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1. Introduction 11 

Classification of arid landscapes into units with characteristic climate, landforms, soils 12 

and vegetation provides a foundation for survey, conservation and management. 13 

Stratification of the landscape has been practiced worldwide and classifications are 14 

refined or updated as more information and data become available (Blasi et al., 2000; 15 

Cihlar et al., 1996; Jongman et al., 2006; Mucher et al., 2010; Townshend et al., 1991).  16 

 17 

In Australia, as in many parts of the world, an integrated landscape approach to 18 

environmental stratification has been adopted. The Interim Biogeographical 19 

Regionalization for Australia (IBRA) defines 85 biogeographic regions, 39 of which fall 20 

wholly or mostly in the arid zone. The regions are defined on the basis of climate, 21 

geology, landform, vegetation and fauna (Thackway and Cresswell, 1997). In highly 22 

modified landscapes, such as those of Europe, ecoregions are similarly defined, 23 

although in the absence of natural vegetation, potential natural vegetation is inferred 24 

(Pesch et al., 2009). 25 

 26 

*Manuscript

mailto:evertje.lawley@adelaide.edu.au
http://ees.elsevier.com/yjare/viewRCResults.aspx?pdf=1&docID=6080&rev=1&fileID=137954&msid={C6E133E0-A7EB-4E70-95C9-07D2AC9123A8}


2 

 

Fundamental to the integrated approach is the assumption that climate, geology and 27 

geomorphology interact over time to produce characteristic landscape patterns and 28 

influence the distribution of soil and vegetation associations, which in turn influence 29 

faunal assemblages. Consequently there are associations of these environmental 30 

components and landscape can be classified and mapped into units with characteristic 31 

and recurring patterns and a degree of internal homogeneity.  32 

 33 

In Australia this approach traces its origins back to the integrated land system survey 34 

embodied in the CSIRO Land Use Series (Christian and Stewart, 1953), later developed 35 

by Laut et al. (1977) for Environments of South Australia. Environmental units are 36 

defined by recurring landscape patterns interpreted from broad scale imagery (initially 37 

aerial photography, now more commonly multispectral satellite imagery), drawing on 38 

field surveys, broad scale biophysical data and expert knowledge to characterise the 39 

mapping units. 40 

 41 

This represents, however, a static view of the environment, based on associations of 42 

climate, geomorphology, soil and vegetation, and does not necessarily account for the 43 

dynamics and function of the landscape. Australian arid landscapes in particular are 44 

highly dynamic and far from static, although differences in function may not be readily 45 

discerned on the ground, and are expressed over long periods of time. 46 

 47 

Long-term sequences of satellite imagery from sensors such as NOAA AVHRR and 48 

MODIS now provide a means of observing the dynamics of landscapes over broad areas 49 

and long periods, and hence can provide an understanding of the function as well as 50 
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distribution of landscape types. Actively growing vegetation within landscapes can be 51 

detected using the Normalised Difference Vegetation Index (NDVI), which calculates 52 

the difference in reflectance between the near-infrared and visible red bands divided by 53 

the sum of these two bands (Tucker, 1979). NDVI represents the chlorophyll abundance 54 

and energy absorption of the leaves (Myneni et al., 1995) and has been correlated with 55 

leaf area index, vegetation cover and biomass. In arid landscapes this is influenced by 56 

vegetation response to rainfall and by such factors as soil moisture absorption and 57 

holding capacity and vegetation type which itself may change over time as a result of 58 

the stochastic events of fire, flood or grazing. 59 

 60 

 Satellite imagery has been used to investigate temporal patterns in NDVI ever since it 61 

became available in the 1980’s. Initially based only on few dates within a single year to 62 

stratify vegetation using a climatic gradient (Norwine and Greegor, 1983), later studies 63 

expanded to multiple dates per year and inter-annual comparisons. Investigations of 64 

landscape dynamics have included studies of mechanisms affecting primary production 65 

across modified landscapes such as those in Brazil (Barbosa et al., 2006) and 66 

monitoring of land use change (Al-Bakri and Taylor, 2003; Neigh et al., 2008; Turcotte 67 

et al., 1993; Weiss et al., 2004). Using time-sequences of NDVI these studies generally 68 

sought to identify or detect a change in particular landscape features.  69 

 70 

The current study, on the other hand, seeks to understand the variability inherent in the 71 

landscape. It presents an analysis of the patterns of spatial and temporal variation of 72 

vegetative growth across the Australian arid zone, as revealed by a 25 year sequence of 73 

