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Abstract
This thesis involves the investigation and development of methods for analysing data

from variety selection trials in perennial crops. This involves identifying best varieties

from data collected at multiple times in �eld trials, often from multiple locations and

involving multiple traits. For accurate variety predictions the methods for analysis of

such data need to account for the spatial correlation typically present in �eld trials and

the temporal correlation induced by the repeated measures nature of the data. The

methods also need to model the variety e�ects over time. The methods presented are

based on the linear mixed model and estimation is performed using residual maximum

likelihood (REML).

Spatial analysis methods are applied to data from multiple harvest times for two

perennial crop data sets. These analyses show that spatial correlation is evident and

the spatial analysis methods improve model �t. Simulation studies also show the spatial

analysis methods provide better predictions of variety e�ects (closer to the true e�ects).

As the data from perennial crop variety selection trials is measured over time there

is also a need to account for the temporal correlation between measurements. Separable

models are presented that model the spatial and temporal residual covariance structure.

These methods are suitable for large numbers of harvests. Application to a multi-harvest

lucerne breeding data set shows these models to be an improvement on historical analysis

approaches.

At the genetic level the variety e�ects need to be modelled over time. Two approaches

are presented. The �rst approach involves applying factor analytic models to variety

by harvest e�ects and using clustering to aid in interpretation and selection. The second

approach uses cubic smoothing spline random regression. These approaches are applied to

data from two traits from a lucerne breeding trial and are shown to successfully model the

variety by harvest e�ects and aid in selection. As data is usually obtained from multiple

trials at di�erent locations, the above approaches are extended to the multi-environment

situation and applied to a multi-harvest, multi-environment lucerne data set.

While the separable spatio-temporal residual models show an improvement on analysing

each harvest time separately, they are very restrictive in that they assume common spatial

correlation parameters across harvests (or traits). The initial spatial analyses on the two

multi-harvest perennial crop data sets reveal that spatial correlation often varies between

harvests and between traits. A more suitable non-separable covariance model is investi-

gated that allows for di�ering spatial correlation across time or traits. The approach is

based on the Multivariate Autoregressive model, initially for spatial correlation in one di-

rection. Subsequently the model is extended to the two directional row-column situation

using the theory of Multivariate Conditional Autoregressive models. These models are

applied to the lucerne multi-harvest and multi-trait data using code written in R, and

are shown in most cases to be a signi�cant improvement to the separable residual models

previously investigated.
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Chapter 1

Introduction

The challenging objective of plant breeding programmes is to improve crop performance

through the development of new varieties. This requires the selection of best performing

varieties for traits of interest, from breeding trials usually conducted across multiple en-

vironments (locations and years). To achieve the optimal selections it is important that

the statistical methods used for analysing data from these breeding trials, are as accurate

and e�cient as possible.

Perennial (forage and horticultural) crop breeding trials are usually conducted in the

�eld at several locations and multiple measurements are taken over time. The aim of

these trials is to get accurate predictions for variety performance over time and across a

range of environments. Interest therefore lies in the overall performance of varieties across

time, as well as the interactions between variety and time, variety by environment and

variety by time by environment.

While the analysis of data from variety selection trials in annual crops (such as wheat

and barley) is well established and sound statistical methods (such as the spatial modelling

techniques of Gilmour et al., 1997 and the multi-environment analysis methods of Smith

et al., 2005) are in place and routinely used, the methods for analysis of data from

perennial crops are not well developed. The repeated measures nature of the data from

perennial crop breeding trials introduces additional modelling challenges above those of

annual crops.

The aim of this thesis is to develop methods for analysing data from perennial crop

variety selection trials to provide more accurate selections than those obtained from cur-

rent methods, such as performing separate analyses of data from individual trials and

harvests.

Throughout this thesis the terms variety e�ects and genetic e�ects are used inter-

changeably.
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1.1 Motivating data

1.1.1 Experimental details

The motivating data sets used in this thesis are from variety selection trials in the perennial

pasture crops lucerne and chicory.

Lucerne

Lucerne (Medicago sativa L.) is an important perennial forage legume grown for hay or

grazing. Breeding lucerne involves maximizing agronomic performance, resistance to pests

and diseases, and tolerance to abiotic stresses such as drought, acidic soils, salt and high

temperatures (Irwin et al., 2001, Humphries & Auricht, 2001). The aim is therefore to

identify lucerne varieties suited to varied climatic and environmental conditions.

Lucerne varieties are usually created by polycrossing a select number of male and

female parental plants to produce synthetic populations (Busbice, 1969). This results in

within variety genetic variation (Julier et al., 2000). In addition, cultivated lucerne is an

outcrossing autotetraploid (Irwin et al., 2001), which also results in genetic heterogeneous

varieties (Musial et al., 2002). This within variety genetic variability may mask the

between variety variation that is primarily of interest in breeding trials.

There are two characteristics of lucerne varieties that impact on their yield, namely

winter activity or dormancy, and persistence. Lucerne varieties vary in their winter ac-

tivity or dormancy (Morley et al., 1957), ranging from dormant to highly active. Lodge

(1985) and Lowe et al. (1985) show winter active varieties produce higher yields than dor-

mant varieties but are less persistent. Lucerne varieties also di�er in their crown structure

or morphology which impacts on varietal persistence (Irwin et al., 2001).

Lucerne advanced breeding lines and commercial varieties are assessed for persistence

and yield by conducting �eld trials which are sown in multiple environments, over multiple

years (3-5), with multiple harvests varying in number and timing across the environments.

Harvest times vary due to in�uence of rain, local temperature and seasonal conditions as

these can in�uence the growth phase of lucerne signi�cantly. The data arising from such

breeding trials is therefore unbalanced across environments, and multivariate in nature.

In this thesis, the data from the 2003�2006 series of New South Wales Department

of Primary Industries (NSW DPI) lucerne variety assessment trials is considered. These

trials were planted at �ve sites across New South Wales and Queensland in Australia (Eu-

loma, Leadville, Sandigo, Tamworth(TCCI) and Terry Hie Hie). The �ve trials involved

testing 60 varieties (all varieties were grown in all trials, with eleven being commercial

varieties) with 3 replicates at each trial. Each trial was designed as a Randomized Com-

plete Block (RCB) in a rectangular array of 180 plots, with four of the trials laid out as

30 rows by 6 columns (with each block consisting of 30 rows by 2 columns) and one trial

(Tamworth) laid out as 15 rows by 12 columns (with each block consisting of 5 rows by

12 columns). The experimental details are given in Table 1.1.

The variables analysed in this thesis are the yield and persistence of each variety.
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Yield

Multiple harvests were conducted in each trial. Harvest time was determined by the

in�uence of seasonal conditions on the growth phase of all varieties in the presence of

varying winter activity and varying basic vegetative phase at each trial. Hence trials

di�ered in their times between harvests and the total number of harvests. The number

of harvests ranged from 3 to 10 as detailed in Table 1.1.

Yield was measured by cutting all trial plots at a consistent de�ned height at each

harvest time and drying the samples to obtain dry matter weights expressed as kg DM/ha.

The raw trial mean yields for each harvest at each trial are also given in Table 1.1. Two

harvests, namely Sandigo harvest 2 and Tamworth harvest 1 were not measured in the

same manner as the other harvests and were removed from the data and hence from the

analysis presented in this thesis.

A plot of the yield data across harvest times for each of the 11 commercial varieties

at each site is presented in Figure 1.1. This plot shows the extent of the di�ering harvest

times and the di�erences in yield patterns across the sites. Within a site the varieties

follow a similar pattern across the harvest times. This can be seen in further detail in

Figure 1.2 where the yield at Terry Hie Hie is given for each variety over the harvest

times. These pro�les follow a similar trend over time but the trend is not of an obvious

known functional form. There are obvious clear environmental e�ects (time and site) and

the important issue will be to separate out the genetic e�ects from these environmental

e�ects.

Persistence

The persistence of each lucerne variety was recorded as the percentage of unit squares

in a grid of 10 cm x 10 cm squares that had a lucerne plant/s present at each of the

assessment dates at each site. The details of this method are given in Lodge & Gleeson

(1984) where it is shown that this method reliably re�ects changes in plant populations,

for all but very high plant densities. The number of assessment times ranged from 3 to 7

as shown in Table 1.2.

Persistence data across assessment dates for the 11 commercial varieties at each site

is presented in Figure 1.3. This plot shows the di�erent assessment times at the di�erent

sites and the general trends of the commercial varieties at these sites. Figure 1.4 presents

data from a single site (Terry Hie Hie) and displays the persistence data for all varieties

(all three plots (replicates) of each variety) over the assessment dates at this site. The

varieties at Terry Hie Hie follow a similar trend which resembles a quadratic curve over

time, but di�erences are apparent between varieties in the level of persistence. There are

clear plot e�ects with some plots high performers and others low.

3



Table 1.1: Experimental details of the 28 lucerne trial by harvest combinations together
with the corresponding raw mean yield (kg DM/ha)

Trial Harvest Harvest Plot size Cut size No. of No. of Mean yield
No. Date Rows Cols (kg DM/ha)

Euloma Sown 1/07/03
Euloma 1 1/11/03 5.1×1.38 5.1×0.53 30 6 551
Euloma 2 18/12/03 5.1×1.38 5.1×0.53 30 6 910
Euloma 3 16/02/04 5.1×1.38 5.1×0.53 30 6 1084
Euloma 4 14/04/04 5.1×1.38 5.1×0.53 30 6 884
Euloma 5 14/10/04 5.1×1.38 5.1×0.53 30 6 834
Euloma 6 30/11/04 5.1×1.38 5.1×0.53 30 6 771

Leadville Sown 27/06/03
Leadville 1 14/10/04 5×2 5×0.5 30 6 909
Leadville 2 25/11/04 5×2 5×0.5 30 6 447
Leadville 3 21/12/04 5×2 5×0.5 30 6 637
Leadville 4 3/02/05 5×2 5×0.5 30 6 538
Leadville 5 24/11/05 5×2 5×0.5 30 6 1472
Sandigo Sown 25/06/03
Sandigo 1 17/11/03 5×2 5×0.5 30 6 381
Sandigo 2 20/10/04 5×2 5×0.5 30 6 -
Sandigo 3 04/01/05 5×2 5×0.5 30 6 237

Tamworth(TCCI) Sown 11/07/03
Tamworth(TCCI) 1 6/11/03 5×2 4×1.5 15 12 -
Tamworth(TCCI) 2 10/12/03 5×2 4×0.5 15 12 664
Tamworth(TCCI) 3 16/02/04 5×2 4×0.5 15 12 701
Tamworth(TCCI) 4 8/10/04 5×2 5×0.5 15 12 1056
Tamworth(TCCI) 5 19/11/04 5×2 5×0.5 15 12 954
Tamworth(TCCI) 6 21/12/04 5×2 5×0.5 15 12 843

Terry Hie Hie Sown 22/07/03
Terry Hie Hie 1 13/11/03 5×2 4×0.5 30 6 1934
Terry Hie Hie 2 16/12/03 5×2 4×0.5 30 6 1314
Terry Hie Hie 3 5/02/04 5×2 4×0.5 30 6 1948
Terry Hie Hie 4 11/03/04 5×2 5×0.5 30 6 808
Terry Hie Hie 5 20/04/04 5×2 5×0.5 30 6 779
Terry Hie Hie 6 22/06/04 5×2 5×0.5 30 6 624
Terry Hie Hie 7 12/10/04 5×2 5×0.5 30 6 1257
Terry Hie Hie 8 2/12/04 5×2 5×0.5 30 6 1012
Terry Hie Hie 9 23/12/04 5×2 5×0.5 30 6 1229
Terry Hie Hie 10 24/01/05 5×2 5×0.5 30 6 977

4



Figure 1.1: Plot of mean lucerne yield for each of the 11 commercial varieties across
harvests at each site
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Chicory

Forage chicory (Cichorium intybus L.) is a summer active perennial herb that provides

feed for livestock. The �rst cultivar released speci�cally as a forage crop (in New Zealand

in 1985) was Grasslands Puna, and many commercial cultivars in Australia are based

on this cultivar. Grasslands Puna and most varieties bred from it (e.g. Puna11) are

winter dormant, while some other varieties e.g. La Lacerta (originally from Uruguay),

Commander and Grouse have increased levels of winter activity.

