψ(iωj) 0

0 Sθ(iωj)

]
(6.61)

where G is the decoupled measurement system from Theorem 6.2, and the ωi are the

Fourier frequencies from the DFT of the time-domain data.

Proof. The parameter estimation problem outlined in the corollary can be cast as

the complex Gaussian, constrained MLE problem from Theorem 6.3 by recognising

(i) the frequency-domain data (6.59) from the DFT of (6.58) is complex Gaussian

(Theorem 6.1) with mean ui = [ΨT
m(iωi) ΘT

m(iωi)]
T and covariance matrix (6.61),

and (ii) the constraints on the mean are given by the decoupled measurement system

from Theorem 6.2, which leads to (6.60) where the full row rank of G is ensured by

Corollary 6.1 under the condition that there exists some strictly passive ξ ∈ Ξi for

each i ∈ A3 ∪ B2.

Remarks:

1. An implicit assumption is that the passivity of each component ξ ∈ Ξ remains

unaffected by parameter variations throughout the parameter space Υξ. That

is to say that Υ appropriately restricts the parameter space to those values

for which the dynamics of each component ξ ∈ Ξ remain passive or strictly

passive.
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Figure 6.1: The 11-pipe network from Examples 6.5 and 6.6. The rings around the nodes
indicate the locations of pressure measurements for the different cases described in Table
6.2: case 1 and 2 nodes have three rings (nodes 2, 4, and 6); case 3 nodes have two or
three rings (nodes 2, 4, 6, and 3); case 4 nodes have one, two or three rings (nodes 2, 4, 6,
3 and 5); case 5 includes all the nodes. Note that for case 1, the demand at node 4 θd(t)
is not measured. Also note that θd(t) is taken as directed into node 4.

2. The proposed method above assumes that the error variance matrices in S can

be adequately estimated from the measurement system specifications.

6.4.3 Numerical examples

The following numerical examples demonstrate the ability of the proposed decou-

pling MLE method as outlined in Corollary 6.2 to accurately estimate a hydraulic

network’s parameters. All computational procedures were undertaken as outlined

in Appendix E.

Example 6.5. Consider the 11-pipe network in Figure 6.1 comprised of TSF pipes

(network details are in Appendix D), for which there are five different nodal partition-

ing cases as depicted in Figure 6.1: case 1 consists of only pressure measurements

at nodes {2, 4, 6}; case 2 consists of a flow measurement at node 4 and pressure

measurements at nodes {2, 4, 6}; case 3 consists of a flow measurement at node 4

and pressure measurements at nodes {2, 3, 4, 6}; case 4 consists of a flow measure-

ment at node 4 and pressure measurements at nodes {2, 3, 4, 5, 6}; case 5 consists of

a flow measurement at node 4 and pressure measurements at nodes {2, 3, 4, 5, 6, 7}.
The nodal set partitions from Definition 6.6 corresponding to these cases is given in

Table 6.2.

The raw time-domain data is obtained from a MOC simulation with added Gaus-

sian noise. The frequency-domain data is obtained from the DFT of the time-domain

data. For the MOC simulation, the system is excited into a steady-oscillatory tran-

sient state by a multi-sine flow perturbation at node 4 consisting of 983 equi-spaced
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Table 6.2: The M -network nodal partitioning for Examples 6.5 and 6.6 from Definition
6.6.

Nodal set
Node sets for each case

case 1 case 2 case 3 case 4 case 5

A1 ∅ {4} {4} {4} {4}
A2 {4} ∅ ∅ ∅ ∅
A3 ∅ ∅ ∅ ∅ ∅
A4 ∅ ∅ ∅ ∅ ∅
B1 {2, 6} {2, 6} {2, 3, 6} {2, 3, 5, 6} {2, 3, 5, 6, 7}
B2 {3, 5, 7} {3, 5, 7} {5, 7} {7} ∅
C1 ∅ ∅ ∅ ∅ ∅
C2 {1} {1} {1} {1} {1}

frequencies from 0 to 15 Hz with amplitudes ranging from 0.01 to 0.1 L/s. The time-

domain measurement errors are taken as independent zero mean Gaussian variates

with standard deviations of 1 kPa for the pressure measurements and 0.32 L/s for

the flow measurement. It is assumed that none of the pipeline parameter values are

known, but that: the wavespeed is on the interval [900,1200] m/s; the friction factor

is on the interval [0.015,0.04]; the diameters are known to within ±10 mm of their

actual value; and the pipe lengths are known to within ±20 m of their actual value.

Given the parameterisation of the TSF pipes from Example 6.1, the parameter space

is 33-dimensional and is given by

ϑ = {ro1,Γo1, Zco1} ∪ · · · ∪ {ro11,Γo11, Zco11} .

Corollary 6.2 was used as the framework to determine the MLE, where the min-

imiser ϑ̂ was computed using particle swarm optimisation (PSO). The results of 10

independent trials for each case are summarised in the box plots in Figure 6.2 and

the statistics in Table 6.3

Considering Figure 6.2 and Table 6.3, a first observation is that as the number

of measured states increases, so does the quality of the parameter estimates as

quantified by the, on average, reduced bias (lower value of the error medians) and

lower variability variable (lower value of the error IQRs). This improvement is

increasingly significant when the flow measurement is utilised in the estimation

process (cases 2, 3, 4, and 5). For the cases that incorporate the flow measurement,

the variability in the estimates is significantly reduced.

Interesting observations can be made by comparing the estimates for the differ-
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Figure 6.2: Box plots of the relative errors (%) (given on the vertical scale) of the
parameter estimates from Example 6.5. The figure rows are associated with particular
parameters, and the figure columns with particular cases. Each box and whisker set is
associated with a pipe. For each case, 10 independent trials were performed. The +
indicate outliers. Note that the top two figures in the first column have independent
vertical axes.

ent parameters. For all pipes the resistance coefficient ro was accurately estimated

by the median of the 10 trials for all cases, even for case 1 despite the high IQR.

The propagation coefficient Γo was the most accurately estimated parameter with a

consistently low interquartile range IQR for all cases. The accuracy of the estimates

is quite surprising (the estimate medians are all within 0.001% of the true values for
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Table 6.3: Summary statistics of relative errors of pipe parameter estimates for Example
6.5. The parameter statistics for each pipe (median and the interquartile range, IQR) are
based on 10 trials. The summary statistics (minimum, mean and maximum) are based
on the parameter statistics from the 11 pipes (the mean of the medians was taken as the
average of the absolute values of the medians).

Parameter Statistic type
Relative error statistics (%)

case 1 case 2 case 3 case 4 case 5

ro

median
min -2.462 -1.057 -2.979 -1.545 -2.326
mean 0.762 0.636 0.796 0.534 0.522
max 1.597 2.019 1.958 0.971 0.755

IQR
min 0.391 0.091 0.168 0.096 0.174
mean 23.043 2.148 1.624 2.779 1.743
max 71.953 9.004 6.264 11.412 6.516

Γo

median
min -0.0010 0.0000 0.0000 0.0000 -0.0005
mean 0.0001 0.0000 0.0000 0.0000 0.0001
max 0.0000 0.0000 0.0000 0.0005 0.0005

IQR
min 0.0000 0.0000 0.0000 0.0000 0.0000
mean 0.0295 0.0003 0.0002 0.0005 0.0003
max 0.1260 0.0010 0.0010 0.0020 0.0010

Zco

median
min 5.25 10.22 14.82 2.83 3.45
mean 10.58 10.28 15.53 3.06 4.41
max 18.27 10.36 17.40 3.46 8.48

IQR
min 19.19 18.61 13.53 8.18 7.38
mean 29.00 18.65 13.59 9.18 9.39
max 32.10 18.70 13.70 12.63 13.17

all pipes in all cases), but can be understood as follows. The parameter Γo = l/co

is essentially the inverse of the pipes period, and as such it is involved in determin-

ing the actual location of the network’s harmonics in the frequency response. If the

model harmonics are even slightly mismatched to the measured harmonics, the error

between the model and the measured data will be large. Hence the estimation pro-

cess is highly sensitive to the harmonic locations and, by implication, the parameter

Γo.

The impedance coefficient was estimated with the lowest accuracy and highest

variability of all the parameters. As illustrated in Figure 6.2, the positive bias in

the errors implies that the estimates for Zco were typically high. In comparison

to Γo, both the parameters ro and Zco affect the damping nature of the networks

dynamic behaviour, and hence are involved in determining the magnitude of the

network’s harmonics in the frequency response. The error between the model and
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Figure 6.3: Box plots of the relative errors (%) of the parameter estimates from Example
6.6. The figure rows are associated with particular parameters, and the figure columns
with particular cases. Each box and whisker set is associated with a pipe. For each case,
10 independent trials were performed. The + indicate outliers.

the measured data is still sensitive to the harmonic magnitudes, but not as sensitive

as it is to the harmonic locations. Hence the estimation process is less sensitive to

ro and Zco.