NOAA AVHRR bi-monthly NDVI composites. Our aim is to understand the dynamics 74 
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and functional response of vegetation in the region and use this to inform and 75 

potentially improve the IBRA of the Australian arid zone. Specifically we seek to 76 

identify the underlying factors influencing patterns of arid vegetation growth and map 77 

the distribution of regions with similar response. This new classification is compared 78 

with the IBRA and used to evaluate the composition and boundaries of IBRA regions: 79 

our analysis sought to determine whether the IBRA classes are consistent with long-80 

term evidence of vegetation response.  81 

2. Methods 82 

2.1 Study area 83 

The limits of an arid zone are not rigid and can be defined according to the purpose of 84 

an investigation. The global agro-climatic classification for instance focuses on climate 85 

constraints on crop growth, and defines as arid the Australian region too dry to support 86 

field crops (Hutchinson et al., 1992; Hutchinson et al., 2005). The modified Köppen 87 

classification of world climates indicates a larger arid zone in Australia, comprising two 88 

categories, desert and grassland, where evaporation exceeds precipitation, defined by 89 

maximum, minimum and mean temperature, and mean rainfall records. (BOM ; 90 

Hutchinson, 1995; Stern et al., 2000). This larger arid definition includes, mainly at its 91 

margins, some dryland cultivated areas. 92 

To include the maximum area of dry land natural vegetation cover, the current study 93 

used the modified Köppen definition of the arid zone. Recognising that cultivated 94 

vegetation response within this zone may confound the analysis of natural vegetation 95 

response, cultivated areas as indicated on the Australian Land Use Map (ALUM, 2000) 96 
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were masked from the study area, resulting in the arid zone outline used for the current 97 

study (Fig. 1).  98 

Insert  Figure 1 approx. here 99 

The approximately 5,250,000 km
2
 area contains a great diversity of land types and 100 

vegetation, including tussock and hummock grasslands, chenopod shrublands, tall open 101 

and closed shrublands and low woodlands both open and closed, with herbaceous, 102 

grassland or shrub understorey. Mean annual rainfall ranges up to 400 mm in the north 103 

and 250 mm in the south. 104 

2.2 NDVI data 105 

This study used a series of 600 NDVI images which were derived from data collected 106 

daily from 1982 to 2006, by the Advanced Very High Resolution Radiometer (AVHRR) 107 

aboard the United States National Oceanographic and Atmospheric Administration 108 

(NOAA) polar orbiting satellite. The satellite data was corrected for atmospheric effects 109 

and cloud cover, calculated at maximum reflectance over half month intervals, and 110 

resampled from the original 1.1 km to 8 km spatial resolution, by the University of 111 

Maryland Global Land Cover Facility (GLCF) for the Global Inventory Modeling and 112 

Mapping Studies (GIMMS) (Pinzon et al., 2005; Tucker et al., 2005). The files had been 113 

converted from native binary to GeoTIFF format. NDVI values had been scaled to 114 

values ranging from -10000 to 10000, water pixels had been assigned the value of -115 

10000, and masked pixels -5000. This scaling was maintained for the current study 116 

because absolute NDVI values were not required. The NDVI range of -1 to 1 can be 117 

recovered, if required, using the formula: NDVI=float(raw/10000) (GLCF 2008). The 118 
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data were obtained as continental files, Albers projection, and were for this study 119 

reprojected to South Australian Lambers Conformal Conic. 120 

 121 

A visual inspection revealed sensor and mosaicking artifacts in several images. These 122 

images were retained within the data stack, noting the image dates, on the assumption 123 

that if the artifacts are the source of significant variation, it would be revealed by the 124 

principal component analysis, and if not, the anomaly would be consigned to noise. 125 

