Enhancing Adsorption Capacity of Bentonite for Dye Removal: Physiochemical Modification and Characterization

Manjot Kaur Toor M.Eng. (Chemical Engineering)

Thesis submitted for the degree of Masters in Engineering Science

School of Chemical Engineering The University of Adelaide

October 2010

TABLE OF CONTENTS

Table of Contentsiii			iii	
List of Figures i			ix	
List of Table	S		xii	
Abbreviation	IS		xiii	
Abstract	Abstract x			
Declaration			xvii	
Acknowledge	ement		xviii	i
Chapter 1	Intro	oduction	01	
1.1	Backg	ground	01	
1.2	Aims	and objectives	08	
Chapter 2	Liter	ature Review	10	
2.1	Introd	uction	10	
2.2	Dyes a	and Water Pollution	11	
2.3	Curren	nt Dye Removal Techniques	16	
	2.3.1	Biodegradation	16	
		2.3.1.1 Aerobic Degradation	17	
		2.3.1.2 Anaerobic Degradation	21	
		2.3.1.3 Living/ Dead Microbial Biomass	23	
	2.3.2	Electrochemical Methods	24	
		2.3.2.1 Electrocoagulation	24	
		2.3.2.2 Electrochemical Reduction	25	
		2.3.2.3 Electrochemical Oxidation	25	
		2.3.2.4 Photoassisted Electrochemical Methods	27	

	2.3.3	Chemical Methods	29
		2.3.3.1 Oxidation	29
		2.3.3.2 Photocatalysis	33
	2.3.4	Physicochemical Methods	35
		2.3.4.1 Coagulation	35
		2.3.4.2 Filtration	35
		2.3.4.3 Ion Exchange	36
		2.3.4.4 Adsorption	36
2.4	Drawl	backs of Current Dye Removal Techniques	37
2.5	Adsor	bents	42
	2.5.1	Activated Carbon	42
	2.5.2	Low-Cost Adsorbents	44
		2.5.2.1 Biosorbents	45
		2.5.2.2 Agricultural and Industrial by-products	46
		2.5.2.3 Natural Clays	49
2.6	Modif	fication of Clays	55
2.7	Metho	ods of Modification of Clay Minerals	56
	2.7.1	Pillared Clays	56
	2.7.2	Polymer Modified Clays	57
	2.7.3	Organoclays	59
	2.7.4	Thermal Activation	61
	2.7.5	Acid Activation	62
		2.7.5.1 Mechanism of Acid Activation	63
		2.7.5.2 Advantages of Acid Activation	67
		2.7.5.3 Applications of Acid Activated Clays	68
2.8	Concl	usions	69

Chapter 3	Mate	erials and Methods	70
3.1	Materi	ials	70
	3.1.1	Bentonite	70
	3.1.2	Congo Red	71
3.2	Modif	ication and Activation of Raw Bentonite	72
	3.2.1	Thermal Activation	72
	3.2.2	Acid Activation	74
	3.2.3	Combined Acid and Thermal Activation	76
3.3	Charae	cterization of Modified Bentonite	77
	3.3.1	Surface Area and Pore Size Evaluation	77
	3.3.2	Fourier Transform Infrared Spectroscopy	77
	3.3.3	Scanning Electron Microscopy	78
3.4	Experi	imental Set up and Procedure	78
	3.4.1	Effect of Contact Time	81
	3.4.2	Effect of Initial Dye Concentration	81
	3.4.3	Effect of Adsorbent Dosage	81
	3.4.4	Effect of pH	82
	3.4.5	Effect of Temperature	82
3.5	Isothe	rmal and Kinetic Study	82
	3.5.1	Adsorption Isotherms	83
		3.5.1.1 Langmuir Isotherm	83
		3.5.1.2 Freundlich Isotherm	84
	3.5.2	Adsorption Kinetics	84
		3.5.2.1 Pseudo-first order model	84
		3.5.2.2 Pseudo-second order model	85
3.6	Analys	sis Procedures	85
	3.6.1	Sampling Procedure	85
	3.6.2	Amount of Dye Adsorbed	86
3.7	Regen	eration of Modified Bentonite	87

•	v		
	of Au	ıstralian Bentonite	88
4.1	Introd	uction	88
	Result	ts and Discussion	
4.2	Thern	nal Activated Bentonite	91
	4.2.1	Characterisation of Thermal Activated Bentonite	91
		4.2.1.1 Surface Area	91
		4.2.1.2 Pore Size	93
		4.2.1.3 Thermal Analysis	96
		4.2.1.4 Surface Morphology	99
	4.2.2	Adsorption of Congo Red on Thermal Activated Bentonite	100
	4.2.3	Effect of Heating Time on Adsorption Capacity of Therma	1
		Activated Bentonite	103
4.3	Acid	Activated Bentonite	104
	4.3.1	Characterisation of Acid Activated Bentonite	104
		4.3.1.1 Surface Area	104
		4.3.1.2 Pore Size	106
		4.3.1.3 Effect of Acid Attack on Bentonite	107
		4.3.1.4 Effect of Activation Temperature	109
		4.3.1.5 Surface Morphology	111
	4.3.2	Adsorption of Congo Red on Acid Activated Bentonite	112
	4.3.3	Effect of Activation Temperature on Adsorption of	
		Congo Red	114
4.4	Acid a	and Thermal Activated Bentonite	115
	4.4.1	Characterisation of Acid and Thermal Activated Bentonite	115
		4.4.1.1 Surface Area	115

