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Chapter 1

Introduction

Systems of closed conduits containing pressurised fluid flow occur in many different

instances throughout the natural and man made world, examples of which are ma-

terial transport systems such as water, gas and petroleum [Fox , 1977; Chaudhry ,

1987; Wylie and Streeter , 1993], biological systems such as arterial blood flow [John,

2004], and hydraulic and pneumatic control systems [Stecki and Davis , 1986; Bar-

ber , 1989]. The dynamics of these fluid lines are a complex composite of the fluid

body interacting with the conduit material. In many of the instances mentioned, the

systems do not consist of single fluid lines, but are comprised of a number of such

lines interconnected at common junctions to form elaborate network structures. The

behaviour of these structures results from not only the individual dynamics of the

fluid lines, but the coupling of these lines as they influence each other through their

common junctions. A primary research focus for such systems is the continued ad-

vancement of forward models (time-domain simulation methods) [Axworthy , 1997;

Ghidaoui et al., 1998; Izquierdo and Iglesias , 2004; Zhao and Ghidaoui , 2004], and

inverse models (system parameter identification methods) [Isermann, 1984; Liou

and Tian, 1995; Lee et al., 2005a].

The ability to model the transient response of these networks, subjected to

boundary perturbations and other controlled excitations, is of broad interest and

is fundamental for the purposes of analysis, design and identification. Traditionally,

the approach for modelling water hammer within pipeline distribution systems (the

motivating example for this research) is performed by the use of approximate and

discrete time-domain methods [Karney , 1984; Chaudhry , 1987; Wylie and Streeter ,

1993; Axworthy , 1997; Izquierdo and Iglesias , 2004].

However, recently there has been a renewed interest in the frequency-domain

descriptions of such systems, driven largely by the system identification applica-

tions of leakage and blockage detection research [Ferrante et al., 2001; Ferrante and
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Chapter 1 – Introduction

Brunone, 2003a; Mpesha et al., 2002; Lee et al., 2003a, 2004, 2005a; Zecchin et al.,

2005; Mohapatra et al., 2006a; Kim, 2008]. The reason for this renewed interest

lies in the analytic nature of the frequency-domain descriptions of pipeline systems.

That is to say that not only have the frequency-domain descriptions enabled the

direct determination of the relationship between system responses and system prop-

erties [Ferrante and Brunone, 2003a; Lee et al., 2004], but they are computationally

efficient [Zecchin et al., 2005], and the problems associated with unsatisfied Courant

conditions of computational grids for discrete methods are completely avoided [Kim,

2007, 2008].

These frequency-domain descriptions arise from the Laplace transform solutions

to the linearised basic fluid equations [Brown, 1962; Goodson and Leonard , 1972;

Stecki and Davis , 1986]. The main two classical methods for constructing system

models based on these solutions are the impedance method [Wylie, 1965; Wylie and

Streeter , 1993] and the transfer matrix method [Chaudhry , 1970, 1987]. However,

these methods are not able to model arbitrary network structures1. This thesis

extends existing Laplace-domain theory by developing a new and novel framework

for the construction of Laplace-domain models for arbitrary fluid line networks. The

utility of this framework is demonstrated by applications to the important areas of

transient time-domain simulation of pipe networks, and parameter identification of

pipeline properties within fluid line networks.

1.1 Objectives of Research

In particular, the three main objectives of this research are as follows:

1. To fundamentally extend the theory for Laplace-domain representations for

hydraulic networks to deal with networks of an arbitrary configuration;

2. To develop a time-domain simulation methodology based on the use of the

extended Laplace-domain network theory coupled with the inverse Laplace

transform and explore its utility; and

3. To develop a network estimation methodology based on the use of the extended

Laplace-domain network theory coupled with statistical estimation methods.

1As outlined in Fox [1977], these methods are limited to systems whose topology contains only
tree structures and first order loops, where a first order loop is defined as a loop that is either
disjoint from other loops, or nested in only one arc of an outer loop. A detailed discussion of this
is deferred until Chapter 3).
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Outline of Thesis – Section 1.2

1.2 Outline of Thesis

The basic fluid equations for one dimensional, transient flow within a closed conduit

are derived and discussed in Chapter 2. Based on the form of the linearised mass

and momentum equations, a general class of fluid line equations (termed the L -

class) is proposed using the concepts of resistive and capacitive operators (Section

2.2). Examples are given relating this general class to specific instances from the

literature, namely the laminar-steady-friction (LSF) and turbulent-steady-friction

(TSF) models [Wylie and Streeter , 1993], the laminar-unsteady-friction (LUF) and

turbulent-unsteady-friction (TUF) models [Zielke et al., 1969; Vardy and Brown,

2007], and the viscoelastic (VE) models [Rieutord and Blanchard , 1979]. Based

on the properties of the resistive and capacitive operators, the important physical

property of passivity is proved for the L -class. This theorem provides the basis of

the network passivity theorems in the later chapters. The Laplace transform of the

L -class is presented in Section 2.4, where the well known Laplace-domain solution

is derived. The characterisation of L -class lines is used to prove some important

results concerning the stability, passivity, and reciprocity about the Laplace-domain

solution and its transfer matrix organisation.

Chapter 3 presents a new fundamental extension of the theoretical basis for the

application of Laplace-domain representations of pipelines to networks. A literature

review of classical and current methods for frequency- and Laplace-domain analysis

of pipe networks is given in Section 3.2, where the limitations of the current theory

are outlined. The focus of this chapter is on a network consisting of arbitrarily

interlinked L -lines described by the pair (G (N ,Λ) ,P) where G (N ,Λ) is the graph

of the network (with nodes N and links Λ), and P is the set of L -line properties

for each link. The well known system of network equations are presented in the

context of a L -line network. With the introduction of the graph theoretic concepts

of upstream and downstream incidence matrices, a theorem is proved that describes

the solution to the network equations as a network admittance matrix (Section

3.4). The admittance terminology is used as the matrix solution is in the form of a

mapping from the nodal pressures to the nodal flows. This theorem is significant as

not only does it provide an analytic solution to the network problem, but it shows

that the full state of the network can be reconstructed from the nodal states. Using

the results for the L -lines, the network admittance matrix is demonstrated to be

stable, passive and reciprocal. Motivated by the concept of known and unknown

nodal states (as defined by the nodal boundary conditions in the network equations),

a stable and passive input/output model is derived mapping from the known nodal

states to the unknown nodal states (Section 3.5). Symbolic and numerical examples

are given to demonstrate the ideas. The numerical examples focus on the ability
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of the proposed linear network theory to approximate the frequency response of

nonlinear networks.

The second fundamental extension of the Laplace-domain hydraulic network the-

ory is given in Chapter 4. This work extends that of Chapter 3 to networks comprised

of, not only L -lines, but also of compound nodes (defined as any hydraulic element

that yields an admittance representation), an almost completely general class of

hydraulic elements. Networks of this type are defined by the triple (G (N ,Λ) ,P , C)
where G (N ,Λ) and P are network graph and L -line properties as for the simple

node network from Chapter 3, and the additional term C denotes the set of dynamic

equations for the compound nodes. A general representation for a compound node’s

dynamics is given, from which the network equations are presented. The criteria

for the existence of an admittance representation of a compound node is derived,

and demonstrated to be quite unrestrictive, in fact any hydraulic element involving

energy dissipation (even those with active inputs) is observed to be of this class

(Section 4.4). Based on the admittance representation of compound nodes, a net-

work admittance matrix is derived as the solution to the compound node network

equations. Network properties of stability, passivity and reciprocity are observed to

be inherited from those of the individual network elements. The existence of a stable

and passive input/output model is proved (Section 4.6). Symbolic and numerical

examples are given to outline the concepts, where again, the numerical examples

focus on the ability of the proposed method to approximate the frequency response

of nonlinear compound node networks.

Chapter 5 outlines an original application of the network theory developed in

Chapters 3 and 4. This application involves the use of the Laplace-domain in-

put/output models as the basis of a time-domain simulation model through the

Fourier-Crump numerical inverse Laplace transform (NILT) [Crump, 1976]. A de-

tailed literature review of the role that different forms of the inverse Laplace trans-

form have played in the developments in fluid line research and modelling is given in

Section 5.2. An optimal numerically efficient framework for the NILT applied to the

input/output network models is outlined (Section 5.3). By recognising key features

in the Laplace-domain representation of fluid lines (i.e. the pattern of poles is aligned

almost colinearly behind the imaginary axis), a physically based re-parameterisation

of the Fourier-Crump NILT is proposed. An extensive parameter study is presented

applying the Fourier-Crump NILT to a series of pipeline test functions (Section 5.4),

where qualitative relationships between the parameters and numerical errors are dis-

cussed, and reliable parameter heuristics are suggested. These heuristics are used in

a series of numerical examples dealing with networks of 11, 35, 51 and 94 pipes using

the five different L -line types from Chapter 2 (Section 5.6). The examples are used
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as the basis from which the accuracy and numerical efficiency of the proposed NILT

are compared to the standard method of characteristics (MOC) model for transient

pipeline networks. Findings show that not only is (i) the proposed NILT is very

efficient numerically in comparison to the LUF, TUF and VE pipe types, but it is

(ii) unconditionally accurate for the networks comprised of linear pipe types (LSF,

LUF, and VE) and is accurate in comparison to the network types comprised of

nonlinear pipe types (TSF and TUF) over all time scales for finite energy transient

perturbations (i.e. pulse inputs), and short time scales for infinite energy transient

perturbations (i.e. step inputs). The significant advantage of the discretisation free

nature of the proposed NILT method is explored in a number of network examples

(Section 5.6.4).

The second application of the Laplace-domain hydraulic network theory devel-

oped in Chapters 3 and 4 is given in Chapter 6. This application involves the rigorous

development of two new statistically based parameter identification methodologies

for hydraulic networks. Firstly an analysis of the literature relating to detection

and identification within hydraulic systems is presented where the main method-

ology class types and features of these class types are identified (Section 6.2). A

general network model (termed an M -network) that encompasses the network types

from Chapters 3 and 4 is proposed2, and is used as the basis to define the network

parameter estimation problem and associated problems (Section 6.3). An important

concept within the context of network identification, defined within this chapter, is

nodal partitioning, that is the categorisation of nodes according to the information

they provide for the identification process. This topic has received little to no at-

tention in the literature, but it is a fundamental concept and is the basis of the

construction of the identification methodologies developed in this chapter. The first

estimation methodology, presented in Section 6.4, involves the development of a

decoupled system consisting only of the measured nodes. The basis of this develop-

ment is the proof of the existence of a decoupling filter capable of decoupling the

dynamics of the measured nodes from that of the unmeasured nodes. For this decou-

pled system, a maximum likelihood estimation (MLE) process is developed for the

network parameters. The second estimation methodology (Section 6.5) deals with

the unmeasured nodal states through the statistical framework of the expectation-

maximisation (EM) algorithm [Watanabe and Yamaguchi , 2004]. The network pa-

rameter estimation problem is posed in a constrained Gaussian framework involving

known and unknown data. From this the EM algorithm is used to derive a sequence

of parameter estimation iterates. Both these methods are successfully applied to

2Although this model is used for notational convenience in Chapter 6, it provided a more
convenient framework to prove most of the passivity based theorems used in Chapter 4. A detailed
treatment of M -networks, and their relationship to Kirchoff networks, is given in Appendix B.
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numerical examples.

The conclusions and areas of future work are outlined in Chapter 7.

Additionally, themes developed within the chapters of the dissertation are built

on in the first three appendices. Appendix A demonstrates the stability of the

admittance form of the transfer matrix, and derives the analytic form of the in-

verse Laplace transform. Appendix B defines the generalised network structure (the

M -network), presents important network theorems, and explores the relationship

between the M -network and the traditional Kirchoff network structures. Appendix

C presents an extended analysis of the literature on the identification of hydraulic

systems.

Finally, the details for the numerical studies are presented in the final two ap-

pendices. Appendix D outlines additional network details, and Appendix E details

the computational procedures implemented within the software created for the nu-

merical examples.

1.3 Main Contributions of Research

The main contributions and innovations within the research can be categorised into

four main areas, and are outlined below with reference to the relevant chapters and

appendices.

1. Basic fluid line equations (Chapter 2 and Appendix A):

(a) Derivation of the one dimensional (1-D) closed conduit energy equation

for transient pipeline flow including the term associated with the VE pipe

wall material storage (Section 2.2.3).

(b) Identification of the L -class of linear fluid lines (Section 2.3), their Laplace-

domain representation, the demonstration of important physical proper-

ties of this class [such as passivity, stability, and reciprocity (Section 2.3.3

and Appendix A.1)], and the formulation of an analytic inverse of a ra-

tional subset of this class (Appendix A.2).

2. Development of a novel Laplace-domain methodology for arbitrary fluid line

networks utilising an admittance-based framework (Chapters 3 and 4, and

Appendix B):

(a) Formulation of a Laplace-domain network admittance matrix model ca-

pable of describing the dynamics of arbitrarily configured networks with
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simple nodes (Section 3.4). This work is one of the main contributions of

this thesis as it provides a novel and systematic framework for determin-

ing the dynamic relationship between a network’s nodal pressures and

nodal flow injections.

(b) Extension of the Laplace-domain network admittance matrix model to

deal with networks comprised not only of simple nodes, but of compound

nodes whose dynamics can be described by linear time-invariant systems

(Section 4.5). This work involved the development of a framework for or-

ganising the dynamics of a compound node into a special admittance form

for the inclusion into the network admittance matrix structure (Section

4.4).

(c) The derivation of input/output (I/O) models for the simple node and

compound node networks that map from known network boundary con-

ditions to unknown nodal variables (Sections 3.5 and 4.6). This work also

demonstrated that the existence and stability of these models is ensured

by the strict passivity of the associated networks hydraulic elements.

(d) The formulation of a general distributed parameter network structure

encompassing both simple and compound node networks, termed a M -

network (Appendix B). This work involved the demonstration of the in-

heritance of passivity, stability, reciprocity and causality from the net-

works links to the network nodal admittance map (Appendix B.3). This

work also involved the exploration of connections between reciprocal dis-

tributed parameter networks, and Kirchoff networks (Appendix B.4).

3. Development and analysis of a time-domain model based on the NILT of the

Laplace-domain network admittance matrix (Chapter 5):

(a) Formulation of a computationally efficient linear time-domain model based

on the NILT of the I/O Laplace-domain network models (Section 5.3).

(b) Development of a physically motivated reparameterisation of the Fourier-

Crump NILT method, and the development of parameter heuristics based

on a comprehensive sensitivity analysis of dimensionless single pipeline

transfer functions (Section 5.5).

(c) Detailed study of the NILT based methodology with respect to accuracy,

and computational efficiency (Section 5.6). This study involved the anal-

ysis of 20 different network case studies comprised of five pipeline models

and networks ranging in size from 11 to 94 pipes under a number of ex-

citations. This study found that, with respect to the nonlinear MOC,

the proposed linear NILT method provided great computational savings,
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and served as an accurate approximation to the short-time response of

networks excited by infinite energy signals, and the entire-time response

of networks excited by finite energy signals.

4. Development of a fluid line network parameter identification methodology

based on the Laplace-domain network admittance matrix (Chapter 6):

(a) The development of a nodal partitioning framework for a general fluid

line network based on the information available for each node (Section

6.3). This framework, coupled with the admittance network model from

Chapters 3 and 4 enables the identification of dynamic sub-systems of

measurable and unmeasurable nodes, and as such it served as the basis

for the development of the frequency-domain parameter identification

methodologies developed in Sections 6.4 and 6.5.

(b) The development of a maximum likelihood estimation (MLE) parameter

identification methodology for fluid line networks based on the derivation

of a decoupled sub-system involving only measured nodal variables (Sec-

tion 6.4). This development involved two main steps, the derivation of a

stable decoupling filter to nullify the influence of the unmeasured dynam-

ics on the measured nodal variables (Section 6.4.1), and the derivation

of the parameter MLEs from the resulting constrained complex Gaus-

sian system (Section 6.4.2). The stability of the decoupling filter was

demonstrated to be dependent on the passivity of the fluid line network

elements.

(c) The development of an expectation-maximisation (EM) based parameter

identification methodology for fluid line networks capable of dealing with

networks involving nodes for which there is no information (Section 6.4.2).

This methodology is significant, as currently no methodologies exist that

are able to deal with such situations. The derivation of this methodol-

ogy involved posing the parameter estimation problem as a constrained

complex Gaussian system for which the known states are the measured

variables and the unknown states are the unmeasured variables (Section

6.5.2). The algorithm for computing the parameter estimates was devel-

oped by applying the general EM theorem to the constrained Gaussian

process just described.
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Chapter 2

Basic Fluid Line Equations

2.1 Introduction

The primary hydraulic concept used within this thesis is that of the one dimensional

(1-D) fluid line. This idealisation considers a system of closed conduit flow, where

the dynamics of the system are adequately described by averaged cross-sectional

properties of the flow field. The result of this is that the state of conduit-fluid

system is only dependent on the axial location along the pipeline and time.

This model of pipe flow has served as the basis of the majority of transient

pipeline theory [Fox , 1977; Chaudhry , 1987; Wylie and Streeter , 1993], owing to its

practical utility in terms of (i) the development of computational solvers [Chaudhry

and Husssini , 1985], (ii) the amenability to analytic development and analysis [Fer-

rante and Brunone, 2003a; Wang et al., 2002a; Lee et al., 2005b], and (iii) the ability

to describe higher dimensional flow phenomena [Brown, 1962; Zielke, 1968; Stecki

and Davis , 1986; Vardy and Brown, 2004; Vardy et al., 2004; Vardy and Brown, 2007]

and complex fluid-structure interactions [Rieutord and Blanchard , 1979; Tijsseling ,

1996; Brown and Tentarelli , 2001] within the simplicity of a 1-D framework.

The focus of this thesis is on the extension of existing theory for Laplace-domain

representations of the 1-D fluid line model and the application of this model to time-

domain simulation and parameter identification. Given the broad array of existing

1-D models, this chapter proposes an encompassing model class, termed the L -class

of fluid lines, and demonstrates some fundamental properties of this class, that serve

as the basis for the theoretical network developments of the later chapters.

This chapter is structured as follows. Section 2.2 outlines the derivation of the

mass, momentum and energy conservation equations for 1-D closed conduit liquid

flow by way of the Reynolds transport theorem (see Theorem 2.1). This work follows
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Chapter 2 – Basic Fluid Line Equations

a similar approach presented in standard texts [Chaudhry , 1987; Wylie and Streeter ,

1993; Munson et al., 2002], but particular discussion of commonly neglected terms

is given. The derivation of the mass conservation equation in Section 2.2.1 includes

an inelastic term for the pipe wall material, which serves as the basic framework for

viscoelasic models [Rieutord and Blanchard , 1979; Gally et al., 1979; Güney , 1983].

A unique representation of the energy equation is derived in Section 2.2.3, where

not only the standard energy terms are observed (kinetic, elastic, potential, and

frictional losses [Karney , 1990]), but the term describing the energy losses associated

with viscoelastic pipe wall strains is observed for the first time. Section 2.3 outlines

the linear class of fluid lines that serves as the framework for the lines considered

in this thesis. Section 2.3.1 outlines the linearity assumptions, imposed on the mass

and momentum equations from Section 2.2, for the linear class of fluid lines (termed

L -lines) defined in Section 2.3.2. Many examples are given demonstrating the broad

membership of standard pipeline models to the proposed L -class. Some important

physical properties of the L -lines are discussed in Section 2.3.3. Section 2.4 outlines

the Laplace-domain representation of fluid lines. Section 2.4.1 gives a formulation

of the Laplace transform of the L -class of fluid lines defined in Section 2.3.2, and

traditional organisations of the Laplace-domain equations, in the form of transfer

matrices [Chaudhry , 1970], are presented in Section 2.4.2.

2.2 General 1-D Equations

The overarching assumption underlying the three fundamental equations governing

transient liquid flow within a closed conduit is that the transient behaviour of con-

duits mass, momentum and energy are adequately described by the cross-sectional

averages of the fluid properties (e.g. velocity, pressure, density). This implies that

the influence of the distribution of these properties within the cross-section can be

described by operations involving only the cross-sectional averages [Chaudhry , 1987;

Wylie and Streeter , 1993]. Additional assumptions behind the derivation of these

equations, are stated as required.

A closed conduit is a distributed parameter system with fundamental time vary-

ing states of cross-sectional area A, fluid density ρ, axial velocity v and internal

fluid pressure p distributed along the spatial extent of the conduit. The basis of

the derivation for the mass, momentum and energy equations is the use of Reynolds

transport theorem applied to a system of particles passing through a control volume

[Chaudhry , 1987; Munson et al., 2002]. This theorem relates the material derivative

of the extensive variable1 BX of the system X to the rate of change of the associated

1An extensive variable is a property of a collection of fluid particles (e.g. mass, momentum, or

10



General 1-D Equations – Section 2.2

intensive variable b within the control volume and the flux of this variable across the

control surface. For a closed cylindrical conduit, the system is taken to be the thin

cylinder X∆ of length ∆ as depicted in Figure 2.1. In this context, the extensive

variable is defined as

BX· =

∫ x+ ∆
2

x−∆
2

ρAbdx.

Within the ensuing derivations, the case of an infinitely thin disk (i.e. ∆→ 0) is of

interest, and hence the extensive variable per unit length, defined as

lim
∆→0

BX∆

∆
, (2.1)

is of primary interest. A limiting form of the Reynolds transport theorem as ∆→ 0

is stated as follows.

Theorem 2.1. Reynolds Transport Theorem (1-D): Consider a system of

particles occupying the thin disk X∆ of length ∆ centred about the point x possessing

the extensive variable BX∆
. For an infinitely thin disk, the total rate of change D/Dt

of the extensive variable per unit length (2.1) is given by the material derivative of

the intensive variable b, that is

lim
∆→0

D

Dt

BX∆

∆
=

∂

∂t
(ρAb) +

∂

∂x
(ρAvb) (2.2)

for spatially distributed variables density ρ, cross-sectional area A and axial velocity

v.

This theorem serves as the basis of the derivation of the mass, momentum and

energy equations. Dealing with the theorem in this form means that the spatially

distributed variables are expressed as gradient, and the related partial differential

equations (PDEs) can be directly derived.

2.2.1 Conservation of mass

The conservation of mass requires that the mass MX , within the closed system X ,

remains constant, which means that

D

Dt
MX = 0. (2.3)

energy) and the associated intensive variable is this property per unit mass. Given a system of
particles X then

BX =
∫
X
ρbdV

where dV is a volume element.
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∆ 

XXXX∆ 

x 

Figure 2.1: Thin disk X∆ of width ∆ within a cylindrical conduit.

The intensive variable for mass is unity, therefore by taking X = lim∆→0X∆, the

Reynolds transport theorem for (2.3) gives

∂

∂t
(ρA) +

∂

∂x
(ρAv) = 0. (2.4)

To describe the interaction between the fluid body, and the containing pipe wall, it

is convenient to use an equation of state describing the compressibility of a fluid.

As this thesis deals exclusively with liquids, the equation of state for an isothermal

process relating fluid density to fluid pressure is used and is given by [Wylie and

Streeter , 1993]
dρ

ρ
=

dp

K
(2.5)

where K is the bulk modulus of elasticity of the liquid [Streeter et al., 1997]. The

cross-sectional area is related to the circumferential strain via the differential rela-

tionship [Wylie and Streeter , 1993]

dA

A
= 2dε (2.6)

where ε is the circumferential strain, which is expressed as [Rieutord and Blanchard ,

1979]

ε =
αD

2eE
(p− p0) + εr (2.7)

where α is a pipe wall restraint parameter [Wylie and Streeter , 1993], D is the

diameter, e is the pipe wall thickness, E is the Young’s modulus of the pipe wall,

p0 is the reference pressure, and εr is the retarded or delayed strain. The first

term is related to the linear elastic strain that responds instantaneously to the

applied pressure and the second term is related to the viscoelastic component of the

12



General 1-D Equations – Section 2.2

strain that has a delayed response to the applied pressure. For a viscoelastic pipe

wall material, phenomenological models are used to relate εr to the applied stress

[Tschoegl , 1989].

Combining (2.4)-(2.7) yields

1

K

[
∂

∂t
+ v

∂

∂x

]
p+

[
∂

∂t
+ v

∂

∂x

](
αD

eE
p

)
︸ ︷︷ ︸

term I

+ 2

[
∂

∂t
+ v

∂

∂x

]
εr︸ ︷︷ ︸

term II

+
∂v

∂x
= 0

where term I describes the elastic capacitive (storage) properties of the pipe and

term II describes the viscoelastic capacitance. This equation holds for all variables

v, p, ρ,K,D, e, E, α and εr varying spatially and temporally. The differential oper-

ator for p is comprised of two terms, the first corresponding to the fluid elasticity

and the second to the pipe wall elasticity. Expanding term I yields(
1

K
+
αD

eE

)[
∂

∂t
+ v

∂

∂x

]
p︸ ︷︷ ︸

term I(a)

+ p

[
∂

∂t
+ v

∂

∂x

](
αD

eE

)
︸ ︷︷ ︸

term I(b)

.