2.3 Principal component analysis 126 

In order to examine the modes of variation within the 25-year NDVI sequence, principal 127 

component analysis (PCA) was applied to the data set. This is a linear transformation of 128 

correlated variables into uncorrelated variables retaining the same number of variables 129 

but eliminating redundancy. The transformed variables are independent and ordered 130 

from the first component representing the maximum variance within the data set, down 131 

to the subsequent components representing progressively less variance. It is a useful 132 

technique to reveal the areas of greatest spatial and/or temporal variability within a 133 

landscape based on the distribution of eigenvalues and explained variance and by 134 

linking the interpretation of the principal components to the geography of the area under 135 

investigation (Eastman and Fulk, 1993; Roberts, 1994).  136 

 137 

The orthogonal character of unstandardised PCA (uPCA), which uses the covariance 138 

matrix, imposes constraint (Eastman and Fulk, 1993), and relaxing this constraint by 139 

using the correlation matrix (standardised PCA) is claimed to give better temporal or 140 

spatial representation of the underlying processes (Fung and Ledrew, 1987; Hall-Beyer, 141 
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2003). While such improvement was apparent in shorter time series of, for example, 12 142 

images (Eklundh and Singh, 1993) and standardisation has also been used to improve 143 

signal-to-noise ratio, for the current study no advantage appeared to be gained by 144 

standardising the analysis. Standardisation may be judicious when using data from 145 

several disparate geographical areas (Weiss et al., 2004) but this is not the case for the 146 

current study. Inspection of the first PCs while preparing the data revealed little 147 

difference between the two methods, apart from inversion of the resultant PC scores. 148 

Inversion is of no consequence, as polarisation is a result of the options chosen by the 149 

image analysis software in generating the PCs and does not affect the magnitude or 150 

meaning of the results. The covariance matrix (uPCA) was therefore used in the study 151 

and all bands were included to avoid loss of meaningful information. 152 

 153 

PCA transformed the data into 600 PCs. Eigenvalues were inspected to detect the 154 

percentage of variation explained by each PC and eigenvector loadings for each PC 155 

were plotted against the image dates. The PC image patterns and associated plots were 156 

scrutinized together with relevant climate records to analyse the factors that account for 157 

the variation in the multidimensional data space. To aid understanding a colour 158 

composite was created of the first 2 PCs. The latest available revision of IBRA, v6.1, 159 

was used as overlay to indicate locations and to visually detect correlation between the 160 

colour composite patterns and IBRA regions. 161 

2.4 Classification 162 

PCA reduced the 600 NDVI images to a small number of main components. Of these 163 

the first 14 components, representing 85% of the variance in the data, were used as a 164 
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basis for unsupervised classification. This selection incorporated as much meaningful 165 

variability as possible, including PCs representing broad scale as well as localized 166 

events, but excluding PCs representing less than 0.5% of variability and potentially 167 

representing sensor artifacts and noise. The PCs were used in unstandardised form, 168 

hence were weighted in their relative contribution to the classification. Iso-classification 169 

using the selected PCs classified image pixels on the basis of similarity of PC profile, 170 

with the resultant classification image showing the distribution of classes across the 171 

landscape. The number of classes in which to cluster the data was decided by trial, 172 

aiming to approximate the number of large IBRA regions within the arid zone. The 173 

factors separating the classes were examined through plots of class PC scores and the 174 

classes characterized by extracting, out of the original data stack, mean NDVI time 175 

traces for each class. The relationship between classes and the IBRA stratification was 176 

investigated using GIS analysis.  177 

3. Results 178 

3.1 Factors in vegetation temporal response  179 

PCA of the 600 image series of the Australian non-cultivated arid zone resulted in 600 180 

principal components and their associated matrices. The greatest source of variation in 181 

the data (65.05%) was captured by PC1 (Table 1), which clearly represents the 182 

geographic distribution of the sum total of NDVI for each pixel, as shown in the PC1 183 

image, where white indicates low total vegetation grading to black for high vegetation 184 

response (Fig. 2).  185 

 186 

Insert  Table 1 approx. here 187 
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 188 

Geographically the highest aggregate vegetation occurred towards the tropical and 189 

subtropical margins of the arid north and north-east, and in the south and south-east 190 

where the arid zone borders on temperate areas, as evidenced in the woodlands of 191 