The parameters for all pipes seemed to be similarly identifiable, with the box

plots for ro and Γo showing slightly higher IQRs for pipes [7] to [9].
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Table 6.4: Summary statistics of relative errors of pipe parameter estimates for Example
6.6. The parameter statistics for each pipe (median and the interquartile range, IQR) are
based on 10 trials. The summary statistics (minimum, mean and maximum) are based
on the parameter statistics from the 11 pipes (the mean of the medians was taken as the
average of the absolute values of the medians).

Parameter Statistic type
Relative error statistics (%)

case 1 case 2 case 3 case 4 case 5

wavespeed, co

median
min -0.282 -0.456 -0.320 -0.280 -0.690
mean 0.179 0.262 0.215 0.246 0.189
max 0.286 0.608 0.422 0.716 0.581

IQR
min 0.299 0.304 0.401 0.324 0.546
mean 0.875 1.160 1.117 1.137 1.141
max 1.524 2.957 2.807 1.883 1.895

diameter, D

median
min 2.984 1.096 -0.072 0.226 0.207
mean 3.288 1.331 0.158 0.628 0.486
max 3.604 1.785 0.564 0.929 0.892

IQR
min 0.334 2.367 1.664 1.771 1.105
mean 0.926 2.606 2.502 2.330 1.611
max 1.378 2.884 3.192 3.161 1.968

length, l

median
min -0.280 -0.457 -0.320 -0.280 -0.689
mean 0.179 0.262 0.215 0.250 0.189
max 0.284 0.608 0.422 0.716 0.580

IQR
min 0.299 0.304 0.401 0.324 0.545
mean 0.875 1.160 1.117 1.146 1.141
max 1.525 2.957 2.806 1.930 1.895

Cε = log10

(
ε
D

) median
min 21.10 -33.23 -25.12 -33.33 -4.06
mean 31.42 16.41 13.43 12.61 9.98
max 33.33 33.33 29.60 24.73 33.33

IQR
min 0.00 11.48 3.78 26.27 9.46
mean 22.94 44.26 38.42 48.27 42.09
max 57.90 66.67 66.66 66.67 66.67

CRe = log10Re

median
min -12.045 -5.833 -5.616 -5.031 -1.232
mean 3.898 1.867 2.092 2.100 0.991
max 1.221 2.747 2.332 2.511 2.603

IQR
min 0.000 1.820 0.000 1.350 1.300
mean 2.487 6.319 5.118 6.046 5.731
max 7.224 9.697 8.759 9.300 9.551

Example 6.6. Consider the 11-pipe network in Figure 6.1 comprised of TUF pipes

(network details are in Appendix D), for which there are four different nodal parti-
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tioning cases as depicted in Figure 6.1 and described in Example 6.5 (the nodal set

partitions from Definition 6.6 corresponding to these cases is given in Table 6.2).

All details pertaining to system excitation, measurement error and parameter un-

certainty for this example are taken from Example 6.5 with the addition that the rel-

ative roughnesses are known to be on the interval [0.0001, 0.01] and the steady-state

velocities are known to be on the interval [0.1, 10] m/s. Given the parameterisation

of the TUF pipes from Example 6.2, the parameter space is 55 dimensional and is

given by ϑ = ϑ1 ∪ · · · ∪ ϑ11 where

ϑi = {ci, Di, li, Cε, CRe} .

where

Cε = log10

(
εi
Di

)
, CRe = log10Rei.

Corollary 6.2 was used as the framework to determine the MLE, where the min-

imiser Υ̂ was computed using PSO. The results of 10 independent trials for each

case are summarised in the box plots in Figure 6.3 and the statistics in Table 6.4

As observed with Example 6.5, Figure 6.3 and Table 6.4 show that the inclusion

of the flow measurement in cases 2 to 5 yields particularly better parameter estimates

than for case 1 where the flow measurement was not included. This is particularly

true for the estimates of the parameters D, Cε and CRe where significant biases are

clearly observed for case 1 in Figure 6.3.

Consistent with Example 6.5, the parameters that influence the harmonic loca-

tions (wavespeed co and pipe length l) are estimated with a higher accuracy than

the other parameters. Interestingly, it is observed that the distributions of the errors

for the estimates of co and l are nearly the same. This can be explained in that it is

the ratio l/co that determines the harmonic locations. Therefore, if the estimate for

l is high, then the estimate for co will also tend to be high to ensure a better match

of the harmonic locations of the model with the measured data.

The parameters D and CRe were accurately estimated, particularly for cases 2

to 5. However, the other parameter associated with energy loss and dissipation, Cε,

was not as accurately identified consistently for all pipes in any case. This apparent

lack of sensitivity of the likelihood function to the Cε parameters may be understood

by the fact that ε/D only appears in the expression for the pipeline functions Γ and

Zc through the Vardy and Brown [2007] functions A∗ and B∗ (see Example 2.7)

which are also dependent on Re.

In summary, Examples 6.5 and 6.6 have demonstrated the ability of the decou-

pled MLE method to successfully estimate most hydraulic network parameters for
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networks comprised of the TSF and TUF pipe types. Difficulty with some of the

parameters associated with energy dissipation was observed. However, these dif-

ficulties are not surprising given that both the examples represent complex high

dimensional optimisation problems, being 33 and 55 dimensions respectively.

6.5 An Expectation-Maximisation Method

The existence of the decoupling filter developed in the Section 6.4 relied on the nodal

partitioning from Definition 6.6 to be configured such that A4 = ∅, which means

that there existed no node within the network for which both the pressure and flow

were unknown and unmeasured11. This scenario is common, and in practical field

tests it has generally been achieved [Stephens , 2008]. However, it is important to

consider techniques that are able to deal with scenarios for which it may not be

possible to know or measure the state variables at each node.

This section presents a new methodology that deals the identification of M -

networks under the case that there are nodes for which no information exists (i.e.

nodes for which neither the pressure or nodal flow are known or measures, meaning

thatA4 6= ∅). This treatment adopts the framework of the expectation-maximisation

(EM) algorithm [Dempster et al., 1977], which is a statistical method of parameter

identification used in situations where the data is incomplete, or there exist hidden

state variables upon which the system depends [Watanabe and Yamaguchi , 2004].

This section is structured as follows. Section 6.5.1 summarises the EM algorithm

and gives a theorem presenting the form of the EM algorithm for the general sta-

tistical model that encompasses the network identification problem considered here.

Section 6.5.2 shows how the measured and unmeasured state model (6.23) fits into

this framework, finally, Section 6.5.3 gives some numerical examples.

6.5.1 General statistical model

The fundamental theorem underlying the EM algorithm is presented below.

Theorem 6.4. The EM algorithm [Dempster et al., 1977]: Given the com-

plete data
{
Ũ , Ṽ

}
drawn from the joint distribution f

(
Ũ , Ṽ|ϑ

)
parameterised by ϑ,

for a given ϑ0 the following sequence of iterates

ϑk = arg max
ϑ

E
[

ln
(
f
(
Ũ , Ṽ|ϑ

))∣∣∣ Ũ ,ϑk−1

]
, k = 1, . . . (6.62)

11This requirement is essentially equivalent to that of the network problems in Definitions 3.5,
and 4.4, where the all boundary conditions must be specified for the problems to be well posed.
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converges to a local maximiser of the marginal likelihood function f
(
Ũ |ϑ

)
of the

incomplete data Ũ , provided f (U|ϑ) is bounded on U .

Remarks:

1. The process (6.62) has many different interpretations [Watanabe and Yam-

aguchi , 2004], but the most simple explanation is as follows. The k-th iterate

ϑk is given as the value that maximises the expected log-likelihood of the

joint distribution of the measured and unmeasured states f
(
Ũ , Ṽ|ϑ

)
over the

conditional probability space Ṽ|Ũ ,ϑk−1 of the unmeasured states given the

measured states and the (k − 1)-th parameter estimate.

2. The useful aspect of this approach is that the expectation integrates over

the unmeasured variables explicitly removing them from the maximisation

function. Each iterate updates the conditional distribution of the unmeasured

states.

3. The process (6.62) has the following properties that the sequence of iterates is

nondecreasing, and will converge to a local maxima [Watanabe and Yamaguchi ,

2004]. It is, however, not guaranteed that (6.62) will converge to the MLE.

