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Abstract

Networks of closed conduits containing pressurised fluid flow occur in many different
instances throughout the natural and man made world. The dynamics of such net-
works are dependent not only on the complex interactions between the fluid body
and the conduit material within each fluid line, but also on the coupling between
different lines as they influence each other through their common junctions. The for-
ward modelling (time-domain simulation), and inverse modelling (system parameter
identification) of such systems is of great interest to many different research fields.
An alternative approach to time-domain descriptions of fluid line networks is the
Laplace-domain representation of these systems. A long standing limitation of these
methods is that the frameworks for constructing Laplace-domain models have not
been suitable for pipeline networks of an arbitrary topology. The objective of this
thesis is to fundamentally extend the existing theory for Laplace-domain descriptions
of hydraulic networks and explore the applications of this theory to forward and in-
verse modelling. The extensions are undertaken by the use of graph theory concepts
to construct network admittance matrices based on the Laplace-domain solutions
of the fundamental pipeline dynamics. This framework is extended to incorporate
a very broad class of hydraulic elements. Through the use of the numerical inverse
Laplace transform, the proposed theory forms the basis for an accurate and com-
putationally efficient hydraulic network time-domain simulation methodology. The
compact analytic nature of the network admittance matrix representation facilitates
the development of two successful and statistically based parameter identification
methodologies, one based on an oblique filtering approach combined with maxi-
mum likelihood estimation, and the other based on the expectation-maximisation

algorithm.
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