Western Australia and South Australia’s Conservation Parks. Floodplains of the major 192 

inland watercourses in Queensland also showed high aggregate NDVI. Lowest 193 

vegetation aggregate was evident in the South Australian Stony Plains and Simpson and 194 

Strzeleckie Dunefields and the Channel Country of Queensland (Fig. 1). This low total 195 

vegetation was noticeably less pronounced across the Great Victoria Desert and the 196 

deserts of Western Australia, areas with similarly low rainfall (mean <250mm pa). Salt 197 

lakes, as one would expect, show virtually no aggregated vegetation response in the 198 

PC1 image. 199 

 200 

Insert  Figure 2 approx. here 201 

 202 

Insert  Figure 3 approx. here 203 

 204 

The associated plot of band loadings for PC 1 revealed a weak tendency towards 205 

seasonality. In some, but not all years, total of actively growing vegetation appears 206 

lowest around November and highest during the Austral autumn and winter, March to 207 

August (Fig. 3).  208 

 209 

The second greatest source of variation, PC 2, captured 7.15% of the variation in the 210 

NDVI image sequence. The eigenvector plot shows a clear seasonal contrast with high 211 

positive band loadings in October/November and contrasting large negative loadings in 212 
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March (Fig. 3). Geographically, this component shows the contrast between the 213 

extremes of the northern summer rain influenced (Smith et al., 2008) and southern 214 

winter rain influenced (Feng et al., 2010) arid zone. These extremes contrast with the 215 

lack of strong seasonal response in the centre of Australia (PC 2 in Fig. 2).  216 

 217 

A colour composite illustrates how the two main patterns of variance, that is the 218 

aggregate of PC 1 and the seasonality of PC 2, interact (Fig. 4). Cumulatively these two 219 

components explain 72.2% of the variance in the data. Dark green in the north shows 220 

the main vegetation growth occurs in summer and is overall high. Bright green, mainly 221 

in the south, indicates winter growth and high overall greenness, but some darker green 222 

shading in the southern region indicates summer growth, consistent with summer green-223 

up characteristic for the native Eucalyptus mallee tree areas in Western Australia and 224 

South Australia. The dark red areas in the north have overall moderate to low vegetation 225 

total with strong summer bias. The centre of the arid zone is not affected by seasonality 226 

and has low aggregate vegetation. Some clear contrasts are visible in particular in the 227 

north between the Mitchell Grass Downs, with low total vegetation contribution, and 228 

adjacent regions with a higher vegetation aggregate, such as the Mount Isa Inlier (Fig. 229 

4).  230 

 231 

Insert  Figure 4 approx. here 232 

 233 

PC 3 explained 2.97% of the remaining variance, showing an irregular east-summer 234 

versus west-winter growth contrast (PC 3 in Fig. 2) apparently perturbed by erratically 235 

occurring climatic events as shown in the eigenvector plot (Fig. 3). The south west of 236 
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the arid zone tends to receive winter rain (Feng et al., 2010). Although greening in the 237 

east generally occurs in summer, the inland rivers that carry floodwaters from northern 238 

rain events through the very arid Channel country, generally do not receive floodwaters 239 

until April resulting in the rivers’ contrasting appearance (PC 3 in Fig. 2). An 240 

exceptionally high loading in July 1990 followed widespread flooding in eastern 241 

Australia (Fig. 3). These floods, known as the Charleville, Nyngan Great Floods, at 242 

their peak inundated more than one million square kilometres of Queensland and New 243 

South Wales, an area larger than all of Germany. In a concurrent but separate event 244 

Victoria also was affected by severe flooding (GeoscienceAustralia, 2007). Such 245 

periodic rainfall events may cause the otherwise seasonal pattern to become 246 

intermittent.  247 

 248 

PC 4 captured 2.1% of the remaining variance in the data. Its plot shows no consistent 249 

seasonality but for 2006 its eigenvector loadings are more extreme than any other 250 

during the 1982 -2006 period (Fig. 3). This variation in the data appears to be linked to 251 

the major rainfall event in connection with cyclone Larry, which struck north eastern 252 