The first term in this expression describes the composite elastic effects of the fluid

and pipe wall for a varying pressure at a given αD/eE, and the second term considers

the elastic capacitive impacts of a varying αD/eE for a given pressure. Despite

variations in A being fundamental to the derivation, at this point, it is customary to

neglect term I(b) under the assumption of negligible variation in all the variables D,

α, E and e [Wylie and Streeter , 1993; Chaudhry , 1987]. This assumption is noted

as it is typically not mentioned in the derivation of the 1-D mass equation2. Given

these assumptions, the mass equation is given as

1

ρc2

[
∂

∂t
+ v

∂

∂x

]
p+ 2

[
∂

∂t
+ v

∂

∂x

]
εr +

∂v

∂x
= 0 (2.8)

where c is the fluid lines elastic wavespeed and is given by

c =

√[
ρ

(
1

K
+
αD

eE

)]−1

which is interpreted as the propagation speed of a pressure perturbation in the fluid

along the axial direction of the line.

2With the exception of considerations concerning highly deformable tubes, as in Section 2-5 of
Wylie and Streeter [1993].
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2.2.2 Conservation of momentum

Newton’s second law of motion states the momentum possessed by a system is equal

to the forces imposed on that system. For an infinitely thin disk of fluid in the

domain X∆ within a closed conduit, the mathematical expression of this statement

is

lim
∆→0

D

Dt

(Mv)X∆

∆
= − ∂

∂x
(pA) + p

∂A

∂x
− πDτ − ρg dz

dx
(2.9)

where the applied forces on the infinitely thin disk, expressed on the right hand

side of (2.9), are the force from the differential pressure on the disk faces, the axial

force of the pipe wall acting against the fluid pressure, the shear stress τ on the

edge of the disk and the gravitational force (where g is gravity and z is elevation).

Application of Theorem 2.1 to (2.9) in conjunction with (2.4) yields

ρA

[
∂

∂t
+ v

∂

∂x

]
v + A

∂p

∂x
+ πDτ + ρgA

dz

dx
= 0,

where the terms dependent on the gradient of the cross-sectional area cancel each

other out. Given this, the momentum equation assumes the form

ρ

[
∂

∂t
+ v

∂

∂x

]
v +

∂p

∂x
+

4

D
τ + ρg

dz

dx
= 0. (2.10)

2.2.3 Conservation of energy

The first law of thermodynamics states that the change of energy within a system

is equal to the work energy transfer into the system plus the heat energy transfer

into the system [Holman, 1980]. For an infinitely thin disk within a uniform flow

field in a closed conduit, this implies

lim
∆→0

D

Dt

EX∆

∆
= − ∂

∂x
(pAv) +

∂Q̇

∂x
(2.11)

where Q̇ is the spatially and temporally distributed net rate of heat transfer into

the fluid body. The first term on the right hand side of (2.11) corresponds to the

work energy transfered to the system from the faces of the disk and the second

term corresponds to the net heat energy transfered to the disk. The energy per unit

mass e is given as a summation of the internal energy u, the kinetic energy and the

potential energy [Munson et al., 2002; Holman, 1980], that is

e = u+
v2

2
+ gz. (2.12)
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The internal energy is dependent on the material’s molecular spacing and molecular

forces [Wylie and Streeter , 1993]. For any material, u is a function of the internal

stresses (pressure p for fluids, and material stress σ for solids), ρ and temperature.

For the situation here, there exists the interesting interpretation that as u is a

property of the cross section, it is a composite of both the internal energy bound up

in the fluid, and the internal energy bound up in the pipe wall (see (2.14) below).

This coupling arises from the interaction between the fluid’s internal pressure and

the pipe’s cross-sectional area.

Application of (2.11)-(2.12) with Theorem 2.1 yields the equation

ρA

[
∂

∂t
+ v

∂

∂x

](
v2

2

)
+ ρgAv

∂z

∂x
+

∂

∂x
(pAv) = −ρA

[
∂

∂t
+ v

∂

∂x

]
u+

∂Q̇

∂x
. (2.13)

Munson et al. [2002] refer to the right hand side as being the losses that occur within

the system (i.e. energy that is not recoverable). However, the mass and momentum

equations can be employed to determine more useful and meaningful expressions

for these terms. Given that Q̇ is negligible for the hydraulic applications of interest

within this thesis (i.e. the influence of heat transfer from the pipe wall is negligible),

equating the left side of of (2.13) to the momentum equation (2.10), it is seen that

the material derivative of the internal energy can be expressed as

ρA

[
∂

∂t
+ v

∂

∂x

]
u = vπDτ︸ ︷︷ ︸

term I

− pA∂v
∂x︸ ︷︷ ︸

term II

(2.14)

where term I above corresponds to the frictional energy loss and term II corresponds

to the energy bound up in the capacitance of the cross section (i.e. mass storage).

This statement is a generalisation of the assertions in Karney [1990], in that (2.14)

says that the material derivative of the internal energy is equal to the frictional

loss minus the energy bound up in the capacitive storage of the cross-section. To

consider the capacitive term more closely, from the mass equation (2.8), term II can

be expressed as

pA
∂v

∂x
= − A

ρc2

[
∂

∂t
+ v

∂

∂x

](
p2

2

)
︸ ︷︷ ︸

term II(a)

− 2pA

[
∂

∂t
+ v

∂

∂x

]
εr︸ ︷︷ ︸

term II(b)

(2.15)

where from (2.15) it is seen that the capacitance energy is comprised of an elastic

[term II(a)] and a viscoelastic [term II(b)] term. Finally, the energy equation can
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be written as

ρA

[
∂

∂t
+ v

∂

∂x

](
v2

2

)
+

A

ρc2

[
∂

∂t
+ v

∂

∂x

](
p2

2

)
+ ρgAv

∂z

∂x

+
∂

∂x
(pAv) + vπDτ + 2pA

[
∂

∂t
+ v

∂

∂x

]
εr = 0

(2.16)

where, in order of appearance, the terms on the left hand side of (2.16) correspond

to the kinetic energy, elastic potential energy, gravitational potential energy, work

energy, frictional loss, and viscoelastic loss. This form of the energy equation can

be viewed as a generalisation of the standard energy equation for transient closed

conduit liquid flows as adopted in Karney [1990] as the viscoelastic term was not in-

cluded in this work. Note that, if desired, (2.16) could be formulated as an extended

Bernoulli equation by the inclusion of local loss, turbine and shaft work terms.

2.3 Class of Linear 1-D Fluid Lines

The class of pipelines whose dynamics are linear in the state variables of pressure

and flow is the primary interest in this thesis. Such a class of pipelines arises as an

approximation of the 1-D fluid lines whose dynamics are described by the nonlinear

mass and momentum equations (2.8) and (2.10). The linearity of the pipeline dy-

namics is essential for the development of the Laplace-domain representations, upon

which all pipeline frequency-domain research is based [Brown, 1962; Wylie, 1965;

Zielke, 1968; Goodson and Leonard , 1972; Chaudhry , 1970; Stecki and Davis , 1986;

Ferrante and Brunone, 2003a].

The implicit assumption within the proceeding developments is that the linear

approximation is a reasonable approximation to the original nonlinear system. This

assumption is not argued or justified at this point. However, as will become clear

from the numerical frequency-domain experiments in Chapters 3 and 4, numerical

time-domain experiments in Chapter 5, and the use of the linear model for parameter

estimation of the nonlinear system in Chapter 6, it turns out that the linear model

provides an extremely accurate approximation to nonlinear turbulent flow systems,

even for large systems containing different kinds of nonlinear hydraulic components

(e.g. emitters, valves and accumulators). That is to say that the justification of the

linear approximation is demonstrated by the numerical examples throughout the

thesis.
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2.3.1 Assumptions for linearity

A primary assumption, adopted within many transient pipeline models, is that the

convective acceleration terms are negligible. The Eulerian acceleration of a fluid

variable is given by
∂

∂t
+ v

∂

∂x

where the second term is the convective term. Non-dimensionalising this operator

by the acoustic wavespeed time scale (as in Arfaie et al. [1993]; Zecchin et al. [2006]),

leads to
∂

∂t̃
+Mṽ

∂

∂x̃

where the ˜ indicates the non-dimensionless variables and M = v/c is the Mach

number for the flow. What this non-dimensionalisation indicates is that the magni-

tude of the convective component is proportional to the Mach number of the flow.

Hence, the convective terms are only significant in high Mach number flows [Wylie

and Streeter , 1993; Munson et al., 2002]. For most civil engineering hydraulic ap-

plications, M << 1 and the convective terms are considered negligible [Chaudhry ,

1987; Wylie and Streeter , 1993].

The second linear approximation is concerned with the wall shear stress term τ .

For accepted turbulent flow models, the steady state component of the wall shear

stress is nonlinear in v and is given by [Streeter et al., 1997]

τss =
ρf

8
v2.

The approach adopted for all linear methods is to linearise τ about some operating

point v0 and model the transient fluctuations about this point. It is important

to note that as both the unsteady shear τus for laminar flows [Zielke, 1968] and

turbulent flows [Vardy and Brown, 2004; Vardy et al., 2004; Vardy and Brown,

2007], and the retarded circumferential strain εr [Rieutord and Blanchard , 1979]

are convolution operators on v and p respectively, the linearisation does not effect

these terms. As noted within the literature, these terms tend to be more significant

in their impact on the transient behaviour than the steady-state turbulent shear

[Stephens , 2008].

As with the convective acceleration term, an additional simplification adopted in

most standard nonlinear transient pipeline hydraulic applications is the assumption

that A, ρ, and c are constant. Under the stated assumptions, equations (2.8), (2.10)

and (2.16) hold for temporally and spatially varying A, ρ, and c. Some methods

have included these additional variables as additional state variables (e.g. [Güney ,

1983]), but it is standard to take them as constants: A = Ao, ρ = ρo, and c = co.
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2.3.2 Linear class of fluid lines

Implementing the assumptions outlined in Section 2.3.1, working with the volumetric

flow q = vAo (instead of velocity), and linearising the system (2.8) and (2.10) about

the steady-state values q0 6= 0 and p0(x) yields [Wylie and Streeter , 1993]

Ao
ρoc2

o

∂p

∂t
+ 2Ao

∂εr
∂t

+
∂q

∂x
= 0 (2.17)

ρo
Ao

∂q

∂t
+
∂p

∂x
+

4

Do

τ = 0 (2.18)

where p and q are from hereon redefined as the transient fluctuations about the

linearisation points. The energy equation associated with the linearised system is

adapted from (2.16) as

ρo
Ao

∂

∂t

(
q2

2

)
+

1

ρoc2
o

∂

∂t

(
p2

2

)
+

1

Ao

∂

∂x
(pq) +

4

AoDo

qτ + 2p
∂εr
∂t

= 0. (2.19)

As there exist many different models for τ and εr, a general class for the linear

fluid lines described by (2.17)-(2.19) is defined below.

Definition 2.1. A linear fluid line of class L is defined as the distributed system

∂q

∂x
= −C0

(
∂

∂t
+ C
)
p (2.20)

∂p

∂x
= −R0

(
∂

∂t
+R

)
q (2.21)

where x, t ∈ R, are the spatial and temporal coordinates, p, q : R × R 7→ R are the

distributions of pressure and flow, C0 and R0, are positive constants, and C and

R are compliance and resistive operators, described by the linear integrodifferential

operators

C[u](x, t) =

∫ t

0

c(t− τ)
∂u

∂t
(τ)dτ (2.22)

R[u](x, t) = r0u+

∫ t

0

r(t− τ)
∂u

∂t
(τ)dτ (2.23)

where r0 is a nonnegative constant, and c and r are functions R+ 7→ R that are

either zero or defined such that the operators3

(
c ∗ ∂u

∂t

)
, and

(
r ∗ ∂u

∂t

)
(2.24)

3The ∗ is compact notation for the convolution operator.
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are causal, bounded input/bounded output (BIBO) stable for bounded u, u′ and strictly

passive for all input functions u (refer to Appendix B.2.2 for the definition of pas-

sivity).

Remarks:

1. Equation (2.20) is a general form for the mass conservation equation. Within

this equation, the term on the right hand side describes the pressure depen-

dency of the flow gradient. Being a mass continuity expression, the right hand

side term can be viewed as describing the capacitive behaviour of the cross

sectional disk, that is, it describes the amount of fluid stored in the cross sec-

tional disk in response to the pressure history. The capacitive (or storage)

behaviour of the cross section can be seen from (2.20) to depend on the elastic

properties of the fluid (as described by the ∂/∂t operator), and the viscoelastic

compliance properties of pipe material4 as described by C.

2. Equation (2.21) is a general form for the momentum conservation equation.

The right hand side of (2.21) describes the dependency of the pressure gra-

dient on the mass flow, and can be seen as an impedance mapping from flow

to pressure change. The impedance is comprised of two terms: the derivative

∂/∂t that describes the inertial effects impeding fluid motion; and the R op-

erator that describes the frictional resistance that impedes the fluid motion

due to the viscous and turbulent losses and the shear stress applied to the

fluid body by the pipe wall. There are two main terms in R. The constant

R0r0 corresponds to the steady-state shear stress and the convolution term

describes the unsteady component of the shear stress that is dependent on the

flow history.

3. Considering the form of the fluid equations (2.20)-(2.21) for transient fluid flow

in pipelines to the telegraphist’s equations for electrical surges in transmission

lines (e.g. Wohlers [1969]), the operators operators on the right hand side of

(2.20)-(2.21) hold analogies with the shunt admittance and series impedance,

respectively, as identified previously in [Brown, 1962].

4. The functions c and r can be interpreted as the impulse responses of the

retarded cross-sectional compliance and unsteady shear stress. The criteria

imposed on these functions has a purely physical basis and can be explained

as follows: causality means that the these operators are only dependent on the

4The compliance of a material is the mapping from applied stress to strain [Tschoegl , 1989]. So
in the context of a pipe, compliance refers to the mapping from internal pressure to the change in
cross-sectional area.
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history of the input; stability5 means that a finite valued input (i.e. pressure

or flow) cannot cause an infinitely large output (i.e. cross-sectional expansion

or shear stress); and passivity means that these operators cannot generate

energy.

5. Note that the two parameter unsteady friction model of Brunone et al. [1991]

can not be expressed by the above form for r in the operatorR. This is because

the model developed in Brunone et al. [1991] adopts a spatial derivative term

within the resistance function (in addition to a temporal derivative term),

where heuristic arguments are used to justify this inclusion. In contrast, the

analytically derived unsteady turbulent friction models of Vardy and Brown

[2003, 2004, 2007] are described by r in the above form, as demonstrated in

the examples below.

From hereon, the general class of linear models (2.20)-(2.21) will be considered,

where specific instances will be referenced when relevant. The following examples

demonstrate the relationship between (2.20)-(2.21) and some existing models.

Example 2.1. The lines of class L are related to the linear lines of (2.17)-(2.18)

by

C0 =
Ao
ρoc2

o

, R0 =
ρo
Ao
,

and

C[p] =

(
c ∗ ∂p

∂t

)
= 2ρoc

2
o

∂εr
∂t
, R[q] = r0q +

(
r ∗ ∂q

∂t

)
=
πDo

ρo
τ.

Example 2.2. A frictionless purely elastic pipe has the following mass and momen-

tum conservation unsteady flow equations

Ao
ρoc2

∂p

∂t
+
∂q

∂x
= 0

ρo
Ao

∂q

∂t
+
∂p

∂x
= 0

Therefore, for a frictionless elastic pipe C,R ≡ 0 meaning that r0 = 0 and c, r ≡ 0.

Example 2.3. For a laminar-steady-friction (LSF) pipeline, the steady state shear

stress is [Streeter et al., 1997] given by

τ(·, t) = 8
ρoνo
DoAo

q(·, t) (2.25)

where νo is the kinematic viscosity. Using the identities in Example 2.1, it holds

that

r0 = 32
νo
D2
o

,

5Here BIBO stability is meant.
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where r(t) = 0 as there is no unsteady friction component in this case. Note that

this flow regime is Hagen-Poiseuille flow [Streeter et al., 1997].

Example 2.4. For a turbulent-steady-friction (TSF) pipeline, the steady state shear

stress is given by [Streeter et al., 1997]

τ(·, t) =
ρofo
8A2

o

q2(·, t) (2.26)

where fo is the Darcy-Weisbach friction factor [Streeter et al., 1997]. Linearising

(2.26) about the operating value q0 6= 0 leads to [Wylie and Streeter, 1993]

τ(·, t) =
ρofoq0

4A2
o

q(·, t) +O
{

(q(·, t)− q0)2} (2.27)

Considering the linear part of (2.27), and using the identities in Example 2.1, leads

to

r0 =
foq0

AoDo

,

where, as in Example 2.3, r(t) = 0 as there is no unsteady friction component in

this case.

Example 2.5. For a viscoelastic (VE) pipeline, the retarded circumferential strain

is given by [Rieutord and Blanchard, 1979]

εr(·, t) =
αoDo

2eoEo

∫ t

0

∂J

∂t
(t− τ) [p(·, τ)− p0(·)] dτ

where J : R+ 7→ R is the materials creep compliance function [Tschoegl, 1989]. The

derivative of εr can be given by

∂εr
∂t

=
αoDo

2eoEo

∫ t

0

∂J

∂t
(t− τ)

∂p

∂t
(τ)dτ.

In this context, the function c is then

c(t) = ρoc
2
o

αoDo

eoEo

∂J(t)

∂t

which, under a Kelvin-Voigt phenomenological description, is given by [Gally et al.,

1979]

c(t) = ρoc
2
o

αoDo

eoEo

N∑
k=1

Jk
τk
e
− t
τk

where Jk and τk are the compliance and retardation time of the k-th Kelvin-Voigt

element.
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Example 2.6. The shear stress in the laminar-unsteady-friction (LUF) model is

given by [Zielke, 1968]

τ(·, t) = 8
ρoνo
DoAo

q(·, t) + 4
ρoνo
DoAo

∫ t

0

w(t− τ)
∂q

∂t
(·, τ)dτ (2.28)

where νo is the kinematic viscosity and w : R+ 7→ R is the unsteady shear weighting

function given by

w(t) =
∞∑
k=1

exp

{
−4

(
ηk
Do

)2

νot

}
where the ηk are given by the negative of the roots of the equation

ηk = s such that s
J0(s)

J1(s)
− 2 = 0, s ∈ C, |ηk| < |ηk+1|, k = 1, . . . ,∞ (2.29)

where J0 and J1 are Bessel’s functions of the first kind [Abramowitz and Stegun,

1964]. The roots of (2.29) happen to lie on the negative real axis [Zielke, 1968],

meaning that ηk are positive real coefficients. Equation (2.28) is in the L class form

demonstrated in Example 2.1 with

r0 = 32
νo
D2
o

, r(t) = 16
νo
D2
o

w(t)

Example 2.7. Linearising the system about the steady-state value, the turbulent-

unsteady-friction (TUF) model for a range of transient turbulent shear stress states

under the assumption of a frozen eddy viscosity profile, is [Vardy and Brown, 2003,

2004, 2007]

τ(·, t) =
ρofoq0

4A2
o

q(·, t) + 4
ρoνo
DoAo

∫ t

0

w(t− τ)
∂q

∂t
(·, τ)dτ (2.30)

where qo is the steady state flow and w : R+ 7→ R is the unsteady shear weighting

function which is given by

w(t) =
A∗√
4νo
D2
o
t

exp

{
−B∗

√
4νo
D2
o

t

}

where A∗ and B∗ are positive real numbers that are dependent on the application,

for example, for Reynolds numbers Re ∈ [O {103} , O {105}] and relative roughnesses

ε/Do ∈ [O {10−4} , O {10−1.5}], A∗ and B∗ are approximated by [Vardy and Brown,
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2007]

A∗ =

√
1

4π
+

ε

Do

√
Re

(
0.02 + 0.0143

(
ε

Do

)−0.44
)

B∗ = Re

(
R0.222

e

6090
+

0.44

R0.278
e

+

(
0.0377 + 0.001

√
Re

2.04

)√
ε

Do

)
.

Equation (2.30) is in the L class with

r0 =
foq0

AoDo

, r(t) = 16
νo
D2
o

w(t).

Throughout this thesis, the LSF, TSF, LUF, TUF, and VE are used repeatedly

within the numerical examples involving both linear Laplace-domain models and

discrete-time method of characteristics (MOC) models. For the nonlinear resistance

models TSF and TUF, the linear approximations are used within the context of the

Laplace-domain models, and the full nonlinear form is used within the context of

the MOC models.

An important sub-class to the L -class is that for which the functions r and c

are finite dimensional operators, as defined below.

Definition 2.2. The subclass LR of the L -class is defined as those members of

L for which the functions c and r admit the rational representation

c(t) =
Nc∑
k=1

cke
−µkt (2.31)

r(t) =
Nr∑
k=1

rke
−ηkt (2.32)

where the ck, rk, µk and ηk are all positive real constants.

Remarks:

1. Defining the r and c to this form restricts them to being finite dimensional

operators, in the sense that they admit a rational Laplace transform.

2. These expansions are consistent with the Kelvin-Voigt viscoelasticity models

for εr [Rieutord and Blanchard , 1979].

3. The LR -class represents a general form of practical computable models for

unsteady friction [Schohl , 1993]. In fact, the Vı́tkovský methods [Vı́tkovský

et al., 2004] for the Zielke model [Zielke, 1968] and transient turbulent friction
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[Vardy and Brown, 2004; Vardy et al., 2004; Vardy and Brown, 2007] fall into

this class.

This section is completed by defining a well posed problem for computing the

distributions of flow and pressure within a L -line of length l.

Definition 2.3. The L -line system is defined by the distributions p, q : [0, l]×R+ 7→
R subjected to

∂q

∂x
= −C0

(
∂

∂t
+ C
)
p, x ∈ [0, l], t ∈ R+

∂p

∂x
= −R0

(
∂

∂t
+R

)
q, x ∈ [0, l], t ∈ R+

p(x, 0) = p0(x), x ∈ [0, l]

q(x, 0) = q0(x), x ∈ [0, l]

φ0(p(0, t), q(0, t), t) = 0, t ∈ R+

φl(p(l, t), q(l, t), t) = 0, t ∈ R+

where φ0 and φl are affine operators for the variables p(0, t), q(0, t) and p(l, t), q(l, t)

respectively.

Remarks:

1. This problem represents a well posed problem in the sense that all required

initial and boundary conditions are defined.

2. Note that in the case that the state of the L -line is taken about an operating

point, the initial conditions must also be taken with respect to this operating

point.

2.3.3 Passivity of the L−class

An important property of nearly all physical systems is that they are passive [Wohlers ,

1969; Desoer and Kuh, 1969; Anderson and Vongpanitlerd , 1973; Hill and Moylan,

1980]. A passive system is a system within which energy cannot be created (see

Definition B.8 for the exact technical definition). Passivity is an important char-

acteristic of a system, and it provides some useful properties concerning stability

and the existence of inverse mappings [Wohlers , 1969]. These properties provide

the basis for some of the network theorems in Chapters 3, 4 and Appendix B. In

this section it is demonstrated that any pipeline in the L -class is passive. Before

the main theorem of this section is presented, a corollary to definition 2.1 is given.
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Corollary 2.1. The energy equation for the L -class is

∂

∂x
(pq) + p · C0

(
∂

∂t
+ C
)
p+ q ·R0

(
∂

∂t
+R

)
q = 0. (2.33)

Proof. This is shown by considering the form of the energy equation (2.19) in con-

junction with the relationship between the L -class and the original linear line as

demonstrated in Example 2.1.

It is now demonstrated that all fluid lines of the L -class are passive.

Theorem 2.2. A fluid line of class L , defined on the spatial domain [0, l] is passive,

where this passivity is strict if any of the following hold:

1. the steady-state resistance is non-zero, that is r0 > 0,

2. the pipeline has a viscoelastic compliance, that is c 6= 0, or

3. the pipeline has an unsteady frictional resistance, that is r 6= 0.

Proof. For a line defined on x ∈ [0, l], the total energy entering the line at any point

in time is proportional to the fluid power entering the pipe minus the fluid power

exiting the pipe, which is given by

p(0, t)q(0, t)− p(l, t)q(l, t)

as q is directed into the pipe at x = 0 and out of the pipe at x = l. For the system

to be passive, it must absorb energy, which implies that, at any point in time,

the accumulative energy that has entered the system must be positive. Therefore,

for the L -line with homogeneous initial conditions, passivity implies the following

inequality ∫ t

0

p(0, τ)q(0, τ)− p(l, τ)q(l, τ)dτ ≥ 0 ∀ t > 0 (2.34)

where the equality is strict for strict passivity (provided the boundary variables are

not all zero for all t). Equation (2.34) basically states that at any point in time,

the total energy delivered to the pipe is greater than the energy exiting the pipe.

To achieve an expression relating the end to end energy input, the system (2.33) is

integrated over x ∈ [0, l] to obtain

p(0, t)q(0, t)− p(l, t)q(l, t) =

∫ l

0

p · C0

(
∂

∂t
+ C
)
p+ q ·R0

(
∂

∂t
+R

)
qdx (2.35)
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which gives an expression for energy entering and leaving the pipeline at the end

points. Expanding the integrand in (2.35) with (2.22) and (2.23) yields

C0

[
∂

∂t

(
p2

2

)
+ p ·

(
c ∗ ∂p

∂t

)]
+R0

[
∂

∂t

(
q2

2

)
+ roq

2 + q ·
(
r ∗ ∂p

∂t

)]
which integrating over the spatial-temporal plane [0, l]× [0, t] yields∫ l

0

C0
p2(x, t)

2
+R0

q2(x, t)

2
dx+R0r0

∫ t

0

∫ x

0

q2(x, τ)dxdτ

+

∫ l

0

∫ t

0

C0p(x, τ) ·
(
c ∗ ∂p

∂t

)
(x, τ) +R0q(x, τ) ·

(
r ∗ ∂q

∂t

)
(x, τ)dtdx

.