The chicory data presented in this thesis arises from a variety selection trial planted at

Keith, South Australia. The trial involved testing 22 varieties (20 of which were chicory

varieties and 2 being English Plantain (Plantago lanceolata L.) with 4 replicates in a

Randomised Complete Block (RCB) design, laid out in a rectangular array of 22 rows
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Figure 1.2: Plot of raw lucerne yield data across harvests for Terry Hie Hie for all varieties
and replicates

Days from sowing

Y
ie

ld
 (

kg
 D

M
/h

a)

500
1000
1500
2000
2500

Aquarius

100 300 500

Cropper_Nine Genesis

100 300 500

Pioneer_L90 Prime

100 300 500

Rippa SARDI_10

100 300 500

Sceptre

Sequel Sequel_HR TL2003%01 TL2003%02 TL2003%03 TL2003%04 TL2003%05

500
1000
1500
2000
2500

TL2003%06

500
1000
1500
2000
2500

TL2003%07 TL2003%08 TL2003%09 TL2003%10 TL2003%11 TL2003%12 TL2003%13 TL2003%14

TL2003%15 TL2003%16 TL2003%17 TL2003%18 TL2003%19 TL2003%20 TL2003%21

500
1000
1500
2000
2500

TL2003%22

500
1000
1500
2000
2500

TL2003%23 TL2003%24 TL2003%25 TL2003%26 TL2003%27 TL2003%28 TL2003%29 TL2003%30

TL2003%31 TL2003%32 TL2003%33 TL2003%34 TL2003%35 TL2003%36 TL2003%37

500
1000
1500
2000
2500

TL2003%38

500
1000
1500
2000
2500

TL2003%39 TL2003%40 TL2003%52 TL2003%53 TL2003%54 TL2003%55 TL2003%56 TL2003%57

100 300 500

TL2003%58 TL2003%59

100 300 500

TL2003%60

500
1000
1500
2000
2500

Venus

Rep 1
Rep 2
Rep 3

and 4 columns (with each column forming a replicate). There were 11 harvests conducted

on the trial. Table 1.3 gives the harvest dates and mean yields for this trial.

Estimates of yield (herbage production) of each plot were obtained from visual assess-

ments made on three sections of each plot, using a scoring scale of 1− 10. Quadrat cuts

(10-15 over each trial) were then used to calibrate the visual scores and convert to total

herbage production (kg dry matter (DM)/ha).

A plot of the raw yield (kg DM/ha) data across harvests (Figure 1.5) shows large

di�erences between varieties across the harvests and clear harvest time e�ects. The �rst

harvest contains substantially higher yields than subsequent harvests. As interest lies in

the genetic variation of the chicory varieties (not English Plantain) it will be necessary

to separate the chicory varieties from the two non chicory varieties in the trial.

Note that even though this data comes from a single site it has been included in this
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Table 1.2: Persistence data from the lucerne trials
Trial Assessment Assessment Mean Persistence

No. Date (%)
Euloma 1 14/10/03 17.8
Euloma 2 16/02/04 26.1
Euloma 3 14/10/04 29.4

Leadville 1 18/12/03 26.9
Leadville 2 01/07/04 26.8
Leadville 3 25/11/04 28.3
Leadville 4 28/07/05 24.8
Leadville 5 01/12/05 26.2
Leadville 6 19/07/06 24.0
Leadville 7 18/01/07 22.3
Sandigo 1 25/11/03 43.8
Sandigo 2 03/11/04 21.0
Sandigo 3 02/08/05 20.3
Sandigo 4 06/06/06 13.6

Tamworth(TCCI) 1 10/11/03 25.0
Tamworth(TCCI) 2 05/07/04 29.4
Tamworth(TCCI) 3 01/12/04 24.6
Tamworth(TCCI) 4 29/07/05 25.8
Tamworth(TCCI) 5 07/12/05 21.5

Terry Hie Hie 1 13/11/03 34.1
Terry Hie Hie 2 30/06/04 40.8
Terry Hie Hie 3 02/12/04 41.7
Terry Hie Hie 4 19/07/05 33.9
Terry Hie Hie 5 29/11/05 32.8
Terry Hie Hie 6 02/08/06 22.9

thesis to allow models developed for multi-harvest data to be tested on another species (in

addition to lucerne) to examine the utility of the methods for perennial crops in general.

Table 1.3: Harvest dates and mean yields for the Keith chicory trial harvests

Harvest Harvest Mean yield
No. Date (kg DM/ha)
1 19/12/05 3007
2 16/3/06 362
3 22/6/06 858
4 5/9/06 180
5 14/11/06 140
6 21/2/07 142
7 12/7/07 694
8 3/9/07 260
9 1/11/07 532
10 26/3/08 754
11 28/5/08 6.8
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Figure 1.3: Plot of mean lucerne persistence for each of the 11 commercial varieties over
harvests, for each site
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1.2 Overview of issues

The motivating data sets outlined above are typical of perennial forage and horticultural

crop breeding trials that are usually conducted in the �eld at several locations with multi-

ple measurements taken at multiple times. For forage crops these repeated measurements

may be taken within a season or a number of seasons, while in horticultural tree-based

crops these may be annual measurements taken over many years. The aim of these trials

is to obtain reliable and accurate predictions for variety means and variety di�erences

over time across a range of environments, and an understanding of variety by time by

environment interactions. The ultimate aim is to select superior varieties for genetic

improvement.

Field trials in general, usually show spatial variation (Gilmour et al., 1997, Stefanova
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Figure 1.4: Plot of raw lucerne persistence data at Terry Hie Hie for all varieties and
replicates
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et al., 2009, Dutkowski et al., 2002), and in some cases interplot competition (Stringer

& Cullis, 2002). This spatial variation and interplot competition needs to be taken into

account otherwise variety estimates may be a�ected.

As repeated measurements are made on each trial (for example multiple harvests),

there is a need to account for the temporal correlation between measurements made on

each plot (or tree). The variety (genetic) e�ects also need to be modelled over time

and account made for possibly heterogenous genetic variances and correlations between

genetic e�ects at di�erent times.

As variety selections are usually based on data from a number of �eld trials in di�erent

locations, methods of multi-environment (MET) analysis need to be employed. These

methods are not yet well developed for perennial crops but there are numerous methods

for MET analysis in annual crops. While the MET analysis methods for annual crops
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Figure 1.5: Plot of raw chicory yield data across harvests for Keith for all varieties and
replicates
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address some of the spatial and multi-environment issues of perennial crop breeding trials,

they are for single harvest trials and so are not directly applicable when multiple harvests

are involved. Methods for perennial crop trials need to accommodate instances where

harvest times are not regular across trials (and hence data is very unbalanced) and/or

when there are long sequences of harvest times. An example of this is with perennial

pasture variety selection trials where multiple harvests may be conducted each year over

a number of years and where harvest times may vary across locations due to in�uence of

rain, local temperature and other seasonal conditions.

In summary, the statistical methods for the analysis of data from perennial crop breed-

ing trials need to account for the spatial variation and correlation within a trial, the tem-

poral correlation between repeated measurements and model the genetic e�ects over time

and across sites in a meaningful way.
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1.3 Literature review

The following presents an overview of the literature covering recent spatial analysis meth-

ods, multi-environment trial (MET) analysis methods, spatio-temporal, and response pro-

�le modelling methods that are currently applied in the analysis of annual crop breeding

data and other applications, which may be applicable to perennial crop breeding data.

1.3.1 Spatial analysis of �eld trials

Varietal selection �eld trials usually involve evaluation of many varieties over a potentially

large and variable trial area. In analysing data from these �eld trials spatial variation

needs to be modelled in order for accurate variety e�ects to be estimated.

Spatial variation has long been recognized as an important issue in �eld trials. The

classic Fisherian approach (Brien & Bailey, 2006 and references therein) attempts to mini-

mize the e�ect of spatial variation in the �eld by careful selection of trial sites, application

of randomization of plots to varieties and inclusion of sources of variation due to the trial

design in the analysis. This randomization approach is often not su�cient to model all

sources of spatial variation and it is often necessary to build on the randomization model

to include terms over and above the design components.

There have been many methods proposed to account for spatial variation including

the earliest methods in which neighbouring plot yields were used as covariates in the

analysis (see Bartlett, 1978 for an account). Wilkinson et al. (1983) proposed a signi�cant

improvement with a smooth trend plus independent error model with the trend being

removed by di�erencing the data. Removing trend by di�erencing neighbouring plots was

also used by Green et al. (1985) and Besag & Kempton (1986). There have been many

other approaches to spatial analysis including the one dimensional models of Gleeson &

Cullis (1987), where trend was modelled using time series models, and their extension to

two dimensions by Cullis & Gleeson (1991), using a separable correlation structure.

Gilmour et al. (1997) extended the method of Cullis & Gleeson (1991) by identify-

ing three major components of spatial variation to be modelled, namely local and global

smooth spatial trend and extraneous variation. Local smooth trend arises because data

from plots close together are more similar to those apart and may re�ect for example,

changes in soil moisture, fertility or depth. Global trend re�ects non-stationary trend

across the �eld and is usually aligned with the rows or columns of the �eld. Extraneous

variation often arises due to management practices or experimental procedures, for exam-

ple serpentine harvesting. To model global trend and extraneous variation Gilmour et al.

(1997) �tted polynomial or spline functions (Verbyla et al., 1999) to the row or column

co-ordinates. They modelled local trend using a covariance structure for the residuals. It

is this separation of global trend and local trend which is an important extension from

the previous spatial analysis methods.

Gilmour et al. (1997) present a mixed model for the data y (a n× 1 vector) from an

individual �eld trial consisting of n plots in an array of r rows by c columns (data ordered

as rows within columns) as follows

11



y =Xτ +Zu+ e (1.3.1)

where τ is a vector of �xed e�ects with design matrix X, u is the vector of random

genotype e�ects with associated design matrix Z and e is the vector of residuals ordered

as for the data vector (rows within columns).

The random e�ects in the mixed model above, (1.3.1) are assumed to follow a Normal

distribution with mean 0 and variance

var

([
u

e

])
=

[
G 0

0 R

]

The residual term e can be partitioned into two components, a vector ξ of local smooth

spatial trend and a vector η of independent measurement errors. The local smooth spatial

trend can be modelled using a two dimensional separable correlation structure (Gilmour

et al., 1997). For example the covariance matrix for ξ is given by,

var (ξ) = σ2Σc ⊗Σr (1.3.2)

where Σc and Σr are the c× c and r× r spatial correlation matrices corresponding to the

column and row dimensions respectively as in Gilmour et al. (1997). The symbol ⊗ in

(1.3.2) represents the Kronecker product (see Result A.6 in Appendix).

These two matrices are typically assumed to arise from autoregressive processes of or-

der 1 (labelled ar1) so that they are each functions of a single (autocorrelation) parameter

(ϕr in the row direction and ϕc in the column direction). In this case, (1.3.2) is given

symbolically by ar1(Column).ar1(Row).

The spatial correlation matrix for the row dimension Σr can be written as

Σr =



1 ϕr ϕ2
r . . . ϕr−1

r

ϕr 1 ϕr . . . ϕr−2
r

ϕ2
r ϕr 1 . . . ϕr−3

r
...

...
...

. . .
...

ϕr−1
r ϕr−2

r . . . ϕr 1


The measurement error process η, has variance σ2

η. Hence the variance of the error

process e = ξ + η is given by

R = σ2Σc ⊗Σr + σ2
ηIn

Sources of global and extraneous variation can be included in u and/or τ in (1.3.1). To

determine the appropriate spatial correlation structure and to identify global and extra-

neous variation, Gilmour et al. (1997) used diagnostic tools such as the sample variogram

and residual plots (of residuals against row (or column) number). The variogram dis-
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plays the semi-variance of the residuals for pairs of plots a given distance apart (it will

be discussed in further detail in subsequent chapters).