Queensland in March 2006. Widespread flooding caused strong vegetation growth. The 253 

geographical location of this is clearly evident in NE QLD (PC 4 in Fig. 2). 254 

 255 

Further components explained ever smaller proportions of variance. In time series PCA, 256 

as in multispectral PCA, later components, though representing a low proportion of total 257 

dataset variance, may represent informational variance for small regions (Hall-Beyer, 258 

2003), or significant one-off events. Component 5, for instance, shows a strong seasonal 259 

response in the eigenvector plot with extremes in January contrasting with those in June 260 
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(Fig. 3). The PC image shows clear contrast between various regions (PC 5 in Fig. 2), it 261 

becomes however increasingly difficult in the successive PCs to determine the source of 262 

variation in vegetation temporal response in each of the contrasting areas.  263 

 264 

The first 14 components captured over 85% of the variation within the total data, as 265 

revealed in mean eigenvalues (Table 1). Although components from PC 7 to PC 14 266 

explained a very small percentage of the remaining variation, from 1% incrementally 267 

down to 0.5 %, they are likely to hold information of some significance because of the 268 

very large geographic and temporal extent of the dataset. From PC 20 onwards some 269 

PCs showed evidence of sensor artifacts and noise.  270 

3.2 Classification of vegetation temporal response 271 

The geographic distribution of classes resulting from the unsupervised classification is 272 

shown in Fig. 5, together with a three dimensional view of the class PC scores in 273 

relation to the dominant factors derived from the PC analysis. The classes are ranked 274 

and numbered by the value of the mean scores of PC 1, the greatest source of variation 275 

between classes. 276 

 277 

As expected from the PCA, the dominant factor separating the classes is total vegetation 278 

growth, with lesser separation according to seasonality of growth, both between north 279 

and south and to a less well defined degree between east and west (Fig. 5 b). Classes 1 280 

and 24 form the extremes of the high-low vegetation growth continuum (PC 1). Classes 281 

2, 4 and 8 are positioned opposite 1, 3 and 5 illustrating the extremes of the north-south 282 
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seasonal contrast (PC 2), and classes 10, 14 and 18 opposing 5, 7 and 15 show the 283 

extremes of the east-west contrast (PC 3).  284 

 285 

Insert  Figure 5 approx. here 286 

 287 

Mean NDVI temporal traces for the dominant classes indicate how NDVI varies over 25 288 

years (Fig. 6). Class 1 has high vegetation response in winter and spring. 289 

Geographically it dominates the southwest regions in Western Australia, the 290 

conservation parks in the Murray Darling Depression of South Australia and parts of the 291 

Cobar Peneplain in New South Wales and it occurs in the Mulga Lands of Queensland 292 

(Fig. 1). These areas all have mallee (Eucalyptus sp.) vegetation cover in common and 293 

are similar to class 3, which occurs generally to the north west of class 1 and shows the 294 

same NDVI signature, though at a lower magnitude (Fig. 6). Class 5, occurring in the 295 

arid non-cultivated part of the Riverina district, also shows extreme amplitude and 296 

fluctuation, and spring growth. The NDVI of this class is likely influenced by rainfall 297 

response of the saltbush plains as well as riparian response along the rivers and lakes 298 

some of which are fed by rain falling in the temperate zone to the east (Gov-NSW, 299 

2002). 300 

 301 

Classes 2, 4, 8 and 9 also show high NDVI and pronounced seasonality of vegetation 302 

growth. Their temporal signatures are quite similar with onset of growth often 303 

coinciding, although class 2 has greater magnitude, with peaks tending to persist longer 304 

than class 4. Class 8 has the lower vegetation response of these, with sharp narrow 305 

peaks followed by rapid decline. Geographically these classes occur in the north of the 306 
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arid zone. For these classes vegetation appears at its lowest from October to December 307 

and increases sharply from December onwards, high peaks generally occurring in 308 

March.  309 

 310 

By contrast a large part of the landscape showed a fairly uniform response, especially in 311 

the most arid part of the arid zone. Classes 21, 22 and 23 are characterised by very low 312 

vegetation response with very little seasonality, as indicated by the temporal NDVI plot 313 