Chapter 4 Physicochemical Modification and Characterisation

	4.4.1.2 Pore Size	117
	4.4.1.3 Effect of Acid Attack on Bentonite	118
	4.4.1.4 Surface Morphology	120
	4.4.2 Adsorption of Congo Red on Bentonite Modified by	
	Acid and Thermal Activation	121
4.5	Comparison of Adsorption Efficiency of Modified Bentonites	124
4.6	Conclusions	126
Chapter 5	Adsorption Performance and Kinetics of Modified	
	Bentonite	128
5.1	Introduction	128
	Results and Discussion	
5.2	Effect of Contact Time	130
5.3	Effect of Initial Dye Concentration	131
5.4	Effect of Adsorbent Dosage	133
5.5	Effect of pH	134
5.6	Effect of Temperature	136
5.7	Adsorption Isotherms	139
	5.7.1 Langmuir Isotherm	139
	5.7.2 Freundlich Isotherm	142
	5.7.3 Non-Linear Langmuir Adsorption Isotherm Model	144
	5.7.4 Non-Linear Freundlich Adsorption Isotherm Model	145
5.8	Adsorption Kinetics	147
	5.8.1 Pseudo-First Order Model	148
	5.8.2 Pseudo-Second Order Model	149
	5.8.3 Intraparticle Diffusion Model	153

5.9	Regen	eration and Reusability of Modified Bentonite	154
5.10	Concl	usions	156
Chapter 6	Conc	lusions	158
6.1	Introd	uction	158
6.2	Major	Achievements	159
	6.2.1	Development of Thermal Activated Bentonite	159
	6.2.2	Synthesis of Acid Activated Bentonite	160
	6.2.3	Impact of Heat Treatment on Acid Activated Bentonite	161
	6.2.4	Analyzing the Effect of Operating Parameters on	
		Congo Red Adsorption	161
	6.2.5	Evaluation of Adsorption Isotherms, Kinetics and	
		Mechanism	163
	6.2.6	Reusability of the Modified Bentonite	164
6.3	Summ	nary	164
6.4	Future	Direction	165
	6.4.1	Assessing the Applicability of Bentonite Modified by	
		Acid and Thermal Activation (ATA)	165
	6.4.2	Scale-up of Batch Process to Continuous Process	166
	6.4.3	Further Optimization of the Activation Process	166
	6.4.4	Cost Analysis	166
References			168

LIST OF FIGURES

2.1	Current dye removal techniques	15
2.2	Structure of (a) bentonite (b) kaolin (c) zeolite	52
3.1	Chemical structure of Congo red	71
3.2	Muffle furnace used for thermal activation of bentonite	73
3.3	Bentonite modified by TA at 100°C and 500°C for 20 min.	74
3.4	Bentonite modified by AA at 30° C for 3h with acid concentration of	
	0.075M, 0.1M and 0.5M	75
3.5	Image of rotary shaker used for dye adsorption experiments and clay	
	modification	79
3.6	Eppendorf Centrifuge 5415R	80
3.7	UV-vis spectrophotometer (model γ, Helios, UK)	80
4.1	BET specific surface area of bentonite modified by TA	92
4.2	Differential thermal analysis profile of sodium bentonite	97
4.3	Thermogravimetric profile of sodium bentonite	98
4.4	SEM images of raw and thermal activated bentonite	99
4.5	Effect of thermal activation on adsorption of Congo red	101
4.6	Effect of Thermal Activation on the adsporption of Congo red per unit area	102
4.7	Effect of heating time on the CR adsorption on TA bentonite	104
4.8	BET specific surface area of bentonite modified by AA treated	
	at 30°C at different acid concentrations	105