While Gilmour et al. (1997) included model-based components of variation that occur

because of management process, extraneous and local variation or correlation, they omit-

ted the variables inherent in the design of �eld trials. The combination of randomization

and model-based components is now considered preferable and appropriate for analysis

(Beeck et al., 2010).

While the spatial analysis methods of Gilmour et al. (1997) are now routinely used in

the analysis of annual �eld crops, their use in analysing data for perennial crops is not so

widespread. In general, more simplistic approaches have been attempted to account for

spatial variation in perennial crops, for example in Smith & Casler (2004) and Smith &

Kearney (2002), where the methods used have been based on Nearest Neighbour analyses

�rst introduced by Papadakis in 1937 (see Bartlett, 1978 for a review). Exceptions to

this include Stringer & Cullis (2002) and Smith et al. (2007) where the spatial analysis

techniques of Gilmour et al. (1997) are applied to sugarcane selection trials, Costa e Silva

et al. (2001), Dutkowski et al. (2002) and Hardner et al. (2010), where the above spatial

analysis methods have been used in forest genetic trials.

1.3.2 Analysis of multi-environment trials (METs)

Usually plant variety improvement programs involve the evaluation of new varieties in �eld

trials at a number of trial locations. These trials are referred to as METs. There have

been many methods put forward for analysing METs in annual crops. Early methods were

based on ANOVA methods which did not give an understanding of genotype (or variety)

by environment (GxE) interaction. Other early methods which did allow investigation of

GxE include using a regression based approach on environmental variables (for example

Knight, 1970) and using regression of varietal yield on the mean yield of all varieties in

each environment (for example Finlay & Wilkinson, 1963).

Mixed model approaches have become popular as they can easily handle incomplete

data, (where not all varieties are grown at all environments) and they can model within

trial variation appropriately. Smith et al. (2005) provided a review of such methods for

analysing multi-environment trials (METs).

A two stage approach has often been used for the analysis of MET data. This involves

�rst estimating variety means separately for each trial and then combining them for

an overall analysis. The overall analysis may use mixed model methods for example

(Cullis et al., 1996a, Cullis et al., 1996b, Frensham et al., 1997) or �xed e�ects models,

for example the AMMI (Additive Main e�ects and Multiplicative Interaction) model of

Gauch (1992). These two stage methods are an approximation to the overall analysis of

individual plot data from all trials and may not provide a good approximation if there

is spatial variation within trials or heterogeneity of error variance between trials. Cullis

et al. (1998) presented a more comprehensive combined spatial MET analysis in which

individual plot data is analysed and allowance is made for separate spatial modelling and

separate error variance for each trial.
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Several authors have suggested the use of factor analytic (fa) models for modelling

GxE e�ects (e.g. Smith et al., 2001, Piepho, 1997, Thompson et al., 2003). Smith et al.

(2001) extended the spatial MET analysis method of Cullis et al. (1998) to include

factor analytic models to model the variety e�ects in di�erent environments as a series of

multiplicative terms and provide a parsimonious approximation to the fully unstructured

variance covariance matrix. Smith et al. (2001) presented a mixed model for modelling

the observations from a series of MET trials using the following notation. They consider

data from t trials in which m varieties are grown. The jth trial consists of nj plots in a

rectangular array of rj rows by cj columns (nj = rjcj). The data vector for trial j, yj is a

nj × 1 vector of observations ordered as rows within columns. The data combined across

trials is denoted by y = (yT
1 . . .y

T
t )

T ; this is a N × 1 vector with N =
∑t

j=1 nj.

The mixed model for y is given by

y =Xτ +Zgug +Zouo + e (1.3.3)

where τ and ug are the vectors of �xed e�ects and random genetic e�ects respectively

and uo contains other non-genetic random e�ects.

The random e�ects from the linear mixed model (1.3.3) are assumed to follow a Normal

distribution with zero mean vector and variance-covariance matrix

var


 ug

uo

e


 =

 Gg 0 0

0 Go 0

0 0 R


The MET approach of Smith et al. (2001) assumes a separate spatial model for each trial

and the residuals from di�erent trials are assumed independent. Hence the full residual

variance matrix R is given by a block diagonal matrix; R = diag (Rj) where Rj is the

residual variance matrix for the jth trial, j = 1, . . . , t. The spatial modelling approach of

Gilmour et al. (1997), as described in the previous section is applied to each trial. Hence

Rj = σ2
jΣcj ⊗Σrj for each trial.

The random e�ects term ug is a tm×1 vector of genetic e�ects for m varieties in each

of the t environments (ordered as varieties within trials). Smith et al. (2001) considered

the trials to be like di�erent traits measured on each variety, and assumed the variance

structure for the genetic e�ects to be of the separable form

var (ug) = Gg = Gt ⊗Gv

where Gt and Gv are the symmetric t× t and m×m component matrices for trials and

varieties respectively. Smith et al. (2001) assume that the genetic e�ects for the same

variety in di�erent environments are correlated but that the varieties are independent.

Hence Gv = Im. However if there is a known family structure in the varieties alternative

forms for the variety component matrix are possible. For example if a pedigree matrix
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is known which speci�es the relationship between varieties then Gv may take di�erent

forms, (Oakey et al., 2006).

If

Gg = Gt ⊗ Im

then Gt is the so called genetic variance matrix of dimension t × t with diagonal ele-

ments being the genetic variances of individual trials and the o� diagonal elements the

genetic covariances between pairs of trials. The genetic variance matrix can take a num-

ber of possible forms including common variance/common covariance, heterogeneous vari-

ance/common covariance, heterogeneous variance/common correlation, and unstructured.

The unstructured matrix is the most general form for the genetic variance matrix. It

involves estimating all of the genetic variances for the trials and covariances between pairs

of trials, resulting in t(t+1)/2 parameters being required to be estimated. If the number

of trials is large this matrix is often di�cult to �t.

While the common covariance/correlation models require signi�cantly less parameters

to be estimated than the unstructured matrix they are not often �exible enough to model

the genetic variance matrix. It is unlikely that variances will be constant across the di�er-

ent environments and that all pairs of environments will have the same genetic correlation.

A more parsimonious structure which is a good approximation to the unstructured model

is the factor analytic model proposed by Smith et al. (2001).

Factor analytic models

The factor analytic model (fa) is based on the multivariate technique of factor analysis

(Mardia, 1988). In the general sense factor analysis is used to model the covariance

structure between a set of t variates, X1, . . . , Xt with the aim being to account for the

covariances in terms of a smaller number of hypothetical factors. Smith et al. (2001)

used the factor analysis approach to provide a variance structure for the genetic variance

matrix Gt.

The model is de�ned in terms of the unobserved variety e�ects in each environment.

That is

ugij =
k∑

r=1

λjrfir + δij (1.3.4)

where ugij is the random e�ect for variety i, (i = 1, . . . ,m) in environment j, (j = 1, . . . , t),

fir is the value (or score) for variety i in the rth hypothetical factor (r = 1, . . . , k), λjr

is the coe�cient (referred to as a factor loading) for environment j, and δij is a residual.

The residuals, δij are independent with variance, Ψj (known as the speci�c variance of

the jth environment).
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The model can be represented in vector notation as

ug = (λ1 ⊗ Im)f 1 + . . .+ (λk ⊗ Im)fk + δ

= (Λ⊗ Im)f + δ

where λr is a t× 1 vector of loadings, {λjr}, f r is a m× 1 vector of factor scores, {fir},
δ is a mt × 1 vector of residuals, {δij}, Λ is a t × k matrix of loadings, {λ1 . . .λk}, and
f is a mk × 1 vector of factor scores, [fT

1 f
T
2 . . .f

T
k ]

T .

The joint distribution of f and δ is given by(
f

δ

)
∼ N

[(
0

0

)
,

[
Gf ⊗ Im 0

0 Ψ⊗ Im

)]

where Ψ is a diagonal matrix of speci�c variances, one for each trial, that is Ψ =

diag (Ψ1 . . .Ψt). The factor scores are commonly assumed to be independent and scaled

to have unit variance, so that Gf = Ik. Hence the variance matrix for the variety e�ects

in each environment is given by

var (ug) = (Λ⊗ Im)var (f) (ΛT ⊗ Im) + var (δ)

= (ΛΛT +Ψ)⊗ Im

Therefore the factor analytic model results in the following form for Gt,

Gt = ΛΛT +Ψ

so the genetic variances and covariances are given by

σgjj =
k∑

r=1

λ2jr +Ψj

σgij =
k∑

r=1

λirλjr

where σgjj is the genetic variance for trial j and σgij is the genetic covariance between

trials i and j, i.e Gt = {σgij}.
Smith et al. (2001) showed that when k > 1, Λ is not necessarily unique and that

k(k − 1)/2 independent constraints need to be imposed on the elements of Λ to ensure a

unique solution. Smith et al. (2001) set the k(k−1)/2 elements in the upper triangle of Λ

to be zero. That is λjr = 0 for j < r = 2, . . . , k. Hence for k = 2, the parameter λ12 is set

to zero. The above constraint for Λ enables a unique solution to be computed but it has no

biological meaning. Smith et al. (2001) also suggest using a rotation (based on principal

components) of the loadings, once estimated as above, in order to obtain meaningful

interpretation of the environmental loadings and variety scores. This rotation ensures

that the �rst factor accounts for the maximum genetic covariance between environments,

the second factor accounts for the next largest amount and is orthogonal to the �rst factor,
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and so on.

The factor analytic model for variety e�ects, (1.3.4) is similar to a standard random

regression model but with the di�erence that both the covariates and the regression co-

e�cients are unknown and must be estimated from the data. Kelly et al. (2007) shows

the factor analytic model to be generally the model of best �t across a range of variety

selection trials in annual cereal crops.

1.3.3 Analysis of multi-harvest data

With perennial crops, when there are multiple harvests at each site there is a need to

account for temporal correlation in the residuals (due to the repeated measurements on

each plot) as well as spatial correlation. One way of doing this is to use a mixed model,

assuming a 3 way (harvest × column × row) separable process for the residual variance

structure as in Smith et al. (2007) in their analysis of multi-harvest sugarcane breeding

data. This approach will be discussed further in Chapter 4.

Other, more simplistic examples of analysis of multi-harvest data include Smith &

Casler (2004), where harvest yields of forage grass trials are summed over years and

spatially adjusted using nearest neighbour covariates, and Resende et al. (2006) where

tea data is analysed spatially at separate times, longitudinally ignoring spatial, and using

a bivariate spatial model for 2 harvests.

While the separability assumption of spatio temporal processes �ts well mathemati-

cally, it may not always be suitable in practice. It is likely that spatial parameters will

vary over time and more �exible models for modelling the residual variance structure of

multi-harvest data need to be investigated.

1.3.4 Temporal models

Repeated measures data arises when multiple measurements are made over time on the

same trait on the same experimental units. The analysis of repeated measures data needs

to take into account the correlation between measurements over time. There are many

books that focus on the analysis of temporal, repeated measures, or longitudinal data, for

example Crowder & Hand (1990), Jones (1993), Diggle et al. (2002). Papers of particular

relevance to the analysis of repeated measures data in this thesis include Bjornsson (1978),

Diggle (1988), Cullis & McGilchrist (1990), Verbyla & Cullis (1990).

Bjornsson (1978) recognized the need to account for serial correlation between repeated

measurements in perennial crop trials and that the correlation often decreases with in-

creasing time intervals. They incorporated serial correlation into their repeated measures

model by using a general linear model with autoregressive errors. Diggle (1988) proposed

a more comprehensive approach to the analysis of repeated measures data in which the

serial correlation is modelled as well as additional components such as measurement error

and variation between units.
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Diggle model

Diggle (1988) recognized that in repeated measures data, as well as serial correlation

between repeated measurements, a number of other features contribute to the covariance

structure of the process. The model of Diggle (1988) takes into account the concept

that measurements made closely in time on the same unit will vary, no matter how

close the observations are. This re�ects measurement error. The model also recognizes

that on average some units perform well and others are low performers. This re�ects

a consistent 'unit' e�ect (a plot or animal e�ect) and results in a positive correlation

between any two measurements on the same unit. Lastly the model incorporates the

serial correlation between measurements over time on the same unit, recognizing that this

correlation depends on the separation in time between the measurements and that this

correlation typically decreases as the separation increases.