(Fig. 6). These classes have almost identical temporal signatures, differing from each 314 

other only in magnitude. The shape of the NDVI signatures is quite erratic, with one 315 

peak in July in each 1983, 88, 89 and 90, but in other years several peaks occur at 316 

different times. These classes dominate the north east of South Australia and the south 317 

west of Queensland (Fig. 5), which is a sparsely vegetated area, traditionally grazed by 318 

cattle. Class 24 shows lowest NDVI, representing the usually dry salt lakes that are a 319 

dominant feature in many regions of the Australian arid zone (Fig. 5 a). 320 

 321 

Class 7, located at the eastern margins of the arid zone in Queensland and New South 322 

Wales, shows high NDVI levels. Class 15 shows a similar pattern to class 7, with onset 323 

of peaks coinciding, but peaks are of different magnitude, with one or the other 324 

exceeding at different instances. Class 15 in the eastern region and to a lesser extent 325 

class 19 in the western (NT) region of the Mitchell Grass Down shows in some years 326 

extremely sharp increases in vegetation growth between December and March. This is 327 

when wet season rains activate the Mitchell Grass tussocks (Astrebla spp.) and inter-328 

tussock ephemeral herbs and annual grasses (Fisher et al., 2002). Class 19 peaks are 329 

generally of lesser amplitude than those of class 15 (Fig. 6). 330 
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 331 

Insert  Figure 6 approx. here 332 

 333 

Classes 17, 18 and 20 dominate the deserts of Western and South Australia. The eastern 334 

Nullarbor responded similarly to the Great Victoria Desert to the north of it, but the 335 

western and southern parts of the Nullarbor are uniquely identified as class 14 with the 336 

south and west margins revealed as class 3 and 4, identified with Eucalyptus (mallee) 337 

woodland. The non-seasonal arid Nullarbor Plain carries chenopod shrubs with low 338 

open woodland at the peripheries (FloraBase, 2009) 339 

 340 

Class 10 occurs mainly in the Carnarvon, and western Murchison and Pilbara area of 341 

Western Australia. The NDVI signature for class 10 shows regular high winter 342 

vegetation response. Similarity in response was revealed between the eastern 343 

Pilbara/north west Great Sandy Desert area and the Central Ranges area, which is 344 

located across the South Australian border; at least part of each region was categorized 345 

as class 13. The Pilbara features the Hammersley Ranges which are similar to the 346 

Central Ranges, however the north western edge of the Great Sandy Desert is a flat 347 

monsoonal influenced landscape, arid tropical with summer rain (FloraBase, 2009). 348 

Further exploration revealed that the classes 13, 16 and 20 show great similarity in 349 

vegetation fluctuation and amplitude (Fig. 6), are characterized by low vegetation 350 

response, and appear to be part of the desert continuum reaching north east- south west 351 

across the Great Sandy Desert. This underlines the observation that traditional 352 

stratification is not able to display the boundary gradations picked up by the NDVI 353 

response. 354 
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3.3 Relationship between classification and IBRA 355 

 356 

The relationship between IBRA regions and classes is illustrated in a matrix which 357 

shows the percentage contribution made by the classes to each IBRA region (Fig. 7). In 358 

some instances a very strong relationship exists between IBRA region and class. The 359 

Riverina IBRA, for instance, is dominated by single class 5 (81%), with minor 360 

contributions from related classes, mainly 3, 6 and 11, that have similar NDVI response. 361 

Likewise the Finke region is dominated by class 16 (71%) with minor contribution from 362 

class 21 (18%). At the other extreme, some IBRA regions are made up of numerous 363 

classes of quite diverse NDVI time traces, indicating that these regions contain 364 

considerable variability of vegetation response. The Mulga Lands region for instance 365 

consists of classes 3, 7, 13, 16 and 21.  366 

  367 

In some instances the classes have distinct boundaries and close correspondence to the 368 

IBRA. For example class 12 has sharply defined borders which closely match the 369 

northern part of the Mitchell Grass Downs IBRA region, where contrasting soils and 370 

vegetation types are juxtaposed. The NDVI temporal analysis confirms that these 371 

adjoining land systems have quite different temporal vegetation responses and that the 372 

boundary between them is indeed quite distinct. In many areas gradients occur where 373 

there is a continuum of classes that show a transition of vegetation temporal response 374 

but where the IBRA regionalization suggests distinct boundaries, such as the transition 375 

between the Coolgardie and the Murchison regions in Western Australia (class 1, 3 and 376 