For the application considered here, the general statistical model has Ũ and Ṽ as

collections of vector valued complex Gaussian variates, with unknown means, that

are known to be related by the equality constraint (6.80) which is parameterised by

ϑ. Given this, the problem is to derive an EM based process for the estimation of

the parameter ϑ. The form of this process is outlined in the following theorem, and

constructed in the ensuing proof.

Theorem 6.5. Consider the data sets of complex vectors Ũ = {ũ1, . . . , ũM}, and

Ṽ = {ṽ1, . . . , ṽM} distributed as the complex Gaussian variates[
ũi

ṽi

]
∼ Nc

([
ui

vi

]
,

[
Σmi 0

0 Σui

])
, i = 1, . . . ,M

where the Σmi and Σui are real positive definite matrices and

COV [ũi, ũj] ,COV [ũi, ṽj] ,COV [ṽi, ṽj] = 0, j 6= i.

The unknown means ui and vi are related by the equality constraints

[
Gmi(ϑ) Gui(ϑ)

] [ ui
vi

]
= 0, i = 1, . . . ,M (6.63)
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where the complex matrices Gmi ∈ CN×nm, and Gui ∈ CN×nu are parameterised by

ϑ and nu ≤ N ≤ nm where

rankGui(ϑ) = nu (6.64)

rank
[
Gmi(ϑ) Gui(ϑ)

]
= N (6.65)

for all i = 1, . . . ,M and ϑ ∈ Υ. The EM algorithm (Theorem 6.5) for estimating

ϑ based on the incomplete data U is given by the sequence

ϑk+1 = arg max
ϑ∈Υ

M∑
i=1

Qi (ũi,ϑk,ϑ) (6.66)

where Qi (ũi,ϑk,ϑ) is the negative of the expectation of the log likelihood of the joint

distribution of ũi and ṽi conditional on ũi and ϑk (constant terms neglected), and

is given by

Qi (ũ,ϑk,ϑ) = ũHCmmi (ϑ) ũ

−2Re
{
ũHCmui (ϑ)C−1

uui (ϑk)Cumi (ϑk) ũ
}

+tr {Cuui (ϑ) Σui}
+ũHCmui (ϑk)C

−1
uui (ϑk)Cuui (ϑ)C−1

uui (ϑk)Cumi (ϑk) ũ

.

(6.67)

where the complex matrix terms are

Cmmi(ϑ) = GH
mi(ϑ)Λ−1

i (ϑ)Gmi(ϑ)

Cmui(ϑ) = GH
mi(ϑ)Λ−1

i (ϑ)Gui(ϑ)

Cumi(ϑ) = GH
ui(ϑ)Λ−1

i (ϑ)Gmi(ϑ)

Cuui(ϑ) = GH
ui(ϑ)Λ−1

i (ϑ)Gui(ϑ)

 (6.68)

and

Λi(ϑ) = Gmi(ϑ)ΣmiG
H
mi(ϑ) +Gui(ϑ)ΣuiG

H
ui(ϑ). (6.69)

Proof. The determination of an EM process for the parameter ϑ requires three

distinct steps. Firstly, the determination of the joint probability density function

(PDF) for the ũi and ṽi given analytic forms of the MLE for the unknown means

ûi and v̂i. Secondly, the expectation of the log-likelihood of the joint density over

the conditional density of the unmeasured data ṽi given our measured data ũi

and ϑ. Thirdly, the expression of this log-likelihood purely as a function of ũi by

determining an estimate for vi given only ũi.

Concerning the first step, as all the variates are independent for each i =

1, . . . ,M , the Lagrange multiplier technique adopted in the proof of Theorem 6.3,
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can be used to determine an analytic expression of the MLEs for the unknown means

ui and vi as a function of ṽi, ũi, and ϑ as[
ûi(ϑ)

v̂i(ϑ)

]
=([

I 0

0 I

]
−
[

Σmi 0

0 Σui

][
GH
mi(ϑ)

GH
ui(ϑ)

]
Λ−1
i (ϑ)

[
Gmi(ϑ) Gui(ϑ)

])[ ũi
ṽi

]
(6.70)

where

Λi(ϑ) =
[
Gmi(ϑ) Gui(ϑ)

] [ Σmi 0

0 Σui

] [
Gmi(ϑ) Gui(ϑ)

]H
(6.71)

which is equivalent to (6.69). The existence of Λ−1
i on ϑ ∈ Υ can be demonstrated

by the positive definiteness of Λi (as diag {Σmi,Σmi} is positive definite, then so is

Λi as
[
Gmi Gui

]
is full row rank). Given these MLEs, the joint distribution for

the measured and unmeasured i-th vector variates is

fi (ũi, ṽi|ûi, v̂i,ϑ) =

1

πn|Σmi||Σui|
exp

−
[
ũi

ṽi

]H [
Cmmi(ϑ) Cmui(ϑ)

Cumi(ϑ) Cuui(ϑ)

][
ũi

ṽi

] (6.72)

for i = 1, . . . ,M , where the complex matrix functions Cmmi, Cmui, Cmmi, and Cuui

are given by (6.68). The negative of the log-likelihood of the joint distribution (6.72)

can be expressed as

− ln (fi (ũi, ṽi|ûi, v̂i,ϑ)) =

πn + |Σmi|+ |Σui|+ ũHi Cmmiũi︸ ︷︷ ︸
term I

+ ũHi Cmuiṽi + ṽHi Cumiũi︸ ︷︷ ︸
term II

+ ṽHi Cuuiṽi︸ ︷︷ ︸
term III

.

(6.73)

Concerning the second step, as ũi and ṽi are independent, the conditional density

of ṽi is in fact the marginal [Rice, 1995] which is given by

ṽi ∼ Nc (vi,Σui) , i = 1, . . . ,M,

however, as vi is unknown and, in the conditional context, requires estimation con-

ditional on knowing ũi and ϑk, the conditional density of ṽi is expressed as

ṽi ∼ Nc (vi,Σui) , i = 1, . . . ,M, (6.74)

where vi = E [vi|ũi,ϑk]. Given the conditional distribution (6.74), the expectation
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of the log-likelihood of the joint distribution (6.72) with respect to this probability

measure can be determined. The EM algorithm requires the expectation of (6.73)

over the probability space defined by the conditional PDF (6.74). Performing this

integration term by term, neglecting the terms that are constant with respect to ϑ,

yields

E [term I| ũi,ϑk] = ũHi Cmmi (ϑ) ũi

E [term II| ũi,ϑk] = ũHi Cmui (ϑ)vi + vHi Cmui (ϑ) ũi

= 2Re
{
ũHi Cmui (ϑ)vi

}
E [term III| ũi,ϑk] = tr {Cuui (ϑ) Σui}+ vHi Cuui (ϑ)vi

The integrations for the expectations of terms I and II are straightforward, but the

expectation for term III is somewhat more complex, but it arises from a standard

result in quadratic form theory for random variables [Mathai and Provost , 1992].

Concerning the third step, it is required to determine an expression for vi de-

pendent only on ũi and ϑk. To do this, note that (6.63) and (6.65) imply that

vi = −G+
ui(ϑ)Gmi(ϑ)ui (6.75)

where G+
ui is a Moore-Penrose pseudoinverse to Gui. The equation (6.75) suggests

the estimator

vi = −G+
ui(ϑk)Gmi(ϑk)ũi, (6.76)

for which the expectation satisfies (6.75), meaning that (6.76) is an unbiased esti-

mator. An appropriate expression for the Moore-Penrose inverse is

G+
ui(ϑ) = C−1

uui(ϑ)GH
ui(ϑ)Λ−1

i (ϑ) (6.77)

where Λi could be replaced by any nonsingular matrix of the correct size, but Λi

was selected as it relates to the form of the MLEs (6.70). Defining

Qi (ũi,ϑk,ϑ) = −E [ln (fi (ũi, ṽi|ûi, v̂i,ϑ)) |ũi,ϑk] ,

with the substitution for vi as outlined above and combining all the terms i =

1, . . . ,M , and using (6.62) leads to the expression (6.66).

Remark: As outlined in Theorem 6.4, the objective of the EM algorithm is to

facilitate an approach for computing the MLE of the marginal distribution of the

known data. However, as will be shown, the marginal distribution of the known

data itself can be derived from (6.72), hence casting doubt on whether the use of
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the EM algorithm is necessary. It turns out that the use of the EM algorithm is

actually not necessary, but it is computationally advantageous as discussed in the

following.