(2.36)

As C0, R0 and r0 are positive, the square terms in (2.36) are nonnegative, where only

the square term integrated over time is strictly positive. As the systems (c ∗ ∂p/∂t)
and (r ∗ ∂q/∂t) are strictly passive (they were defined to be so by Definition 2.1),

the temporal integral of these terms is positive, and by implication, so is the spatial

integral. Therefore, provided not all r0 = 0 and c, r ≡ 0 then (2.36) is positive,

so the system is strictly passive. If all r0 = 0 and c, r ≡ 0, then (2.36) is only

nonnegative (i.e. it can be zero) and the system is passive, not strictly passive.

Remark: The physical interpretation of strict passivity is of a system that dissipates

energy [Desoer and Vidyasagar , 1975]. As in Example 2.2, the line of class L is

lossless when all r0 = 0 and c, r ≡ 0, which, as reflected in the theorem, is only

passive. However, when one of these criteria does not hold, the system contains

energy absorbing mechanisms (through steady-state friction in the case of r0 6= 0,

unsteady friction in the case of r 6= 0 and viscoelastic pipewall interaction in the

case of c 6= 0) and hence becomes strictly passive.

2.4 Laplace-Domain Representations of 1-D Fluid

Lines

The Laplace-transform has a long history in many applications, most notably as a

technique for solving differential equations [Kreyszig , 1999] and a tool for analysing

linear time-invariant systems [Franklin et al., 2001]. The Laplace transform is de-

fined as follows.

Definition 2.4. The Laplace transform L of the exponentially bounded function

f : R+ 7→ R is defined as the integral transform

L{f} (s) =

∫ ∞
0

f(t)e−stdt (2.37)
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where s ∈ C is the Laplace variable. It is common notation to express the Laplace

transform of f by its capital as F (s) = L{f} (s).

Within fluid lines, the Laplace transform has served as a tool for simplifying the

coupled mass and momentum PDEs into a series of uncoupled second order ordinary

differential equations (ODEs) [Brown, 1962]. The famous solution of these second

order ODEs has the fascinating wave propagation interpretation as being linear

operators on traveling wave forms. Despite the simplicity of this solution, an ex-

tremely broad range of physical fluid line systems can be described, including many

two dimensional (2-D) systems (e.g. axisymmetric viscous [Rouleau and Young ,

1965c] or inviscid [Rouleau and Young , 1965b], compressible or incompressible flow

[Brown, 1962], laminar or turbulent approximations [Funk and Wood , 1974; Vardy

and Brown, 2003, 2004, 2007]). The interested reader is referred to the surveys

Goodson and Leonard [1972], and more recently Stecki and Davis [1986].

Within the context of the L -line, the Laplace-domain representation of fluid

lines is summarised below, and the wave propagation solution derived. Some impor-

tant results are given, facilitated by the use of the L -line, and the transfer matrix

organisation of the wave propagation solution is outlined.

2.4.1 Laplace representation of the linear class

The following is a corollary to the L class from Definition 2.1 and provides a Laplace-

domain characterisation of the L -line.

Corollary 2.2. Given homogeneous distributions of p and q for t < 0, the Laplace-

domain representation of the mass and momentum equations (2.20)-(2.21) are given

by

∂Q

∂x
= −C0 [s+ C(s)]P (2.38)

∂P

∂x
= −R0 [s+R(s)]Q (2.39)

where P,Q : R × C 7→ C are the Laplace transforms of pressure and flow, and

C,R : C 7→ C are the Laplace transforms of the integrodifferential operators C and

R, respectively, and are given by

C(s) = sc(s) (2.40)

R(s) = r0 + sr(s) (2.41)

where c, r : C 7→ C are the transforms of the causal, stable impulse response functions
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c(t) and r(t), respectively. The functions sc(s) and sr(s) are strictly passive, and

therefore the following properties hold

1. sc(s),sr(s) are analytic and bounded in the closed right half plane

2. Re {sc(s)} ,Re {sr(s)} > 0 for Re {s} ≥ 0

3. c(s) = c(s̄), r(s) = r(s̄)

Proof. The corollary involves the Laplace transform of the time-domain counterparts

in definition 2.1, where the properties of c and r follow on from the Laplace-domain

characterisations of stability (point 1) and passivity (points 1-3), where causality

is not directly dealt with as it is implied by passivity [Wohlers , 1969] (see Triverio

et al. [2007] for a Laplace-domain representation of causality exclusively).

Remarks:

1. The strict passivity of sc(s) and sr(s) implies the following properties for the

functions r and c:

(a) the functions c(s), r(s) behave like 1/s for large values of s,

(b) Given s = α + iω then

αRe {r(s)} > ωIm {r(s)} , αRe {c(s)} > ωIm {c(s)} ,

the derivation of which is not included here.

2. For the LR -class from Definition 2.2, the form of r(s) and c(s) are generically

expressed as the rational functions

r(s) =

NR∑
k=1

rk
s+ νk

c(s) =

NC∑
k=1

ck
s+ µk

where as rk, ck, νk and µk are positive real constants, with all zeros and poles

of r(s) and c(s) in the open left plane of C.

The main advantages of the Laplace transform with PDEs is made clear in that

the complex system of PDEs in (2.20)-(2.21) is transformed into the simple ODEs

system (2.38)-(2.39) with constant coefficients with respect to x. The homoge-

neous initial conditions is an important restriction, as it ensures that the transient
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behaviour of the system results only from boundary perturbations and not the dis-

tributed excitation resulting from initial conditions. Note that steady-state initial

conditions are permissible as they do not induce transient behaviour, and so taking

the steady state conditions as the operating point is legitimate

The solution to (2.38)-(2.39) is straightforward [Kreyszig , 1999], but the meaning

lies in its interpretation. The solution is presented as a corollary to the L -line system

Definition 2.3 and Corollary 2.2 and is then discussed.

Corollary 2.3. Given the L -line representation (2.38)-(2.39), the distributions of

P and Q for the case of homogeneous initial conditions for the system in Definition

2.3 are given as

P (x, s) = e−Γ̃(s)xA(s) + eΓ̃(s)xB(s) (2.42)

Q(x, s) =
A(s)e−Γ̃(s)x −B(s)eΓ̃(s)x

Zc(s)
(2.43)

where Γ̃ : C 7→ C is called the propagation operator, Zc : C 7→ C is called the

characteristic impedance, and these are given by

Γ̃(s) =
√
R0 [s+R(s)]C0 [s+ C(s)]

Zc(s) =

√
R0 [s+R(s)]

C0 [s+ C(s)]

where the branch cut for
√· is taken along the negative real line, and A,B : C 7→ C

are complex functions dependent on the upstream and downstream affine operator

boundary conditions φ0 and φl respectively.

Proof. The proof is straightforward, refer to Kreyszig [1999] for the general approach

or Fox [1977]; Chaudhry [1987]; Wylie and Streeter [1993] for the specific cases where

r, c = 0.

Remarks:

1. The propagation operator Γ̃ and the characteristic impedance Zc have a long

history in describing wave propagation in fluid lines [Brown, 1962; Stecki and

Davis , 1986], electrical transmission lines [Wohlers , 1969] and 1-D flexible

structures. Together these functions describe the dynamic properties of the

line where Γ̃ describes the frequency dependent attenuation and phase change

per unit length that a travelling wave experiences, and Zc describes the phase

lag and wave magnitude of the flow traveling wave that accompanies a pressure

travelling wave.
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2. The system (2.42)-(2.43) explicitly describes 1-D linear wave propagation.

This is observed by interpreting A as the upstream pressure wave that is prop-

agated downstream by the operator e−Γ̃x to form a positive travelling wave,

and B is the downstream pressure wave that is propagated upstream by the

operator eΓ̃x to form a negative travelling wave form [Zecchin et al., 2005].

Important properties of the propagation operator and the series impedance are

outlined in the theorem below.

Theorem 2.3. The propagation operator Γ̃(s) and the series impedance Zc(s) are

positive real functions and strictly positive real when one of r0 > 0, c, r 6= 0 holds.

Proof. Consider s within the right hand plane∣∣∣arg Γ̃(s)
∣∣∣ =

1

2
|arg {R0 [s+R(s)]}+ arg {C0 [s+ C(s)]}| ≤ π

2

where the last expression holds as Re {s+R(s)} ,Re {s+ C(s)} ≥ 0 for s within the

right hand plane (see Corollary 2.3). The strict positive realness for one of r0 > 0,

c, r 6= 0 is shown from the fact that Re {s+R(s)} ,Re {s+ C(s)} > 0 for one of

r0 > 0, c, r 6= 0 (this also follows from Corollary 2.3). The proof for Zc arises from

fact that | argZc| ≤ | arg Γ̃|.

Remark: The strictly positive real nature of the functions Γ̃(s) and Zc(s) has

an important physical interpretation, which is explained in the following example.

Consider a semi-infinite line in steady oscillatory state with the boundary condition

q(0, t) = qoe
iωt, it can be demonstrated from (2.42)-(2.43) that the solution along

the length x ∈ [0,∞) is

q(x, t) = qo exp
{
−Re

{
Γ̃(iω)

}
x
}
· exp

{
i
(
ωt− Im

{
Γ̃(iω)

}
x
)}

(2.44)

p(x, t) = Zc(iω)q(x, t) (2.45)

which are the equations of a travelling wave. Given the form (2.45)-(2.44), Re
{

Γ̃
}

can be interpreted as the attenuation factor and Im
{

Γ̃
}

as the wave number [Fox ,

1977] as

e−Γ̃(s)x = e−Re{Γ̃(s)}x · e−iIm{Γ̃(s)}x

The property of Re
{

Γ̃
}
≥ 0 has the physical interpretation that as a wave prop-

agates along, the amplitude of the wave is attenuated. This is a property of real

physical systems as it implies that energy is lost as a wave form travels. It is also

interesting to note that the decay is dependent on the composite actions of the
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resistive and capacitive terms. Considering the series impedance

arg p(x, t) = argZc(iω) + arg q(x, t)

therefore Re {Zc(iω)} ≥ 0 means that the pressure is never more that π/2 out of

phase with the flow wave as a completely out of phase system is not physical. Note

that

argZc(iω) =
1

2
[arg {R0 [iω +R(iω)]} − arg {C0 [iω + C(iω)]}]

It is interesting here that the resistive term implies a leading of the phase of the

pressure wave and the capacitive term implies a delay in the pressure phase.

2.4.2 Laplace transfer function models

The system (2.42)-(2.43) is a general solution to (2.40)-(2.41) and serves as the

underlying basis for most Laplace-domain models of pipelines [Wylie and Streeter ,

1993; Chaudhry , 1987]. By far the most popular method is the so called transfer

matrix method [Goodson and Leonard , 1972; Chaudhry , 1970], which deals with

the end-to-end transfer functions of a pipe of finite length. That is, with reference

to (2.42)-(2.43), say that the pressure and flow are known at point x = 0, then

functions A and B can be determined and the pressure and flow at point x = l can

be computed as[
P (l, s)

Q(l, s)

]
=

[
cosh Γ(s) −Zc(s) sinh Γ(s)

−Z−1
c (s) sinh Γ(s) cosh Γ(s)

][
P (0, s)

Q(0, s)

]
(2.46)

where Γ = lΓ̃ is the propagation operator over length l. The end-to-end representa-

tion (2.46) is convenient when dealing with series systems [Chaudhry , 1970, 1987],

but it is well known to be a physically unrealisable organisation of the equations6

[Makinen et al., 2000; Almondo and Sorli , 2006]. As listed in Almondo and Sorli

[2006], causal physically realisable organisations of (2.46) are: the impedance form[
P (0, s)

P (l, s)

]
= Zc(s)

[
coth Γ(s) csch Γ(s)

csch Γ(s) coth Γ(s)

][
Q(0, s)

−Q(l, s)

]
; (2.47)

the admittance form[
Q(0, s)

−Q(l, s)

]
= Z−1

c (s)

[
coth Γ(s) − csch Γ(s)

− csch Γ(s) coth Γ(s)

][
P (0, s)

P (l, s)

]
; (2.48)

6The reason for the unrealisability is that (2.46) relies on simultaneously fixing pressure and
flow at a point, which is not possible. This is reflected in that (2.46) does not represent a causal
system.
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the first hybrid form[
P (0, s)

Q(l, s)

]
=

[
Zc(s) tanh Γ(s) Z−1

c (s) sech Γ(s)

− sech Γ(s) Z−1
c (s) coth Γ(s)

][
Q(0, s)

P (l, s)

]
; (2.49)

and the second hybrid form[
Q(0, s)

P (l, s)

]
=

[
Z−1
c (s) tanh Γ(s) − sech Γ(s)

sech Γ(s) Zc tanh Γ(s)

][
P (0, s)

−Q(l, s)

]
. (2.50)

For systems (2.47)-(2.50), there is the following corollary to Theorem 2.2 concerning

the passivity of the transfer function maps (2.47)-(2.50).

Corollary 2.4. For lines of class L , systems (2.47)-(2.50) are passive and strictly

passive when one of r0 > 0, r(s) 6= 0, c(s) 6= 0 holds.

Proof. Systems (2.47)-(2.50) represent the Laplace transform of the maps[
q(0, ·)
−q(l, ·)

]
7→
[
p(0, ·)
p(l, ·)

]
, for (2.47)

[
p(0, ·)
p(l, ·)

]
7→
[
q(0, ·)
−q(l, ·)

]
, for (2.48)

[
q(0, ·)
p(l, ·)

]
7→
[
p(0, ·)
−q(l, ·)

]
, for (2.49)

[
p(0, ·)
−q(l, ·)

]
7→
[
q(0, ·)
p(l, ·)

]
. for (2.50)

The net energy delivered to the system at time t is the inner product of the inputs

and outputs which, for all (2.47)-(2.50), is

p(0, ·)q(0, ·)− p(l, ·)q(l, ·),

which is consistent with the representation in Theorem 2.2 and is known to represent

a passive system that is strictly passive when one of r0 > 0, r(s) 6= 0, c(s) 6= 0

holds.

Remarks:

1. Implications for the transfer matrices in (2.47)-(2.50) is that they are all pos-

itive definite, and strictly positive definite when one of r0 > 0, r(s) 6= 0,

c(s) 6= 0 holds.
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2. The difference between (2.46) and (2.47)-(2.50) can be seen in terms of the

energy delivered to the system. System (2.46) is a Laplace transform of the

map [
p(0, ·)
q(l, ·)

]
7→
√
R0

C0

[
p(0, ·)
−q(l, ·)

]
,

for which the energy delivered to the system is

p(0, ·)p(l, ·)− R0

C0

q(0, ·)q(l, ·),

which is clearly not consistent with the system description in Theorem 2.2 and

is hence not necessarily passive.

The property of the passivity of the admittance form (2.47), as demonstrated in

Corollary 2.4, is fundamental to the network based theorems in Chapters 3 and 4,

and Appendix B. Many more properties of the admittance form (2.47) are explored

in Appendix A.

2.5 Conclusions

This dissertation is primarily concerned with networks of fluid lines modelled as

1-D distributed parameter systems. Within this chapter, the basic equations of

mass, momentum, and energy conservation governing the transient behaviour of

1-D fluid lines were derived. The derivations follow standard approaches based

on the Reynolds transport theorem (e.g. Chaudhry [1987]), with the exception

that commonly neglected terms were highlighted and discussed. A new and more

comprehensive form of the 1-D energy equation was derived, where the energy term

associated with the viscoelastic behaviour of the pipe wall was included.

A new framework for the generalised consideration of linear fluid lines has been

defined and termed the L -class of fluid lines. This class enables the generic descrip-

tion of 1-D pipeline dynamics through the capacitive and resistive integrodifferential

operators C and R. The class was defined such that it has a broad membership of

most commonly accepted models such as the standard LSF and TSF models [Wylie

and Streeter , 1993], the VE model [Rieutord and Blanchard , 1979], and the TUF

model [Vardy and Brown, 2007].

Utilising the definitions of the L -class, all pipeline models within this class were

demonstrated as being passive systems. Passivity is an important physical property

that describes a system as dissipating energy. The Laplace-domain representation

of the L -class was derived, for which the causal organisations of the transfer matrix
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formulations were presented and demonstrated to be passive also. The passivity of

the admittance form of the transfer matrix method is fundamental to the network

developments presented in the rest of this thesis.
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Chapter 3

Arbitrarily Configured Simple

Node Networks

3.1 Introduction

Many of fluid line systems do not consist of single fluid lines, but are comprised of a

number of such lines interconnected at common nodes in the form of a branched or

looped network. The modelling of these networks not only involves the solution to

the hyperbolic partial differential equations (PDEs) governing the transient behavior

of the fluid line, but also the maintaining of nodal continuity constraints at all the

lines’ boundary and interconnection points.

Within the civil engineering field, the transient modelling of such systems within

the time-domain is prevalent in research and industry. The use of discretisation

methods in modelling pipes and their interactions at junctions, and various hydraulic

components, is broadly addressed in the literature (e.g. [Karney , 1984; Chaudhry ,

1987; Wylie and Streeter , 1993; Axworthy , 1997; Izquierdo and Iglesias , 2004; Wood

et al., 2005]). Within industry, the need for surge or waterhammer analysis of water

distribution systems has seen the development, and regular application, of the many

commercially available software packages.

These models provide a discrete approximate representation of the time-domain

behavior of a pipe network. An alternative to this approach is to consider the

frequency-domain representation of a pipe network’s transient dynamics. That is,

the network’s transient behavior can be completely described by the distribution of

the fluid variables’ spectral energy over the frequencies, as opposed to the temporal

fluctuations of these variables (the variables of interest typically being the pressure

and flow). Frequency-domain models are used to calculate the relationship between

the frequency spectrum of the transient fluid variables at any point of interest within
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the system.

As outlined in Section 2.4, frequency-domain models are given by the solution of

the Laplace transform of the linearised underlying fluid equations. An advantage of

frequency-domain methods is that the true distributed space/continuous time na-

ture of the system is retained and analytic relationships between system components

and the transient behavior of the system can be derived. It is this latter point of the

amenability of frequency-domain methods to analytic derivations that has seen its

emergence in the field of pipe leak and blockage detection (e.g. [Lee et al., 2005a;

Mohapatra et al., 2006a]). The analytic nature of frequency-domain methods means

that they are computationally more efficient in comparison to their costly numerical

time-domain counterparts [Zecchin et al., 2005]. Additionally, the absence of dis-

cretisation schemes within these methods means that complications with organising

the computational grid to satisfy the Courant condition are avoided Kim [2007].

Within this chapter, a novel systematic approach to developing a Laplace-domain

model of a pipe network of arbitrary configuration is developed. The arbitrary net-

work is posed in a graph-theoretic framework (similar to that used with the treat-

ment of steady state pipe networks [Collins et al., 1978] and transient electrical

circuits [Desoer and Kuh, 1969; Chen, 1983]) from which matrix relationships are

derived, relating the unknown nodal pressures and flows to the known nodal pres-

sures and flows. As such, an admittance matrix characterisation of the network

is achieved. This research work focuses only on networks comprised of reservoirs,

junctions and pipes. The importance of this work is that it provides a systematic,

analytic model of pipe networks that is not limited in the class of network configu-

ration that can be addressed.

This chapter is structured as follows. The background is given in Section 3.2,

where the existing methods for the frequency-domain modelling of pipe networks

are surveyed. Section 3.3 firstly defines a pipeline network as a mathematical object

and presents the basic network equations. Section 3.4 outlines the formulation of the

matrix structure relating the nodal pressures to the nodal flows, and from this the

main theorem of the chapter concerning the network transfer matrix for a network

comprised of pipes, junctions, demand nodes and reservoirs is presented and proven.

Based on this theorem, a computational model mapping from the known boundary

conditions to the unknown nodal states is developed in Section 3.5. Section 3.6

presents numerical examples which illustrate the utility of the proposed method,

and Section 3.7 outlines the conclusions.
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3.2 Background

There exist different methods that are used to construct frequency-domain repre-

sentations of pipeline systems, which in turn are used to compute the relationship

between the frequency distribution of the transient fluid variables at points of inter-

est within the system. There are two distinct categories of methods within the civil

engineering literature, namely the broadly adopted classical methods (the transfer

matrix method [Chaudhry , 1970, 1987] and the impedance method [Wylie, 1965;

Wylie and Streeter , 1993]), and the less broadly adopted recent methods. These

categories are briefly surveyed in the following sections.

3.2.1 Classical methods for restricted types of pipe net-

works

The transfer matrix method [Chaudhry , 1970], one of the classical methods for

frequency-domain network modelling, utilises matrix expressions for each pipe (or

hydraulic element) that relate the pressure and flow at the upstream and downstream

ends [e.g. see equation (2.46)]. The resulting end to end transfer matrix of a

hydraulic system is achieved by the ordered multiplication of the hydraulic element

matrices. An advantage of the transfer matrix method is that it can incorporate a

whole range of hydraulic elements (e.g. valves, tanks, emitters etc.). However, the

main limitation, is that it can only be applied to certain network structures, that

is, systems with pipes in series, systems with branched pipes, and more generally,

systems containing only first order loops [Fox , 1977]. First order loops are loops

that are either disjoint or nested in only one the arc of the outer loop. Second order

loops involve links that either connect the two arcs of an outer loop, or connect an

arc of a loop to a node within the network that the loop’s arcs are not incident to.

An example of first and second order looping is given in Figure 3.1.

The other classical method for the frequency-domain modelling of pipeline sys-

tems is the impedance method [Wylie, 1965]. This approach adopts a system de-

scription in terms of the distribution of hydraulic impedance throughout the system,

where the hydraulic impedance at a point is defined as the ratio of transformed pres-

sure to transformed flow. Upstream to downstream impedance functions for each

hydraulic element are used to describe the variation in impedance across each ele-

ment. As with the transfer matrix method, a strength of the impedance method is

that it can be generalised to be applied to any system involving arbitrary hydraulic

elements. Theoretically, this method can be applied to networks of arbitrary con-

figuration by simultaneously solving the nonlinear end to end impedance functions.
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Figure 3.1: Example of a first order looped network without the dashed link, and a
second order looped network with the dashed link.

However, the large algebraic effort required by the impedance method has tradi-

tionally seen its application to only simple first order networks [Wylie and Streeter ,

1993].

3.2.2 Recent methods for modelling arbitrary networks

The recent methods for constructing frequency-domain models of pipe networks have

primarily dealt with networks of an arbitrary structure. These are briefly surveyed

below.

In Ogawa [1980] and Ogawa et al. [1994], system matrix transfer functions for

sinusoidal amplitude distributions in pressure and velocity were derived for arbitrary

networks. In this work, spatial earthquake vibrations were taken as the transient

state driver for the system, and as such, the fluid line equations incorporated axial

displacement terms. Assuming a sinusoidal form of pressure and velocity, a trans-

fer matrix of size 2nλ (nλ = number of links) was derived relating the amplitude

functions of the positive and negative travelling waves in each pipe to the lateral

movements at the pipes nodal endpoints. This work is somewhat different to the

application here. Firstly, the fluid line equations used by Ogawa [1980]; Ogawa

et al. [1994] were slightly different as axial displacement terms were incorporated.

Secondly, Ogawa [1980]; Ogawa et al. [1994], dealt with amplitude functions of sinu-

soidal responses in the time-domain, hence, the Laplace-domain representation used

here was not directly dealt with. Thirdly, and conceptually the most significant

difference, Ogawa [1980]; Ogawa et al. [1994] reduce their system to a set of 2nλ

unknowns (that is two coefficients for each pipe’s positive and negative travelling

waves respectively). Within this chapter, it is shown that the entire system state
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can be reconstructed given knowledge of the systems nodal pressures and flows, and

as such, the formulation presented in this research derives a linear system of the

order of the number of nodes. Since nn < 2nλ, the formulation presented in this

chapter yields a smaller, and more computationally efficient, state representation of

the network.

Muto and Kanei [1980] applied a transfer matrix type approach to a simple

second order looping system, however, no general approach for an arbitrary system

was outlined in this work. Employing a modal approximation to the transcendental

fluid line functions, Margolis and Yang [1985] developed a rational transfer function

bond graph approximation for a fluid line. This served as the basis for a network

model, however, only tree networks were considered. Recently John [2004], applied

an impedance based method to a tree network model of the human arterial system.

Based on the work of Brown and Tentarelli [2001], Tentarelli and Brown [2001]

derived a matrix formulation for the study of the frequency response of a fluid-filled

tubing system subjected to vibrations. The emphasis of their work was on modelling

fluid-structure interactions (e.g. Bourdon effect, frequency-dependent wall shear,

Poisson coupling) and as such, the state variables of interest, in addition to the fluid

properties, were the pipe wall stresses (e.g. axial compression, shear, axial moment

and torsional moment) and the accompanying pipe wall displacements (e.g. axial

displacement, transverse displacement, rotational displacement, and twist angle). In

total, for curved tubes, the state space considered by Tentarelli and Brown [2001]

contained 14 distributed parameter variables for each pipe. Due to the interaction

of these variables the shunt admittance and series impedance matrices were of a

much more complex form than for the two variable case, and as such the resulting

telegraphists equations could only be solved numerically.