6). 377 

 378 
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Insert Table 2 approx. here 379 

 380 

Some IBRA regions comprise several classes, which although showing some similarity 381 

in NDVI plot, behave quite differently over time. For instance of the three classes that 382 

dominate the Gibson Desert, class 20 shows moderate amplitude and an irregular 383 

pattern. Class 16 shows extreme peaks in NDVI, usually in winter, in 1982, 1983 and 384 

from 1988 to 1991. Class 18 on the other hand shows such peaks from 1992 to 2006.  385 

 386 

It is clear that the designated large desert IBRA regions are not as internally 387 

homogenous as one might expect of low rainfall sparsely vegetated areas. Factors of 388 

erratic rainfall and unpredictable wildfires influence the vegetation response, which 389 

cannot be seen in the traditional stratification, but appears borne out by the NDVI time 390 

traces of the relevant classes in this study. 391 

4. Conclusions 392 

The Australian arid zone is an extremely large region with mean rainfall below 400 mm 393 

in the north and 250 mm in the south, but which contains a great diversity of land types 394 

and vegetation responses. The analysis in this paper has identified the major patterns of 395 

vegetation growth response throughout this region. The dominant factors are variation 396 

in a) total vegetation growth over long periods; b) seasonality of vegetation growth with 397 

contrasts between summer and winter, autumn and spring; c) magnitude of seasonal 398 

variability in growth with contrast between high and very little variation; and d) 399 

regularity of variation in growth. In addition to these dominant factors, around 15% of 400 

the variation in NDVI response, over the 25 year sequence analysed, resulted from 401 
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episodic vegetation growth of limited spatial extent and duration, emphasising the 402 

considerable unpredictability of rainfall and vegetation growth in the Australian arid 403 

zone. 404 

 405 

Using NDVI data that accounted for 85% of the variation in long-term vegetation 406 

growth, the Australian arid zone has been classified into 24 classes. These classes are 407 

based on similarity and differences in the temporal vegetation growth response 408 

described above. This classification considerably adds to our understanding of 409 

Australian arid vegetation dynamics and its driving forces. The NDVI temporal 410 

classification is based on inherent vegetation change and variation over 25 years of bi-411 

monthly, spatially comprehensive observations of the continent, an approach quite 412 

different from the criteria used to delineate the IBRA classes. The classification 413 

provides new information about vegetation and landscape function: cycles and pulses or 414 

episodes of vegetation growth, the relative magnitude of primary production and 415 

standing biomass, and the distribution of regions of similar functional response. 416 

 417 

This information can be used to enhance the current IBRA regionalisation and add a 418 

new dimension to definition and characterisation of the regions. It provides new 419 

information about the temporal dynamics of vegetation response in the IBRA regions, 420 

substantially adding to their current characterization in terms of climate, geology, 421 

geomorphology, vegetation composition and fauna. It also provides an independent and 422 

objective basis for re-evaluation of the IBRA regions and sub-regions. It highlights 423 

areas where IBRA vegetation response is highly variable, and may provide a basis for 424 
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sub-regionalisation, where environmental boundaries between regions may be 425 

questioned or further explored.   426 

 427 

The study also demonstrates a methodology that has wider potential for classification of 428 

broad regional landscapes. Whereas traditional approaches to mapping natural 429 

environments have relied on interpretation of landscape associations and patterns in 430 

photography or satellite imagery, using field survey to characterize the mapping units, 431 

our classification is based on the response of vegetation recorded over long periods of 432 

time. Regions with similar long-term vegetation dynamics are aggregated, providing a 433 

functional basis for landscape stratification. The resultant classes provide a new and 434 

valuable basis for ecological survey, biodiversity conservation and environmental 435 

management: each unit has a unique association of climate, topography, soil and 436 

vegetation, but also a distinctive history and temporal pattern of vegetation response. 437 

The growing global archive and ready availability of long-term sequences of NDVI 438 

imagery, at resolutions suitable for regional analysis, make this a valuable resource for 439 

environmental characterization.  440 
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Research highlights 

 

 Long term satellite imagery revealed vegetation dynamics of the Australian 

arid zone. 