To determine the marginal PDF for ũi, the terms in (6.72) are separated into

those dependent on, and independent of, ṽi. Therefore the joint probability distri-

bution can be expressed as

fi (ũi, ṽi|ûi, v̂i,ϑ) = g1i (ũi) g2i (ũi, ṽi)

where

g1i (ũ) =
1

πnm |Σmi||Σui||Cuui|
exp

{
−ũHi

[
Cmmi −CmuiC

−1
uuiCumi

]
ũi

}
and

g2i (ũi, ṽ) =
|Cuui|
πnu

exp
{
−
[
ṽi +C−1

uuiCumiũi
]H
Cuui

[
ṽi +C−1

uuiCumiũi
]}
.

Note that this factorisation is possible as Cuui is nonsingular due to the full column

rank of Gui. The marginal probability for the measured data u is given by

fi (ũi|ûi, v̂i,ϑ) =

∫
Cnu

fi (ũi, ṽi|ûi, v̂i,ϑ) dṽi = g1i (ũi)

∫
Cnu

g2i (ũi, ṽi) dṽi.

Note that, for a given ũi, g2i has the form of a complex normal PDF with mean

−C−1
uuiCumiũi and covariance C−1

uui. Therefore, it holds that∫
Cnu

g2i (ũi, ṽi) dṽi = 1

and so, in fact the marginal fi (ũi|ûi, v̂i,ϑ) = g1i (ũi). The marginal distribution of

the full known data set Ũ is given by

f
(
Ũ |Û , V̂ ,ϑ

)
=

M∏
i=1

fi (ũi|ûi, v̂i,ϑ) (6.78)

where the MLE for ϑ̂ is given as the minimiser of the negative of the log-likelihood

of (6.78) which, is given by the expression

− log f
(
Ũ |Û , V̂ ,ϑ

)
= constant terms +

M∑
i=1

ũHi
[
Cmmi (ϑ)−Cmui (ϑ)C−1

uui (ϑ)Cumi (ϑ)
]
ũi + detCuui (ϑ)

. (6.79)

213



Chapter 6 – Parameter Identification of Hydraulic Networks

Therefore, the computation of− log f
(
Ũ |Û , V̂ ,ϑ

)
is seen to involve the computation

of the inverse of a complex matrix Cuui and the computation of its determinant in

addition to matrix multplications. In comparison, within the (k + 1)-th iteration,

the Qi terms in (6.66) involve the following computation

ũHi Cmmi (ϑ) ũi − 2Re
{
ũHi Cmui (ϑ)xui

}
+ tr {Cuui (ϑ) Σui}+ xHuiCuui (ϑ)xui

where the term

xui = C−1
uui (ϑk)Cumi (ϑk) ũi

is treated as constants as it is only calculated once at the beginning of the (k +

1)-th iteration, and it is not a variable term that requires repeated computation.

Both the MLE approach based on the marginal PDF (6.79) and the EM algorithm

require iterative optimisation algorithms to determine the estimate ϑ̂. As such, the

numerical efficiency of each approach is extremely important.

The MLE approach involves one direct optimisation problem dealing with the

fixed form of the marginal PDF as the objective function. In contrast, the EM al-

gorithm presents a staged sequence of optimisation problems where each k-th stage

deals with a slightly altered objective function (i.e. a different value of xui). How-

ever, within the EM algorithm, the optimiser at each k-th stage does not require

exact determination, but in fact only an improvement in the objective function is

required at each stage to update the xui and to continue onto the next stage. There-

fore, given the use of global iterative optimisation algorithms, the difference between

the number of iterations required for the marginal PDF approach in comparison to

the EM algorithm is not necessarily significant.

A breakdown of the computations required for each term in the marginal PDF

from (6.79) and the EM algorithms Qi terms in (6.80) and their associated operation

counts is given in Table 6.5. From this table, it is clear that the matrix inversion and

the determinant computation heavily penalise the marginal PDF approach as both of

these involve O {n3
u} operations in comparison to highest operation count of O {n2

u}
involved in the EM algorithm. Therefore, the action of the EM algorithm to defer

the expensive operations (such as the matrix inversion) to occur only once for each of

the k optimisation stages is observed to be a computationally advantageous strategy.

Therefore, as long as the number of iterations required by the EM algorithm is not

a factor near nu greater than the number required by the MLE of the marginal PDF

approach, then the EM algorithm will be more computationally efficient.

Additionally, the fact that the EM algorithm avoids the computation of detCuu

is an additional advantage from the perspective of numerical stability as determinant

calculations can often cause floating point overflows or underflows.
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Table 6.5: Order of operation count for the EM algorithm terms in (6.66) and the
marginal PDF terms in (6.79). In the expressions below, the symbols Xuu ∈ Cnu×nu ,
xm ∈ Cnm , and xu ∈ Cnu are used to make the important operations clear.

Approach Operation Expression Operation count

EM algorithm

series multiplication xHmCmmxm O {n2
m}

series multiplication xHmCmuxu O {nmnu}
trace of multiplication tr {CuuΣu} O {n2

u}
series multiplication xHu Cuuxu O {n2

u}
total O {n2

m, n
2
u, nmnu}

series multiplication xHmCmmxm O {n2
m}

inversion C−1
uu O {n3

u}
MLE of multiplication xHmCmu O {nmnu}

marginal PDF series multiplication xHuXuuxu O {n2
u}

determinant detCuu O {n3
u}

total O {n2
m, n

3
u, nmnu}

6.5.2 Expectation-maximisation M -network model

The problem of parameter estimation within a M -network for which there are un-

measured state variables is conveniently described by the parameter estimation prob-

lem outlined in Theorem 6.5. Firstly, clearly the known data Ũ corresponds to the

transforms of the measured states Ψ̃m and Θ̃m, and the unknown data Ṽ corresponds

to the transforms of the unmeasured states Ψ̃u and Θ̃u. Secondly, the constraints

on the data (6.63) in Theorem 6.5 corresponds to the network dynamics governing

the interaction of the state variables as in (6.28), which can be reorganised similarly

to (6.63) as

[
Gm(ϑ, s) Gu(ϑ, s)

]

[

Ψm(s)

Θm(s)

]
[

Ψu(s)

Θu(s)

]
 = 0. (6.80)

This relationship is formalised in the following corollary which outlines the EM

parameter estimation model for an M -network with a nodal partitioning for which

A4 6= ∅.

Corollary 6.3. Consider the M -network (G(N ,Ξ),M) with the nodal partitioning

as defined in Section 6.3.3, for which there exists the measurement set{
ψ̃m(t), θ̃m(t) : t = 0,∆t, . . . , 2M∆t

}
215



Chapter 6 – Parameter Identification of Hydraulic Networks

where [
ψ̃m(t)

θ̃m(t)

]
=

[
ψm(t)

θm(t)

]
+

[
eψ(t)

eθ(t)

]
(6.81)

where ψm and θm are as defined in Section 6.3.3 and are periodic with fixed frequency

distribution (with negligible spectral energy above (2∆t)−1 Hz), and eψ(t), eθ(t), t =

0,∆, . . . , 2M∆t are stationary processes with power spectrum’s Sψ(iω) and Sθ(iω).

Given that there exists some strictly passive ξ ∈ Ξi for each i ∈ A3∪A4∪B1∪B2, then

the EM algorithm solution to the network parameter estimation problem in Definition

6.4 is given by (6.66)-(6.69) in Theorem 6.5 with the following substitutions

ũi =

[
Ψ̃m(iωi),

Θ̃m(iωi)

]
, (6.82)

Gmi(ϑ) = Gm(ϑ, iωi), (6.83)

Gui(ϑ) = Gu(ϑ, iωi), (6.84)

Σmi =
1

2M

[
Sψ(iωi) 0

0 Sθ(iωi)

]
, (6.85)

Σui = Ai ∈ Rnu×nu where Ai is positive definite, (6.86)

for i = 1, . . . ,M , where Gm and Gu are the network transfer matrices for the

measured and unmeasured states from (6.29) and (6.30) respectively, and the ωi are

the Fourier frequencies from the DFT of the time-domain data.

Proof. As in the proof to Corollary 6.2, the parameter estimation problem outlined

in Corollary 6.3 above can be cast as the constrained complex Gaussian problem from

Theorem 6.5 for which there is incomplete data, which in the context of Corollary

6.3 are the unmeasured nodal states ψu and θu. The substitutions (6.82)-(6.86)

are justified by a similar logic to that used in the proof to Corollary 6.2, with the

addition that any positive definite matrix in Rnu×nu is appropriate for the Σui as the

treatment of the unmeasured variables as complex Gaussian variates is superficial.