4.9	FTIR spectra of RB and bentonite modified by AA at different	
	acid concentrations	108
4.10	FTIR spectra RB and 0.1M HCl AA bentonite treated at	
	different temperatures	110
4.11	SEM images of Acid Activated Bentonite	111
4.12	Effect of acid activation on the adsorption of CR on bentonite	
	modified by AA at different acid concentration	112
4.13	Effect of acid activation on the adsorption of Congo red on	
	acid activated bentonite per unit area	113
4.14	Effect of activation temperature on the adsorption capacity of	
	bentonite modified by AA	115
4.15	BET specific surface area of bentonite modified by ATA at	
	different acid concentrations	116
4.16	FTIR spectra RB and bentonite modified by ATA treated at	
	different acid concentrations	119
4.17	SEM images of bentonite modified by ATA at different	
	acid concentrations	121
4.18	Effect of modification of bentonite by ATA on adsorption	
	of Congo red	122
4.19	Effect of modification of bentonite acid and thermal methods	
	on the adsorption of congo red on modified bentonite per unit area	123
4.20	Effect of modification technique on the adsorption capacity	
	of bentonite	125
5.1	Effect of contact time on adsorption of Congo red	130

5.2	Effect of initial dye concentration on CR adsorption	132
5.3	Effect of adsorbent dosage on the removal of Congo red	133
5.4	Effect of pH on the adsorption of Congo red	135
5.5	Effect of temperature on CR adsorption	137
5.6	Langmuir adsorption isotherms for CR adsorption	140
5.7	Plot of separation factor versus initial dye concentration	141
5.8	Freundlich adsorption isotherms for CR adsorption	143
5.9	Langmuir adsorption isotherms	145
5.10	Freundlich adsorption isotherms	146
5.11	Pseudo-first order kinetics for the adsorption of Congo red	148
5.12	Pseudo-second order kinetics for the CR adsorption	150
5.13	Pseudo-second order kinetics for adsorption of Congo red	152
5.14	Intraparticle diffusion model for the adsorption of Congo red	153
5.15	Life cycle of raw and modified bentonite	155

LIST OF TABLES

2.1 Classification of dyes based on chemical composition	12
2.2 Classification of dyes based on application	13
2.3 Adsorption capacities of various fungi for dyes	18
2.4 Bacteria strains commonly used for degradation of dyes	20
2.5 Percentage removal of dyes on different anodes	26
2.6 Current dye removal methods: advantages and disadvantages	41
2.7 Removal of dyes on commercial activated carbons	43
2.8 Advantages and disadvantages of adsorbents	55
3.1 Chemical composition of sodium bentonite	70
4.1 Pore size classification of clay minerals	93
4.2 BET specific surface area and average pore size of TA bentonite	95
4.3 BET specific surface area and average pore size of AA bentonite	106
4.4 Surface area of various acid activated bentonites	117
4.5 BET specific surface area and the average pore size of ATA bentonite	118
4.6 Comparison of modified bentonites	124
5.1 Thermodynamic parameters for CR adsorption on modified	
bentonite at different temperatures	138
5.2 Langmuir adsorption isotherm constants	141
5.3 Freundlich adsorption isotherm constants	143
5.4 Comparison of correlation coefficients of Langmuir and	
Freundlich Models	144
5.5 Pseudo first order constants	149
5.6 Pseudo second order constants for linear expression	151
5.7 Pseudo second order constants for non - linear expression	152
5.8 Intraparticle diffusion constants	154

ABBREVIATIONS

AA	Acid Activation
ATA	Acid and Thermal Activation
BET	Braunneur – Emmet – Teller
CR	Congo Red
FTIR	Fourier Transform Infra Red Spectroscopy
RB	Raw Bentonite
SEM	Scanning Electron Microscopy
ТА	Thermal Activation

ABSTRACT

Bentonite, enormously abundant natural clay, has been considered as a potential absorbent for removing pollutants from water and wastewater. Nonetheless, the effective application of bentonite for water treatment is limited due to small surface area and presence of net negative surface charge, leading to its low adsorption capacity. The net negative charge on the surface of bentonite is the prime factor that restricts the use of bentonite for the adsorption of cationic dyes. As a result, the focus of this research was directed towards the modification of the physical structure and the chemical properties of bentonite to maximize its adsorption capacity. To achieve this aim, the research study was carried out by two stages; (1) modification of Australian raw bentonite and (2) characterization and optimization of adsorption performance and kinetics of the modified Australian bentonite for removing recalcitrant organic dye Congo red (CR).

The modification of raw bentonite was carried out by three physiochemical methods; (1) thermal activation (TA), (2) acid activation (AA) and (3) combined acid and thermal activation (ATA). The characterization of the physiochemically modified bentonite clays was carried out by Braunneur – Emmet – Teller (BET) method for surface area, scanning electron microscopy (SEM) for morphology and Fourier transformation infrared (FTIR) spectroscopy for the determination of the effect of acid attack. The increase in surface area of the modified bentonite was recorded as 20%, 65% and 69.45% by TA, AA and ATA, respectively. The microscopic images obtained through SEM showed that the

structure of the modified clay has become more porous, offering additional adsorption sites enhancing the surface properties of bentonite.