An alternative methodology of utilising the frequency-domain pipeline transfer

functions within a network setting was adopted by Reddy et al. [2006]. In this paper,

Reddy et al. [2006] analytically inverted the rational transfer function approxima-

tions proposed in Kralik et al. [1984a] to develop a discrete time-domain network

model. Case study specific matrices were constructed to relate the fluid variables at

the pipe end points.

Both Boucher and Kitsios [1986] and Wang et al. [2000] employ a transmission

line model to describe the pressure wave attenuation within an air pipe network.

This work is a simplification of the original work done by Auslander [1968], in that

the pipes are modelled as pure time delays, and the resistance effects are lumped

at the nodes. The variables within the system are the incident and emergent waves

from the pipes to the nodes, for which a scattering matrix equation is set up that

describes the relationship between these based on the nodal constraints.
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Kim [2007] proposed a model to deal with an arbitrary network structure called

the address oriented impedance matrix. This method starts from the basis of the

set of link and node equations and follows through an algorithm to generate the

address matrix that accounts for the network connectivity. All pressure heads are

normalised by a reference flow rate, and as such, hydraulic impedance is the fluid

variable adopted in this method. This method can be viewed as a systematic gen-

eralisation of the impedance method to networks of a complicated configuration.

Based on an impulse response method (IPREM) type approach [Suo and Wylie,

1989], the method was successfully used to calibrate the unknown parameters of a

hydraulic model to synthetically generated time-domain data [Kim, 2008]. Despite

the methods ability to model networks, the algorithm for constructing the address

matrix is quite involved and does not fully utilise the structure of the network to

reduce the matrix size relating the network variables.

The formulation presented in this chapter differs from this past work in that a

network admittance matrix is derived. This matrix maps from the network nodal

pressures to the nodal flows. Dealing purely with nodal variables provides a smaller

system of equations than that achieved by dealing with wave form coefficients for

each pipe. Additionally, graph theoretic concepts implemented in electrical circuit

theory have been adopted within this formulation [Chen, 1983]. This facilitates a

simple and systematic treatment of the network connectivity equations, thus avoid-

ing the need for manual, or algorithm based methods for constructing appropriate

network matrices.

3.3 Network Equations

This chapter is concerned exclusively with networks comprised of fluid lines of the

L class connected via simple nodes at which either the nodal flow, or nodal pressure

are controlled. This class of networks is essentially comprised of all pipe networks

whose nodes are either junctions (simple nodes), demand nodes (simple nodes with

nodal flow control) or reservoirs (simple nodes with a nodal pressure control).

3.3.1 Preliminaries

As is standard when dealing with networks, graph theory constructs are adopted

here to provide a framework to easily deal with network concepts. For brevity, only

the important definitions are made here (see Diestel [2000] for further details). The

definition of a simple node is deferred until the necessary notation has been defined.
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Definition 3.1. A simple node L -line network (or L -network) is defined as the

pair (G (N ,Λ) ,P) consisting of

1. the graph G (N ,Λ) with node set

N = {1, 2, ..., nn} ⊂ N,

and link set

Λ = {λ1, λ2, ..., λnλ} ⊂ N ×N ,

consisting of links λj = (iu,j, id,j), where iu,j, id,j ∈ N are the upstream and

downstream nodes of link j respectively,

2. the set of L -line properties P = {(R0,λ,Rλ), (C0,λ, Cλ),Xλ : λ ∈ Λ} where R0,

Rλ, C0 and Cλ are the L -line coefficients and functions (Definition 2.1) as-

sociated with link λ ∈ Λ, and Xλ = [0, lλ] is the spatial domain of link λ ∈ Λ.

For all networks within this class, the graph G (N ,Λ) is connected. The state space

of the network is given by the distributions of pressure and flow along each line of

the network, which can be represented as

p (x, t) =


p1 (x1, t)

...

pnλ (xnλ , t)

 , q (x, t) =


q1 (x1, t)

...

qnλ (xnλ , t)

 , x ∈ X , t ∈ R

where the directed nature of the link describes the positive flow direction sign con-

vention of the L -line.

Remark: The restriction of a connected underlying graph omits the trivial case of

networks with unconnected nodes, or unconnected subnetworks. In other words, it

ensures that the dynamics of each node and link in the network are not independent.

The following topological sets and matrices are important in the ensuing devel-

opment.

Definition 3.2. For the graph G (N ,Λ), the upstream and downstream link sets

Λu,i and Λd,i, associated with each node i ∈ N , are defined as the set of links directed

from and to node i respectively, that is Λu,i = {(i, k) , k ∈ N : (i, k) ∈ Λ} and

Λd,i = {(k, i) , k ∈ N : (k, i) ∈ Λ}). That is, the set Λu,i corresponds to the links

whose upstream node is i and the second set Λd,i corresponds to the links whose

downstream node is i.
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Definition 3.3. For the graph G (N ,Λ), the nn × nλ binary matrices Nu and Nd

are the upstream and downstream topological matrices defined by

{Nu}i,j =

1 if λj ∈ Λu,i

0 otherwise
, and {Nd}i,j =

1 if λj ∈ Λd,i

0 otherwise

Remarks:

1. The sum Nu + Nd is the standard incidence matrix used to describe the

connectivity of undirected graphs and Nu −Nd for directed graphs [Diestel ,

2000].

2. The above topological matrices are also used in the work of Kramar and

Sikolya [2005]; Sikolya [2005]; Fijavz et al. [2007], but are termed as outgoing

incidence matrix and ingoing incidence matrix for Nu and Nd respectively.

Using this notation, a simple node can be formally defined.

Definition 3.4. A simple node is defined as an interface with an infinitely small

volume that forms a lossless connection between one or more hydraulic elements such

as pipes. The combination of a lossless, infinitely small volume implies that there is

no variation of pressure or accumulation of mass at a simple node. Therefore,in the

context of a network (G(N ,Λ),P) the physical equations for a simple node are

pj(ϕj,i, t)− pk(ϕk,i, t) = 0, j, k ∈ Λi, i ∈ N (3.1)∑
j∈Λd,i

qj(ϕj,i, t)−
∑
j∈Λu,i

qj(ϕj,i, t) = 0, i ∈ N (3.2)

where ϕj,i is a special function, defined on Λi, to indicate the end of pipe j that is

incident to node i, and is given by

ϕj,i =

0 if j ∈ Λu,j

lj if j ∈ Λd,j

.

Equation (3.1) states that all links with ends incident to a common node share the

pressure at that node, and (3.2) states that the sum of all flows into a node is zero.

Remarks:

1. The terminology simple node is introduced so as to differentiate between nodes

of this fundamentally basic type and the dynamically different compound nodes

introduced in the next chapter.
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2. The physical equations governing this node type are hydraulic equivalents

of the Kirchoff laws [Desoer and Kuh, 1969] for voltage and current within

electrical circuits. That is (3.1) is an alternative expression to the standard

form of Kirchoff’s voltage law which states that the voltage (pressure) changes

within all links in a given loop sum to zero. Similarly (3.2) is a direct hydraulic

translation of Kirchoff’s current law that states that the the sum of the currents

(flows) into a node is zero. There are, however, significant differences between

this type of network and standard Kirchoff networks attributed mainly to

the distributed parameter nature of the links within hydraulic networks. The

relationship between Kirchoff networks and networks of the form considered

here is explored in more detail in Appendix B.4.

3.3.2 Fluid line network equations

In the context of applications to specific hydraulic scenarios, the boundary and initial

conditions for the network (G(N ,Λ),P) need to be defined, which essentially consists

of defining the boundary and initial conditions for each line j ∈ Λ. Concerning

the boundary conditions, two types of inhomogeneous nodal conditions are defined,

namely nodes for which the nodal flow is controlled and nodes for which the nodal

pressure is controlled.

Definition 3.5. Given a network (G(N ,Λ),P) with node subsets of Nr and Nd
where Nr are the pressure controlled nodes, and Nd are the flow control nodes, the

simple node L -network problem is defined as the determination of the distributions

pj, qj, j ∈ Λ for time t ∈ R+ such that

∂pj
∂x

+R0,j

(
∂

∂t
+Rj

)
qj = 0, x ∈ Xj, j ∈ Λ, (3.3)

∂qj
∂x

+ C0,j

(
∂

∂t
+ Cj

)
pj = 0, x ∈ Xj, j ∈ Λ, (3.4)

pk(ϕk,i, t)− pj(ϕj,i, t) = 0, j, k ∈ Λi, i ∈ N /Nr (3.5)

ψr,i(t)− pj(ϕj,i, t) = 0, j ∈ Λi, i ∈ Nr, (3.6)∑
j∈Λd,i

qj(ϕj,i, t)−
∑
j∈Λu,i

qj(ϕj,i, t) = 0, i ∈ N / (Nd ∪Nr) (3.7)

θd,i(t) +
∑
j∈Λd,i

qj(ϕj,i, t)−
∑
j∈Λu,i

qj(ϕj,i, t) = 0, i ∈ Nd (3.8)

pj(x, 0) = p0
j(x), qj(x, 0) = q0

j (x), x ∈ [0, lj] , j ∈ Λ (3.9)

where ψr,i is the controlled temporally varying reservoir pressure for the reservoir

nodes in the reservoir node set Nr, θd,i is the controlled (known) temporally varying
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nodal flow (positive for flow injection) for the demand nodes in the demand node set

Nd; p0
j and q0

j are the initial distribution of pressure and flow in each pipe j ∈ Λ.

(Note that in (3.5) and (3.7), / denotes the minus operation for sets.)

Remark: The network equations (3.3)-(3.9) can be divided into the following four

groups: (3.3) and (3.4) are the L -line fluid dynamic equations of motion and mass

continuity; (3.5) and (3.6) are the nodal equations of equal pressures in pipe ends

connected to the same node for junctions and reservoirs (pressure controlled nodes)

respectively; (3.7) and (3.8) are the nodal equations of mass conservation for junc-

tions and demand nodes; and, (3.9) is the initial conditions.

As this thesis deals with approximations linearised about the initial state, only

the case of homogeneous initial conditions is of interest. For homogeneous initial

conditions, the distributions of pressure and flow in a fluid line are uniquely deter-

mined by the boundary conditions.

3.4 Network Admittance Matrix Formulation

The Laplace-domain admittance matrix equation for the solution of linearised net-

work equations (3.3)-(3.8), subject to homogeneous initial conditions (3.9), is pre-

sented in the following, this is the main result of the chapter. The solution to

(3.3)-(3.8) derived here is of the form of an admittance mapping from the nodal

pressures to the nodal flows. For the homogeneous case, this representation of the

system is equivalent to solving the distributions of pressure and flow on all the links

as, from Section 2.4, the distribution of the state can be constructed uniquely from

the state values at the link end points. The nodal properties of pressure and flow

can be formally defined as follows.

Definition 3.6. For a network (G(N ,Λ),P) the nodal pressures and nodal flows

are defined by the vector functions R 7→ Rnn

ψ (t) = [ψ1 (t) · · · ψnn (t)]T , θ (t) = [θ1 (t) · · · θnn (t)]T ,

which are related to the link states by the expressions[
p (0, t)

p (l, t)

]
=
[
Nu Nd

]T
ψ (t) , (3.10)

[
Nu −Nd

] [ q (0, t)

q (l, t)

]
= θ (t) . (3.11)
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Note that θ can be viewed as a nodal flow injection as it takes positive values when

the flow is directed into the network.

Remarks:

1. The expression (3.10) is a matrix organisation of the nodal pressure equa-

tions (3.5) and (3.6). Similarly, (3.11) is a matrix organisation of the nodal

continuity equations (3.7) and (3.8).

2. The above expressions are essentially Kirchoff’s circuit laws in matrix repre-

sentation [Chen, 1983]. However, as the links possess lumped states within

electrical circuits, the expression of the network laws do not distinguish be-

tween the upstream and downstream points of a line. That is, the network laws

for electrical circuits involve an incidence matrix of the form Nu −Nd com-

bining the upstream and downstream incidence matrices. Refer to Appendix

B.4 for more discussion on the connection with Kirchoff networks.

3. The nodal flow is a generic term describing the controlled demand for a demand

node, the free outflow into (or out of) a reservoir at a reservoir node and zero

for a junction.

4. The sign convention is generally taken as positive flow is directed our of a

node (e.g. Todini and Pilati [1988]). The reason for taking the reverse sign

convention is that this retains the passivity property of a positive definite

hermitian of the Laplace-domain admittance map.

The partitioning of the nodal sets into controlled and free states is the subject

of the next section. The purpose of this section is to demonstrate that the network

state is uniquely determined by the nodal states ψ and θ and that these nodal

properties are related to each other by the admittance equation

θ(t) = (Y ∗ψ) (t) (3.12)

where Y : R 7→ Rnn×nn is the symmetric impulse response for the network admit-

tance matrix that describes the dynamic admittance relationship between all the

nodal pressures ψ and the nodal θ. That is, the network admittance matrix Y
determines the nodal flows θ that are admitted from an input of nodal pressures ψ.

An analytic expression of the form (3.12) can be achieved in the Laplace-domain

and is given in the following theorem.
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Theorem 3.1. For a simple node L -network (G(N ,Λ),P) governed by (3.3)-(3.8),

the Laplace transform of the nodal states

Ψ (s) = [Ψ1 (s) · · · Ψnn (s)]T , Θ (s) = [Θ1 (s) · · · Θnn (s)]T ,

are functionally related by the admittance relationship

Y (s)Ψ(s) = Θ(s) (3.13)

where the admittance transfer matrix Y (s) is a nn × nn symmetric matrix function

given by

{Y (s)}i,k =



∑
λj∈Λi

Z−1
j (s) coth Γj(s) if k = i

−Z−1
j (s) csch Γj(s) if λj = {(i, k), (k, i)} ∩ Λi 6= ∅

0 otherwise

, (3.14)

where the first case corresponds to all diagonal terms in Y , and the second case

corresponds to all element positions i, k for which there is a link between nodes i and

k.

Proof. The proof is constructive. For each s ∈ C, the system state is given by

the distributions of pressure and flow, Pj (xj, s) , Qj (xj, s), on xj ∈ Xj of each line

λj ∈ Λ. These states can be represented as the nλ × 1 vectors

P (x, s) = [P1 (x1, s) · · · Pnλ (xnλ , s)]
T ,

Q (x, s) = [Q1 (x1, s) · · · Qnλ (xnλ , s)]
T

where x ∈ X is the vector of spatial coordinates for all links. Using this nota-

tion, the matrix version of the L -line equations relating the states Pj (xj, s) and

Qj (xj, s) can be formulated. The ensuing system of L -line equations holds an

analogy to the matrix telegrapher’s equations which are usually used for parallel

multi-transmission lines [Elfadel et al., 2002] or multi-state wave propagation lines

[Brown and Tentarelli , 2001]. In such situations the axial coordinate is common to

all states. Here the states represent those from different lines, and as such there

is no common axial coordinate, but a vector of coordinates x. Therefore, the spa-

tial differential operator takes the form of the diagonal matrix diag d/dx where

d/dx = [d/dx1 · · · d/dxnλ ]. The matrix form of the L -line equations for a fluid line
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network are

diag
d

dx
P (x, s) = −R0 [sI +R(s)]Q (x, s) (3.15)

diag
d

dx
Q (x, s) = −C0 [sI +C(s)]P (x, s) (3.16)

where

R0 = diag [R0,1 · · ·R0,nλ ], R(s) = diag [R1(s) · · ·Rnλ(s)]

C0 = diag [C0,1 · · ·C0,nλ ], C(s) = diag [C1(s) · · ·Cnλ(s)].

These matrices are not simply diagonal for other transmission line types where

there is a greater interaction amongst the state variables. For example, for electrical

transmission line networks [Elfadel et al., 2002; Maffucci and Miano, 1998], the

electro-magnetic field associated with the voltage and current on each individual

line influences the state distributions on the other lines. Similarly, in the case

of vibration analysis tubing systems [Brown and Tentarelli , 2001; Tentarelli and

Brown, 2001], the fluid states and many tube wall states are highly coupled through

fluid-structure interactions (e.g. Bourdon effect, frequency-dependent wall shear,

Poisson coupling).

Analogously to the solution from the L -line problem in Corollary 2.3, (3.15)

and (3.16) can be solved to yield

P (x, s) = e−Γ̃(s)diagxA(s) + eΓ̃(s)diagxB(s), (3.17)

Q (x, s) = Zc
−1(s)

[
e−Γ̃(s)diagxA(s)− eΓ̃(s)diagxB(s)

]
, (3.18)

where A,B are complex nλ × 1 vector functions whose elements depend on the

boundary conditions on P and Q, and

Γ̃ (s) = (R0 [sI +R(s)]C0 [sI +C(s)])
1
2 = diag

{
Γ̃1(s), . . . , Γ̃nλ(s)

}
,

Zc (s) =
(
R0 [sI +R(s)]C0

−1 [sI +C(s)]−1) 1
2 = diag {Zc,1(s), . . . , Zc,nλ(s)} ,

are the propagation operator and characteristic impedance matrices respectively.

As expressed in (3.17) and (3.18), for each link λj ∈ Λ, the distribution of the

state on xj ∈ Xj is entirely dependent on the boundary conditions for the line.

As was illustrated in the previous chapter, the full state of the line can be recon-

structed by knowledge of any two of the line’s state variables at the line’s endpoints.

Generalising this statement to a network, it is seen that the full network state

P (x, s),Q(x, s),x ∈ X can be constructed from the vector of the state values at

the links upstream endpoints P (0, s) and Q(0, s) or the vector of the state values
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at the links downstream endpoints P (l, s) and Q(l, s), where, with the adopted no-

tation, the upstream state values for a link occur at x = 0 and the link downstream

state values occur at x = l = [l1, . . . , lnλ ]T . In an analogous manner to the sin-

gle dimensional transfer matrix method [Chaudhry , 1987], (3.17) and (3.18) can be

solved to yield the following 2nλ dimensional transfer matrix equations between the

upstream variables P (0, s),Q(0, s) and the downstream variables P (l, s),Q(l, s).

That is[
P (l, s)

Q (l, s)

]
=

[
cosh Γ (s) −Zc (s) sinh Γ (s)

−Zc
−1 (s) sinh Γ (s) cosh Γ (s)

][
P (0, s)

Q (0, s)

]
, (3.19)

where Γ = Γ̃diag l, and the definition of the hyperbolic trigonometric operations on

the matrices arises naturally from the definition of the matrix exponential [Horn and

Johnson, 1991]. Note that (3.19) is a generalisation of the standard 2 × 2 transfer

matrix to nλ independent (unjoined) links.

Equation (3.19) represents the relationship between the end points of each indi-

vidual link, but the boundary conditions on each link must be imposed to determine

the relationship between the 4nλ state elements of the link endpoints. As expressed

in (3.5)-(3.8), the constraints on the link ends incident to common nodes are the

continuity of pressure at the link end points attached to each node, and the con-

servation of mass at each nodal point. Given the vector of nodal pressures Ψ, the

transform equivalent of (3.10) is[
P (0, s)

P (l, s)

]
=
[
Nu Nd

]T
Ψ (s) , (3.20)

It is seen in (3.20) that the 2nλ variables of upstream and downstream pressure are

uniquely identified by the nn variables of nodal pressure. Similarly, given the vector

of nodal flows Θ, the transform of the nodal continuity constraints (3.7) and (3.8)

can be expressed in the following matrix form

[
Nu −Nd

] [ Q (0, s)

Q (l, s)

]
= Θ (s) , (3.21)

which is equivalent to saying that the flow into the node (from the downstream end

of the relevant links, e.g. Λd,i) minus the flow out from the node (into the upstream

end of the relevant links, e.g. Λu,i) is equal to the nodal outflow Θi.

By considering (3.19), (3.20) and (3.21), a full set of equations that govern

the transient network state is achieved. Keeping in mind that the objective is to

determine the admittance relationship between the nodal pressures Ψ and the nodal
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flows Θ, it is convenient to express (3.19) in the admittance form relating the link

end pressures to the link end flows as[
Q (0, s)

−Q (l, s)

]
=

[
Z−1

c (s) coth Γ (s) −Z−1
c (s) csch Γ (s)

−Z−1
c (s) csch Γ (s) Z−1

c (s) coth Γ (s)

][
P (0, s)

P (l, s)

]
, (3.22)

where cothA = [tanhA]−1, and cschA = [sinhA]−1. Combining (3.22) with (3.20)

and (3.21) yields the following relationship between the nodal pressures and flows

Θ (s) =[
Nu Nd

] [ Z−1
c (s) coth Γ (s) −Z−1

c (s) csch Γ (s)

−Z−1
c (s) csch Γ (s) Z−1

c (s) coth Γ (s)

] [
Nu Nd

]T
Ψ (s) .

(3.23)

Multiplying through the block matrices in (3.23) leads to the following expression

for the matrix in (3.13) that relates the nodal pressures to the nodal flows,

Y (s) =NuZ
−1
c (s) coth Γ (s)Nu

T −NdZ
−1
c (s) csch Γ (s)Nu

T

−NuZ
−1
c (s) csch Γ (s)Nd

T +NdZ
−1
c (s) coth Γ (s)Nd

T . (3.24)

To determine the explicit form of Y , each matrix expression is considered separately.

Based on a purely algebraic argument exploiting the structure of the incidence ma-

trices Nu and Nd, and the diagonal nature of Zc, it can be found that

{
N dZ

−1
c csch ΓNT

u

}
i,k

=

 csch Γj/Zc,j if λj = (k, i) ∈ Λd,i

0 otherwise
,

{
NuZ

−1
c csch ΓNT

d

}
i,k

=

 csch Γj/Zc,j if λj = (i, k) ∈ Λu,i

0 otherwise
,

{
N dZ

−1
c coth ΓNT

d

}
i,k

=


∑

λj∈Λd,i

coth (ΓjLj)

Zc,j
if k = i

0 otherwise

,

{
NuZ

−1
c coth ΓNT

u

}
i,k

=


∑

λj∈Λu,i

coth (ΓjLj)

Zc,j
if k = i

0 otherwise

.

Finally, gathering all these matrices together, (3.24) can be re-expressed as (3.13)

and (3.14).
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Remarks:

1. The expression (3.23) has an elegant structure to it that is worth some discus-

sion. The dynamics of the system (i.e. the pressure to flow transfer functions

for each link) are contained completely within the inner matrix, as the inci-

dence matrices Nu and Nd are simply constant matrices with elements either

0 or 1. The connectivity constraints of the network are described by the pre-

and post-multiplying of the block incidence matrix [Nu
...Nd] and its transpose.

The action of the post-multiplication by [Nu
...Nd]T can be seen as the mapping

from the nn nodal pressures to the 2nλ link end pressures, as in (3.20). The

inner matrix in (3.23) then maps from the link end pressures to the link end

outflows, as in (3.22). Finally, the pre-multiplication of [Nu
...Nd] then maps

from the 2nλ link end flows to the nn nodal flows, as in (3.21). Equation (3.23)

is also clearly symmetric.

2. A brief discussion of the form of (3.14) is in order. The first case in (3.14)

corresponds to all the off diagonal elements {Y (s)}i,k , i 6= k, for which there

exists a link λj between nodes i and k regardless of the links direction, (i.e.

either λj = (i, k) or λj = (k, i) for λj ∈ Λi). Moreover, when there is a link be-

tween nodes i and k, the term {Y (s)}i,k = [Zj(s) sinh (Γj(s))]
−1, corresponds

to the transfer function describing the contribution of the pressure at node k

to the flow in link λj at node i, and hence its contribution to the nodal flow

Θi. The second case corresponds to all the diagonal terms in Y (s) where the

summation is taken over the set Λi, which is the set of all links incident to

node i. The terms in the summation − [Zj(s) tanh (Γj(s))]
−1 correspond to

the transfer function for the contribution that the pressure at node i makes

to the flow in link λj at node i. Consequently, the sum of these individual

functions correspond to the transfer function describing the contribution that

the nodal pressure Ψi makes to the nodal flow Θi.

3. The form of (3.13) mirrors that seen in electrical circuits [Chen, 1983; Monti-

celli , 1999] where the nodal current injections I(s) are related to the nodal volt-

ages V (s) (with respect to some reference node) via the relationship Y (s)V (s) =

I(s). This representation of electrical circuits is achieved by the application

of Kirchoffs current laws to the circuit nodes in conjunction with the end to

end element dynamics. As such the admittance matrix can be expanded as

Y (s) = NY e(s)N
T [Desoer and Kuh, 1969], where N = Nu −Nd is the

node-link incidence matrix for a directed graph, and Y e is a diagonal matrix

of the individual element admittance functions. There are clearly links be-

tween (3.23) and the admittance matrix for electrical systems, however, the
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[7][7][1][1]

[5][5][2][2]

[3][3] [6][6]

[4][4]

3

4

2 51 6

Figure 3.2: The 7 pipe network from Example 3.1.

fundamental difference is that the links in fluid networks are distributed, and

the elements in electrical circuits are lumped. Each lumped electrical ele-

ment has only two states (current and voltage change) which are related by

a single element admittance transfer function, therefore, in this regard the

network representation for the electrical circuit is of a simpler form. For the

fluid lines, the upstream and downstream states are different and related via

transfer matrices, which necessitates separate consideration of the upstream

and downstream nodes as displayed in the division of the incidence matrix into

Nu and Nd. Refer to Appendix B.4 for more discussion on the connection

with Kirchoff networks.