Assume there arem units, i = 1, . . . ,m, on which ni measurements have been made on

the ith unit, with the total number of measurements being n =
∑m

i=1 ni. Let Yij denote the

jth measurement on the ith unit, and Y i = (Yi1 . . . Yini
)T give the vector of measurements

on the ith unit, and Y = (Y T
1 . . .Y

T
m)

T give the complete vector of measurements. Let

µij = E (Yij) and similarly µi = E (Y i) and µ = E (Y ). Y is assumed to have a

multivariate normal distribution with mean µ =Xβ and n× n variance matrix V

The model for Yij as given by Diggle (1988) can be written as

Yij = µij + Zij + Ui +Wi(tij) (1.3.5)

where Zij are independent and identically distributed (i.i.d) N(0, τ 2) random variates

representing measurement error, the Ui are iid N(0, ν2) variates representing the varia-

tion in average response between units, and Wi(t) is an independent stationary Gaussian

process representing the serial correlation between measurements on the same unit, with

E[Wi(t)] = 0 and cov (Wi(t),Wi(s), =)σ2ρ(|t−s|), with tij representing the time at which
measurement Yij is taken.

This results in the variance covariance matrix var (Y ) = V where V is a block diagonal

n× n matrix with non zero entries being the ni × ni submatrices var (Y i) = V i where

V i = τ 2I + ν2J + σ2R(ti)

where I is the identity matrix, J is a square matrix with all elements equal to 1, and

R(ti) is a symmetric covariance matrix with (k, l)th element given by ρ(|tk − tl|) and

ti = (ti1 . . . tini
)T . Diggle (1988) suggest using a continuous time form of a �rst order

autoregressive process for ρ(u). That is

ρ(u) = ϕu where ϕ = exp(−α)

If σ2 = 0, (1.3.5) reduces to the uniform correlation (or split plot in time) model

and if additionally ν2 = 0, the model reduces further to the classical linear model with
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independent errors.

The approach of Diggle (1988) for the analysis of repeated measurements provides a

�exible but economical speci�cation of the covariance structure, enabling the covariance

to be modelled using only 4 parameters. It enables a more accurate speci�cation of the

covariance structure than the uniform correlation model while not requiring the large

number of parameters of the unstructured covariance model. The method allows irregu-

larly spaced measurement times and di�ering sets of measurement times for the di�erent

experimental units. The model also allows for a �exible speci�cation of the mean response

pro�le to re�ect treatment trends over time and di�erences between treatments in these

trends. Diggle (1988) proposed using the semi-variogram as a diagnostic tool to determine

the appropriate covariance structure in the modelling process.

Random regression models

Another approach which implicitly models the covariance structure between repeated

measurements is that of random regression (or random coe�cient regression) introduced

by Laird & Ware (1982).

Random regression analysis is the standard approach for the genetic analysis of re-

peated animal measurements over time. This form of analysis is commonly used to model

lactation curves and cattle growth data (Meyer, 1998, Meyer, 1999, Jensen, 2001, Strabel

et al., 2005). Schae�er (2004) provides a review of applications of random regression

models in animal breeding.

Random regression with random coe�cients is a method that models the covariance

structure of repeated measures data, allowing the unit random e�ects to vary over time.

Random regression models assume an underlying average pro�le over time and allow

subject e�ects to be random deviations from this mean trend. Laird & Ware (1982) in-

troduced random regression models as mixed models with �xed parameters at the overall

mean level and random parameters at the individual level. By treating the regression

coe�cients as random e�ects a matrix of covariances between random regression coe�-

cients is implied. These covariances implicitly model the covariance structure between all

measurements along the pro�le (Jamrozik & Shae�er, 1997).

If yi represents the measurements on individual i at times ti then a standard linear

random coe�cient regression model can be written as

yi = (τ1 + ui1)1+ (τ2 + ui2)ti + ei

= τ11+ τ2ti + ui11+ ui2ti + ei

which speci�es an overall mean linear pro�le with �xed population intercept and slope

given by τ1 and τ2 and the individual subjects having random intercepts (ui1) and slopes

(ui2) that vary about the mean parameters. In addition allowance is made for these

intercepts and slopes to be correlated within subjects. The random intercept and slope

e�ects are assumed to be normally distributed with zero mean and variance matrix given
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by

ui =

(
ui1

ui2

)
∼ N

[(
0

0

)
,Grr =

[
g11 g12

g12 g22

]]

The error vector ei is assumed independent of the random e�ects ui and to be Normally

distributed with mean 0 and variance matrix σ2I. We can write the above model in

matrix notation as

yi =X iτ +Ziui + ei

where ui is the vector of random e�ects with var (ui) = Grr and ei ∼ N(0, σ2Ini
). The

within subject variance matrix which gives the covariance between any two measurements

on subject i is given by

var (yi) = Σi = ZiGrrZ
T
i + σ2Ini

The simple linear random regression model can be extended to handle non-linear

trends in the data by using orthogonal polynomials, such as Legendre polynomials (Meyer

& Kirkpatrick, 2005). These polynomials are able to model a variety of curves but often

have problems with estimation when high order polynomials are involved. An alternative,

more �exible speci�cation is to use splines, for example cubic smoothing splines (Verbyla

et al., 1999 and White et al., 1999). Meyer (2005) provides an account of recent advances

in random regression analysis methods, in particular the incorporation of B-splines as an

alternative to orthogonal polynomials.

Meyer & Kirkpatrick (2005) present a review of quantitative genetics concepts and

how they relate when the trait of interest is a curve or trajectory, rather than individual

values. They conclude that random regression models provide a powerful approach to

quantitative genetic analyses of such data and that standard quantitative genetic concepts

extend readily to traits that are represented by curves. They also show that the models

may be readily incorporated in the linear mixed model.

Cubic smoothing splines

Cubic smoothing splines provide a �exible approach to modelling longitudinal data. The

ability to formulate the cubic smoothing spline as a linear mixed model (Verbyla et al.,

1999), means that they are an ideal approach to modelling variety selection data from

multiple harvests over time.

Green & Silverman (1994) discuss the properties of cubic smoothing splines. In sum-

mary, suppose there are real numbers t1, . . . , tn on the interval [a, b] with a < t1 <

t2 . . . < tn < b. A function f is de�ned as a cubic spline on the interval [a, b] if f sat-

is�es the following conditions. Firstly f is a cubic polynomial on each of the intervals

[a, t1), [t1, t2), . . . , (tn, b] and secondly, the cubic polynomial sections join together at the

points ti so that the function f , it's �rst and second derivatives are continuous at each ti
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and on the whole interval [a, b]. A natural cubic spline on [a, b] is a cubic spline with the

added property that it's second and third derivatives are zero at the end points a and b,

implying that the spline is linear when it passes through the end points.

If a natural cubic spline f is de�ned at design points t1, . . . , tn (called knots), so

that fi = f(ti) and the second derivatives of the spline at the knot points are given by

γi = f
′′
(ti), Green & Silverman (1994) show that, given the vectors f = (f1 . . . fn)

T and

γ = (γ2 . . . γn−1), the spline can be calculated at points other than ti.

To see this, de�ne hj = tj+1 − tj, for j = 1, 2, . . . , n − 1 and de�ne banded matrices,

Q and Gs of dimension n× (n− 2) and (n− 2)× (n− 2) where Q and Gs have non zero

elements given by

Qii =
1

hi

Qi+1,i = −(
1

hi
+

1

hi+1

)

Qi+2,i =
1

hi+1

(1.3.6)

and

Gs;i,i+1 = Gs;i+1,i =
hi+1

6

Gs;ii =
hi + hi+1

3
(1.3.7)

for i = 1, 2, . . . , n− 2, with all other elements equal to zero.

Green & Silverman (1994) show that the vector of second derivatives of f at design

points t2, . . . , tn−2 is given by

γ = G−1
s Q

Tf

and by de�nition γ(t1) = γ(tn) = 0.

They further show, that for a cubic spline de�ned on an interval [tL, tR] , with h =

tR − tL, fL = f(tL), fR = f(tR), γL = γ(tL) and γ(tR), an expression for f(t) is given by

f(t) =
(t− tL)fR + (tR − t)fL

h

− 1

6
(t− tL)(tR − t)[(1 +

t− tL
h

)γR + (1 +
tR − t

h
)γL]

Using this expression for each interval de�ned by the knot points of the spline, values for

the spline may be obtained over the complete interval [t1, tn].

Verbyla et al. (1999) show, that given observations yi, i = 1, 2, . . . , n at points ti, t1 <

t2 < . . . < tn where yi can be expressed as yi = f(ti)+ei, where f(t) is a smooth unknown

function and ei ∼ N(0, σ2R), in vector form y = f +e, then the vector f that maximizes
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the penalized log-likelihood

l = −1

2
log det σ2R− 1

2σ2

[
(y − f)TR−1(y − f) + λs

∫
f

′′
(t)

2
dt

]
is a cubic smoothing spline, with smoothing parameter λs which speci�es the amount of

smoothing. They further show that the cubic smoothing spline estimate of f at the design

points ti, can be written as

f̃ =Xsβ̂s +Zsũs

where

β̂s = (XT
sH

−1Xs)
−1XT

sH
−1y

ũs = (ZT
sR

−1Zs + λsG
−1
s )−1ZT

sR
−1(y −Xsβ̂s)

whereXs is a n×2matrix whose columns are a vector of 'ones' and the vector (t1, t2, . . . , tn)
T ,

Zs = Q(QTQ)−1 where Q is de�ned in (1.3.6) and Gs is de�ned in (1.3.7) above.

Therefore the cubic smoothing spline can be written as the sum of an estimated straight

line (Xsβs), plus a random component (Zsus), that is

f =Xsβs +Zsus (1.3.8)

where usi ∼ N(0, σ2
sGs), and hence can be incorporated into the mixed model framework.

1.3.5 Spatio-temporal models

The combination of the two aspects of spatial and temporal correlation in spatio-temporal

models has received a large amount of interest over recent years and is also well docu-

mented in the literature. Reviews by Sahu & Mardia (2005) and Kyriakidis & Journel

(1999) cover a variety of spatio-temporal methods and applications. The book by Finken-

stadt et al. (2006) presents spatio-temporal methods in point processes, biological growth

modelling, geostatistics and Gaussian Markov random �elds. A book of abstracts edited

by Sahu (2005) provides an insight into recent spatio-temporal applications from a range

of areas such as real estate, environmental monitoring and disease epidemics. In all of

these applications the main focus is on how to jointly model the spatial and temporal

correlation between measurements.

Many of the methods for spatial analysis can be grouped depending on how the data

are observed, that is whether the spatial location is continuously indexed over a region

(geostatistical data) or discretely indexed (lattice data, where the lattice may be regular

in spacing or irregular). For geostatistical data spatial dependence is speci�ed through a

covariance function, which is then used with kriging to predict values at spatial locations

where no measurements are taken. For data collected on a lattice, for example yields

of trees in an orchard, it is often not necessary or sensible to predict at locations other
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than those in the lattice. While geostatistical methods may be used for some lattice data,

there are methods that are speci�cally designed for data observed on a lattice which may

be more suitable, especially for irregular lattices (Sain & Cressie, 2007). Hrafnkelsson &

Cressie (2003) present a comparison of geostatistical methods and lattice based methods

for the analysis of environmental count data measured on a �ne grid and concluded that

the lattice based methods were suitable for analysis of such data, giving similar results to

the geostatistical methods but being faster to implement.

One approach for analysing spatial lattice data is to use spatial autoregressive models

which represent the data at a spatial location as a function of neighbouring locations.