For the substitutions (6.83)-(6.84) to hold, it remains to show that they adhere

to the rank conditions (6.64)-(6.65) in Theorem 6.5, namely that

rankGu(s) = nu (6.87)

rank
[
Gm(s) Gu(s)

]
= N (6.88)

for s = iωi, i = 1, . . . ,M . Given that Gu is N × nu where nu < N , (6.87) states

that Gu be full column rank at s = iωi, i = 1, . . . ,M . Combining (6.30) with the
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original partitions (6.20)-(6.22) reveals that

Gu(s) =



Y A1A3(s) Y A1A4(s) Y A1B2(s) 0 0 0

Y A3A3(s) Y A3A4(s) Y A3B2(s) 0 0 0

Y C1A3(s) Y C1A4(s) Y C1B2(s) 0 0 0

Y B1A3(s) Y B1A4(s) Y B1B2(s) 0 0 0

Y B2A3(s) Y B2A4(s) Y B2B2(s) 0 0 0

Y A2A3(s) Y A2A4(s) Y A2B2(s) −I 0 0

Y A4A3(s) Y A4A4(s) Y A4B2(s) 0 −I 0

Y C2A3(s) Y C1A4(s) Y C1B2(s) 0 0 −I


. (6.89)

Given the identities in the last three block columns, Gu is full column rank only

when the matrix composed of the first three block columns of (6.89) is full column

rank. Swapping the block row ordering, it can be demonstrated that the first three

block columns contain the submatrix Y A3A3(s) Y A3A4(s) Y A3B2(s)

Y A4A3(s) Y A4A4(s) Y A4B2(s)

Y B2A3(s) Y B2A4(s) Y B2B2(s)

 (6.90)

which is recognised as being a principal minor of the network admittance matrix

Y for the M -network (G(N ,Ξ),M). As a principal minor of the passive network

admittance matrix Y , the matrix (6.90) is nonnegative definite on s ∈ C+ (Lemma

B.1) where positive definiteness is ensured by the existence of strictly passive links

to each of the nodes i ∈ A3∪A4∪B2 associated with the submatrix (Theorem B.3).

As (6.90) is positive definite on s ∈ C+, it is also full rank on s ∈ C+, meaning that

the first three block rows in (6.89) represent a full column rank matrix and hence

(6.87) holds on s ∈ C+.

The statement (6.88) is equivalent to saying that
[
Gm Gu

]
is full row rank.

Combining (6.29) with the original partitions (6.17)-(6.19) reveals that

Gm(s) =



Y A1A1(s) Y A1A2(s) Y A1B1(s) −I 0 0

Y A3A1(s) Y A3A2(s) Y A3B1(s) 0 −I 0

Y C1A1(s) Y C1A2(s) Y C1B1(s) 0 0 −I
Y B1A1(s) Y B1A2(s) Y B1B1(s) 0 0 0

Y B2A1(s) Y B2A2(s) Y B2B1(s) 0 0 0

Y A2A1(s) Y A2A2(s) Y A2B1(s) 0 0 0

Y A4A1(s) Y A4A2(s) Y A4B1(s) 0 0 0

Y C2A1(s) Y C2A2(s) Y C2B1(s) 0 0 0


. (6.91)
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Given the structure of the identities in both Gm and Gu, it is clear that both the

top three and bottom three block rows of
[
Gm Gu

]
are linearly independent for

all s ∈ C+. Therefore, to demonstrate the full row rank nature of this matrix, it

is required to show that the centre two block rows create a full row rank matrix.

Considering the centre two block rows in (6.89) and (6.91), by swapping the ordering

of the columns it is seen that the two centre block rows contain the submatrix[
Y B1B1(s) Y B1B2(s)

Y B2B1(s) Y B2B2(s)

]
(6.92)

which is a principal minor of the network admittance matrix Y . Therefore, using

similar reasoning as in the case for (6.87) (this case relies on the strict passivity of

at least one element incident to the nodes in B1∪B2), the centre two block rows are

seen to be full row rank on s ∈ C+, and hence (6.88) holds for s ∈ C+.

Remarks:

1. An artificial construction, implicit within Corollary 6.3, is that the unknown

data ṽ corresponds to complex Gaussian variates centred on the unknown

nodal states, that is

ṽi =

[
Ψ̃u(iωi),

Θ̃u(iωi)

]
∼ Nc

([
Ψu(iωi),

Θu(iωi)

]
,Ai

)
,

for i = 1, . . . ,M , thus implying that the unmeasured data follows a complex

Gaussian distribution. These variates clearly do not exist, but are used as

a means of deriving the form of the EM algorithm. As such, the covariance

matrices Ai have no quantifiable form, but can be arbitrarily selected posi-

tive definite matrices. These matrices appear in the estimation scheme (6.66)

through the Λi terms. To reduce the importance of these terms in the esti-

mation scheme, the Ai matrices were selected as diagonal matrices, where the

diagonal terms were selected to be a couple of orders of magnitude smaller

than the variance terms for the measured variables.

2. To improve the computational efficiency of the estimation process (6.66) for

M -networks, the analytic forms of Gm and Gu in (6.89) and (6.89) can be

used to determine explicit expressions for the matrix functions Cmm, Cmu,

Cum, Cuu and Λ. Expressing the covariance matrices in the general forms

Σm(s) =

[
Σmψ(s) 0

0 Σmθ(s)

]
, Σu(s) =

[
Σuψ(s) 0

0 Σuθ(s)

]
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(i.e. the nodal pressure and flow variables are independent), the following

expression for Λ can be obtained, based on substituting (6.89) and (6.89) into

(6.71),

Λ(s) =

 Σmθ(s) 0 0

0 0 0

0 0 Σuθ(s)

+

 Y u1(s)Σuψ(s)Y H
u1(s) Y u1(s)Σuψ(s)Y H

u2(s) Y u1(s)Σuψ(s)Y H
u3(s)

Y u2(s)Σuψ(s)Y H
u1(s) Y u2(s)Σuψ(s)Y H

u2(s) Y u2(s)Σuψ(s)Y H
u3(s)

Y u3(s)Σuψ(s)Y H
u1(s) Y u3(s)Σuψ(s)Y H

u2(s) Y u3(s)Σuψ(s)Y H
u3(s)

+

 Y m1(s)Σmψ(s)Y H
m1(s) Y m1(s)Σmψ(s)Y H

m2(s) Y m1(s)Σmψ(s)Y H
m3(s)

Y m2(s)Σmψ(s)Y H
m1(s) Y m2(s)Σmψ(s)Y H

m2(s) Y m2(s)Σmψ(s)Y H
m3(s)

Y m3(s)Σmψ(s)Y H
m1(s) Y m3(s)Σmψ(s)Y H

m2(s) Y m3(s)Σmψ(s)Y H
m3(s)


(6.93)

which can be more compactly expressed as

Λ(s) =

 Λ11(s) Λ12(s) Λ11(s)

Λ21(s) Λ22(s) Λ23(s)

Λ31(s) Λ32(s) Λ33(s)

 , (6.94)

where the submatrices are given as

Λij(s) =
Y m1(s)Σmψ(s)Y H

m1(s) + Y u1(s)Σuψ(s)Y H
u1(s) + Σmθ(s) for i, j = 1

Y m3(s)Σmψ(s)Y H
m3(s) + Y u3(s)Σuψ(s)Y H

u3(s) + Σuθ(s) for i, j = 3

Y mi(s)Σmψ(s)Y H
mj(s) + Y ui(s)Σuψ(s)Y H

uj(s) otherwise

.

Using the forms of Gm and Gu from (6.29) and (6.94), and substituting (6.94)

into (6.68) yields

Cmm(s) =

[
Y H

m(s)Λ−1(s)Y m(s) −Y H
m(s)

{
Λ−1(s)

}
•1

−
{
Λ−1(s)

}
1• Y m(s)

{
Λ−1(s)

}
11

]
, (6.95)

Cmu(s) =

[
Y H

m(s)Λ−1(s)Y u(s) −Y H
m(s)

{
Λ−1(s)

}
•3

−
{
Λ−1(s)

}
1• Y u(s)

{
Λ−1(s)

}
13

]
, (6.96)

Cum(s) = CH
mu(s) (6.97)

Cuu(s) =

[
Y H

u (s)Λ−1(s)Y u(s) −Y H
u (s)

{
Λ−1(s)

}
•3

−
{
Λ−1(s)

}
3• Y u(s)

{
Λ−1(s)

}
33

]
, (6.98)

where the • in the subscript indicates that a whole block row (or block column)

is used, where the dimensions of the block rows and columns are taken from
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Table 6.6: The M -network nodal partitioning (from Definition 6.6) for cases 1 and 2
for the 13-pipe network from Example 6.7. The inclusion of 7 ∈ B2 means that case 2
incorrectly assumes that θ7(t) = 0, where as 7 ∈ A4 for case 1 correctly assumes that
θ7(t) 6= 0.