Consider the following symbolic network example.

Example 3.1. The 7-pipe network of Figure 3.2 is possibly the simplest example of

a second order system. Given the nodal and link ordering in Figure 3.2, the upstream

and downstream incidence matrices for this network are

Nu =



1 0 0 0 0 0 0

0 1 1 0 0 0 0

0 0 0 1 1 0 0

0 0 0 0 0 1 0

0 0 0 0 0 0 1

0 0 0 0 0 0 0


, Nd =



0 0 0 0 0 0 0

1 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 1 1 0 0 0

0 0 0 0 1 1 0

0 0 0 0 0 0 1


(recall that the rows correspond to nodes and the columns to links), the state vectors

for the network are the pressures Ψ(s) = [Ψ1(s) · · · Ψ5(s) Ψ6(s)]T , and the nodal

flows Θ(s) = [Θ1(s) · · · Θ5(s) Θ6(s)]T , and the network link matrices are

Γ(s) = diag {Γ1(s), . . . ,Γ7(s)}
Zc(s) = diag {Zc,1(s), . . . , Zc,6(s)} .
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[1] [2] [n - 1] [n]

1 n n + 1n - 132

Figure 3.3: The pipes in series system from Example 3.2.

The network admittance matrix can be expressed as

Y (s) =

t1(s) −s1(s) 0 0 0 0

−s1(s)
∑

j=1,2,3

tj(s) −s2(s) −s3(s) 0 0

0 −s2(s)
∑

j=2,4,5

tj(s) −s4(s) −s5(s) 0

0 −s3(s) −s4(s)
∑

j=3,4,6

tj(s) −s6(s) 0

0 0 −s5(s) −s6(s)
∑

j=5,6,7

tj(s) −s7(s)

0 0 0 0 −s7(s) t7(s)



(3.25)

where tj(s) = Z−1
c (s) coth Γj(s) and sj(s) = Z−1

c (s) csch Γj(s).

To see how the form of (3.13) compares with classical frequency-domain pipeline

models, a symbolic comparison of (3.13) with the classical transfer matrix method

[Chaudhry , 1987] for two different system types is considered in the following exam-

ples.

Example 3.2. Consider the system depicted in Figure 3.3 which is comprised of

n+1 nodes and n links connected in series, which is a general model of a trunk main

comprised of many pipe connections. The transfer matrix model of the dependency

of the downstream pressure and flow as a function of the upstream pressure and flow

has the form [
Pn (ln, s)

Qn (ln, s)

]
=

n−1∏
j=0

T n−j (s)

[
P1(0, s)

Q1(0, s)

]
. (3.26)

where T j are 2×2 transmission organisation of the transfer matrices of the form in

(2.46) (note that the point matrices usually present in the transfer matrix method

representations have been neglected, since for pipe connections, they are only 2 ×
2 identity matrices [Chaudhry, 1987]). Since the junctions at nodes 2, . . . , n are

assumed to have no nodal flows, and only end nodes 1 and n + 1 have flows, the
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network admittance matrix (3.13) assumes the following form

t1 −s1 0 · · · 0

−s1 t1 + t2
. . .

...

0
. . . 0

...
. . . tn−1 + tn −sn

0 · · · 0 −sn tn





Ψ1(s)

Ψ2(s)
...

Ψn(s)

Ψn+1(s)


=



Θ1(s)

0
...

0

Θn+1(s)


, (3.27)

where tj = tj(s) and sj = sj(s) are as defined in Example 3.1. The matrix is tri-

diagonal as each node is connected only to its adjacent nodes ( i.e. only two links

are incident to each node, excluding the end nodes). To see that (3.27) provides an

equivalent map

[P1(0, s), Q1(0, s)]T 7→ [Pn(ln, s), Qn(ln, s)]
T

as in (3.26), (3.27) can be re-expressed as n∑
j=1

 0(n+1)×(j−1)

0(j−1)×2

Y j (s)

0(n+1−j)×2

0(n+1)×(n+1−j)


Ψ (s) = Θ (s)

where the braced subscripts indicate the order of the zero matrices and Y j(s) is the

admittance organisation of the transfer function T j(s). Deconstructing (3.27) in

this manner, it is seen that there exists n matrix equations of the form
Y 1(s) [Ψ1(s) Ψ2(s)]T = [Θ1(s) − C2(s)]T

Y j(s) [Ψj(s) Ψj+1(s)]T = [Cj(s) − Cj+1(s)]T j = 2, . . . , n− 1

Y n(s) [Ψn(s) Ψn+1(s)]T = [Cn(s) Θn+1(s)]T
(3.28)

where the Cj are the free variables that indicate the serial dependence of the n equa-

tions. Recalling that Y j is an admittance map, it is recognised that the free variables

Cj are actually the inline flow values at the link ends. Recognizing this, the linear

equations in (3.28) can be reorganised as
T 1(s) [Ψ1(s) Θ1(s)]T = [Ψ2(s) C2(s)]T

T j(s) [Ψj(s) Cj(s)]
T = [Ψj+1(s) Cj+1(s)]T j = 2, . . . , n− 1

T n(s) [Ψn(s) Cn(s)]T = [Ψn+1(s) −Θn+1(s)]T

for which the following composition can be taken[
Ψ1(s)

C1(s)

]
T 17−→
[

Ψ2(s)

C2(s)

]
T 27−→ · · · Tn-17−→

[
Ψn(s)

Cn(s)

]
Tn7−→
[

Ψn+1(s)

−Θn+1(s)

]
(3.29)
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[1] [2]

[3]
1 2

3

4

Figure 3.4: The branched network from Example 3.3.

This composition is simply an ordered multiplication of the transfer matrices for each

link. Recognising that [Ψ1(s) −Θ1(s)]T = [P1(0, s) Q1(0, s)]T and [Ψn+1 −Θn+1]T =

[Pn(ln, s) Qn(ln, s)]
T , it is seen that (3.29) is equal to (3.26).

Example 3.3. Consider the simple branched system of 3 links and 4 nodes as de-

picted in Figure 3.4 where the links are given by Λ = {(1, 3), (3, 2), (3, 4)}. Given the

transfer matrix expression for a branch with a dead end [Chaudhry, 1987], the trans-

fer matrix model relating the upstream variables at the first link to the downstream

variables at the final link is[
P2 (l2, s)

Q2 (l2, s)

]
= T 2 (s)

[
1 0

−Z−1
c,3 (s) tanh Γ3(s) 1

]
T 1 (s)

[
P1(0, s)

Q1(0, s)

]
. (3.30)

The network matrix form (3.13) of the branched system is
t1(s) 0 −s1(s) 0

0 t2(s) −s2(s) 0

−s1(s) −s2(s)
∑3

j=1 tj(s) −s3(s)

0 0 −s3(s) t3(s)




Ψ1(s)

Ψ2(s)

Ψ3(s)

Ψ4(s)

 =


Θ1(s)

Θ2(s)

0

0

 ,

where, again, there is no flow at nodes 3 and 4 as these nodes are junctions. Using

a similar process as in Example 3.2, the following three matrix equations can be

derived 
Y 1(s) [Ψ1(s) Ψ2(s)]T = [Θ1(s) −Q1(L1, s)]

T

Y 2(s) [Ψ2(s) Ψ3(s)]T = [Q2(0, s) Θ2(s)]T

Y 3(s) [Ψ2(s) Ψ4(s)]T = [Q3(0, s) 0]T
(3.31)

with the constraint Q1(l1, s) = Q2(0, s) + Q3(0, s). As in the previous section, the

linear maps [Pj(0, s), Qj(0, s)]
T T j7−→ [Pj(lj, s), Qj(lj, s)]

T that relate the variables at

the line end points can be derived from Y j for j = 1, 2. To determine the relation-

ship between the systems end points [P1(0, s) Q1(0, s)]T and [P2(l2, s) −Q2(l2, s)]
T ,
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it remains to determine the map from the downstream end point of link 1 (on the

upstream side of the branch) to the upstream endpoint of link 2 (on the downstream

side of the branch). From Y 3 it can be shown that Q3(0, s) = Z−1
c,3 tanh Γ3Ψ3(s),

which when combined with the mass continuity requirement as node 2 yields the re-

lationship Q2(0, s) = Q1(l1, s)−Z−1
c,3 tanh Γ3Ψ3(s). Finally, since P1(l1, s) = P2(0, s)

the point matrix in (3.30) results as the map between the states either side of the

branch [P1(l1, s) Q1(l1, s)]
T and [P2(0, s) Q2(0, s)]T . In a similar fashion to the se-

ries system, taking the correctly ordered composition this point matrix and T 1 and

T 2 (as obtained from Y 1 and Y 2) yields the expression (3.30). Hence for the sim-

ple branched system, the network methodology can be reduced to the transfer matrix

method expression.

3.5 Formulation of a Computable Model

The focus in this section is the derivation of an input/output (I/O) matrix transfer

function relating the unknown nodal heads and flows to the known nodal heads

and flows (the boundary conditions). As specified in the network equations (3.3)-

(3.9), there are three types of nodes, including junctions, demand nodes (controlled

temporal flows θd where positive flow is directed inwards), and reservoirs (controlled

temporal nodal head ψr). As junctions are simply a special case of demand nodes

(i.e. θd = 0), the network is assumed to consist entirely of demand nodes and

reservoirs, that is N = Nd ∪ Nr. At these nodes, the non-specified variable is free.

That is, at a reservoir, the inflow or outflow is a free variable, and at a demand

node, the nodal pressure is a free variable. Given a system with nr reservoirs, and

nd demand nodes (nn = nr + nd), the nodal variables Ψ and Θ can be partitioned

as follows

Ψ (s) =

[
Ψd (s)

Ψr (s)

]
, Θ (s) =

[
Θd (s)

Θr (s)

]

where the nodes are ordered so that the first nd are the demand nodes and the last

nr are the reservoirs, (i.e. Ψd and Θd are nd × 1 vectors that correspond to the

demand nodes, and Ψr and Θr are nr × 1 vectors correspond to the reservoirs).

Using these partitioned vectors, the matrix equation (3.13) can be expressed in the

following partitioned form[
Y d (s) Y d-r (s)

Y r-d (s) Y r (s)

][
Ψd (s)

Ψr (s)

]
=

[
Θd (s)

Θr (s)

]
(3.32)
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where Y d is the nd× nd system matrix for the subsystem comprised of the demand

nodes, Y r is the nr×nr system matrix for the subsystem comprised of the reservoir

nodes, and Y d-r (Y r-d) are the nd × nr (nr × nd) partitions of the network matrix

that corresponding to the nodal flow contribution at the demand (reservoir) nodes

admitted from the nodal pressures at the reservoir (demand) nodes. Note that

Y d and Y r are symmetric and Y d-r = Y T
r-d. A computable I/O model requires a

definition of the map [
Θd (s)

Ψr (s)

]
H(s)7−→

[
Ψd (s)

Θr (s)

]
(3.33)

For computational reasons, it is necessary that H is a stable map. The stability

of a system is implied by the passivity of a system [Triverio et al., 2007], therefore

H is stable if it is passive. As demonstrated below, to ensure the existence of a

passive map H , it is necessary that the principal minor Y r of Y associated with Nr
is strictly passive. Therefore, before H is derived, the following lemma concerning

principal minors is presented.

Lemma 3.1. Consider a simple node L -network G(N ,Λ,P) with some collection

of nodes A ⊆ N . The principal minor of the network admittance matrix Y, as

defined in Theorem 3.1, associated with the node set A represents a strictly passive

system if, for each i ∈ A, there exists some strictly passive link λ ∈ Λi.

Proof. A simple node L network (G(N ,Λ),P) is a special case of the M -network

presented in Appendix B, where all the hydraulic elements are L -lines. Therefore,

by Lemma B.1, given that there is at least one strictly passive L -line incident

to every node of a principal minor, the principal minor is itself a strictly passive

system.

In the context of Y r, this lemma can be interpreted as follows: a principal minor

Y r of Y is guaranteed to be strictly passive if at least one link incident to each node

in Nr is strictly passive. The strict passivity of the principal minor means that there

is an energy loss in the map from pressure to flow for all frequencies. This energy

loss, or dissipation, is important as it provides a definable relationship between the

inputs and outputs. The form of the map (3.33) can now be given as the following

corollary to Lemma 3.1.

Corollary 3.1. Consider a simple node L network G(N ,Λ,P) with N = Nr ∪Nd,
where Nr is the set of pressure control nodes, and Nd is the set of demand control

nodes. Given that, for each i ∈ Nd, there exists some strictly passive λ ∈ Λi, the
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map (3.33) given by

H(s) =

[
Y −1

d (s) −Y −1
d (s)Y d-r (s)

Y r-d (s)Y −1
d (s) Y r (s)− Y r-d (s)Y −1

d (s)Y d-r (s)

]
(3.34)

exists and is well defined for all s ∈ C+.

Proof. By simple algebraic manipulations, the form of (3.34) can be derived from

(3.32), so it remains to demonstrate that the map exists and is well defined on

s ∈ C+. As the matrices Y r, Y d-r, Y r-d are submatrices of the passive system Y ,

they are clearly analytic on s ∈ C+. Since each node of Nd has at least one strictly

passive link incident to it, by Lemma 3.1, Y d represents a strictly passive system.

From Theorem B.3, Y −1
d exists and is well defined on s ∈ C+.

Remarks:

1. From (3.34) it is seen that there exists an analytic transfer matrix relationship

between the unknown nodal pressures and flows and the known nodal pressures

and demands for a fluid line network of an arbitrary configuration. The form

of these equations can be explained in an intuitive manner as follows. The

expression for Ψd in (3.33) with H(s) as in (3.34) can be written as Ψd =

Y −1
d [Θd − Y d-rΨr]. The term Y d-rΨr corresponds to the contribution of

the flow admitted from the demand nodes as a result of the pressures at the

reservoir nodes. Therefore Θd − Y d-rΨr is clearly the remaining flow at the

demand nodes resulting from the pressures at the demand nodes. Finally,

Y −1
d is the map from this quantity (the remaining flow) to the pressure at the

demand nodes Ψd. A similar explanation can be given for the block matrix

equation for Θr.

2. From a computational perspective, an advantageous attribute about (3.34)

is that the nd unknowns Ψd are uncoupled from the nr unknowns Θr. This

means that the unknown nodal pressures Ψr can be computed independently

from the unknown nodal flows Θr, thus reducing the order of the linear system

to nd, the number of known nodal flow nodes.

3. Computing (3.34) on s ∈ I+ (the positive imaginary axis) provides a frequency-

domain model for such networks of arbitrary configuration, and as such, it is

an important contribution of this research.

The following example refers to the 7-pipe network used in Example 3.1, and

demonstrates how the nodal partitioning into Nr and Nd leads to the computable

model H .
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Example 3.4. Consider the network of Figure 3.2 from Example 3.1, the state

vectors for the network are the pressures and flows

Ψ(s) =
[

Ψ1(s) · · · Ψ5(s) Ψ6(s)
]T

Θ(s) =
[

Θ1(s) · · · Θ5(s) Θ6(s)
]T

where the partitions correspond to the flow control and pressure control nodes as in

the previous section, and the network link matrices are Γ(s) = diag {Γ1(s), . . . ,Γ7(s)},
and Zc(s) = diag {Zc,1(s), . . . , Zc,6(s)}. The network admittance matrix can be ex-

pressed by

Y (s) =

[
Y d (s) Y d-r (s)

Y r-d (s) Y r (s)

]
=

t1 −s1 0 0 0 0

−s1

∑
j=1,2,3

tj −s2 −s3 0 0

0 −s2

∑
j=2,4,5

tj −s4 −s5 0

0 −s3 −s4

∑
j=3,4,6

tj −s6 0

0 0 −s5 −s6

∑
j=5,6,7

tj −s7

0 0 0 0 −s7 t7



(3.35)

where tj = tj(s) and sj = sj(s) are as defined in Example 3.1 and where the par-

titions correspond to the matrix partitioning from (3.32). For the outflow control

nodes, Node 1 is the only demand node ( i.e. Θi(s) = 0, i = 2, 3, 4, 5), and at the

only head control node (reservoir) Ψ6(s) = 0. Therefore, from (3.34), the unknown

nodal heads and flows can be expressed as
Ψ1(s)

...

Ψ5(s)

Θ6(s)

 =


{
Y −1

d (s)
}

1,1
...{

Y −1
d (s)

}
5,1

s7(s)
{
Y −1

d (s)
}

5,1

Θ1(s), (3.36)

where {A}i,j is the (i, j)-th element of the matrix A. As seen in (3.36), the compu-

tation of the unknown nodal values involves the inversion of a complex 6×6 matrix,

and only the first column of this matrix is used.
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3.6 Numerical Examples

Numerical examples are presented below comparing the frequency-response as cal-

culated by the proposed Laplace-domain admittance matrix to that calculated by

the discrete Fourier transform (DFT) of the method of characteristics (MOC)1 solu-

tions. For the Laplace-domain admittance matrix, the frequency response is calcu-

lated from the computational model (3.33) by taking values of s along the positive

imaginary axis (i.e. s = iω, ω ∈ R+). For the MOC models, the frequency re-

sponse is calculated by the DFT of the time series computed by the MOC. Example

3.5 presents the comparison for a frequency sweep in the 7-pipe network where the

system was excited into a steady-oscillatory state by an oscillatory controlled flow

at node 1. Examples 3.6-3.10 present a comparison for 51-pipe and 94-pipe net-

works excited into a transient state for a range of different pipeline models. All

computational procedures were undertaken as outlined in Appendix E.

Example 3.5. Consider the 7-pipe network from Figure 3.2 with pipes modelled

according to the turbulent-steady-friction (TSF) model from Example 2.4 with diam-

eters = {60, 50, 35, 50, 35, 50, 60} mm, pipe lengths = {31, 52, 34, 41, 26, 57, 28} m,

and wavespeeds and the Darcy-Weisbach friction factors set to 1000 m/s and 0.02,

respectively, for all pipes. The demand at node 1 is taken as a sinusoid of amplitude

0.025 L/s about a base demand level of 10 L/s. Figure 3.5 presents the amplitude

of the sinusoidal pressure fluctuations observed at node 6 for a frequency sweep per-

formed for frequencies up to 15 Hz as computed by the Laplace-domain admittance

matrix, and the DFT of the MOC in steady oscillatory state. For the MOC model

∆t = 0.001 s.

As observed in Figure 3.5, the linearised admittance matrix method provides an

excellent approximation to the MOC model with nonlinear TSF pipes for the case of

steady oscillatory flow. The difference between the two methods is more than four

orders of magnitude less than the oscillation amplitudes. The maximum errors are

seen to occur at the networks harmonics, where the negative sign of the error implies

that the admittance matrix method overestimated the true oscillation magnitude.

This observation is explained by the fact that the linear admittance matrix method

does not dissipate as much energy as the true nonlinear system.

For the transient examples below the MOC based frequency response of the

1For each computational reach of all the MOC models, it was ensured that the Courant number
was kept at 1 to minimise numerical errors.
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Figure 3.5: Sinusoidal pressure amplitude response for 7-pipe network at node 6 for the
admittance matrix model (continuous line) and the MOC in steady oscillatory state (◦
points) as outlined in Example 3.5. The difference between the two methods (admittance
matrix minus the MOC) is given in the bottom figure, in Pascals.

system was computed via the following DFT-type integral approximation2

Ψ(iω) =

∫ ∞
0

ψ(t)e−iωtdt ≈ ∆t
N−1∑
n=0

ψ(n∆t)e−iωn∆t, (3.37)

where ψ(n∆t), n = 0, . . . N − 1 is the time series computed by the MOC. As the

time series are transient finite energy signals, N was taken large enough to ensure

that |ψ(t)| < ε for t > N∆t where ε is a small number.

Example 3.6. Consider the 51-pipe network from Figure 3.6 (details are given in

Appendix D) with all pipes modelled according to the TSF model from Example 2.4.

The network is excited into a transient state by temporarily halting the demand at

nodes {12, 17, 27, 30} for a period of {1.0, 0.5, 0.3, 0.4} s. The frequency response

of the network at node 25 as computed by the Laplace-domain admittance matrix

and the DFT of the nonlinear MOC is given in Figure 3.7. For the MOC model, a

temporal grid of ∆t = 0.001 s was used for a simulation time of 1000 s.

2Note that the DFT-type expression (3.37) computes the frequency energy content for an entire
transient signal, whereas the DFT used in Example 3.5 computes the sinusoidal amplitudes for an
oscillatory signal and is given by (3.37) normalised by 1/N∆t.
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Figure 3.6: The 51 pipe network, adapted from Vı́tkovský [2001], used in Examples
3.6-3.10.
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Figure 3.7: Pressure frequency response magnitude at node 25 for the 51-pipe network
with TSF pipes for the admittance matrix model as outlined in Example 3.6. The lower
figure gives the magnitude of the difference between the admittance matrix and MOC
methods (the admittance matrix minus the DFT of the MOC) in Pa·s.
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The transient excitation in Example 3.6 represents a high amplitude excitation

where the dynamic range of the short time pressure response is about 700 kPa

(approximately 70 m head of water)3. Despite the fact that the nonlinearities of

the MOC model are exaggerated by high amplitude transient excitations, the linear

admittance matrix model is observed to provide a highly accurate approximation to

the nonlinear MOC. This is seen by the fact that the amplitude of the difference

between the two models is approximately two orders of magnitude less than the

spectral amplitude of the pressure response. The increase in the relative error by

comparison with the sinusoidal sweep approach in Example 3.5 results from two

sources. Firstly, for the system in a steady oscillatory state, the difference between

the nonlinear MOC and the linear Laplace-domain model results from the difference

in the energy dissipation of the models within a single frequency cycle. However,

for the transient comparison, the differences between the models result from the

differing energy dissipation rates over the entire transient response of the system,

which will clearly be greater than over a single cycle (for each frequency) as it has

accumulated over a longer time period. The second source of error has to do with

the transient response being comprised of many different frequencies. Nonlinearities

within a system are manifest by distributing the energy of an input frequency over

a range of its harmonics. A sinusoid sweep comparison enables the input-to-output

consideration of each frequency separately, as the induced higher order harmonics

are distinct from the frequency of interest. In contrast, a transient comparison deals

with a range of frequencies at the same time, therefore not enabling the distinction

between the linear and nonlinear components in the system’s frequency-response.

The relative low error of the linear approximation is a strong affirmation of the ability

of the admittance matrix model to approximate nonlinear pipe network models. The

following presents another nonlinear pipe type example.

Example 3.7. Consider the 51-pipe network in Figure 3.6 from Example 3.6 but

with turbulent-unsteady-friction (TUF) pipes from Example 2.7 truncated to 13 terms

as in Vardy and Brown [2007]. The network is excited into a transient state as

detailed in Example 3.6. The frequency response of the network at node 25 as com-

puted by the Laplace-domain admittance matrix and the DFT of the nonlinear MOC

is given in Figure 3.8. For the MOC model, a temporal grid of ∆t = 0.001 s was

used for a simulation time of 1000 s.

The admittance matrix model is again observed to yield an extremely accurate

approximation to the nonlinear MOC TUF model. The differences for the TUF

case are slightly less that those for the TSF case as the unsteady friction term in

3The time-domain response of the transient scenario in Example 3.6 is given later in Example
5.2 of Chapter 5.
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Figure 3.8: Pressure frequency response magnitudes at node 25 for the 51-pipe network
with TUF pipes for the admittance matrix model as outlined in Example 3.7. The lower
figure gives the magnitude of the difference between the admittance matrix and MOC
methods (the admittance matrix minus the DFT of the MOC) in Pa·s.

the TUF model is a linear operator, and thus is modelled exactly by the admittance

matrix model. An interesting point to note is that, as with the steady-oscillatory

state case in Example 3.5, the error tends to peak at the networks harmonics.

The following two examples extend the comparison to the larger 94-pipe network

depicted in Figure 3.9. This network represents a more complex hydraulic network

with very heterogeneous pipeline properties with pipe diameters ranging between

300 to 1750 mm, and pipe lengths ranging between 10 to 6000 m.

Example 3.8. Consider the 94-pipe network from Figure 3.9 (details are given

in Appendix D) with all pipes modelled according to the TSF model from Exam-

ple 2.4. The network is excited into a transient state by temporarily halving the

demand at nodes {6, 10, 17, 21, 29, 33, 41, 44, 54, 60, 62} for a period of

{0.35,1.65,0.7,1.0,0.55, 0.78, 1.5, 1.0, 3.5, 1.5} s. The frequency response of the

network at node 9 as computed by the Laplace-domain admittance matrix and the

DFT of the nonlinear MOC is given in Figure 3.10. For the MOC model, a temporal

grid of ∆t = 0.001 s was used for a simulation time of 5000 s.