Two forms of spatial autoregressive models that are commonly used are conditional au-

toregressive models (CAR) and simultaneous autoregressive models (SAR), (see Cressie,

1993).

Multivariate extensions of the CARmodel have been used for analysing spatio-temporal

data (Sahu & Mardia, 2005). Waller et al. (1997) implemented a spatio-temporal CAR

model for the analysis of disease rates in space and time.

SAR models have also been extended to handle spatio-temporal data (STAR) models

(see Banerjee et al., 2004). Pace et al. (2000) implemented these spatio-temporal autore-

gressive models in a real estate application and demonstrated the bene�ts of modelling

the spatial as well as temporal correlation.

1.3.6 Conditional and simultaneous autoregressive models (CAR

and SAR)

Conditional autoregressive models (CAR)

CAR models are de�ned by conditional distributions as given in Besag (1974).

E (yi|y−i) = µi +
n∑

j=1

cij(yj − µj)

var (yi|y−i) = σ2
i

for i, j = 1, . . . , n where y−i indicates all yj such that j ̸= i.

From the conditional distributions the joint distribution can be speci�ed using the

Hammersley-Cli�ord Theorem and Brook's lemma (Banerjee et al., 2004). It can be

shown in the Gaussian case that

y ∼ N(µ, (I −C)−1M)

provided (I−C) is invertible and (I−C)−1M is symmetric and positive de�nite (Cressie,

1993), where M = diag (σ2
1, . . . , σ

2
n) and C is a n × n matrix specifying spatial depen-

dencies between locations with cii = 0 and cij ̸= 0 if j is a neighbour of i, j ∈ Ni. The

requirement that (I −C)−1M is symmetric gives the condition cijσ
2
j = cjiσ

2
i .

23



Simultaneous autoregressive models (SAR)

SAR models can be written as

yi = µi +
n∑

j=1

cij(yj − µj) + ϵi

for i = 1, . . . , n. Cressie (1993) shows that any SAR model can be expressed as a CAR

model but not vice versa. Hence the CAR model is a more general form and therefore

preferable.

Link between CAR models and AR1

The CAR model can be expressed in a form that gives the same variance covariance

structure as an autoregressive (ar1) process. This link between the two models, plus the

fact that the CAR model can be applied to lattice data on a 2d grid in a single non

separable model (as an alternative to the separable ar1(Column).ar1(Row) model) makes

the CAR model a potentially useful model for modelling spatial data from perennial crop

breeding trials. The added attraction is that the CAR model can be extended to the

multivariate case and so may provide a method for modelling the multiple measurements

on each plot in the lattice.

Stringer (2006) shows the connection between CAR models and autoregressive ar1

models, as used in the analysis of spatial �eld trials. This link is presented in the follow-

ing sections.

The covariance matrix for an autoregressive process of order 1 (ar1) is given by

Σ =



1 ϕ ϕ2 . . . ϕr−1

ϕ 1 ϕ . . . ϕr−2

ϕ2 ϕ 1 . . . ϕr−3

...
...

...
. . .

...

ϕr−1 ϕr−2 . . . ϕ 1


The inverse of this matrix is given by

Σ−1 =
1

1− ϕ2



1 −ϕ 0 . . . 0

−ϕ 1 + ϕ2 −ϕ . . . 0

0 −ϕ 1 + ϕ2 . . . 0
...

...
...

. . .
...

0 0 . . . −ϕ 1


Cressie (1993) shows that any Gaussian distribution on a �nite set of sites (Y ∼
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N(µ,Σ) can be expressed as a CAR model. To see this we let

M = diag (Σ)

and

C = I −MΣ−1

therefore

MΣ−1 = I −C

Σ = (I −C)−1M

If we use this result and note that M = diag (Σ) = diag
(
Σ−1

)−1
we can write M

and C in terms of the inverse of the ar1 covariance matrix, above. That is

M = diag

(
1

1− ϕ2
,
1 + ϕ2

1− ϕ2
,
1 + ϕ2

1− ϕ2
, . . . ,

1

1− ϕ2

)−1

= diag

(
1− ϕ2,

1− ϕ2

1 + ϕ2
,
1− ϕ2

1 + ϕ2
, . . . , 1− ϕ2

)
and C = I −MΣ−1 where

MΣ−1 =



1 −ϕ 0 . . . 0
−ϕ

1+ϕ2 1 −ϕ
1+ϕ2 . . . 0

0 −ϕ
1+ϕ2 1 . . . 0

...
...

...
. . .

...

0 0 . . . −ϕ 1


hence

C =



0 ϕ 0 . . . 0
ϕ

1+ϕ2 0 ϕ
1+ϕ2 . . . 0

0 ϕ
1+ϕ2 0 . . . 0

...
...

...
. . .

...

0 0 . . . ϕ 0


Now, Ci,i−1 = Ci,i=1 =

ϕ
1+ϕ2 for all (i, i−1) and (i, i+1) terms, except if i = 1 or n, where

C12 = Cn,n−1 = ϕ = ϕ
1+ϕ2 +

ϕ3

1+ϕ2 . Hence we can write C as

C = ηN + νJ

where η = ϕ
1+ϕ2 , N is a neighbour matrix with elements indexed by (i, i+1) and (i, i− 1)
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equal to 1, and all other terms equal to 0, ν = ϕ3

1+ϕ2 and J is a matrix with elements (1, 2)

and (n, n− 1) equal to 1 and 0 otherwise.

Zimmerman & Harville (1991) note that if ϕ2

1−ϕ2 is added to the �rst and last elements

of Σ−1, then it can be shown that M = diag
(

1−ϕ2

1+ϕ2

)
and C = ηN where η = ϕ

1+ϕ2 .

1.3.7 Multivariate CAR models

As mentioned in the previous section, the CAR model may be extended to the multivariate

setting. Multivariate Conditional Autoregressive (MCAR) models can be used to model

multivariate spatial data where a p dimensional random variable Y i is associated with

each spatial location on a lattice. This may provide a suitable approach for modelling

the spatio-temporal residual correlation structure which arises from the multiple harvest

measurements made on spatially referenced �eld plots in perennial crop breeding trials.

Mardia (1988) introduced MCAR models by generalizing CAR models to the multi-

variate case. Kim (2001) presented a 'two fold' CAR model which modelled counts for

two di�erent types of diseases over each lattice point, but was restricted to the bivariate

case. Gelfand & Vounatsou (2003) and Banerjee et al. (2004) built on the work of Mar-

dia (1988) to develop multivariate CAR models for hierarchical modelling, using them in

applications such as spatial modelling of child growth, spatial patterns of gene frequency

and spatio-temporal survival data. Jin et al. (2005) proposed a generalised hierarchical

multivariate CAR model that reduces the computational e�ort in modeling. Pettit et al.

(2002) presented a CAR model for irregularly spaced multivariate data, which models the

covariance function in terms of the Euclidean distance between points. Sain & Cressie

(2007) proposed a multivariate CAR model which allows for more general forms for the

spatial correlation and cross correlations between variables at di�erent sites. This method

di�ers to the previous methods in that it does not force the dependence between di�erent

variables at di�erent locations to be symmetric, allowing for more �exible modelling of

the spatial dependence structure.

A multivariate CAR (MCAR) model can be written in terms of conditional distribu-

tions, as

E (Y i|Y −i) = µi +
n∑

j=1

Λij(Y j − µj)

var (Y i|Y −i) = Γi

where each Y i is a p dimensional random variable and Y −i indicates all Y j such that

j ̸= i for i, j = 1, . . . , n.

Each Λij are p × p matrices with Λii = −I for i = 1, . . . , n and Λij = 0 for j not a

neighbour of i. Each Γi are also p × p matrices. Two assumptions need to be made on

the MCAR model to ensure the existence of a joint distribution for Y (Sain & Cressie,

2007).
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The �rst assumption

ΛijΓj = ΓiΛji
T

ensures symmetry of var (Y ).

The second assumption

Block(−Γi
−1Λij) or Block(−Λij) is positive de�nite,

where Block(Λij) is a block matrix with the (i, j)th block = Λij, ensures positive de�nite-

ness of var (Y ).

Then from Mardia (1988)

Y ∼ N(µ,Σ)

where Σ = [Γ(I − Λ)]−1, Λ is a np × np matrix with (i, j)th block = Λij, Λii = 0 for

i, j = 1, . . . , n and Γ is a np× np block diagonal matrix with p× p diagonal entries Γi.

1.4 Outline of thesis

The aim of this thesis is to investigate methods for analysing data from multi-harvest,

multi-environment variety selection trials in perennial crops.

In Chapter 2 a review of mixed models applicable to multi-harvest, multi-environment

trials and their estimation using REML is presented. These models and estimation meth-

ods form the basis for the approaches used in the rest of the thesis.

In Chapter 3 the spatial analysis methods of Gilmour et al. (1997) are applied to the

analysis of data from individual harvests of the motivating lucerne and chicory data sets.

These analyses show that in many trials spatial variation is evident. In some trials the

spatial correlation parameters are shown to vary across harvests while in others they are

similar. This highlights the need to develop �exible spatial and temporal models for the

residual correlation structure in the models for perennial crop data.

In Chapter 4 simulation studies are conducted to investigate the e�ect of the spatial

analysis methods on the estimation of genetic e�ects and how the estimates from spatial

models and RCB compare to the true genetic e�ects. Simulations are also performed to

investigate the impact of �tting measurement error in the spatial model.

In Chapter 5 methods for analysing data from multiple harvests at a single site using

separable spatial and temporal residual covariance structures are presented. Models for

analysing variety e�ects over time are developed. These methods are applied to the multi-

harvest analysis of the lucerne yield and persistence data from a single site, in Chapter

6.

In Chapter 7 the separable residual models and models for genetic e�ects for multi-

harvest data are extended to the multi-environment situation for the analysis of the com-

bined multi-harvest data across sites. The methods are applied in the multi-environment

analysis of the lucerne yield and persistence data.
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The assumption of separability of spatial and temporal residual correlation processes

made in Chapters 5 to 7 is a big assumption which may not always hold in practice. It is

likely that the spatial correlation parameters will vary over harvests in many situations. It

is therefore desirable to investigate non-separable residual models which allow for varying

spatial correlation across the harvest times. In Chapter 8 the Multivariate Autoregressive

model (MVAR1) is investigated as a suitable non-separable spatio-temporal model for

the modelling the residual correlation structure in one direction (e.g. Row). Code is

presented to �t these models and they are applied to both multi-harvest and multi-trait

examples using the lucerne yield and persistence data. The models are found to provide

a signi�cantly better �t than the separable residual models of Chapters 5 and 6.

In Chapter 9 the non-separable MVAR1 models are extended to the two directional

lattice situation (with spatial correlation in both Row and Column directions) using the

theory of MCAR models. Code has been written to implement the resulting two dimen-

sional multivariate autoregressive models (2dMVAR1) and they are applied to the lucerne

data. These models are compared to the separable models of Chapters 5 and 6 and shown

to be a signi�cant improvement in most cases.

The �nal chapter provides an overall summary of the thesis and discusses further

research that may provide further insight into this area of work.
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Chapter 2

Review: Statistical models

2.1 Introduction

The methods developed in this thesis are based on the linear mixed model. A linear

mixed model has both �xed and random e�ects and can be regarded as an extension of

the classical linear model. In this chapter a linear mixed model for data obtained from

multiple harvests made on �eld trials grown in multiple environments (hereafter referred

to as multi-harvest METs) is presented, together with details of estimation using best

linear unbiased prediction (BLUP) and residual maximum likelihood (REML).

2.2 Linear mixed model

Consider a series of multi-environment trials (MET) consisting of t trials in which m

varieties are grown (not all varieties need to be grown in all trials; i will index the variety

(i = 1, . . . ,m)), in which multiple harvests are made on each trial. The jth trial consists

of nj plots in a rectangular array consisting of cj columns by rj rows (nj = cjrj). Denote

the number of harvests for the jth trial by hj and let k refer to the harvests within each

trial (k = 1, . . . , hj). The total number of trial by harvest combinations is h+ =
∑t

j=1 hj.