Nodal set
Node sets for each case

case 1 case 2

A1 {4} {4}
A2 ∅ ∅
A3 ∅ ∅
A4 {7} ∅
B1 {2, 6, 3} {2, 6, 3}
B2 {5} {5, 7}
C1 ∅ ∅
C2 {1} {1}

(6.94), and

Y m(s) =

 Y m1(s)

Y m2(s)

Y m3(s)

 , Y u(s) =

 Y u1(s)

Y u2(s)

Y u3(s)

 .
For the numerical examples in the next section, (6.94)-(6.98) formed the basis

of the calculation of (6.66).

6.5.3 Numerical examples

The following examples explore the utility of the EM method to deal with cases

where there are nodes for which both the nodal states of pressure and flow are

unknown. This is undertaken through the use of an extended 11-pipe network

(Figure 6.4), where the extensions (a two pipe branch) are considered to be unknown.

The resulting scenario is one for which the network has a node where both the nodal

flow and pressure are unknown. All computational procedures were undertaken as

outlined in Appendix E.

Example 6.7. Consider the 13-pipe TSF network in Figure 6.4(a) which is given by

the 13-pipe network in Figure 6.1 with an additional branch from node 7 consisting

of two pipes, a capacitance element and an emitter (network details are in Appendix

D). The form of the branch from node 7 is considered an unknown, and thus the

assumed form of the 13-pipe network is that of Figure 6.4 (b) where the nodal flow
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Figure 6.4: The extended 11-pipe network from Examples 6.7 and 6.8. The rings around
the nodes indicate the locations of pressure measurements. Figure (a) represents the actual
true network which is the 11-pipe network from Figure 6.1 with an additional branch from
node 7 consisting of two pipes with a capacitor at node 8 and an emitter at node 9. Figure
(b) represents the known configuration of the network involving an unknown nodal flow
at node 7, as the existence of the branch is known but the form of the branch is unknown.

at node 7 is an unknown state variable. The parameter identification problem is to

estimate the parameters of the 11 known pipes.

Two cases of nodal categorisations are considered. The first case assumes that the

nodal flow for node 7 is an unknown (for this case is is assumed that node 7 ∈ A4),

this represents a correct treatment of the unknown branch. The second case assumes

that the nodal flow for node 7 is known to be zero (for this case it is assumed that

node 7 ∈ B2), that is the presence of the unknown branch is ignored. The nodal sets

for these cases are given in Table 6.6. There is a flow measurement at node 4 and

pressure measurements at nodes {2, 3, 4, 6}.

As in Example 6.5, the raw time-domain data is obtained from a MOC simulation
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with added Gaussian noise. The frequency-domain data is obtained from the DFT of

the time-domain data. For the MOC simulation, the system is excited into a steady-

oscillatory transient state by a multi-sine flow perturbation at node 4 consisting of

983 equi-spaced frequencies from 0 to 15 Hz with amplitudes ranging from 0.01 to

0.1 L/s. The time-domain measurement errors are taken as independent zero mean

Gaussian variates with standard deviations of 1 kPa for the pressure measurements

and 0.32 L/s for the flow measurement.

As in Example 6.5, it is assumed that none of the pipeline parameter values are

known, but that: the wavespeed is on the interval [900,1200] m/s; the friction factor

is on the interval [0.015,0.04]; the diameters are known to within ±10 mm of their

actual value; and the pipe lengths are known to within ±20 m of their actual value.

Given the parameterisation of the TSF pipes from Example 6.1, the parameter space

is 33 dimensional and is given by

ϑ = {ro1,Γo1, Zco1} ∪ · · · ∪ {ro11,Γo11, Zco11} .

Corollary 6.3 was used as the framework to determine the parameter estimates,

where the minimiser ϑ̂ was computed using PSO. This was achieved by implementing

a strategy of intermittently updating the estimate ϑ̂k to lead onto the (k + 1)-th

minimisation iteration for computing ϑ̂k+1. The results of 10 independent trials for

each case are summarised in the box plots in Figure 6.5 and the statistics in Table

6.7.

Comparing the performance of case 1 to case 2 as displayed in Figure 6.5 and

Table 6.7, it is clear that the correct hypothesis concerning the node 7 flow in case 1

on average yielded more accurate parameter estimates than the incorrect hypothesis

for case 2. In Table 6.7 it is seen that the median error estimates for case 1 are all

lower than case 2, this is particularly so for the estimates for ro and Zco. Most

notably is that the error for the parameter estimate of ro for pipe [10] was less than

5% for case 1 but in the order of O {103}% for case 2.

A more thorough consideration of Figure 6.5 shows that some stronger patterns

exist within the data. The parameter estimates for case 1 are significantly better

than those for case 2 for all pipes that are incident to node 7 (i.e. pipes [8], [9], and

[10]). This pattern indicates two observations. Firstly, incorrect nodal categorisa-

tions have a more significant impact on the parameter estimates for links that are

incident to nodes that have been incorrectly characterised. Secondly, the proposed

EM algorithm has successfully provided accurate parameter estimates for a system

with a node for which no information exists. This has not been achieved before

within the literature, the the authors knowledge.
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Figure 6.5: Box plots of the relative errors of the parameter estimates from Example 6.7.
The figure rows are associated with particular parameters, and the figure columns with
particular cases. Each box and whisker set is associated with a pipe. For each case, 10
independent trials were performed. The box plot of the error for the parameter estimate
for ro of pipes [9] and [10] in case 2 are not seen as they were O

{
103
}

%. The + indicate
outliers.

Considering the case 1 estimates for the different parameter types, a similar pat-

tern is observed here as is observed for Example 6.5 in that the propagation coeffi-

cient Γo is estimated with a high accuracy, far higher than the resistance coefficient

ro and the impedance coefficient Zco. As explained in Section 6.4.3, the hypothesised

reason for this lies in the influence that the parameters have in the pattern of the

system’s frequency response. The parameter Γo is related to the period of a pipeline

and hence the location of the harmonics in the frequency-domain, whereas ro and
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Table 6.7: Summary statistics of relative errors of pipe parameter estimates for Example
6.7. The parameter statistics for each pipe (median and the interquartile range , IQR)
are based on 10 trials. The summary statistics (min, mean and max) are based on the
parameter statistics from the 11 pipes.

Parameter Statistic type
Relative error statistics (%)

case 1 case 2

ro

median
min 2.81 19.03
mean 30.68 O {102}
max 99.72 O

{
103
}

IQR
min 0.00 0.00
mean 9.30 0.96
max 27.30 5.33

Γo

median
min 0.0010 0.0005
mean 0.0050 0.0270
max 0.0270 0.0580

IQR
min 0.0000 0.0000
mean 0.0120 0.0000
max 0.0210 0.0010

Zco

median
min 4.04 0.36
mean 7.94 11.87
max 15.05 24.24

IQR
min 1.10 1.25
mean 3.46 1.50
max 7.24 1.88

Zco are related to the energy dissipation within a pipeline and are hence related to

the harmonic amplitudes in the frequency-domain. The error between the model

predictions and the data is much more sensitive to mis-aligned harmonics than it is

to well aligned harmonics with slightly different amplitudes. Therefore, by implica-

tion it is clear that the estimation process would be much more sensitive to Γo than

ro and Zco resulting in much improved estimates for Γo in comparison to ro and Zco.

This reasoning also explains why the parameter estimates of Γo for case 2 were

reasonably accurate despite the incorrect assumption about the flow at node 7. The

presence of the branch from node 7 did not alter the locations of the networks

harmonics that were associated with the periods of known 11 pipes. Hence the Γo

parameters were still able to be estimated accurately. However, the presence of the

branch did serve to dissipate energy within the system through the combined action

of pipe friction and losses through the emitter. Therefore, as the branch changed

the network’s harmonic amplitudes, the estimates for ro and Zco were affected as
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they are related to these amplitudes.

Example 6.8. Consider the 13-pipe network, from Example 6.7 but this time mod-

elled with TUF pipes. As in Example 6.7, the objective is to estimate the parameters

of the known 11 pipes for the two cases of nodal categorisations are considered as

outlined in Table 6.6.

All details pertaining to system excitation, measurement error and parameter

uncertainty for this example are taken from Example 6.8 with the addition that, as

in Example 6.6, the relative roughnesses are known to be on the interval [0.0001,

0.01] and the steady-state velocities are known to be on the interval [0.1, 10] m/s.