Example 3.9. Consider the 94-pipe network from Figure 3.9 (details are given in

Appendix D) with all pipes modelled according to the TUF model from Example 2.7
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Figure 3.9: The 94-pipe network, adapted from Datta and Sridharan [1994], used in
Examples 3.8-3.9.

truncated to 13 terms as in Vardy and Brown [2007]. The network is excited into

as detailed in Example 3.8. The frequency response of the network at node 9 as

computed by the Laplace-domain admittance matrix and the DFT of the nonlinear

MOC is given in Figure 3.11. For the MOC model, a temporal grid of ∆t = 0.001 s

was used for a simulation time of 5000 s.

Despite its hydraulic complexity, a similar comparison for the 94-pipe network

is observed as with the 51-pipe network, where the errors between the linear admit-

tance matrix model and the nonlinear MOC model are over two orders of magnitude

less than the magnitude of the pressure response of the system, for both the TSF

and TUF networks. An interesting side observation about the frequency-response of

large pipeline networks can be made from Figures 3.10-3.11. That is, typically within

a network the lowest (fundamental) frequency generally has the largest amplitude in

the frequency-response. However, for the 94-pipe network, the frequency-response

consists of many smaller magnitude harmonics superimposed over a series of larger
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Figure 3.10: Pressure frequency response magnitudes at node 9 for the 94-pipe network
with TSF pipes for the admittance matrix model as outlined in Example 3.8. The lower
figure gives the magnitude of the difference between the admittance matrix and MOC
methods (the admittance matrix minus the DFT of the MOC).

magnitude harmonics. What this means is that the network is so large that the local

effects (i.e. the fundamental frequencies of close pipelines) dominate the frequency-

response at a point, and the wider network effects manifest themselves as small

magnitude harmonics.

As the admittance matrix model is exact for networks comprised of linear pipes

(i.e. the laminar-steady-friction (LSF), laminar-unsteady-friction (LUF) and the

viscoelastic (VE) models), any error between the admittance matrix model and the

DFT of the MOC should be a result of the discretisation errors in the MOC model4.

This is explored in the following example.

Example 3.10. Consider the 51-pipe network in Figure 3.6 from Examples 3.6-3.6

but with LUF pipes from Example 2.6 truncated to 10 terms according to Vı́tkovský

et al. [2002]. The network is excited into a transient state as detailed in Example

3.6. The frequency response of the network at node 25 as computed by the Laplace-

4This is hypothesised as being the main contributor to the error, but other sources of error are
the roundoff errors associated with the finite accuracy of the digital calculations associated with
both methods, and the error in the DFT associated with the truncation of the MOC signal at finite
time point.
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Figure 3.11: Pressure frequency response magnitudes at node 9 for the 94-pipe network
with TUF pipes for the admittance matrix model as outlined in Example 3.9. The lower
figure gives the magnitude of the difference between the admittance matrix and MOC
methods (the admittance matrix minus the DFT of the MOC).

domain admittance matrix and the DFT of the MOC is given in Figure 3.12. For

the MOC model, a temporal grid of ∆t = 0.001 s was used for a simulation time of

1000 s.

Figure 3.12 is presented in logarithmic scale on the vertical axis as the lower

rate of energy loss of the LUF model meant that the harmonics were very thin and

difficult to visualise in a linear scale. This lower rate of energy loss is made manifest

by the much larger spectral amplitudes of this example. Despite the large magnitude

of the error for this example it is still approximately two orders of magnitude less

than the amplitude of the pressure response. This represents a similar relative

error to that observed for the cases of nonlinear pipes in Figures 3.7-3.8. This is

a somewhat interesting result as it implies that a significant part of the difference

observed for the nonlinear TSF and TUF examples must also be associated with the

discretisation error of the MOC5.

5The operation of the DFT as in (3.37) also induces some error.
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Figure 3.12: Pressure frequency response magnitudes at node 25 for the 51-pipe network
with LUF pipes for the admittance matrix model outlined in Example 3.10. The lower
figure gives the magnitude of the difference between the admittance matrix and MOC
methods (the admittance matrix minus the DFT of the MOC).

3.7 Conclusions

The majority of existing methods for modelling the Laplace-domain behaviour of

a transient fluid line system have been limited to dealing only with certain classes

of network types, namely, those that do not contain second order loops. In this

chapter, a completely new formulation, based on the use of graph theory concepts,

has been derived that is able to deal with networks comprised of pipes, junctions,

demand nodes, and reservoirs that are of an arbitrary configuration. The derived

representation takes the form of an admittance matrix that maps from the nodal

pressures to the nodal demands. The analytic nature of this representation enables

significant qualitative insight into the structure of a network, and the dependency

of the relationship of the nodal states on the individual pipeline transfer functions.

In addition to the qualitative information as to the network structure, the admit-

tance matrix serves as the basis for an efficient model for computing the frequency

response of a network of unknown nodal states subject to known nodal inputs. The

passivity properties of the networks pipes, has been demonstrated to ensure the

existence of this computable model.
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Numerical examples for 7-pipe, 51-pipe and 94-pipe networks consisting of the

linear LUF pipes, and the nonlinear TSF and TUF pipes have been presented.

Within these numerical examples, the frequency-response as calculated by the DFT

of the nonlinear MOC model was compared to the frequency-response as calculated

by the proposed linear Laplace-domain admittance matrix model. These results

demonstrated that the proposed method serves as an excellent linear approximation

for a turbulent state pipeline network.
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Chapter 4

Arbitrarily Configured Compound

Node Networks

4.1 Introduction

The Laplace-domain network admittance formulation from Chapter 3 was designed

for systems comprised of pipes, reservoirs and junctions. Despite the capacity to

deal with networks of arbitrary configuration, the formulation is still limited in its

application as real world networks contain many other types of hydraulic compo-

nents such as valves, accumulators, emitters and many more. This chapter extends

this original work, by presenting a formulation that is able to deal with, not only ar-

bitrarily configured networks, but also, networks containing lumped and distributed

hydraulic components. To be more exact, the class of components that can be incor-

porated into the proposed framework are of a much more general class encompassing

any hydraulic element whose dynamics can be exactly represented (or adequately

approximated) by a passive, time-invariant linear system1, as is the case for most

hydraulic elements such as valves, emitters, and surge tanks. These components are

termed compound nodes. The incorporation of compound nodes is achieved by a

novel nodal expansion method that enables the inclusion of the nodal dynamics into

the network admittance matrix structure.

The chapter is structured as follows. Section 4.2 outlines the current methods

for modelling pipe networks with reference to the computational differences between

time- and frequency-domain methods. Section 4.3 presents a mathematical formu-

lation of the network equations as well as a brief background to Laplace-domain

representations of the fluid network equations. A new comprehensive framework

1A passive system is one that dissipates energy, and a time-invariant system is one whose
parameters do not vary with time (see Desoer and Vidyasagar [1975] for a precise definition).
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for an arbitrary node type is given in Section 4.4. The main contribution of this

chapter is given in Section 4.5, where the formulation of the Laplace-domain model

for an arbitrarily configured network comprised of compound nodes is presented.

A stable, passive computable input/output (I/O) model is derived in Section 4.6.

Numerical examples are given in Section 4.7 for two case studies, a 11-pipe network

and a 51-pipe network. Conclusions are given in Section 4.8.

4.2 Background

Fluid line networks can essentially be viewed as systems comprised of dynamic inter-

acting elements. As mentioned in the introduction, pipeline networks are comprised

of two types of elements, namely distributed and lumped elements. Distributed

elements are termed as such as the internal state variables of these elements are

spatially distributed (e.g. the state variables of pressure and flow within a pipe

line are distributed over the length of the pipeline). Conversely, lumped elements

are termed as such as their state variables have no spatial variation (e.g. the state

variable of a valve, being the flow, is, for all practical purposes, constant across the

valve2). The fluid variables of each of the hydraulic elements interact with their

neighboring components according to laws of conservation of mass, momentum and

energy. Mathematical descriptions of these networks involve not only the equations

governing the internal state variables for each hydraulic elements, but also the entire

set of equations describing the boundary interactions between these elements.

As mentioned in Chapter 3, modelling an arbitrary network in the time-domain

has been broadly addressed within the research literature (e.g. [Karney , 1984;

Chaudhry , 1987; Wylie and Streeter , 1993; Axworthy , 1997; Izquierdo and Iglesias ,

2004]), and, within industry, there exist many commercial software packages for

the purpose of water hammer analysis within any hydraulic distribution system.

Within time-domain models, the distributed components are discretised in space

and time and modelled using hyperbolic partial differential equation (PDE) solvers

[Chaudhry , 1987; Wylie and Streeter , 1993], and the lumped components are mod-

elled by simultaneous equations, which are solved at each time point.

Dealing with the time-domain modelling of the network is an involved task, but

the extension from a single pipe model to a full network model is simplified, to some

extent, by the distributed nature of the fluid lines. The distributed nature of the fluid

2It is true to say that in reality, all hydraulic elements are distributed as it is an idealisation
to think of a dynamic fluid property as being uniformly distributed over some finite space, so the
consideration of what is distributed and what is not distributed is essentially a question of spatial
scale. For example, in modelling a 100 km long oil transmission line, a 1 m branch is effectively a
lumped system.
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lines means that there is a time delay in the wave propagation of the fluid variables.

This time delay means that the network variables are not required to be solved

simultaneously, but that, at each time step, the interior points of each fluid line can

be computed in isolation [Wylie and Streeter , 1993], and only the fluid variables

at the endpoints of the pipes, incident on common nodes, require simultaneous

solving, thus greatly reducing the problem complexity. The fluid variables at the

pipes endpoints then serve as the boundary condition to the interior points at the

following time step3.

Laplace-domain modelling is significantly different to this. The underlying fluid

equations of the hydraulic elements (pipelines and lumped components) are first

linearised, then transformed using the Laplace transform, and finally solved to yield

analytic transfer relationships between the points at which the element connects to

other elements within the network [Chaudhry , 1987; Wylie and Streeter , 1993] (e.g.

pipeline end points). The construction of a full network model from the individual el-

ement transfer relationships involves solving the simultaneous set of complex valued

equations that arise from the hydraulic elements and their interactions with other

elements that are incident to similar nodes. What this means is that as the trans-

formed fluid variables are in the Laplace-domain, the temporal delays are replaced

by algebraic operations, and consequently the fluid variables for all components must

be solved simultaneously for every frequency point of interest. Interestingly, in this

regard the Laplace-domain model is similar to steady-state models for solving the

flows and pressures in a water distribution system [Todini and Pilati , 1988], in that

there is a direct dependence of one network variable on another.

The classical methods for Laplace-domain modelling of pipe networks are, as

outlined in Chapter 3, the impedance method [Wylie, 1965; Wylie and Streeter , 1993]

and the transfer matrix method [Chaudhry , 1970, 1987]. The advantages of these

methods are that they are able to deal with systems comprised of pipes and lumped

hydraulic components. As outlined in Chapter 3, the major disadvantage, however,

is that such methods are not able to deal with an arbitrary network configuration,

but are limited to simple first order looped systems [Fox , 1977] (structural reasons

for the transfer matrix method, and practical reasons for the impedance method).

As surveyed in Zecchin et al. [2009], many authors have utilised different methods

to achieve a frequency-domain representation of complex networks (e.g. Ogawa

[1980]; Margolis and Yang [1985]; Boucher and Kitsios [1986]; John [2004]; Kim

[2007]). However, these methods were designed simply for networks with junctions

and reservoir node types only, with the exception of Kim [2007] who included an

3There are, however, some formulations of transient networks solvers that involve the simulta-
neous solution of the network equations [Vanecek et al., 1994; Ingeduld et al., 1996].

71



Chapter 4 – Arbitrarily Configured Compound Node Networks

emitter element in his formulation.

An alternative method was proposed in Chapter 3 in which, from the basic

fluid equations, an admittance matrix expression relating the nodal pressures to the

nodal flows was derived. The significance of this is twofold, (i) the network matrix

was shown to have an intuitive and simple network structure for which analogies

with admittance matrices in electrical circuits was made apparent [Desoer and Kuh,

1969], and (ii) it showed that the entire network state was a function of the reduced

variable set of nodal pressures and flows. This model however was only formulated

for networks consisting of pipes, junctions and reservoirs. The focus of this chapter is

on the extending of this model to deal with general distributed and lumped hydraulic

components.

4.3 Network Equations

The development of a network model not only involves modelling the dynamics of

each individual component, but it also involves accounting for the continuity of

the fluid variables of the hydraulic elements at their connection points. Before the

network equations can be expressed, some notation is introduced, and the general

framework for a node is given.

As in Chapter 3, to facilitate the discussion of the network connectivity equa-

tions, it is convenient to describe a network as connected graph G (N ,Λ) [Dies-

tel , 2000] consisting of the node set N = {1, 2, ..., nn}, and the link set Λ =

{λ1, λ2, ..., λnλ} where λj = (iu,j, id,j) where iu,j, id,j ∈ N are the upstream and

downstream nodes of link j respectively. Each node is associated with a lumped

hydraulic component that is connected to a number of links, and each link is as-

sociated with a distributed element where the directed nature of the link describes

the positive flow direction sign convention of the element. There are four disjoint

subsets of the nodes:

1. Nr is the set of reservoir nodes (i.e. controlled nodal head);

2. Nd is the set of demand nodes (i.e. controlled nodal outflow);

3. Nc is the set of compound nodes; and

4. the remaining nodes NJ = N / (Nr ∪Nd ∪Nc) are junctions.

There are two link sets associated with each node, these are Λu,i and Λd,i which

correspond to the set of links directed from and to node i respectively, that is
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Λu,i = {(i, k) , k ∈ N : (i, k) ∈ Λ} and Λd,i = {(k, i) , k ∈ N : (k, i) ∈ Λ}). Note that

the first sets correspond to the links whose upstream node is i and the second sets

correspond to the links whose downstream node is i.

4.3.1 Compound node equations

One of the main contributions of this chapter is that it presents a novel way to include

a completely general node type into the network equations. Chapter 3 presented a

methodology that included a specific class of nodes that describes junctions, demand

nodes and reservoirs. Here, this nodal type is called a simple node and is defined

as a point with an infinitely small volume that has a lossless connection to one

or more fluid lines. The infinitely small volume implies that there is no variation

of pressure or accumulation of mass and the lossless connection implies that the

pressure at the ends of the fluid line connected to the node are equal. The node

types considered in this chapter are of a much more general class encompassing

any hydraulic element whose dynamics can be exactly represented (or adequately

approximated) by a passive, time-invariant linear system. These node types are

referred to as compound nodes and are defined and discussed below.

Definition 4.1. A general compound node, is defined as a node whose the dynamic

behaviour can be described by the vector equation

φi (pi, qi,ui, ũi, t) = 0 (4.1)

where φi is the (nonlinear) vector valued function describing the nodes dynamics

for node i, ui is the vector of controlled internal state variables for the node, ũi is

the vector of dependent internal state variables for the node, and pi and qi are the

vectors of pressures and flow of the pipes incident to node i, that is, they are vector

organisations of the sets

{pj(0, ·) : λj ∈ Λu,i} ∪ {pj(lj, ·) : λj ∈ Λd,i}
{qj(0, ·) : λj ∈ Λu,i} ∪ {qj(lj, ·) : λj ∈ Λd,i}

where the first sets on the right correspond to the links for which the node i is up-

stream, and the second sets correspond to the links for which the node is downstream.

Note that all vectors pi, qi, ui, and ũi are taken as functions of time.

This chapter deals exclusively with general compound nodes with linear dynam-

ics, or linear approximations of general compound nodes with nonlinear dynamics.

The following definition is made for notational convenience.
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Definition 4.2. A compound node is defined as a general compound node for which

φi is a time-invariant linear operator.

The equations describing the dynamic behaviour of hydraulic elements are de-

rived from mass, momentum and energy conservation principles. As clear in the

definition, the node internal state variables can be partitioned into the controlled

states, ui and the dependent states ũi, the difference being that the controlled states

require specification, and the dependent states are able to be computed (e.g. at a

demand node, the demand is a controlled state, and the pressure is a dependent

state). Examples of controlled internal states are a controlled nodal demand or a

controlled valve opening, and examples of dependent internal states are pressure,

volume and inflow for a surge tank, or pressure and outflow for a demand node.

Controlled states act as inputs to the system, whereas the dependent states are part

of the system response.

Remarks:

1. The size of the compound node vector equation (4.1) is dependent on the na-

ture of the component and the number of links in Λi = Λui ∪ Λdi. From the

perspective of a fluid line, the node acts as a boundary condition, and at a

boundary point, it is physically impossible to control both the flow and the

pressure simultaneously [Wylie and Streeter , 1993]. As such, there exist three

possibilities on the form of the interaction of the fluid line with the node, ei-

ther (i) the pressure is specified, (ii) the flow is specified, or (iii) a relationship

between the two is specified. Therefore, at each pipe end, there must always

be one, and only one, free variable. Mathematically, within a network compu-

tation context, this free variable allows for the wave propagation along the link

to interact with and respond to the node states. From this perspective, the de-

pendent states can be interpreted as the variables that are determinable from

the nodal equations, and the controlled states can be interpreted as the free

variables that require specification to enable the computation of the dependent

variables and the link variables.

2. Despite the fact that many lumped hydraulic components are nonlinear, the

dynamics are typically well enough behaved (on the domain of realistic state

values) that the solution to the state equations is unique. This means that the

number of determinable states at a node is directly related to the number of

states and the number of equations in φi. To explain further, say that there

are nλi links in Λi, and that there are n0i nodal states (i.e. u0i(t) ∈ Rn0i for

each t), then the number of equations nEi in each φi must satisfy the inequality

nλ,i ≤ nEi ≤ nλi + n0i, which ensures that there are at least nλi free variables
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in (4.1). In the case of nEi = nλi, all the n0i nodal variables are free in that

they require specification to compute the nλi unknown link variables. For

nEi = nλi +n0i, the physical principals admit a sufficient number of equations

so that all the n0i nodal states are determinable from the connecting link

variables. For nλi < nEi < nλi + n0i, there are nũi = nEi − nλi determinable

nodal states (i.e. ũi(t) ∈ Rnũi for each t) and nui = n0i − nũi free nodal

variables (i.e. ui(t) ∈ Rnui for each t). From this, it is clear that for the

computation of a fluid line network to be well posed, the free nodal variables

must be specified, hence they are referred to as controlled states ui.

Consider the following examples.

Example 4.1. Consider the demand node in Figure 4.1(a) for which Λui = {λa}
and Λdi = {λb, λc}. The nodal states are pressure ψ and outflow θd, where uj = θd,

and ũj = ψ, and the incident link states are

pj(t) =

pa(0, t)pb(lb, t)

pc(lc, t)

 , qj(t) =

qa(0, t)qb(lb, t)

qc(lc, t)

 .
For such an element there is one mass continuity equation relating the demand out-

flow to the inflows from the connecting pipes and three pressure constraints relating

the pipe pressure to the internal nodal pressure. Therefore, (4.1) becomes the equa-

tion set

φ
(
pj, qj,uj, ũj, t

)
=


−qa(0, t) + qb(lb, t) + qc(lc, t)− θd(t)

pa(0, t)− ψ(t)

pb(lb, t)− ψ(t)

pc(lc, t)− ψ(t)

 = 04×1. (4.2)

Note that here, nEi = 4, nũi = 1 and nui = 1.

Example 4.2. Consider again the node in Figure 4.1(a), but this time consider θd

as the flow through an emitter as opposed to a controlled demand. For this node,

the link sets and vectors are the same, but uj = ∅, and ũj = [ψ θd]
T . In addition

to the equations (4.2), there is another equation relating the emitter outflow to the

nodal pressure. Therefore, (4.1) becomes the equation set

φ
(
pj, qj,uj, ũj, t

)
=


−qa(0, t) + qb(lb, t) + qc(lc, t)− θd(t)

pa(0, t)− ψ(t)

pb(lb, t)− ψ(t)

pc(lc, t)− ψ(t)

θd(t)− yo (ψ)

 = 05×1 (4.3)
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 [a]  [b]

 [c]

θd (t)

ψ (t)

(a)

 [a]  [b]

 [c]

θd (t)

ψ (t)

(b)

 [a]  [b]

 [c]

θd (t)

ψ (t)

(c)

(d)

(e)

(f)

[a][a]

[c][c]

[b][b]

[a][a]

[c][c]

[b][b]

[a][a]

[c][c]

[b][b]

Figure 4.1: Examples of compound nodes with the physical representation (a)-(c) and
the simple connection graph representation (d)-(f): (a), (d) junction with an emitter; (b),
(e) junction with emitter and one valve; (c), (f) junction with emitter and two valves.

where yo is the emitter function describing the emitter outflow for a given pressure.

Here, nEi = 5, nũi = 2 and there are no controlled variables as both the nodal states

are determinable.

Example 4.3. Consider the compound node configuration in Figure 4.2(a) consist-

ing of a closed branch and a controlled demand bounded by valves A and B. Pipe

[a] is incident to valve A and pipes [b] and [c] are incident to valve B. The nodal

states can be taken as the internal pressure ψo, the capacitive inflow into the closed

branch θo, and the controlled flow injection (or demand) θd. Labelling this node with
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[c][c]

[b][b]

[a][a]

[c][c]

[b][b]

[a][a] i

 [b]

 [c]

θd (t)

 [a]

 A  B

A B

 (a)

 (b)

A B

 (c)

QciA(s)

pa(la,t), qa(la,t)

pb(lb,t), qb(lb,t)

pc(0,t), qc(0,t)

ψo(t), θo(t)

PciA(s)

A B

 (d)

ΘB(s)ΘA(s)

ΨA(s) ΨB(s)

PciB(s)

QciB(s)i

Figure 4.2: Example of a compound node consisting of a capacitive dead end branch
and an offtake bounded by valves A and B. (a) The physical layout demonstrating the
link end states of pressure and flow for links [a], [b], and [c], and the internal node states
of the internal pressure ψo, the capacitive flow θo and the offtake flow θd. (b) The sim-
ple connection configuration, where the compound node is observed to have two simple
connections with [a] incident to one and [b], and [c] incident to another. (c) The trans-
formed simple connection states, where PciA and PciB are the pressures at connections
A and B, and QciA and QciB are the aggregated flows into connections A and B. (d)
The expanded simple node network representation of the compound node with simple
node pressures ΨA and ΨB, and flows ΘA and ΘB. For this example, the variables
are related as follows: PciA(s) = ΨA(s) = Pa(la, s); QciA(s) = −ΘA(s) = Qa(la, s);,
PciB(s) = ΨB(s) = Pb(lb, s) = Pc(lc, s) and QciB(s)−ΘB(s) = Qb(lb, s)−Qc(0, s).
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i, the nodal vectors are

pi(t) =

 pa(la, t)

pb(lb, t)

pc(0, t)

 , qi(t) =

 qa(la, t)

qb(lb, t)

qc(0, t)

 , ui(t) = θd(t), ũi(t) =

[
ψo(t)

θo(t)

]
.

The vector equation φi for compound node is

φi(pi, qi,ui, ũi, t) =

pa(la, t)− ψo(t)− fB (qb(lb, t)− qc(0, t)) = 0 headloss across valve B

qa(la, t) + qb(lb, t)− qc(0, t)− θo(t) + θd(t) = 0 continuity within node

pb(lb, t)− pc(0, t) = 0 connectivity of links b and c

Vo
Ke

dψo(t)

dt
− θo(t) = 0

capacitance equation

for branch

pa(la, t)− ψo(t)− fA (qa(la, t)) = 0 headloss across valve A

(4.4)

where Vo and Ke are volume and effective modulus of the branch, and

fX(q) = ρsign {q} q
2

C2
v

(for subscripts X = A,B) is the valve headloss where Cv is the valve coefficient.

4.3.2 Network equations

A compound node L -line network can now be defined.

Definition 4.3. A compound node L -line network is defined as the triple

(G(N ,Λ),P , C)

consisting of

1. the graph G(N ,Λ) comprised of the node set N = {1, 2, ..., nn} ⊂ N, and

the link set Λ = {λ1, λ2, ..., λnλ} ⊂ N × N of links λj = (iu,j, id,j), where

iu,j, id,j ∈ N are the upstream and downstream nodes of link j respectively,

2. the set of L -line properties P = {(R0,λ,Rλ), (C0,λ, Cλ),Xλ : λ ∈ Λ} where R0,

Rλ, C0 and Cλ are the L -line coefficients and functions (Definition 2.1) as-

sociated with link λ ∈ Λ, and Xλ = [0, lλ] is the spatial domain of link λ ∈ Λ,

3. the set of compound node dynamics C = {φi : i ∈ Nc} where Nc ⊆ N is the

set of compound nodes.
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For all networks within this class, the graph G (N ,Λ) is assumed to be connected.

The state space of the network is given by the distributions of pressure and flow

along each line of the network,

p (x, t) =


p1 (x1, t)

...

pnλ (xnλ , t)

 , q (x, t) =


q1 (x1, t)

...

qnλ (xnλ , t)

 , x ∈ X , t ∈ R

(where the directed nature of the link describes the positive flow direction sign con-

vention of the L -line), and the dependent compound nodal states, which can be

represented as

ũ(t) =


ũ1(t)

...

ũnc(t)

 , t ∈ R.

As with the simple node network, a certain hydraulic scenario for the network

(G(N ,Λ),P , C) is described by the initial and boundary conditions of the network.