Let yjk be the nj × 1 vector of observations for harvest k in trial j (j = 1, . . . , t, k =

1, . . . , hj), ordered as rows within columns and let yj be the hjnj×1 vector of observations

(for example yield) for trial j, ordered as rows within columns within harvests. The data

combined across trials is denoted by y = (yT
1 y

T
2 . . .y

T
t )

T ; this is an N × 1 vector with

N =
∑t

j=1 hjnj.

A linear mixed model for the vector of observations, y can be written as

y =Xτ +Zgug +Zouo + e (2.2.1)

where τ is a vector of �xed e�ects with design matrix X (assumed to be of full column

rank), ug is the h+m × 1 vector of random variety (or genetic) e�ects with associated

design matrix Zg, uo is a vector of other random e�ects with associated design matrix

Zo and e is the N × 1 vector of residuals.

The random e�ects from the linear mixed model (2.2.1) are assumed to follow a Normal
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distribution with zero mean vector and variance-covariance matrix

var


 ug

uo

e


 =

 Gg(γg) 0 0

0 Go(γo) 0

0 0 R(ϕ)


where Gg, Go and R are variance matrices which are functions of the vectors of variance

parameters γg, γo and ϕ respectively.

The distribution of the data y is therefore Normal with meanXτ and variance matrix

var (y) =H = ZgGgZg
T +ZoGoZo

T +R

Variance models for residual e�ects (R)

In some situations the vector of residuals e will be indexed by a factor or factors de�ning

sections in the data. Residuals for di�erent sections may be denoted by ei and hence

e may be written as a series of vectors, e = (eT1 e
T
2 . . . e

T
s )

T . For example, in data from

multi-harvest METs these sections may represent di�erent trials, or in some situations

harvests within trials. It is assumed that each section has it's own variance matrix but

the residuals from the di�erent sections are independent. Hence the variance matrix for

the residuals, R can be written as

R = diag (Ri) =


R1 0 . . . 0

0 R2 . . . 0
...

...
. . .

...

0 . . . 0 Rs


Variance models for genetic e�ects (Gg)

The h+m × 1 vector of genetic e�ects, ug for m varieties in each of the h+ environ-

ments (where environment comprises of harvests and trials) can be considered as a two-

dimensional (variety by environment) array of e�ects, U g (of m rows and h+ columns),

where ug = vec[U g].

The h+m× h+m variance matrix of the variety by environment e�ects is assumed to

have the separable form

Gg = Ge ⊗Gv

where Ge is a h+×h+ genetic variance matrix representing the variances and covariances

between the harvests and trials, and Gv is a m ×m symmetric positive de�nite matrix

representing the structure for the varieties.

It is commonly assumed that Gv = Im (that is the varieties are independent but if a

pedigree structure is known for the varieties other forms of Gv may be applicable (see

Oakey et al., 2006).
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Variance models for non genetic random e�ects (Go)

The vector of non-genetic random e�ects uo may include many random e�ect terms.

Hence the vector uo may be composed of b subvectors, such that, uo = (uT
o1u

T
o2 . . .u

T
ob)

T ,

where the subvector uoi is the vector of e�ects for the ith random term and is of size

qi × 1. These subvectors are assumed to be independently normally distributed with

variance matrices Goi. Therefore the variance matrix for the non genetic random e�ects,

Go, can be written as

Go = diag (Goi) =


Go1 0 . . . 0

0 Go2 . . . 0
...

...
. . .

...

0 . . . 0 Gob


In this thesis a key issue will be the choice of models for Gg, Go and R. Di�erent

forms for these variance matrices will be discussed in subsequent chapters, depending on

the situation involved.

2.3 Estimation and prediction

Estimation in the linear mixed model involves estimating the �xed and random e�ects, τ

and ug and uo, and the variance parameters, κ = (γg
Tγo

TϕT )T . This involves two linked

processes, namely the estimation of the �xed and random e�ects for given κ, which is done

using Best Linear Unbiased Prediction (BLUP) (�rst introduced by Henderson, 1950), and

the estimation of the variance parameters κ using Residual Maximum Likelihood (REML)

(Patterson & Thompson, 1971). Thompson (2008) presents a review of estimation in

mixed models and how the methods have evolved. In this chapter some of the main

concepts of BLUP and REML and their derivations will be presented.

In order to simplify the account of the estimation of parameters in the linear mixed

model, the mixed model of (2.2.1) is condensed to be written in the general form as

y =Xτ +Zu+ e

where τ is the vector of p �xed e�ects with design matrixX (assumed to be of full column

rank), u = (uT
g u

T
o )

T is the vector of b random variety and other non genetic e�ects, with

associated design matrix Z = [ZgZo], and e is the vector of residuals.

The random e�ects are assumed to follow a Normal distribution with zero mean vector

and variance-covariance matrix

var

([
u

e

])
=

[
G(γ) 0

0 R(ϕ)

]

whereG = diag (Gg,Go) and γ = (γT
g γ

T
o )

T is the vector of variance parameters associated

with u (partitioned into genetic and other non genetic variance parameters) and the vector
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of variance parameters associated with e is given by ϕ.

The distribution of y is therefore Normal with mean Xτ and variance matrix

var (y) =H = ZGZT +R

2.3.1 Best linear unbiased prediction

Best linear unbiased prediction of the �xed and random e�ects in the linear mixed model

(2.2.1) results in the best linear unbiased estimates (BLUEs) of the �xed e�ects and the

best linear unbiased predictors (BLUPs) of the random e�ects. Note there is a distinction

made between the estimation of �xed e�ects and prediction of random e�ects. This is

denoted by using τ̂ to represent the BLUE of τ and ũ to represent the BLUP of u.

Properties of the BLUPs of the random e�ects are discussed by Robinson (1991) and

Thompson (2008). They are linear functions of the data y, they are unbiased in that

E(ũ − u) = 0, and they are best in that of all unbiased predictors they minimize the

mean squared error (MSE) between the true and predicted e�ects.

A number of derivations of Best Linear Unbiased Prediction (BLUP) are discussed in

Robinson (1991), including those given by Henderson (1963) and Henderson (1950).

Henderson (1963) show that the predictor of the of the linear combination kT
1 τ +k

T
2u

of �xed and random e�ects (where k1 and k2 are p × 1 and b × 1 vectors respectively),

which has minimum MSE among the class of unbiased predictors, is given by kT
1 τ̂ +k

T
2 ũ,

where τ̂ is a solution to the generalised least squares (GLS) equations

τ̂ = (XTH−1X)−1XTH−1y (2.3.2)

and

ũ = GZTH−1(y −Xτ̂ ) (2.3.3)

where ũ can be written as

ũ = GZTPy

where

P =H−1 −H−1X(XTH−1X)−1XTH−1 (2.3.4)

To see this, let aTy be a linear unbiased predictor of kT
1 τ + kT

2u so that

E(aTy) = E(kT
1 τ + kT

2u)

aTE(Xτ +Zu+ e) = E(kT
1 τ ) + 0

aTXτ = kT
1 τ
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which implies

aTX = kT
1

and

k1 =X
Ta (2.3.5)

Therefore, clearly not all values of k1 will result in the correct expected value and there

is a constraint that needs to be imposed.

To obtain the best linear unbiased predictor, the mean square error (MSE) needs to

be minimized. The MSE is given by

MSE = E
(
(aTy − kT

1 τ − kT
2u)

2
)

= E
(
(aTy − kT

2u)
2
)
− 2E

(
(aTy − kT

2u)(k
T
1 τ )

)
+ E

(
(kT

1 τ )
2
)

= var
(
(aTy − kT

2u)
)
+ (E

(
aTy − kT

2u
)
)2 − 2E

(
aTy − kT

2u
)
(kT

1 τ) + (kT
1 τ )

2

= var
(
(aTy − kT

2u)
)
+ (kT

1 τ )
2 − 2(kT

1 τ )(k
T
1 τ ) + (kT

1 τ )
2

= var
(
(aTy − kT

2u)
)

= aTHa+ kT
2Gk2 − aT cov (y, u)k2 − kT

2 cov (u, y)a

= aTHa+ kT
2Gk2 − 2aTZGk2

The MSE needs to be minimized subject to the constraint in (2.3.5). This can be achieved

using Lagrangian multipliers. The function to be minimized is

B = MSE + 2λT (k1 −XTa)

where λ is the vector of Lagrange multipliers. To minimize B the partial derivatives of

B with respect to a and λ are taken and equated to zero. Using Result A.3 the partial

derivative of B with respect to a is

∂B

∂a
= 2Ha− 2ZGk2 − 2Xλ

and equating to zero and solving for a results in

a =H−1ZGk2 +H
−1Xλ (2.3.6)

The partial derivative of B with respect to λ is

∂B

∂λ
= 2(k1 −XTa)
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and equating to zero, using (2.3.6) and solving for λ results in

λ = (XTH−1X)−1(k1 −XTH−1ZGk2)

Now substituting this into (2.3.6) results in

a = H−1ZGk2 +H
−1X(XTH−1X)−1(k1 −XTH−1ZGk2)

= H−1ZGk2 +H
−1X(XTH−1X)−1k1 −H−1X(XTH−1X)−1XTH−1ZGk2)

= (H−1 −H−1X(XTH−1X)−1XTH−1)ZGk2 +H
−1X(XTH−1X)−1k1

= PZGk2 +H
−1X(XTH−1X)−1k1

where P is given by (2.3.4).

Hence

aTy = kT
1 (X

TH−1X)−1XTH−1y + kT
2GZ

TPy

= kT
1 τ̂ + kT

2 ũ

where the BLUE of τ is

τ̂ = (XTH−1X)−1XTH−1y

and the BLUP of u is given by

ũ = GZTPy

The above form for the BLUPs requires the inversion ofH , the n× n variance matrix,

which may be computationally demanding. An alternative approach that does not require

the inverse of H was suggested by Henderson (1950) based on the so-called mixed model

equations.

XTR−1Xτ̂ +XTR−1Zũ = XTR−1y (2.3.7)

ZTR−1Xτ̂ + (ZTR−1Z +G−1)ũ = ZTR−1y (2.3.8)

The mixed model equations (2.3.7) and (2.3.8) are most often expressed in matrix form

as [
XTR−1X XTR−1Z

ZTR−1X ZTR−1Z +G−1

][
τ̂

ũ

]
=

[
XTR−1y

ZTR−1y

]
To obtain estimates for τ̂ and ũ, the mixed model equations need to be solved. Firstly

(2.3.8) is written in terms of ũ as

ũ = (ZTR−1Z +G−1)−1(ZTR−1y −ZTR−1Xτ̂ )

and substituting this into (2.3.7) gives
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XTR−1Xτ̂ +XTR−1Z(ZTR−1Z +G−1)−1(ZTR−1y −ZTR−1Xτ̂ ) =XTR−1y

Collecting terms results in

XT (R−1 −R−1Z(ZTR−1Z +G−1)−1ZTR−1)Xτ̂

=XT (R−1 −R−1Z(ZTR−1Z +G−1)−1ZTR−1)y (2.3.9)

and using Result A.1 in the Appendix it can be seen that

R−1 −R−1Z(ZTR−1Z +G−1)−1ZTR−1 = (R+ZGZT )−1

= H−1

Substituting this result in (2.3.9) gives

XTH−1Xτ̂ =XTH−1y

resulting in

τ̂ = (XTH−1X)−1XTH−1y

which is the BLUE given in (2.3.2).

Substituting τ̂ into (2.3.8) and rearranging leads to

ũ = (ZTR−1Z +G−1)−1(ZTR−1y −ZTR−1X(XTH−1X)−1XTH−1y)

= (ZTR−1Z +G−1)−1ZTR−1(I −X(XTH−1X)−1XTH−1)y

= GZTH−1(I −X(XTH−1X)−1XTH−1)y (using Result A.2)

= GZTPy

= GZTH−1(y −Xτ̂ )

which is the BLUP given in (2.3.3).