Given the parameterisation of the TUF pipes from Example 6.2, the parameter space

is 55 dimensional and is given by ϑ = ϑ1 ∪ · · · ∪ ϑ11 where

ϑi = {ci, Di, li, Cε,i, CRe,i} .

where Cε,i = log10 εi/Di and CRe,i = log10Rei.

Corollary 6.3 was used as the framework to determine the parameter estimates,

where the minimiser ϑ̂ was computed using PSO. This was achieved by implementing

a strategy of intermittently updating the estimate ϑ̂k to lead onto the (k + 1)-th

minimisation iteration for computing ϑ̂k+1. The results of 10 independent trials for

each case are summarised in the box plots in Figure 6.6 and the statistics in Table

6.8.

As demonstrated on Table 6.8, the case 1 EM algorithm with the correct as-

sumption about node 7 on average yields more accurate parameter estimates for all

parameters except the pipe diameters. Consistent with Example 6.7, is the pattern

that the parameter estimates for case 1 are significantly better than those for case 2

for all pipes that are incident to node 7 (i.e. pipes [8], [9], and [10]). This reinforcing

that (i) the correct categorisation of a node is particularly crucial for the accurate

estimation of the parameters of all links incident to that node, and (ii) the proposed

EM algorithm is effectively able to deal with nodes for which there is no information.

Drawing from both Examples 6.7 and 6.8, more detail can be given to these

conclusions, in that it is mainly the parameters associated with energy dissipation

that are effected by the incorrect categorisation of node 7. As case 2 does not allow

for any flow to leave node 7, the energy that enters links [8] to [10] is considered as

only being dissipated within the links. The implication of this is that the energy loss

parameters (e.g. ro for TSF pipes and CRe for TUF pipes), will be higher than the

actual values. However, as case 1 correctly categorises node 7 and allows for energy

loss through this node, the energy loss parameter estimates for the links connected

to this node are more accurate.
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Figure 6.6: Box plots of the relative errors (%) of the parameter estimates from Example
6.8. The figure rows are associated with particular parameters, and the figure columns
with particular cases. Each box and whisker set is associated with a pipe. For each case,
10 independent trials were performed. The + indicate outliers.

As with all the parameter estimation examples within this chapter, the variables

related to the system harmonic locations (i.e. wavespeed and pipe length) were

estimated with greater accuracy than the other parameters. This is particularly true

for Cε, where the apparent lack of sensitivity of the methodology to this parameter

is attributed to the fact that ε/D only appears in the expression for the pipeline

functions Γ and Zc through the functions A∗ and B∗ Vardy and Brown [2007], thus

potentially diminishing its influence.

In summary, despite the known difficulty in accurately estimating the parameters
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Table 6.8: Summary statistics of relative errors of pipe parameter estimates for Example
6.8. The parameter statistics for each pipe (median and the interquartile range , IQR)
are based on 10 trials. The summary statistics (min, mean and max) are based on the
parameter statistics from the 11 pipes.

Parameter Statistic type
Relative error statistics (%)

case 1 case 2

wavespeed, co

median
min 0.012 0.021
mean 0.313 0.411
max 0.920 1.119

IQR
min 0.473 0.000
mean 0.954 0.822
max 1.691 1.481

diameter, D

median
min 0.944 0.292
mean 2.933 1.963
max 3.937 3.937

IQR
min 0.000 0.000
mean 0.392 0.377
max 0.933 0.922

length, l

median
min 0.011 0.007
mean 0.311 0.415
max 0.942 1.103

IQR
min 0.474 0.000
mean 0.954 0.822
max 1.690 1.482

Cε = log10

(
ε
D

) median
min 0.36 6.99
mean 17.26 28.37
max 33.33 33.33

IQR
min 0.01 0.00
mean 35.51 15.21
max 61.89 53.61

CRe = log10Re

median
min 0.499 2.586
mean 3.627 7.722
max 7.580 22.245

IQR
min 0.000 0.000
mean 4.970 1.709
max 8.633 6.408

associated with energy dissipation, Examples 6.7 and 6.7 demonstrate that the use

of the EM methodology to correctly deal with unknown nodal variables leads to

improved parameter estimates. The improvement of the estimates was observed to
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generally hold for all pipes within the network. However, an important finding was

that the improvement for the parameter estimates was significant for pipes within

the vicinity of the nodal for which no information was known.

6.6 Conclusions

This chapter involved the study of the system identification of hydraulic networks

based on transient fluid state measurements. From the extensive literature, it was

seen that three classes of problems have been considered, namely (i) parameter

estimation problems, including ITMs, (ii) detection problems, where the detection

of system faults is the concern, and (iii) detection and estimation problems, which

are a combination of the two problem types.

Based on a generalisation of the hydraulic network theory from Chapters 3 and 4,

the problem types observed from the literature were given formal definitions (Section

6.3.2). These formal definitions led to the observation that the system dynamics,

as defined by the admittance matrix expression from Chapters 3 and 4, defines the

subspace within which the true system nodal state must lie, of which the measure-

ments corrupted samples (due to noise) of the incomplete state (i.e. only selected

nodal states are measured). This led to a necessary nodal partitioning categorising

the networks nodes in terms of the information available from these nodes to inform

the identification process. This nodal partitioning enabled a restructuring of the

admittance matrix formulation of the system dynamics into subsystems involving

the known, measured and unmeasured nodal state variables (Section 6.3.3). This

restructuring, served as the basis of the development of two parameter estimation

methodologies the MLE decoupled measurement system model, and the EM model.

The MLE decoupled measurement model (Section 6.4) involved the development

of a dynamic system involving only the measured nodes decoupled from the influence

of the unmeasured nodes. The development of this model first involved deriving the

form of a decoupling filter. The filter was designed to essentially nullify the influence

of the unmeasured nodes on the resulting system, thus creating a decoupled system.

It was observed that the filter had the interpretation of being an oblique projection

operator. The existence and stability of the filter where proved to be properties

inherited from the passivity of the network elements. Posing the decoupled system in

a constrained complex Gaussian framework, a MLE estimation process was derived

for the network parameters using a combination of analytic and numeric techniques.

A series of numerical experiments were performed using this method coupled with

the evolutionary optimiser PSO. The experiments were performed on an 11-pipe

network using TSF and TUF pipes, resulting in parameter estimation problems of 33
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and 55 dimensions respectively. The results demonstrated the success of the method

in yielding accurate parameter estimates, where the parameters associated with

the pipeline delays (such as wavespeeds and lengths) were consistently estimated

with a high accuracy and a greater variability was observed in the estimates for

the parameters associated with inertial and resistive effects (such as impedance

coefficients and pipeline roughnesses).

The EM methodology (Section 6.5) represents a philosophically different ap-

proach to dealing with the unmeasured nodal states. This method was formulated

to deal with a broader class of measurement scenarios than the decoupled system

method. Within this approach, the measured nodal states were treated as being

only part of the complete data (the complete data consisting of both the measured

and unmeasured nodal states). Based on posing the problem in a constrained com-

plex Gaussian framework (different to the that used in the decoupled system above),

the statistical EM algorithm was used to derive a scheme to estimate the network

parameters based on only using the information from the measured nodal states.

The computational benefits of using the EM approach over the MLE based on the

marginal distribution of the known data were demonstrated. The feasibility of the

method was demonstrated to be dependent on the passivity of the network. This

proposed method is significant in that it is the only method within the literature

that is able to deal with the case where there are nodes within the system for which

no information exists. As with the decoupled system method, a series of numerical

experiments were performed by coupling the EM method with a PSO algorithm.

The experiments were designed to test the ability of the methodology to deal with

unknown nodal states. This was undertaken by dealing with a 13-pipe network for

which full topology of the network was considered unknown. That is, for the pur-

poses of parameter identification the network was considered as an 11-pipe network

with an unknown nodal flow. The results indicated that the use of the EM approach

to correctly deal with the unknown nodal variables resulted in parameter estimates

of a greater accuracy, particularly for the parameters of pipes incident to nodes for

which no information exists.
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Conclusions

The majority of existing methods for modelling the Laplace-domain behaviour of a

transient fluid line system have been limited to dealing only with certain classes of

network types, namely, those that do not contain second-order loops. This thesis

proposed a theoretical Laplace-domain framework that is able to deal with networks

of an arbitrary structure and a broad class of hydraulic elements, termed the network

admittance matrix method. Within this dissertation, this method was applied to

two areas of fundamental interest within hydraulic network research, namely time-

domain simulation, and system parameter identification.