In addition to the pressure and flow controlled nodes for the simple node network,

a hydraulic scenario for the (G(N ,Λ),P , C) network also requires the specification

of the compound node controlled states ui, i ∈ Nc. A hydraulic scenario for the

network (G(N ,Λ),P , C) is defined in the following.

Definition 4.4. Given a network (G(N ,Λ),P , C) with node subsets of Nc, Nr, Nd
and NJ , where Nc are the compound nodes, Nr are the pressure controlled nodes,

Nd are the flow control nodes, and NJ = N / (Nr ∪Nd ∪Nc) are the junctions, the

compound node network problem is defined as the determination of the distributions

pj(x, t), qj(x, t), x ∈ [0, lj], j ∈ Λ and node variables ũi(t), i ∈ N for t ∈ R subject

to the system of equations (4.5)-(4.13), where the symbols are defined as follows:

ψr,i is the controlled temporally varying reservoir pressure for the reservoir nodes in

the reservoir node set Nr, θd,i is the controlled temporally varying nodal demand for

the demand nodes in the demand node set Nd; p0
j and q0

j are the initial distribution

of pressure and flow in each pipe j ∈ Λ; and ϕj,i = lj if j ∈ Λd,i and 0 otherwise.

For (4.5)-(4.13) to be well posed, the boundary conditions ψr,i, i ∈ Nr, θd,i, i ∈ Nd
and ui, i ∈ Nc as well as the initial conditions p0

j , q
0
j , j ∈ Λ and ui, i ∈ Nc must be

specified.

Remark: The network equations (4.5)-(4.13) can be divided into five groups: (4.5)

and (4.6) are the fluid dynamic equations of motion and mass continuity for each

fluid line; (4.7) and (4.8) are the nodal equations of equal pressures in pipe ends

connected to the same node for junctions (nodes for which the inline pressure is

the free variable) and reservoirs (nodes for which the outflow is the free variable)
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∂pj
∂x

+R0,j

(
∂

∂t
+Rj

)
qj = 0, x ∈ Xj, j ∈ Λ, (4.5)

∂qj
∂x

+ C0,j

(
∂

∂t
+ Cj

)
pj = 0, x ∈ Xj, j ∈ Λ, (4.6)

pj(ϕj,i, t)− pk(ϕk,i, t) = 0, j, k ∈ Λi, i ∈ N /Nc (4.7)

pj(ϕj,i, t)− ψr,i(t) = 0, j ∈ Λi, i ∈ Nr, (4.8)∑
j∈Λd,i

qj(lj, t)−
∑
j∈Λu,i

qj(0, t) = 0, i ∈ NJ (4.9)

θd,i(t) +
∑
j∈Λd,i

qj(lj, t)−
∑
j∈Λu,i

qj(0, t) = 0, i ∈ Nd (4.10)

φi (pi, qi,ui, ũi, t) = 0, i ∈ Nc (4.11)

pj(x, 0) = p0
j(x), qj(x, 0) = q0

j (x), x ∈ [0, lj] , j ∈ Λ (4.12)

ui(0) = u0
i , i ∈ Nc (4.13)

respectively; (4.9) and (4.10) are the nodal equations of mass conservation for junc-

tions and demand nodes; (4.11) is the vector equation governing the behaviour of

the compound nodes; (4.12)-(4.13) are the initial conditions for the link states and

node states.

4.4 Framework for Compound Node

For a compound node element to be incorporated within the admittance matrix

framework of Chapter 3, a special representation of the compound node equation

(4.1) must be determined. In a network context, a compound node is comprised of a

hydraulic component and a number of connection points (i.e. junctions between the

compound node component and the incident pipes). The hydraulic component is

the physical structure of the compound node that governs the dynamic behaviour of

the node, and the connections are the junctions through which the compound node

interacts with the network. The required representation of (4.1) is an admittance

representation relating the connection variables of pressure and flow.

The derivation of the final admittance form involves four steps: (i) the Laplace-

domain representation of the compound node dynamics, (ii) the expression of the

nodal equations in terms of the compound node variables U i and Ũ i, and the

connection variables, (iii) the decoupling of the nodal equations from Ũ i, and (iv)

the extraction of the admittance form. The details of these steps are outlined in the

following sections.
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4.4.1 Laplace-domain representation of a compound node

To be able to apply the Laplace transform, the equations (4.1) must be approximated

by a linear, time-invariant system. The method of constructing this approximation

is dependent on the nature of the nonlinearities in the node equation φ. A standard

property of the nonlinearities within many hydraulic components is that they are

memoryless, that is the integrodifferential and delay terms are linear in the nodal

variables. For these circumstances, the linear time-invariant approximation is con-

structed by taking only the linear terms in a Taylor series approximation about a

selected operating point. From either direct transformation of (4.1) or linearising

(4.1) about the operating point and taking the Laplace-transform, the dynamics of

the i-th compound node can be expressed as

Φi(s)


P i(s)

Qi(s)

U i(s)

Ũ i(s)

 = 0 (4.14)

where Φj(s) is the matrix Laplace-transform of the linearised operator of φj, P i

and Qi are a vector organisation of the transform of the elements in Pj and Qj
respectively, and U i and Ũ i are the transforms of ui and ũi.

Remarks:

1. In the case were pi, qi, ui and ũi have nonhomogeneous initial conditions,

the Laplace variables are taken as the transient fluctuations about the initial

values.

2. Given the analysis in the previous section, within the Laplace-domain repre-

sentation, the matrix Φj from (4.14) is of size nEi × (2nλi + nũi + nui).

Consider the following example demonstrating the matrix Φi for the compound

nodes in Examples 4.1-4.3.

Example 4.4. With reference to Example 4.1, Φi(s) takes the form of the 4 × 8

matrix in (4.15).

Example 4.5. With reference to Example 4.2, Φi(s) takes the form of the 5 × 8

matrix in (4.16) where Yo is the linearized operator version of yo and the capital

letters indicate the Laplace transforms of their lowercase counterparts.
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
0 0 0 −1 1 1 0 −1
1 0 0 0 0 0 −1 0
0 1 0 0 0 0 −1 0
0 0 1 0 0 0 −1 0





Pa(0, s)
Pb(Lb, s)
Pc(Lc, s)
Qa(0, s)
Qb(Lb, s)
Qc(Lc, s)

Ψ(s)
Θd(s)


= 04×1 (4.15)


0 0 0 −1 1 1 0 −1
1 0 0 0 0 0 −1 0
0 1 0 0 0 0 −1 0
0 0 1 0 0 0 −1 0
0 0 0 0 0 0 Yo(s) −1





Pa(0, s)
Pb(Lb, s)
Pc(Lc, s)
Qa(0, s)
Qb(Lb, s)
Qc(Lc, s)

Ψ(s)
Θd(s)


= 05×1 (4.16)

Example 4.6. Revisiting the compound node from Figure 4.2(a) in Example 4.3.

Linearising the valve pressure loss functions of (4.4), as in Wylie and Streeter

[1993], and taking the Laplace transform leads to the (4.14)-type representation

Φi(s) =


0 1 0 0 −cB cB 0 −1 0

0 0 0 1 1 −1 1 0 −1

0 1 −1 0 0 0 0 0 0

0 0 0 0 0 0 0 cs −1

1 0 0 −cA 0 0 0 −1 0

 (4.17)

where c = V0/Ke, cX = 2ρ|qoX |/C2
v , X = A,B where qoA and qoB are the operating

points for the linearisation of the valve headloss functions. The partitions of (4.17)

correspond to the matrix sections that act on the node states P i, Qi, U i, and, Ũ i,

respectively.

4.4.2 The connections representation of a compound node

For the inclusion of the compound node into the network model, the nodal dynamics

(4.14) must be expressed in terms of its connection states, as it is through these

states that the node interacts with the other network elements. For the proceeding

development, the following definitions are required.
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Definition 4.5. A compound node connection is defined as the interface between

one or more links and the compound node within which there is no accumulation of

fluid or change in pressure.

Definition 4.6. A compound node component is defined as the system describing

the dynamics between the connection states of pressure and flow, and the internal

controlled and dependent nodal states.

Remarks:

1. A compound node is comprised of a set of connections and a component.

2. A compound node connection is just a simple node that connects the com-

pound node’s component to a collection of links.

3. The significance of a connection is that as the link end pressures and flows

are uncoupled, the component experiences the aggregated effect of all links

incident to a connection and does not differentiate between the contributions

to the connection flow from individual links.

For a compound node i with nsi connections, the connection states of pressure

and flow are given by the vectors

Pci(s) =


Pci1(s)

...

Pcinsi(s)

 , Qci(s) =


Qci1(s)

...

Qcinsi(s)

 , (4.18)

where Pcik is the common pressure shared at all link ends incident to the k-th

connection of compound node i, and Qcik is the aggregated flow from the links

incident to the k-th connection of compound node i into the component. These

ideas are demonstrated in the following examples.

Example 4.7. Consider the junction from Example 4.1 in Figure 4.1(a). This

junction has one simple connection as in Figure 4.1(d).

Example 4.8. Consider Example 4.7 but now putting valve at the end of link [a]

as in Figure 4.1(b). As a pressure loss occurs across the valve, link [a] no longer

forms a simple connection with links [b] and [c]. Hence this compound node has two

simple connections, the first for link [a], and the second for links [b] and [c] as in

Figure 4.1(e).

Example 4.9. Consider Example 4.8 but now placing a valve at the end of link [b]

as in Figure 4.1(c). This compound node has three simple connections as in Figure

4.1(f).
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Example 4.10. The compound node in Figure 4.2(a) used in Examples 4.3 and 4.6

has two connections, each just exterior to the valves A and B, and the component of

the compound node includes the valves and everything in between the valves. Figure

4.2(b) demonstrates the connectivity of the compound node with the link [a] incident

to connection A, and links [b] and [c] both incident to the connection at B. Figure

4.2(c) demonstrates the fluid states of pressure and flow at the connections, where

the pressures PciA and PciB are the pressures at the end point of the links, and the

inflows QciA and QciB are the aggregated link flows into the component.

The standard nodal sets Λui and Λdi are not sufficient to characterise the in-

teraction of a compound node with the network through the simple connections.

More specific topological objects, based on Λui and Λdi, are required to describe the

connections of compound node i that the links within Λui and Λdi are incident on.

These are defined in the following.

Definition 4.7. For each compound node i ∈ Nc, the set of simple connections

is denoted by Ni. For every simple connection k ∈ Ni, there exist the upstream

link sets Λu,i,k associated with Λu,i, and downstream link sets Λd,i,k associated with

Λd,i, that contain the upstream and downstream links that are incident to the simple

connection k.

Definition 4.8. For each compound node i ∈ Nc with nsi simple connections in

Ni and link sets Λu,i,k,Λd,i,k, k ∈ Ni, the Nu,i and N d,i compound node incidence

matrices are defined as

{Nu,i}k,j =

1 if j-th link in Λu,i is in Λu,i,k

0 otherwise
,

{N d,i}k,j =

1 if j-th link in Λd,i is in Λd,i,k

0 otherwise
.

The connection states Pci and Qci can now be related to the incident link states

P i and Qi, from (4.14), by

P i(s) = [Nui +Ndi]
T Pci(s), Qci(s) = [Nui −Ndi]Qi(s) (4.19)

which are analogous to the simple node constraints for networks (3.20) and (3.21).

The existence of the relationships (4.19) implies that there exists a lower dimensional

form of Φi incorporating the component dynamics that is just dependent on the
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connection states Pci and Qci. This lower dimensional form can be expressed as

Φsi(s)


Pci(s)

Qci(s)

U i(s)

Ũ i(s)

 = 0 (4.20)

where Φsi is a (nsi + nũi) × (2nsi + nui + nũi) matrix of stable transfer functions.

The matrix system Φsi has (nsi + nũi) rows as it must contain enough equations to

determine one state at each connection and all the internal response states.

4.4.3 Decoupled compound node representation

By definition, as ũi is a nodal response variable, it can be uniquely determined

from the other nodal states. Hence there exists a stable Laplace-domain transfer

function mapping from the transformed connection pressures Pci and flows Qci, and

the transformed controlled nodal states U i to the transformed nodal response states

Ũ i. That is, (4.20) can be partitioned as

Φsi(s) =

[
Φopi(s) Φoqi(s) Φoui(s) Φoũi(s)

Φ1pi(s) Φ1qi(s) Φ1ui(s) Φ1ũi(s)

]
(4.21)

where the blocks correspond to their subscripted variables, and Φ1ũi is a nũi ×
nũi matrix that possesses a stable inverse4. Therefore, a nλi order system exists

that relates the states P i, Qi and U i, and can be decoupled from Ũ i, this can be

expressed as

Φci(s)

 Pci(s)

Qci(s)

U i(s)

 = 0 (4.22)

where Φci is an nsi × (2nsi + nui) matrix of stable complex functions, given by

Φci(s) =
[

Φcpi(s) Φcqi(s) Φcui(s)
]

=
[

Φopi(s) Φoqi(s) Φoui(s)
]

−Φoũi(s)Φ1ũ
−1
i (s)

[
Φ1pi(s) Φ1qi(s) Φ1ui(s)

] . (4.23)

The matrix Φci represents a minimal state matrix for the compound node i as it

describes equivalent dynamics to Φsi but with a reduced number of states. An

example of the derivation of the form of (4.23) is given in Example 4.11. This

4Formally, the matrix function A(s) : C 7→ Cn×n possesses a stable inverse if detA(s) > 0 for
Re {s} ≥ 0.

85



Chapter 4 – Arbitrarily Configured Compound Node Networks

concept of a decoupled system serves as the basis for the remaining developments

within this section.

4.4.4 Admittance representation of compound node

The following corollary uses the decoupled system Φci to define the criteria for the

existence of an admittance map from the connection pressures and controlled states

to the connection flows.

Corollary 4.1. For a compound node with the decoupled connection representation

(4.23), under the condition that

rank
{
Φcqi(s)

}
= nsi for Re {s} ≥ 0, (4.24)

the compound node admittance form

Yci(s)Pci(s)− Yui(s)U i(s) = Qci(s) (4.25)

exists where Yci and Yui are stable transfer matrices of size nsi × nsi and nsi × nui
respectively, and are given by

Yci(s) = −
[
Φcqi(s)

]−1
Φcpi(s), Yui(s) =

[
Φcqi(s)

]−1
Φcui(s). (4.26)

Proof. The transfer matrix Φcqi is nsi × nsi, therefore, the constraint (4.24) can be

interpreted as Φcqi being full rank without diminishing rank on Re {s} ≥ 0. In this

instance Φcqi possesses a stable inverse, hence (4.26) exist and are stable.

This canonical representation of the node dynamics is interpreted as a hydraulic

admittance as Yci(s) is the admittance transfer matrix from the connection pressures

to the connection flows, and Yui(s) is the admittance transfer matrix from the

controlled nodal states to the connection flows.

The significance of (4.24) is that it defines the criteria under which the compound

nodes simple connection flows Qci can be resolved from the simple connection pres-

sures Pci and the compound nodes controlled states Uci. It turns out that (4.24) is

not very restrictive, in fact, strict passivity is enough to ensure (4.24). Consider the

following example.

Example 4.11. Revisiting the compound node from Figure 4.2 in Examples 4.3

and 4.6, it is recognised that there are nλi = 3 links, nui = 1 controlled node state,

nũi = 2 response node states, where the order of the φ is clearly 5. This compound

node is recognised as having two connections, one just outside valve A and the other
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outside valve B. Denoting these connections as A and B, the connection states are

as given in Example 4.10, and the topological matrices are

Nui =

[
0 0 0

0 0 1

]
, Ndi =

[
1 0 0

0 1 0

]
.

By identifying and removing the connection equations (4.19), (4.17) can be converted

into the form (4.20) as

Φi(s) =


0 1 0 −cB 0 −1 0

0 0 1 1 1 0 −1

0 0 0 0 0 cs −1

1 0 −cA 0 0 −1 0

 (4.27)

where the partitions correspond to those in (4.21), where

[Φũ1i(s)]
−1 =

[
cs −1

−1 0

]−1

= −
[

0 1

1 cs

]
(4.28)

clearly exists for Re {s} ≥ 0. Given the expressions in (4.23), the decoupled repre-

sentation (4.22) is given by

Φci(s) =

[
−1 1 cA −cB 0

−cs 0 1 + cAcs 1 1

]

where the partitions are according to (4.23). Recognising from (4.29) that

Φcqi(s) =

[
cA −cB

1 + cAcs 1

]

the criteria (4.24) holds if

det
{
Φcqi(s)

}
= cA + cB + cAcBcs 6= 0, on Re {s} ≥ 0.

This clearly holds as c,cA, and cB are all positive real numbers. Therefore, it can be

demonstrated from (4.26) that the admittance matrices for (4.25) are given by

Yci(s) =
1

det
{
Φcqi(s)

} [1 + cBcs −1

−1 1 + cAcs

]
, Yui(s) = − 1

det
{
Φcqi(s)

} [cB
cA

]
.
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4.5 Network Formulation

The derivation of the network admittance matrix for hydraulic networks comprised

of pipelines and compound nodes is presented in the following sections. A staged

generalisation is presented. In Section 4.5.1, the special case of a compound node

with a single connection is considered. This case highlights the majority of the

necessary steps for the inclusion of compound nodes into the network admittance

matrix form. This is followed by Section 4.5.2, where the general admittance form of

the compound node dynamics are incorporated into the network matrix structure.

This formulation represents a full treatment of the network equations (4.5)-(4.13).

4.5.1 Network matrix for a network with a single connection

The first extension to the work from Chapter 3 is the consideration of the case

of compound nodes consisting of only one connection, that is, compound nodes

consisting of a hydraulic component connected to a single junction. Examples of

such components are emitters, scour valves, surge tanks or pressure relief valves. The

flow into the hydraulic component is clearly pressure dependent, but to generalise

further5, it is assumed to also be influenced by a control action Ui (e.g. time varying

valve opening, or fluctuating chamber volume). For a network with such node types,

a general expression for the flow into the compound node’s component is

Qci(s) = Yci(s)Pci(s)− Yui(s)Ui(s) (4.29)

where the first term on the right side of (4.29) represents the pressure dependent

flow with admittance function Yci and connection pressure Pci, and the second term

represents the controlled flow with admittance function Yui and control Ui. Note

that (4.29) is simple a scalar version of (4.25).

The following theorem generalises Theorem 3.1 to the case of compound nodes

with only a single connection.

Theorem 4.1. Consider the network (G(N ,Λ),P , C) where the node set is parti-

tioned as N = Ns ∪Nc into the simple nodes Ns and the compound nodes Nc which

posses single connections only. The admittance relation between the nodal pressures,

5This formulation may seem somewhat artificial at first as it is physically impossible to control
the outflow at a nodal point as well as having an additional pressure dependent component. But
the nodal outflow is formulated like this for notational simplicity and for modelling purposes, it
is a trivial exercise to set Yui = 0 for pressure dependent nodes, and Yci = 0 for outflow control
nodes.
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nodal flows and compound node control actions is(
Y (s) +

[
diag {Yc1(s), . . . , Ycnc(s)} 0

0 0

])[
Ψc(s)

Ψs(s)

]
=[

diag {Yu1(s), . . . , Yunc(s)} 0

0 I

][
U(s)

Θs(s)

] (4.30)

where Y is the network admittance matrix for the simple node L -network (G(N ,Λ),P),

Ψs and Ψc are the nodal pressures for simple nodes Ns and compound nodes Nc re-

spectively, and U is the vector of compound node controlled states. The elementwise

expression for the admittance matrix acting on the pressure states is

{Y (s) + diag {diag {Yc1(s), . . . , Ycnc(s)} ,0}}i,k =

∑
j∈Λi

coth Γj(s)

Zj(s)
if k = i ∈ Ns∑

j∈Λi

coth Γj(s)

Zj(s)
+ Yci(s) if k = i ∈ Nc

− csch Γj(s)

Zj(s)
if λj = Λi ∩ Λj

0 otherwise

. (4.31)

where the diagonalisation refers to a block matrix organisation.

Proof. Consider a network (G(N ,Λ), C,P) with nc such nodes collected into the set

Nc, with Ns as the set of remaining simple nodes (N = Ns∪Nc). Ordering the nodal

states with the Nc nodes first, a network admittance expression can be derived

Y (s)

[
Ψc(s)

Ψs(s)

]
=

[
Θc(s)

Θs(s)

]
(4.32)

where Y is the admittance matrix for the simple node network given by (G(N ,Λ),P)

(Theorem 3.1), Ψc and Ψs are the nodal pressures at the compound junction and

simple nodes respectively, and Θc and Θs are the nodal flows at the compound

junction and simple nodes respectively. In (4.32), Θc corresponds to the flow that

enters the network (G(N ,Λ),P) from the compound nodes component, which is

external to the network (G(N ,Λ),P), and as such, the component dynamics are

not directly incorporated in (4.32). To incorporate the component dynamics the

relationship between each Θci and Qci from (4.29) must be used. Given that Θci

is the flow at the junction into the network, and Qci is the flow at the junction

into the component, for continuity to be satisfied, it is required that Θci +Qci = 0.
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Therefore, in fact

Θc(s) = −Qc(s)

= −diag {Yc1(s), . . . , Ycnc(s)}Ψc(s) + diag {Yu1(s), . . . , Yunc(s)}U(s)

(4.33)

where Qc and U are vector organisations of the compound node connection flows

and controlled states. Combining (4.33) with (4.32) yields the admittance form for

the compound node network as in (4.30).

Remark: Note that in (4.33), only the diagonal terms are altered as these are the

terms that relate a nodal’s pressure to its nodal flow.

4.5.2 Network matrix for a general compound node

In this section, the admittance matrix for a compound node network (G(N ,Λ),P , C)
comprised of compound nodes of a general type is derived. Before this can be done,

an important preliminary concept must be introduced.

Definition 4.9. Consider the compound node network (G(N ,Λ),P , C) with sim-

ple nodes Ns and compound nodes Nc. The simple node expanded network of

(G(N ,Λ),P , C) is defined as the simple node network (G(No,Λo),Po) where the node

set is defined as

No = Ns ∪
⋃
i∈Nc
Ni,

where Ni = {vi1, . . . , vinsi} is the set of simple connections for compound node i,

uniquely indexed on N. The link set Λo is given by a relabelling of the original link

set Λ to the nodes in No. This is given by

Λo = {〈λ〉o : λ ∈ Λ}

where the function 〈λ〉o : N ×N 7→ No ×No is the relabelling function given by

〈(i, j)〉o =



(i, j) if i, j ∈ Ns
(i, l) if i ∈ Ns and (i, j) ∈ Λd,j,l, l ∈ Nj, j ∈ Nc
(k, j) if (i, j) ∈ Λu,i,k, k ∈ Ni, i ∈ Nc and j ∈ Ns
(k, l) if (i, j) = Λu,i,k ∪ Λd,j,l, k ∈ Ni, l ∈ Nj, i, j ∈ Nc
∅ otherwise

, (4.34)

and Po is the L -link data P but constructed for the relabeled links Λo.
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Figure 4.3: Example network-1 adapted from Zecchin et al. [2009], with controlled de-
mand as node 1, a single valve at node 2, two valves at node 3 and capacitance branch at
node 5. (a) The physical configuration of the system. (b) The compound nodes’ connec-
tion configurations. (c) The simple connection expanded network, where the denoted Θi’s
are the flows into the simple connection expanded network from the compound nodes.

The advantage of this relabelling is that is provides a more descriptive formu-

lation of the interaction with the links and the compound nodes. This concept of

a simple node expanded network is fundamental to the developments within this

section as it provides the basic framework within which to include compound nodes.

An example of the simple node expanded network for a given compound node net-

work in Figure 4.3(a) is given in Figure 4.3(b). This is studied in greater depth

later.
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The expanded simple node network (Go(No,Λo),Po) possesses the nodal states

Ψ(s) =


Ψ1(s)

...

Ψnc(s)

Ψs(s)

 , Θ(s) =


Θ1(s)

...

Θnc(s)

Θs(s)

 , (4.35)

where Ψs(s) and Θs(s) are associated with the simple nodesNs, and Ψi(s) and Θi(s)

are associated with the simple connections in Ni, i ∈ Nc. It is important to explain

the meaning of the Θi, i ∈ Nc. These variables correspond to nodal flow injections

that enter the network (G(No,Λo),Po) through the connections from a compound

node’s component. As the compound nodes are external to the simple node network

(Go(No,Λo),Po), these nodal flows hold the same meaning for (Go(No,Λo),Po) as do

the standard nodal flows for a standard simple node network. This realisation leads

to the following corollary to Definition 4.9.

Corollary 4.2. Given the simple node expanded network (G(No,Λo),Po) of the com-

pound node network (G(N ,Λ),P , C), the simple node expanded network states, as

given in (4.35), are related by the following admittance relationship

Y o(s)


Ψ1(s)

...

Ψnc(s)

Ψr(s)

 =


Θ1(s)

...

Θnc(s)

Θr(s)

 , (4.36)

where Y o is the L -network admittance matrix, from Theorem 3.1, for the network

(G(No,Λo),Po).

Proof. Given that {G(No,Λo),Po} from Definition 4.9 is a L -network as in Defini-

tion 3.1, (4.36) follows from Theorem 3.1.

This leads onto the following theorem, the main result of the chapter, which

represents a solution to the full compound node network equations (4.5)-(4.13).