Note that the mixed model equations may be written for the expanded linear mixed

model (2.2.1) and the resulting BLUEs and BLUPs as X
TR−1X XTR−1Zo XTR−1Zg

ZT
oR

−1X ZT
oR

−1Zo +G
−1
o ZT

oR
−1Zg

ZT
gR

−1X ZT
gR

−1Zo ZT
gR

−1Zg +G
−1
g


 τ̂

ũo

ũg

 =

 X
TR−1y

ZT
oR

−1y

ZT
gR

−1y


The best linear unbiased estimates (BLUEs) of the �xed e�ects are given by

τ̂ = (XTH−1X)−1XTH−1y
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and the best linear unbiased predictors (BLUPs) of the random e�ects are

ũo = GoZ
T
oPy

ũg = GgZ
T
gPy

These estimates of �xed and random e�ects require estimates of the variance matrices

Go, Gg and R and their associated variance parameters. In practice these parame-

ters are estimated using Residual Maximum Likelihood (REML). On substituting these

REML estimates, empirical best linear unbiased estimators and predictors (EBLUEs and

EBLUPs) are obtained.

2.3.2 Residual maximum likelihood (REML) estimation

One possible approach for estimating the variance parameters in the linear mixed model

is to use the method of maximum likelihood (ML). The log likelihood for y may be

maximized with respect to the �xed e�ects τ and the variance parameters κ, to obtain

maximum likelihood estimates. However the resulting maximum likelihood estimates of

the variance parameters are biased due to the fact that the estimation of the �xed e�ects

is not taken into account when estimating the variance parameters. In some cases ML

can lead to inconsistent estimators (Neyman & Scott, 1948).

An alternative method which does account for the estimation of �xed e�ects is resid-

ual maximum likelihood (REML), introduced by Patterson & Thompson (1971). Unlike

maximum likelihood, REML estimation does not involve maximizing the whole likelihood

of y but the likelihood function based on the residuals after �tting the �xed e�ects. This

approach is preferred to ML due to it resulting in unbiased estimates of the variance

parameters.

The following derivation of the REML likelihood function given by Verbyla (1990),

involves partitioning the full likelihood of y into a conditional likelihood and a marginal

likelihood. The marginal log likelihood is the REML log likelihood. Maximizing this log

likelihood provides estimates of the variance parameters κ.

Verbyla (1990) considers a matrix L = [L1L2] where the matrices L1 and L2 are of

dimensions n× p and n× (n− p) respectively, and satisfy the conditions L1
TX = Ip and

L2
TX = 0. If the data y is transformed to LTy where

LTy =

[
LT

1 y

LT
2 y

]
=

[
y1

y2

]

then the distribution of the transformed data is given by[
y1

y2

]
∼ N

([
τ

0

]
,

[
LT

1HL1 LT
1HL2

LT
2HL1 LT

2HL2

])
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Noting that

f(y1,y2) = f(y1|y2)f(y2)

the distribution of LTy can be written as the product of the conditional distribution of

y1 given y2 (involving τ ) and the marginal distribution based on y2 (free of the �xed

e�ects). This marginal distribution is the basis for REML.

For the conditional distribution, the expected value of y1 given y2 is

E (y1|y2) = τ +LT
1HL2(L

T
2HL2)

−1y2

The variance of y1 given y2 is

var (y1|y2) = [LT
1HL1 −LT

1HL2(L
T
2HL2)

−1LT
2HL1]

= (LT
1 [H −HL2(L

T
2HL2)

−1LT
2H ]L1)

= (LT
1X(XTH−1X)−1XTL1)

= (XTH−1X)−1

using Results A.4 and A.5 in Appendix A.

Hence the conditional distribution of y1 given y2 is

y1|y2 ∼ N(τ +LT
1HL2(L

T
2HL2)

−1y2, (X
TH−1X)−1)

The marginal distribution of y2 is given by

y2 ∼ N(0,LT
2HL2).

The log likelihood of y1 given y2 is given by (ignoring terms not involving τ )

l = −1

2
(y1 − (τ +LT

1HL2(L
T
2HL2)

−1y2)
T (XTH−1X)(y1 − (τ +LT

1HL2(L
T
2HL2)

−1y2)

If we di�erentiate this log likelihood with respect to τ and equate to zero, we obtain the

following estimate of τ ,

τ̂ = y1 −LT
1HL2(L

T
2HL2)

−1y2

= LT
1 (y −HL2(L

T
2HL2)

−1y2)

= LT
1 (HH

−1y −HL2(L
T
2HL2)

−1LT
2HH

−1y)

= LT
1 (H −HL2(L

T
2HL2)

−1LT
2H)H−1y

= LT
1 (X(XTH−1X)−1XT )H−1y (using Result A.5 in Appendix A)

= (XTH−1X)−1XTH−1y
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which is the estimate obtained from the mixed model equations (2.3.7) and (2.3.8).

The REML log-likelihood is the marginal log likelihood based on y2. The likelihood

is given by

Lr =
1

(2π)
n−p
2 |LT

2HL2|
1
2

exp(−1

2
yT
2 (L

T
2HL2)

−1y2)

The log-likelihood (ignoring constant terms) is

lr = logLr = −1

2
log
(∣∣LT

2HL2

∣∣)− 1

2
yT
2 (L

T
2HL2)

−1y2

which can be written in terms free of L2 (using results in Verbyla, 1990) as

lr = −1

2
log (|H|)− 1

2
log
(∣∣XTH−1X

∣∣)− 1

2
yTPy (2.3.10)

where P is given by (2.3.4). The REML log-likelihood (2.3.10) is used to estimate the

variance parameters by solving the set of score equations below. With κ denoting the

vector of variance parameters associated with Go, Gg and R, the score for κi is given by

U(κi) =
∂lr
∂κi

= −1

2
tr
(
H−1Ḣ i

)
− 1

2
tr

(
(XTH−1X)−1∂(X

TH−1X)

∂κi

)
− 1

2
yT ∂P

∂κi
y

= −1

2
tr
(
H−1Ḣ i

)
+

1

2
tr
(
(XTH−1X)−1XTH−1Ḣ iH

−1X
)
− 1

2
yT ∂P

∂κi
y

= −1

2
tr
(
H−1Ḣ i

)
+

1

2
tr
(
H−1X(XTH−1X)−1XTH−1Ḣ i

)
− 1

2
yT ∂P

∂κi
y

= −1

2
tr
(
H−1Ḣ i −H−1X(XTH−1X)−1XTH−1Ḣ i

)
− 1

2
yT ∂P

∂κi
y

= −1

2
tr
(
PḢ i

)
− 1

2
yT ∂P

∂κi
y

= −1

2
tr
(
PḢ i

)
+

1

2
yTPḢ iPy (using Result A.3 in Appendix A)

= −1

2
tr
(
PḢ i

)
+

1

2
yTPqi (2.3.11)

where Ḣ i = ∂H/∂κi, (the �rst derivative of H with respect to κi), and qi = H iPy is

called the working variate for κi.

The REML estimate of κ is obtained by solving the set of score equations U (κ) = 0.

In general numerical methods must be used, for example using Fisher-scoring or Newton-

Raphson iterative procedures. These iterative procedures work by taking an initial esti-

mate for the vector of variance parameters κ, and updating this estimate by an amount

which depends on the score of the estimate and a descent direction, which in the Fisher-

scoring case is based on the inverse of the Expected Information matrix of κ and in the

Newton-Raphson case is based on the inverse of the Observed Information matrix. That

is, given an initial estimate κ(0), both algorithms update the vector κ to κ(1) using

κ(1) = κ(0) + I(κ(0),κ(0))−1U(κ(0)) (2.3.12)
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where U(κ(0)) is the score vector (2.3.11) and I(κ(0),κ(0)) is the expected information

matrix Ie of κ evaluated at κ(0) for Fisher-scoring and is the observed information matrix

Io(κ
(0),κ(0)) for the Newton-Raphson procedure. The elements of the observed informa-

tion matrix, are

Io(κi, κj) = − ∂2lr
∂κi∂κj

= −

[
−1

2

∂tr(PḢ i)

∂κj
+

1

2

∂yTPḢ iPy

∂κj

]

= −
[
−1

2
tr(−PḢjPḢ i + PḢ ij) +

1

2
yT (PḢ ijP − 2PḢ iPḢjP )y

]
= −

[
−1

2
tr(PḢ ij) +

1

2
tr(PḢjPḢ i)− yTPḢ iPḢjPy +

1

2
yTPḢ ijPy

]
=

1

2
tr(PḢ ij)−

1

2
tr(PḢ iPḢj) + y

TPḢ iPḢjPy − 1

2
yTPḢ ijPy(2.3.13)

where Ḣ ij = ∂2H/∂κi∂κj

The elements of the expected information matrix are

Ie(κi, κj) = E

(
− ∂2lr
∂κi∂κj

)
=

1

2
tr
(
PḢ iPḢj

)
(2.3.14)

Calculating the trace terms in the above information matrices (2.3.13) and (2.3.14) can

be very demanding computationally and sometimes not feasible when dealing with large

data sets. To overcome this problem an alternative iterative method called the average

information (AI) algorithm Gilmour et al. (1995) may be used. In this method the

average information matrix IA is obtained by (approximately) averaging the observed

and expected information matrices and approximating yTPḢ ijPy by it's expectation,

tr
(
PḢ ij

)
. The elements of the average information matrix are

IA(κi, κj) =
1

2
yTPḢ iPḢjPy

=
1

2
qTi Pqj

Hence given an estimate for κ = κ(m), an update based on the average information matrix

is calculated using (2.3.12) with I = IA.

Software and testing

The software used in this thesis to estimate the variance parameters from the linear mixed

model using REML, is ASReml in the R environment (Butler et al., 2009). ASReml

implements the Average Information (AI) algorithm (Gilmour et al., 1995).

To test the signi�cance of random e�ects in the linear mixed model the Residual

Maximum Likelihood Ratio Test (REMLRT) can be used. The REMLRT may be used
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to compare the �t of two models only if they are nested and contain the same �xed

e�ects. For two nested models, M0 and M1 with M1 having p1 variance parameters and

M0 having p0 variance parameters, with p1 > p0, the Residual Maximum Likelihood Ratio

Test Statistic (REMLRS) is calculated as −2(l0− l1) where l0 is the residual log-likelihood
for model M0 and l1 is the residual log-likelihood for model M1.

The standard REMLRS is asymptotically distributed as a chi-squared statistic with

p1 − p0 degrees of freedom. If however the test involves a null hypothesis where the

parameter is on the boundary of the parameter space the REMLRT needs to be adjusted.

For a test of a single variance component the theoretical asymptotic distribution of the

REMLRS is a mixture of chi-squared variates where the mixing probabilities are 0.5, one

with 0 degrees of freedom (a spike at 0) and the other with 1 degree of freedom. The

approximate P value for the REMLRS is 0.5(1 − Pr(χ2 ≤ d)) where d is the observed

value of the REMLRS (see Stram & Lee, 1994).

To compare the goodness of �t of two models (that may be non-nested) the Akaike

Information (AIC) criterion may be used. The AIC value for a model is calculated as

−2(l − p), where l is the residual log-likelihood for the model and p is the number of

variance parameters in the model. Models with smaller AIC values provide a better �t to

the data.

To test the signi�cance of �xed e�ects in a linear mixed model the Wald test may

be used. The traditional Wald statistic is asymptotically distributed as a chi-squared

distribution. This test is known to be anti-conservative (Butler et al., 2009). Kenward

& Roger (1997) presented an adjusted Wald statistic together with an F approximation

which they showed performed well across a variety of situations. The Wald tests used in

this thesis are based on these adjusted Wald tests, using "conditional" Wald statistics in

Asreml-R (Butler et al., 2009), giving an approximate F test for testing �xed e�ects.