 Total vegetation response, seasonality and episodic events were the main 

factors of variability. 

 A new zonation was created through unsupervised classification of the main 

factors of variability. 

 Investigation of this new zonation increased understanding of arid zone 

vegetation dynamics 

 
 

*Research Highlights



Figure 1

http://ees.elsevier.com/yjare/download.aspx?id=137941&guid=b7811bbc-01df-424e-96f1-96c25c0e9f51&scheme=1


Figure 2
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Figure 1. The study area comprising the Australian arid zone excluding cultivated areas. 

Biogeographical regions defined by IBRA vs 6.1 are shown.  

 

Figure 2. Principal components 1 to 5. 

 

Figure 3. Plot of eigenvector band loadings of the first 5 principal components 

 

Figure. 4.  Colour composite of PC1 (red) and PC2 (green) with IBRA regions overlaid to 

indicate approximate locations. Legend block shows colour interpretation. 

 

Figure 5. a. Geographic distribution of 24 classes resulting from unsupervised classification 

of the first 14 PCs of 25 year NDVI, with overlay of IBRA vs 6.1 regions;  b. 3-D plot of 

class scores for PC 1, 2 and 3. 

 

Figure 6. The variation in NDVI response over 25 years for each class. 

 

Table 1. Percentage of variance captured by some of the 600 principal components. 

 

Table 2. IBRA regions in the arid zone showing percentage of IBRA occupied by each class. 

 

Captions for figures and tables



Table 1. The percentage of variance captured by several of the 600 principal components. 

 
 
 PC 1  PC 2 PC 3 PC 4 PC 5 PC 6 PC 7 PC 14 

Percentage of variance 
65.05 7.15 2.97 2.10 1.45 1.12 1.05 0.50 

Cumulative percentage of variance 
65.05 72.20 75.17 77.27 78.72 79.84 80.89 85.37 

 
 
 
 
 
 

Table



IBRA region 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
Mallee 76 17 6 1
Coolgardie 35 35 23 1 2 1 1 1
Cobar Penepln 37 45 11 6 1
Desert Uplnds 3 1 19 9 52 6 2 4 4
Sturt Plateau 49 28 4 17 2
Gulf Fall n Up 19 49 2 28 2
Gulf Plains 1 16 37 23 5 2 10 1 3 1
Dampierland 1 17 35 19 22 1 3 1 1 1
Riverina 1 2 81 2 13
Central Kimber 17 31 40 11
Mount Isa Inlr 17 2 41 20 5 1 6 5 1 1
Ord Vict Plain 1 17 43 26 12
Yalgoo 1 16 40 39 1 1 1 1
Murchison 1 13 34 5 10 31 5 1 1
Carnarvon 9 50 11 18 6 2 2 2
Pilbara 10 6 29 38 1 13 2 1
Murray Darl Dn 5 17 1 18 15 2 34 2 4 3
Darling Riverin 1 2 4 52 1 1 10 2 24 1 1 2
Davenport Mu 1 13 73 10 2
Tanami 18 42 1 31 7 1
Burt Plain 7 66 25 1
MacDonnell Rg 6 4 53 4 33 1
Hampton 14 11 20 1 54
Nullarbor 1 5 2 47 34 4 2 5 1
Finke 2 5 71 3 18 1
Central Ranges 21 66 7 1 4 1
Grt Victoria Ds 3 15 2 3 38 18 9 9 3
Mitchell GrsDn 1 11 3 2 3 1 28 4 29 1 5 10 3
Little Sandy Ds 14 4 31 49 1 1 1
Gascoyne 1 16 7 1 49 23 3
Gibson Desert 3 17 4 36 38 1
Great Sandy Ds 2 2 12 23 1 56 2 1 1 1
Mulga Lands 4 15 23 3 1 14 22 15 2
Flinders Lfty B 1 3 5 21 2 1 6 29 19 12
Gawler 2 4 5 3 14 1 15 39 11 6
Channel Cntry 1 2 2 12 2 2 28 27 23
Broken Hill Cm 1 14 2 1 45 35 3
Simpson Strzel 1 9 21 36 29 5
Stony Plains 1 1 10 24 63 1

Table