Theorem 4.2. Consider the network (G(N ,Λ),P , C) where the node set is parti-

tioned as N = Ns ∪ Nc, where Ns are simple nodes and Nc are compound nodes.

The admittance relationship between simple node states and simple connection states
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is given byYo(s) +


Yc1(s)

. . .

Ycnc(s)

0





Ψ1(s)
...

Ψnc(s)

Ψs(s)

 =


Yu1(s)

. . .

Yunc(s)

I



U 1(s)

...

Unc(s)

Θs(s)


(4.37)

where Ψs and Θs are the nodal states of pressure and flow for the simple nodes, Ψi

are the nodal pressures for the simple connections of compound node i, U i are the

controlled states for compound node i, Y o(s) is the simple node network admittance

matrix for the network (Go(No,Λo),Po), and Yci and Yui are the transfer matrices

[in the admittance form of the compound node dynamics as in (4.39)] for compound

node i. The elementwise expression for the admittance matrix is

{Yo (s) + diag {Yc1, . . . ,Ycnc ,0}}i,k =

∑
j∈Λi

coth Γj(s)

Zj(s)
if k = i ∈ Ns∑

j∈Λi

coth Γj(s)

Zj(s)
+ {Yci(s)}〈i,i〉l if k = i ∈ Nc and i ∈ Nl, l ∈ Nc

− csch Γj(s)

Zj(s)
if λj ∈ Λi ∩ Λk, i, k ∈ Ns

{Yci(s)}〈i,k〉l if i, k ∈ Nl, l ∈ Nc
0 otherwise

,
(4.38)

where Nl is the l-th compound node connection set, the Yci, i ∈ Nc are the pressure

dependent compound node admittance functions, 〈·〉l maps from the ordering in the

state vectors to the local ordering for the simple connections at compound node l ∈
Nc, and the diagonalisation function refers to a diagonal block matrix organisation.

Proof. Consider the compound node networks simple connection expanded expres-

sion in (4.36). With respect to the compound node states, the flows into the network

Θi are related to the compound node connection flows Qci by applying continuity

at the connections, which yields Θi +Qci = 0, as explained in the previous section

for the special case of compound nodes with only a single connection. Given this

relationship, by (4.25), the following relationship between the nodal flows and the
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admittance form of the compound node can be derived
Θ1(s)

...

Θnc(s)

 = −


Yc1(s)

. . .

Ycnc(s)




Ψ1(s)
...

Ψnc(s)


+


Yu1(s)

. . .

Yunc(s)



U 1(s)

...

Unc(s)


(4.39)

where the first term on the right hand side of (4.39) is the pressure dependent

term and the second term corresponds to the connection flows associated with the

controlled nodal states. Substituting (4.39) into (4.36) provides the full expression

(4.37).

Remarks:

1. Here, unlike the pressure dependent outflow, Yci is not just comprised of just

diagonal terms but there is some dependence between the states at the link

ends incident to the compound node.

2. The structure of (4.38) is consistent with that of the simple node networks

in Theorem 3.1 where the diagonal terms {Y c}j,j are comprised of sums of

transfer functions, each associated with the connection between node j and

its neighbouring nodes, and the off-diagonal terms {Y c}j,k are comprised of

single transfer functions, each associated with the connection between nodes

j and k.

3. Note that for (4.38): the first case corresponds to diagonal terms for the

networks simple nodes; the second case corresponds to links between simple

nodes and connections; the third case corresponds to links between simple

nodes only; and the fourth case corresponds to simple connections only.

Consider the following example.

Example 4.12. Consider the network (G(N ,Λ),P , C) in Figure 4.3(a), with

N = {1, 2, 3, 4, 5, 6}
Λ = {(1, 2), (2, 3), (2, 4), (3, 4), (3, 5), (4, 5), (5, 6)}

= {λ1, λ2, λ3, λ4, λ5, λ6, λ7}
P = {Pλ1 ,Pλ2 ,Pλ3 ,Pλ4 ,Pλ5 ,Pλ6 ,Pλ7}
C = {φ2,φ3,φ5}
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where the compound node set is Nc = {2, 3, 5} and the simple node set is Ns =

{1, 4, 6}. in Figure 4.3(c), the simple connection sets the compound nodes are N2 =

{21, 22}, N3 = {31, 32, 33}, and N5 = {51} with the link sets

Λu,2,21 = ∅, Λd,2,21 = {λ1} ,
Λu,2,22 = {λ2, λ3} , Λd,2,22 = ∅,
Λu,3,31 = ∅, Λd,3,31 = {λ2} ,
Λu,3,32 = {λ4} , Λd,3,32 = ∅
Λu,3,33 = {λ5} , Λd,3,33 = ∅
Λu,5,51 = {λ7} , Λd,5,51 = {λ5, λ6}

Performing the relabelling operation (4.34) leads to the following links for the

expanded simple node network

λo1 = 〈λ1〉o = (1, 21)

λo2 = 〈λ2〉o = (22, 31)

λo3 = 〈λ3〉o = (22, 4)

λo4 = 〈λ4〉o = (32, 4)

λo5 = 〈λ5〉o = (33, 51)

λo6 = 〈λ6〉o = (4, 51)

λo7 = 〈λ7〉o = (51, 6)

which comprise the links in Λo, where the nodes for the expanded simple node net-

work are No = {1, 21, 22, 31, 32, 33, 4, 51, 6}. The graph of the expanded network

Go (No,Λo) is depicted in Figure 4.3(b). Organising the simple node and simple

connection states as in (4.35) yields

Ψ(s) =



Ψ21(s)

Ψ22(s)

Ψ31(s)

Ψ32(s)

Ψ33(s)

Ψ51(s)

Ψ1(s)

Ψ4(s)

Ψ6(s)


, Θ(s) =



Θ21(s)

Θ22(s)

Θ31(s)

Θ32(s)

Θ33(s)

Θ51(s)

Θ1(s)

Θ4(s)

Θ6(s)


. (4.40)

Defining Po as in Definition 4.9, the network admittance matrix Y o for the expanded

simple node network {G(No,Λo),Po} can be expressed by (4.41) where tj = tj(s) =

Z−1
c (s) coth Γj(s) and sj = sj(s) = Z−1

c (s) csch Γj(s). Note that as (4.41) is a net-
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Yo(s) =

t1 0 0 0 0 0 −s1 0 0
0

∑
j=2,3 tj −s2 0 0 0 0 −s3 0

0 −s2 t2 0 0 0 0 0 0
0 0 0 t4 0 0 0 −s4 0
0 0 0 0 t5 −s5 0 0 0
0 0 0 0 −s5

∑
j=5,6,7 tj 0 −s6 −s7

−s1 0 0 0 0 0 t1 0 0
0 −s3 0 −s4 0 −s6 0

∑
j=3,4,6 tj 0

0 0 0 0 0 −s7 0 0 t7


(4.41)

diag {Yc2(s),Yc3(s),Yc5(s),0} =

{Yc2}1,1 {Yc2}1,2 0 0 0 0 0 0 0
{Yc2}2,1 {Yc2}2,2 0 0 0 0 0 0 0

0 0 {Yc3}1,1 {Yc3}1,2 {Yc3}1,3 0 0 0 0
0 0 {Yc3}2,1 {Yc3}2,2 {Yc3}2,3 0 0 0 0
0 0 {Yc3}3,1 {Yc3}3,2 {Yc3}3,3 0 0 0 0
0 0 0 0 0 Yc5 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0


(4.43)

work admittance matrix, it is a square symmetric matrix, and the row and column

partitions of (4.41) correspond to the partitions of the state vectors in (4.40). As-

suming that node 2 has one controlled state, node 3 has two and node 5 has none,

the admittance forms (4.25) of the compound node functions φ2, φ3, and φ5 are[
Qc21(s)

Qc22(s)

]
= Yc2(s)

[
Pc21(s)

Pc22(s)

]
− Yu2(s)U2(s),Qc31(s)

Qc32(s)

Qc33(s)

 = Yc3(s)

Pc31(s)

Pc32(s)

Pc33(s)

− Yu3(s)

[
U31(s)

U32(s)

]
, (4.42)

Qc51(s) = Yc5(s)Pc51(s).

The pressure dependent term in the compound node network admittance matrix

(4.37) can be constructed as in (4.43) and rewriting the state vector on the right

side of (4.37) as[
U21(s) U31(s) U32(s) Θ1(s) Θ4(s) Θ6(s)

]T
,
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diag {Yu2(s),Yu3(s),Yu5(s), I} =



{Yu2}1,1 0 0 0 0 0
{Yu2}2,1 0 0 0 0 0

0 {Yu3}1,1 {Yu3}1,2 0 0 0
0 {Yu3}2,1 {Yu3}2,2 0 0 0
0 {Yu3}3,1 {Yu3}3,2 0 0 0
0 0 0 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1


.

(4.44)

the matrix operator on this state vector is given as in (4.44). Note that as there

are no controlled states for compound node 5, Yu5 is a matrix of one row and zero

columns. Given these matrices, the network admittance equation (4.37) for the

compound node network (G(N ,Λ),P , C) can be constructed.

4.6 Formulation of a Computable Model

As with the simple node networks in Chapter 3, the computational utility of the

compound node network model (4.37) depends on the existence of a mapping from

the input known nodal states to the output unknown nodal states. Consider the

network (G(N ,Λ),P , C) with compound nodes Nc, and simple nodes Ns that can be

partitioned as Ns = NJ ∪Nd∪Nr where NJ are junctions, Nd are the demand nodes

(flow control nodes) and Nr are the reservoirs (pressure control nodes). Consider

also the connection set NC which is given by

NC =
⋃
i∈Nc
Ni. (4.45)

Note that given this notation, for the simple node expanded network (Go(No,Λ)o,Po)
that No = Ns ∪ NC . The inputs, or known boundary conditions, for such a setup

are the controlled node states U i for each i ∈ Nc, the controlled nodal flows Θd (Θi

for each i ∈ Nd) and the known reservoir pressures Ψr (Ψi for each i ∈ Nr). The

outputs, or response boundary conditions, are the connection pressures

ΨC(s) =


Ψ1(s)

...

Ψnc(s)

 ,
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(i.e. Ψi for each i ∈ NC), the pressures at the controlled flow nodes Ψd (Ψi for each

i ∈ Nd), the pressures at the junctions ΨJ (Ψi for each i ∈ NJ) and the nodal flows

at the reservoirs Θr (Θi for each i ∈ Nr).

For notational simplicity, given the set of nodes for which the pressure is uncon-

trolled

ND = N /Nr = NC ∪Nd ∪NJ (4.46)

and the associated nodal pressure vector

ΨD(s) =

 ΨC(s)

Ψd(s)

ΨJ(s)

 , (4.47)

(denote the number of elements within this set as nD) the I/O map of the network

(G(N ,Λ),P , C) takes the form U(s)

Θd(s)

Ψr(s)

 H(s)7−→
[

ΨD(s)

Θr(s)

]
. (4.48)

The form and existence conditions for the map H(s) is given in the following theo-

rem.

Theorem 4.3. Consider the compound node network (G(N ,Λ),P , C) with the fol-

lowing partitioning of the admittance matrix (4.31)

[
Y DD(s) Y Dr(s)

Y rD(s) Y rr(s)

][
ΨD(s)

Ψr(s)

]
=


 Yu(s)U(s)

Θd(s)

ΘJ(s)


Θr(s)

 (4.49)

where Y DD (nD×nD) and Y rD (nr×nD) are partitions of network admittance matrix

that operate on ΨD as ordered in (4.47), and Y Dr (nD × nr) and Y rr (nr × nr) are

the partitions of the network admittance matrix that operate on Ψr, and all other

terms are as previously defined. Provided that the following conditions hold

1. all links j ∈ Λ are strictly passive,

2. the component dynamics φi for each i ∈ Nc are passive,

then there exists a stable map H(s) from (4.48) given by (4.50) where ZDD is an

impedance matrix given by

ZDD(s) = Y −1
DD(s)
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H(s) =[
ZDu(s)Yu(s) ZDd(s) −ZDD(s)Y Dr(s)

Y rD(s)ZDu(s)Yu(s) Y rD(s)ZDd(s) Y rr(s)− Y rD(s)ZDD(s)Y Dr(s)

]
(4.50)

and is partitioned as

ZDD(s) =
[
ZDu(s) ZDd(s) ZDJ(s)

]
where ZDu (nD × nC) is the partition that operates on the admittance map of the

controlled nodal states YuU , ZDd (nD × nd) is the partition that operates on the

controlled nodal flows Θd, and ZDJ (nD × nJ) is the partition that operates on the

junction flows ΘJ .

Proof. The map H in (4.50) can be derived from (4.49) using purely algebraic

operations with the realisation that ΘJ = 0, and under the assumption that ZDD

exists. Similarly, given the conditions (1) and (2), all the admittance terms in

(4.50) are stable matrix functions, and hence the stability of H also depends on the

stability of ZDD.

The existence and stability of ZDD, and consequently (4.50), depend on the

invertability of Y DD on s ∈ C+. That is, a sufficient criteria for the existence and

stability of H is

|detY DD(s)| > 0 on s ∈ C+. (4.51)

A sufficient criteria for (4.51) is that Y DD is strictly positive definite on s ∈ C+.

This criterion is satisfied if Y DD is strictly passive. With reference to the admittance

matrix for the simple node expanded network Y o from Corollary 4.2, it is observed

that Y DD can be expressed as

Y DD(s) = Y oDD(s) + diag {Yc1(s), . . . ,Ycnc(s),0} , (4.52)

where Y oDD is the partition of Y o that acts on the nodal pressure vector ΨD, and

Yci is the connection pressure admittance map from Corollary 4.1 for compound

node i. Given (4.52), a sufficient condition for the strict passivity of Y DD is that

Y oDD be strictly passive, and that the Yci, i ∈ Nc are all passive. As Y oDD is a

principal minor of Y o, then Y oDD is strictly passive if Y o is strictly passive (Lemma

B.1). The strict passivity of Y o is ensured by condition (1) (Theorem B.2).

By definition, the passivity of Yci, i ∈ Nc is ensured by condition (2).
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Table 4.1: Compound element parameters for numerical studies for networks 1 and 2.
Capacitors are physical models for short dead end sections, and accumulators are the
models for air chambers.

Network Node Element Type Parameters

1 2 1-valve junction {Cd, dv} = {1.5, 40 mm}
1 3 2-valve junction {Cd, dv} = {1.5, 30 mm}
1 5 Capacitor {V0, Ke} = {1L, 1.5 GPa}
2 7 Capacitor {V0, Ke} = {10 L, 1.5 GPa}
2 9 2-valve junction {Cd, dv} = {0.9, 300 mm}
2 11 Accumulator {V0, n} = {5 L, 1.2}
2 19 3-valve junction {Cd, dv} = {0.9, 300 mm}
2 22 2-valve junction {Cd, dv} = {0.9, 300 mm}
2 23 2-valve junction {Cd, dv} = {0.9, 300 mm}
2 25 4-valve junction {Cd, dv} = {0.9, 300 mm}
2 34 Emitter {Cd, de, ψ0} = {0.9, 10 mm, 0 Pa}

Remarks:

1. The node set ND corresponds to the set of nodes for which the nodal flow

is controlled. In this context, conditions (1) and (2) can be interpreted as

meaning that at all flow control nodes, the impedance mapping from these

nodes, ZDD, must be strictly passive.

2. Theorem 4.3 is limited to the case that all nodes in ND must be connected

to a strictly passive link. Despite the fact that this case covers most practical

systems (in practice, all links and compound nodes dissipate energy and are

consequently strictly passive), it excludes the case of connections to passive

links and the case of a node being a connection between the components of

two or more compound nodes. To cover these cases, a more general condition

for Theorem 4.3 could be imposed where, for each node in i ∈ ND, either (1)

there exists some strictly passive link j ∈ Λoi, or (2) i is a connection to a

strictly passive compound node. The proof of Theorem 4.3 subject to these

conditions is algebraically awkward, and is omitted here. It can, however,

be seen as a specific application of the general Corollary B.3 for M -networks

(Appendix B).

4.7 Numerical Examples

The numerical experiments in this section compare the frequency responses as calcu-

lated by the proposed admittance matrix method, and that calculated from the dis-
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Table 4.2: Compound node element details. All elements are discussed at greater depth
in Wylie and Streeter [1993].

Element States, ũ Parameter Set Equations comprising φ

Emitter [ψ θ]T {Cd, de, ψ0} θ(t)− CdAe

√
ψ(t)− ψ0

ρ

Capacitor [ψ θ]T {V0, Ke} θ(t)− V0

Ke

dψ

dt

Accumulator [ψ θ V ]T {V0, n}
[
ψ(t)V n(t)− Ca

θ(t)− dV
dt

]

Valvea [ψu ψd θ]
T {Cd, dv} θ(t)− sign {∆ψ(t)}CdAv

√
|∆ψ(t)|

ρ
a Note that ∆ψ(t) = ψu(t)− ψd(t).

crete time-domain method of characteristics (MOC) model via the discrete Fourier

transform (DFT). As expected, and verified by many experiments, the admittance

matrix methodology yields the exact solution for linear networks. Hence, compar-

isons involving linear networks are not presented. A question of greater practical

interest is how well does the method approximate systems comprised of nonlinear

components? It is for this reason that the results presented are for numerical exper-

iments performed on nonlinear systems. Example 4.13 deals with a smaller network

excited into a steady oscillatory state, one frequency at a time. In contrast, Ex-

amples 4.14 and 4.15 deal with a larger network excited by a transient excitation,

there the frequency response for the MOC was computed using the entire transient

response. All computational procedures were undertaken as outlined in Appendix

E.

Example 4.13. Consider network-1 comprised of turbulent-steady-friction (TSF)

pipes from Example 2.4, with the network parameters as follows; pipe diameters

= {60, 50, 35, 50, 35, 50, 60} mm, pipe lengths = {31, 52, 34, 41, 26, 57, 28} m, the

wavespeeds and the Darcy-Weisbach friction factors were set to 1000 m/s and 0.02,

respectively, for all pipes, and the compound node details are given in Tables 4.1 and

4.2. The demand at node 1 is taken as a sinusoid of amplitude 0.2 L/s about a base

demand level of 10 L/s. A frequency sweep was performed for 250 frequencies up

to 15 Hz. Figure 4.4 presents the amplitude of the sinusoidal pressure fluctuation

observed at node 6 computed by the admittance matrix computational model (4.50),

and the DFT of the MOC in steady oscillatory state, with pressure on the vertical

scale. The error between the two approaches is presented in the bottom subfigure.

Figure 4.5 presents similar results in units of L/s for the nodal flow measured at the
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Figure 4.4: Sinusoidal pressure amplitude response for network-1 at node 6 for the
admittance matrix model (continuous line) and the method of characteristics in steady
oscillatory state (◦ points). The error between the two methods is given in the bottom
figure.

reservoir (node 1).

Despite the nonlinearities of pipe friction, and the valve pressure loss, extremely

good matches between the two methods are observed as the errors for both the

pressure and flow results are more than three orders of magnitude less than the

magnitude of the response oscillations (as seen in Figures 4.4 and 4.5). The largest

errors occurs at the networks harmonic frequencies, where the linear admittance

matrix model slightly over predicts the amplitude of the nonlinear MOC model.

Example 4.14. Consider network-2 from Figure 4.6 comprised of TSF pipes, the

original formulation for network-2 [Vı́tkovský, 2001] was modified as follows: pipe

lengths were rounded to the nearest metre and the wavespeeds were all made to be

1000 m/s to ensure a Courant number of 1, which was required to preserve the accu-

racy of the MOC; the nodal demands were doubled to increase the flow through the

network; nodes 7, 9, 11, 19, 22, 23, 25, and 34 were converted to compound nodes,

the details of which are given in Tables 4.1 and 4.2. The network details are given

in Appendix D. The network was excited into a transient state by a pulse flow per-

turbation at nodes {14, 17, 28} of duration {0.055, 0.025, 0.075} s and of magnitude
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Figure 4.5: Sinusoidal pressure amplitude response for network-1 at node 1 for the
admittance matrix model (continuous line) and the method of characteristics in steady
oscillatory state (◦ points). The error between the two methods is given in the bottom
figure.

{70, 50, 100} L/s. A plot of the frequency response at nodes 14 and 18 for network-2

is given in Figures 4.7 to 4.8 (due to the densely distributed harmonics, only the

range 0 - 5 Hz is shown), where the top subfigure gives the frequency response and

the bottom subfigure shows the magnitude of the error between the two methods.

The DFT of the nonlinear MOC pressure traces at all nodes are almost indistin-

guishable from that of the linear admittance matrix model. This illustrates that even

for a network of a large size containing nonlinear elements such as emitters, valves,

and accumulators, the linear admittance matrix model provides an extremely good

approximation of the nonlinear MOC model. For this network, the errors are very

small, being over an order of magnitude less than the frequency response magni-

tudes. Similarly with network-1, the largest errors occur at the networks harmonics.

There is also a slight trend of increasing in magnitude with increasing frequency.

Despite this, the matches are excellent.

Example 4.15. Consider again network-2 from Figure 4.6 comprised of TSF pipes,

with all the details as outlined in Example 4.15 except with the network excited

into a transient state by a step flow perturbation at nodes {14, 17, 28} of magnitude
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Figure 4.6: Example network-2, adapted from Vı́tkovský [2001], with compound nodes
as described in Table 4.1. (a) The physical layout of the network, and (b) shows the
compound nodes’ connection configurations.

{70, 50, 100} L/s. A plot of the frequency response at nodes 14 and 18 for this

example is given in Figures 4.9 and 4.10 (due to the densely distributed harmonics,

only the range 0 - 5 Hz is shown), where the top subfigure gives the frequency response

and the bottom subfigure shows the magnitude of the error between the two methods.

The plots are presented with a log scale on the vertical axis as the excitation energy

for a step input reduces rapidly for increasing frequency.

It is observed from Figures 4.9 and 4.10 that the error between the methods

are over an order of magnitude less than the spectral amplitude of the frequency

response. This error is surprisingly low, given that for the step input the operating
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Figure 4.7: Pressure frequency response magnitudes for network-2 at node 14 subject to
a pulse input for the admittance matrix model as outlined in Example 4.14. The lower
figure gives the magnitude of the error between the admittance matrix and MOC methods
(the admittance matrix minus the DFT of the MOC).

point of the linearisation for the Laplace-domain model (i.e. the initial steady-state)

is different to the final operating position of the network due to the permanent change

in the nodal flows. The change of the steady-state operating point is the cause for

the error peak near the zero frequency point. Therefore this example demonstrates

that the linear admittance matrix model is seen to yield a good approximation of

the nonlinear system even when the operating point for the system shifts.

4.8 Conclusions

Existing methods for modelling the frequency-domain behaviour of a transient fluid

line system have either been limited by the configuration of network types that they

can model, or limited by the hydraulic element types that they can encompass.

Within this chapter, a completely new formulation, building on that presented in

Chapter 3, has been derived that is able to deal with networks of an arbitrary

configuration containing an extremely broad class of hydraulic elements, namely

those that yield an admittance type representation.
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Figure 4.8: Pressure frequency response magnitudes for network-2 at node 18 subject to
a pulse input for the admittance matrix model as outlined in Example 4.14. The lower
figure gives the magnitude of the error between the admittance matrix and MOC methods
(the admittance matrix minus the DFT of the MOC).

An extensive framework for deriving the admittance matrix form, as well as con-

ditions for the existence of this form, has been presented. Based on this special

treatment of the compound node dynamics, an analytic representation of the net-

work admittance matrix was derived. An interesting finding presented in this chapter

is that the admittance matrix for a compound node network can be expressed as the

addition of two matrix terms, one pertaining to its simple node network structure,

and the other containing the compound node dynamics.

Based on the derived compound node admittance matrix, a computable I/O

model mapping from the known nodal boundary conditions to the unknown nodal

states has been derived. The existence of this map was proven to exist and be

dependent on the strict passivity of the networks link and compound node dynamics.

The proposed new method has been verified by numerical examples with a 7-pipe

network, and a 51-pipe network involving TSF pipes, valves, emitters, accumulators

and capacitance elements. Within these numerical examples, the frequency-response

as calculated by the DFT of the nonlinear MOC model has been compared to the

frequency-response as calculated by the proposed linear Laplace-domain I/O ad-
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Figure 4.9: Pressure frequency response magnitudes for network-2 at node 14 subject
to a step input for the admittance matrix model as outlined in Example 4.14. The lower
figure gives the magnitude of the error between the admittance matrix and MOC methods
(the admittance matrix minus the DFT of the MOC).

mittance matrix model. As with Chapter 3, these results demonstrated that the

proposed method serves as an excellent linear approximation to the nonlinear model.

This proposed new approach allows complete flexibility with regard to the topo-

logical structure of a network and the types of hydraulic elements. As such, it over-

comes previous limitations in frequency-domain modelling of pipe networks, and

provides a general basis for future research utilising the Laplace-domain representa-

tion of fluid line systems. Two applications of this theory to time-domain simulation,

and parameter estimation are presented in Chapters 5 and 6, respectively.
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Figure 4.10: Pressure frequency response magnitudes for network-2 at node 18 subject
to a step input for the admittance matrix model as outlined in Example 4.14. The lower
figure gives the magnitude of the error between the admittance matrix and MOC methods
(the admittance matrix minus the DFT of the MOC).
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