7.1 Thesis Outcomes

A detailed breakdown of the main contributions of this dissertation are outlined in

the introduction in Section 1.3. Below, the outcomes of each chapter are summarised.

Chapter 2 derived the basic equations of mass, momentum, and energy conser-

vation governing the transient behaviour of one dimensional (1-D) fluid lines where

a new and more comprehensive form of the 1-D energy equation including an energy

term associated with the viscoelastic behaviour of the pipe wall was derived. A

new framework for the for linear fluid lines was defined (termed the L -class of fluid

lines) and demonstrated to have a broad membership of most commonly accepted

1-D fluid line models. All pipeline models within this class were demonstrated as be-

ing passive systems. The Laplace-domain representation of the L -class was derived,

for which the causal organisations of the transfer matrix formulations (of which the

admittance form is one instance) were demonstrated to also be passive.

Within Chapter 3, using graph theory concepts, a completely new formulation

for arbitrarily configured networks comprised of pipes, junctions, demand nodes,
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and reservoirs has been derived. The derived representation takes the form of an

admittance matrix that maps from the nodal pressures to the nodal flow injections.

The analytic nature of this representation was observed to enable significant qual-

itative insight into the structure of a network. The proposed admittance matrix

served as the basis for an efficient model for computing the frequency response of

a network of unknown nodal states subject to known nodal inputs. The passivity

properties of the network’s pipes was demonstrated to ensure the existence of this

computable model. The theory was verified by a number of numerical examples.

The theory developed in Chapter 3 was extended in Chapter 4 to deal with

networks comprised of a broader class of hydraulic elements, namely compound

nodes whose dynamic structure yields an admittance type representation that can

be expressed as a linear time-invariant system. An extensive framework for deriv-

ing the admittance matrix form for compound nodes, as well as conditions for the

existence of this form, was presented. Based on this special admittance form, an an-

alytic representation of the network admittance matrix was derived. A computable

input/output (I/O) model mapping from the known nodal boundary conditions to

the unknown nodal states was derived. The existence of this map was proven to

exist and be dependent on the strict passivity of the networks link and compound

node dynamics. The theory was verified by a number of numerical examples.

Chapter 5 presented a methodology for the development of a time-domain hy-

draulic network simulator based on coupling a numerical inverse Laplace transform

(NILT) with the theory from Chapters 3 and 4. The approach is entirely novel in

that it couples the Laplace-domain I/O model in a computationally efficient way

with the Fourier-Crump NILT from Abate and Whitt [1995]. The parameters of the

NILT were studied in detail for simple test functions and robust parameter heuris-

tics were developed. Extensive numerical tests were performed comparing the NILT

method to the method of characteristics (MOC) and it was observed that, despite the

approximate linear nature of the Laplace-domain model, the NILT provided highly

accurate approximations for all networks considered, with the time-scale of the accu-

racy of the approximation being dependent on the type of input signal used to excite

the network. For large networks, NILT was found to be extremely computationally

efficient with respect to the MOC. In addition to the computational efficiency, the

NILT possesses the desirable property that it correctly captures wave propagation

delays without the need for fine computational grids. As such, the NILT repre-

sents an ideal approach for modelling networks involving pipes with greatly varying

wavespeeds.

Chapter 6 involved the study of the system identification of hydraulic networks

based on transient fluid state measurements. Based on a generalisation of the general
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hydraulic network theory from Chapters 3 and 4, a nodal partitioning framework was

developed to deal with the different types of information available from the network

nodes. This nodal partitioning enabled a restructuring of the admittance matrix

formulation of the system dynamics into subsystems involving the known, measured

and unmeasured nodal state variables. Based on this restructuring, two parameter

estimation methodologies were developed. The first method, the decoupled mea-

surement mode, involved the development of a dynamic system involving only the

measured nodes decoupled from the influence of the unmeasured nodes. The devel-

opment of this model first involved deriving the form of a decoupling filter. The

existence and stability of the filter where proved to be properties inherited from the

passivity of the network elements. Posing the decoupled system in a constrained

complex Gaussian framework, a maximum likelihood estimation (MLE) estimation

process was derived for the network parameters using partly analytic techniques.

The second methodology from Chapter 6, the expectation-maximisation (EM)

method was formulated to deal with a broader class of measurement scenarios than

the decoupled system method. Within this approach, the measured nodal states

were treated as being only part of the complete data (the complete data consisting

of both the measured and unmeasured nodal states). Based on posing the problem in

a constrained complex Gaussian framework (different to that used in the decoupled

system above), the statistical EM algorithm was used to derive a scheme to estimate

the network parameters based on only using the information from the measured

nodal states. The computational benefits of using the EM approach over the MLE

based on the marginal of the known data were demonstrated. The feasibility of

the method was demonstrated to be dependent on the passivity of the network.

The utility of both methods from Chapter 6 was demonstrated using a number of

numerical examples.

7.2 Scope for Future Work

A general network structure encompassing both network types from Chapters 3 and

4 is presented in Appendix B as a M -network. Within this Appendix, the analogies

between M -networks and standard Kirchoff networks, such as those encountered

in electrical circuits, are explored, the main difference being associated with the

distributed parameter nature of the M -networks elements. That is their trans-

fer functions are not rational, like those encountered in Kirchoff networks, and the

elements carry travelling wave forms. Continued research aimed at a deeper under-

standing of the analogies between these two network types could serve to deepen

the theory for fluid networks given the vast theory for Kirchoff networks as driven
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by the electrical circuits applications [Desoer and Kuh, 1969; Wohlers , 1969; Chen,

1983].

Despite the wide success of the proposed linear method in approximating nonlin-

ear systems as demonstrated throughout this thesis, the Achilles heal of the proposed

method is its inability to deal with nonlinearities. This limitation occurs at the basic

level of the proposed method, as the Laplace transform is typically only applied to

linear time-invariant systems. However, a potential avenue for dealing with non-

linearities within a Laplace-transform context is through the use of the Volterra

series [Rugh, 1981]. The Volterra series is based on the theory that certain classes

of nonlinearities can be described in the transformed domain by an infinite series

of convolutions, thus transfer functions for nonlinear systems are actually convolu-

tion operators. Despite the complexity of the Volterra series representation, future

research may demonstrate its utility for fluid line applications.

To increase the computational efficiency of the NILT process in other appli-

cations, many authors use sequence accelerators [Crump, 1976; Abate and Whitt ,

1992]. Although, for reasons discussed in Section 5.4, the application here does not

directly lend itself to standard sequence accelerators, there may be some scope for

the use of more advanced accelerators.

Networks containing highly nonlinear elements (such as pressure relief valves)

cannot be modelled accurately by the NILT. Future research could focus on devel-

oping a methodology generalising the approach outlined by Washio et al. [1979] in

treating lumped nonlinear elements in series pipelines. This approach consists of a

novel treatment of the lumped nonlinear element as an external boundary condition,

and is well suited to be extended for incorporation with the proposed NILT method

for generalised networks.

As demonstrated by the vast literature on the topic, there is a huge scope for

further work within the field of identification of hydraulic systems, both theoretical

and applied. This thesis deals exclusively with ideal numerical networks as it is

mainly concerned with the theoretical questions of how to best use the information

available to inform the estimation process. The proposed methods provide an ex-

cellent tool for the analysis of identifiability issues concerning hydraulic networks,

and also the basis for the development of methods to be used in the real world.

The proposed methods provide ideal tools for the further, and deeper, analysis of

identifiability issues of pipeline networks. From the examples presented, observations

were made concerning the ease at which some parameters could be identified, and

the difficulty associated with others. Future research could focus on formalising this

work by a more detailed analysis aimed at understanding the correlation structures
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between the parameters (i.e. Rodriguez-Fernandez et al. [2007]). This could lead to

a better, more identifiable, parameterisation of the network.

The broad issue of sensor placement was not addressed within this work. How-

ever, the analytic nature of the network structure could facilitate in the analysis of

the sensitivity of nodal states to parameter variations (as in Nikolova et al. [2004]

with electrical circuits). Future research could investigate the interpretation and

utility of Laplace-domain nodal sensitivity analysis for fluid line networks.

The fundamental limitation of all hydraulic network identification methods has

to do with the model miss-match that exists between the idealised models and

the observed behaviour of real pipelines within the field. Even for the most ad-

vanced turbulent-unsteady-friction (TUF) and viscoelastic (VE) pipeline models,

much higher dissipation and dispersion rates are measured within some field pipelines

[Stephens , 2008]. This issue of robustness to model miss-match is complicated and

beyond the scope of this thesis, however, model miss-match must be directly ad-

dressed for the successful application of any identification methods to complex field

pipeline networks.
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