The modified bentonites by TA, AA and ATA were examined for their performance as an adsorbent for the CR removal. The effect of key operational parameters, such as contact time, initial dye concentration, adsorbent dosage, pH and temperature was experimentally studied. The CR adsorption increased with an increase in contact time. A CR removal of 96.65%, 92.75% and 91.62% was obtained within first 2h using the bentonite modified by ATA, AA and TA, respectively. Near 100% of dye removal was achieved in 22h. The adsorption capability of bentonite increased steadily with an increase in initial dye concentration. The pH changes appeared to have insignificant impact on the CR adsorption. The adsorption capacity decreased slightly with an increase in temperature, suggesting favorable adsorption at low temperatures for all modified bentonites. The evaluation of thermodynamic parameters revealed that adsorption process is spontaneous and exothermic.

The equilibrium data was analyzed using Langmuir and Freundlich adsorption isotherms. Freundlich isotherm provided a better fit to the data. Results from kinetic study revealed that the CR adsorption on all modified bentonites occurs in multilayers, and does not form a monolayer. It was approved by a steady increase in CR adsorption with the increase in initial dye concentration. Further to understand the adsorption kinetics the adsorption data were analyzed by pseudo first-order and pseudo second-order kinetics. The results revealed that adsorption follows pseudo second-order kinetics. The mechanism of adsorption was interpreted from the intraparticle diffusion model and it was found that apart from intraparticle diffusion there are other factors that control the adsorption.

The results from this study suggest that a combination of thermal and acidification, as referred ATA in this study be an effective method to improve adsorption capacity of the bentonite. The bentonite modified by ATA provides the maximum surface area and adsorption capacity and can be successfully employed for the removal of dyes from wastewater. Bentonite is abundant natural adsorbent. Therefore, application of the simple and low cost modification techniques employed in this study can make the bentonite as cost-effective adsorbent for removal of many organic and inorganic pollutants.

DECLARATION

This work contains no material which has been accepted for the award of any other degree or diploma in any university or other tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due references has been made in the text.

I give consent to this copy of my thesis, when deposited in the University Library, being made available for loan and photocopying, subject to the provisions of act of the Copyright Act 1968.

I also give permission for the digital version of my thesis to be made available on the web, via the University's digital research repository, the Library catalogue, the Australasian Digital Theses Program (ADTP) and also through web search engines, unless permission has been granted by the University to restrict access for a period of time.

Signed

Date

ACKNOWLEDGEMENT

The research journey of last eighteen months has been full of challenges for me and I would like to express my sincere gratitude to numerous individuals for their contribution and assistance from inception to culmination of my journey.

First and foremost, I am most indebted to my principal supervisor, Associate Professor Bo Jin, who initially helped me change my program of study from Master of Chemical Engineering (Advanced) to Master of Engineering Science (Research). I am grateful to him for his timely academic guidance and positive criticism which helped me improve my analytical, research, scientific-writing and presentation skills. I am also thankful to him for his painstaking effort in reviewing my thesis. The compilation of this thesis would have not been possible without his valuable suggestions and comments. I would like to thank you for your encouragement and inspiration throughout this project that helped me finish my study without any hurdles.

I also owe a debt of gratitude to my co-supervisors Associate Professor Gregory Metha and Professor Mark Biggs who always stood by when I needed them. I am also thankful to them for their contribution in the revising my thesis. I would like to show my gratitude to number of professional and scientific individuals who have facilitated completion of this project: Angus Netting (Adelaide Microscopy), Aoife McFadden (Adelaide Microscopy), Julianne Francis (School of Earth and Environmental Sciences). I would also like to thank Dr. David Lewis for providing access to his laboratory for the use of centrifuge. I would like to acknowledge all the academic and non-academic staff of the School of Chemical Engineering, The University of Adelaide for their assistance and support. In particular, I wish to thank Andrew Wright and Mary Barrow for their help. I greatly appreciate and wish to express my gratitude to Seaneen Hopps, International Student Advisor for the motivation and assistance she has provided during the course of my program.

My eternal gratitude goes to all the members of Water Environment Biotechnology Laboratory with whom I worked during my research study for their advice, moral support and affection: Dr. Giuseppe Laere, Dr. Honjie An, Adrian Hunter, Florian Zepf, Guiqin Cai, Tzehaw Sia, Mohammed Nadim, Lijuan Wei, Jason Yu and all visiting German students. I would particularly like to thank Vipasiri Vimonses for her support throughout the project and for reading my manuscript. I would especially like to thank Dr. Meng Nan Chong for his time to read the draft of my thesis and for his valuable comments.

Finally, I would like to thank my husband, Rajdeep Singh Toor, for his love, patience and understanding. Without whose support I would have struggled to find the inspiration and motivation needed to complete my research. I am also thankful to my parents, elder sister and her family and all other family members for serving a strong pillar of encouragement and for the financial support that they provided during my study.