The approach for model selection used in this thesis has been to use REMLRT (ad-

justed where necessary) for individual model comparisons involving nested models (pre-

sented in the text) and to present AIC values for all models in the tables. This allows for

an approach to compare across all models, nested and non-nested. The percent variance

explained in factor analytic models has also been investigated to assess model �t. This

approach is similar to that of Beeck et al. (2010) and Smith et al. (2007).
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Chapter 3

Spatial analysis for perennial crops

3.1 Introduction

In this chapter, a spatial analysis approach based on that of Gilmour et al. (1997)

(outlined in Chapter 1) combined with a randomization (or design) based approach will

be illustrated in analyses of the motivating lucerne and chicory data sets. The spatial

analysis methods will be applied to each individual harvest from each trial.

Spatial analyses in perennial crops using these techniques are not widespread. Some

exceptions include Smith et al. (2007) in sugarcane and Jones et al. (2009) in grapes. A

number of spatial analyses in perennial crops have been performed using more simplistic

methods such as nearest neighbour adjustments (Smith & Casler (2004), Smith & Kearney,

2002). In all mentioned analyses spatial correlation has been evident.

This chapter aims to demonstrate the presence of spatial variation and it's di�erent forms

in perennial pasture trials, the improvement in analysis by accounting for this spatial

variation and give an insight into the issues that will need to be addressed in modelling

the residual correlation structure in an analysis across harvests within a multi-harvest

trial. One of the main considerations is how spatial correlation may di�er between harvest

times within a trial for perennial crops. Similar studies investigating spatial correlation

over time in perennial crops have not been found in the literature.

3.2 Mixed model for spatial analysis

The spatial analysis is based on the linear mixed model of (2.2.1).

y =Xτ +Zgug +Zouo + e

where τ is a vector of �xed e�ects with design matrix X (assumed to be of full column

rank), ug is the h+m × 1 vector of random variety (or genetic) e�ects with associated

design matrix Zg, uo is a vector of other random e�ects with associated design matrix

Zo and e is the vector of residuals.

The random e�ects from the linear mixed model are assumed to follow a Normal
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distribution with zero mean vector and variance-covariance matrix

var


 ug

uo

e


 =

 Gg(γg) 0 0

0 Go(γo) 0

0 0 R(ϕ)


where Gg, Go and R are variance matrices which are functions of the vectors of variance

parameters γg, γo and ϕ respectively.

The spatial analysis presented aims to investigate the spatial models for each harvest

within each trial. This is analogous to treating each trial by harvest combination as a

separate trait and performing a separate spatial analysis on each trait.

Within the framework of the whole multi-environment, multi-harvest data set, pre-

sented in Chapter 2, the residual and genetic variance matrices are given by

R = diag ((Rjk)) (j = 1, . . . , t, k = 1, . . . , hj)

= diag ((Rs)) (s = 1, . . . , h+)

and

Gg = Ge ⊗Gv

= diag
(
(σ2

gjk
)⊗ Im

)
(j = 1, . . . , t, k = 1, . . . , hj)

= diag
(
(σ2

gs)⊗ Im
)

(s = 1, . . . , h+)

The residual variance structure, R, is de�ned to have h+ sections relating to the complete

set of trial by harvest combinations. Each harvest therefore has it's own residual variance

structure and the residuals are assumed independent between harvests.

The genetic variance structureGg assumes a di�erent genetic variance for each harvest

σgjk , and also assumes the genetic e�ects are not correlated between harvests. It also

assumes that the varieties are independent (Gv = Im).

The spatial modelling method follows that of Gilmour et al. (1997), (with the spa-

tial variation partitioned into global and local spatial trend and extraneous variation),

but with the added inclusion of the randomization or design terms. The approach is a

sequential one, commencing with the randomisation based model and then building on

this model to include other identi�ed sources of variation. After �tting the randomisation

terms the next step in the model building process is to model the local spatial variation.

Following Gilmour et al. (1997) this local spatial variation is modelled using a separable

correlation structure for the residuals from each trial by harvest combination. Therefore

the residual variance matrix for harvest k at trial j is given by

Rjk = σ2
jkΣcjk ⊗Σrjk

where Σcjk and Σrjk are the cj × cj and rj × rj spatial correlation matrices for harvest k

at trial j corresponding to the column and row dimensions respectively.

42



Diagnostic tools such as the sample variogram and residual plots (of residuals against

row (or column) number) are then used to assess the suitability of the model and to iden-

tify any global or extraneous variation. To model global trend and extraneous variation

Gilmour et al. (1997) �tted design factors or polynomial or spline functions (Verbyla

et al., 1999) to the row or column co-ordinates.

3.2.1 Variogram

The (theoretical) variogram for a two dimensional spatially correlated process S(.) at

locations s and t is de�ned in terms of the semi-variance, which is given by the expected

squared di�erence of the process between locations s and t. That is

ω(s, t) =
1

2
E[(S(s)− S(t))2]

If S(.) has zero mean then this gives half the variance of the di�erence between the two

locations. Therefore

ω(s, t) =
1

2
var (S(s)− S(t)) =

1

2
[V (s, s) + V (t, t)− 2V (s, t)]

where V (., .) is the covariance function of S(.). It is assumed that the spatial process has

a spatially constant mean and variance.

In the case of the spatially correlated ar1(Col).ar1(Row) error process (discussed in

Chapter 1) the semi-variance is given by

ω(s, t) = ω(l) = σ2(1− ϕ|lr|
r ϕ|lc|

c )

where l = (lr, lc) = |s − t| with lr being the distance between s and t in the row di-

rection and similarly lc, the separation in the column direction. This semi-variance is a

smooth exponentially increasing function in the row and column directions as the dis-

tance between plots increases, reaching a plateau at the process variance σ2. The greater

the autoregressive correlation coe�cients ϕr and ϕc, the slower the function rises to the

plateau.

In practice the sample variogram is calculated from observed half squared di�erences

of residuals for pairs of plots a given distance apart and is viewed as a 3 dimensional plot.

Therefore for the data y given in (2.2.1) the sample variogram for two locations si and

sj (where {si} is the vector of the plot co-ordinates), is de�ned as

υ̃ij =
1

2
[ẽi(si)− ẽj(sj)]

2

where

ẽ = {ẽi(si)} = y −Xτ̂ −Zgũg −Zoũo

As data from �eld trials are usually laid out in a regular array there will be many
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values of υ̃ij that have been calculated for the same absolute separation between plots.

These values are averaged for each displacement (with mean given by ῡij) and the sample

variogram is given as a 3 dimensional plot of the values (lijr, lijc, ῡij), where lijr = |sir−sjr|
and lijc = |sic − sjc| are the displacements in the row and column directions respectively.

The sample variogram can be used in the model building process to identify global

and extraneous variation. Variograms that depart from a smooth function indicate the

presence of extraneous variation while failure of the variogram to reach a plateau in either

the row or column direction provides evidence of global trend. The need to account for

measurement error can be seen in the variogram when there is a jump discontinuity at

zero separation.

Stefanova et al. (2009) suggest using the faces of the sample variogram (that is the

slices of the variogram corresponding to zero column or zero row displacement) together

with approximate 95% coverage intervals as an extra, diagnostic tool to aid in model

selection.

The approach to calculating the sample variogram faces and coverage intervals is

detailed in Stefanova et al. (2009). In summary, the approach involves �rstly �tting

the linear mixed model to the observed data and obtaining estimates of the variance

components and �xed e�ects. Then the sample variogram values are computed for the

row and column faces. Using the initial estimated variance parameters, simulated data

sets are generated by simulating values for the random e�ects. The linear mixed model is

then �tted to each of these simulated data sets and sample variogram values calculated for

each simulation. From these sample variogram values, mean values and 2.5% and 97.5%

percentiles can be calculated for each displacement for both the row face and column face.

A plot is then constructed of the observed variogram faces together with the means and

coverage intervals from the simulations.

Stefanova et al. (2009) propose that using the variogram slices together with 95%

coverage intervals provides a more formal approach to model selection than using the

standard sample variogram, thus providing a method that results in easier and more

informed model selection.

3.3 Spatial analysis of individual harvest data at each

site

The spatial analysis methods are applied in the following analyses of the yield and persis-

tence data from individual harvests from the lucerne variety trials and the yield analyses

from the chicory variety trial harvests. Each individual harvest from each trial is analysed

separately. To present the spatial modelli ng approach in full, the yield data from a single

harvest from the Terry Hie Hie site will be analysed in detail. The remaining analyses of

the 28 lucerne yield, 25 lucerne persistence and 11 chicory, trial by harvest combinations

will be presented in summary.
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3.3.1 Lucerne yield

The lucerne yield data was transformed prior to analysis using a cube root transformation

(ytransf = (y + 1)1/3). This transformation was required to stabilize the variance and

better approximate the assumed Gaussian distribution. The cube root transformation

was chosen (over the more commonly used log transformation) after careful consideration

of residual plots, in particular Normal Quantile-Quantile plots of residuals from analyses

of each harvest. The cube root transformation provided a less severe transformation, that

better approximated the Gaussian distribution, than the log transformation. The cube

root transformation is often used in transforming volume data and given the lucerne yield

data arose from cutting lucerne at a certain height from a plot of set length and width,

it was considered sensible for this application.

The �rst analysis presented here considers data from a single harvest (harvest 5) from

the Terry Hie Hie trial. The data from this harvest may be referred to as yjk where this

denotes the kth harvest of the jth trial (here k = 5 and j = 5 if the trials are numbered

1, . . . , 5 in alphabetical order).

The sequence of models �tted to the yield (kg DM/ha) data from harvest 5 (24/11/2005)

at the Terry Hie Hie site are given in Table 3.1. The �rst model �tted was a Randomised

Complete Block (RCB) model with random variety e�ects. Hence the mixed model for the

data yjk can be given by equation 3.2.1 with uo containing Rep e�ects plus random Variety

e�ects, τ containing a mean harvest term and the errors assumed to be independent with

Rjk = σ2
jkInj

= σ2
jkIcj ⊗ Irj

This residual correlation structure is denoted by id(Col).id(Row), where id refers to the

identity matrix. This model re�ects the experimental design or randomisation analysis.

The �rst attempt at improving the �t over and above the randomisation model was to

�t a spatial model to the residuals using a separable autoregressive process in the row and

column dimensions (ar1(Col).ar1(Row)). This is model 2 in Table 3.1. Hence the mixed

model contains the same terms as model 1 (above) but now

Rjk = σ2
jk(Icj +

cj−1∑
p=1

ϕp
cjk
F p)⊗ (Irj +

rj−1∑
p=1

ϕp
rjk
F p)

where ϕrjk and ϕcjk are the autoregressive spatial correlation parameters in the row and

column directions respectively, F p is a matrix with ones on the p
th sub and super diagonals

and zeroes elsewhere.

This model was a signi�cant improvement on the randomisation model as seen by the

Residual Maximum Likelihood Ratio Test (REMLRT) of 70.43 on 2 df which is highly

signi�cant (P < 0.001).

The residual plot from this model (Figure 3.1) shows the residuals being quite di�erent

in their mean levels for each column. That is, there is a clear e�ect associated with the

columns, with some columns having very low residuals (e.g. column 1) and other columns

45



Table 3.1: Summary of models �tted to Terry Hie Hie Harvest 5 (20/04/2004) lucerne
yield data.

Model Local spatial Rand Global/extraneous REML REMLRT
Correlation terms spatial termsa log-lik

1. RCB: id(Col).id(Row) Rep - 49.62
2. ar1(Col).ar1(Row) Rep - 84.83 P<0.001
3. ar1(Col).ar1(Row) Rep ran(Col) 92.40 P<0.001
4. ar1(Col).ar1(Row) Rep lin(Row) + ran(Col) 93.50 P=0.010b

5. id(Col).ar1(Row) Rep lin(Row) + ran(Col) 93.49 P=0.980
6. ar1(Col).id(Row) Rep lin(Row) + ran(Col) 81.50 P<0.001

a lin(Row) = �xed linear regression over row number; ran(Col) = random e�ects for columns
b tested using Wald test

having high residuals (e.g. column 2). This e�ect is also clearly seen in the sample

variogram (Figure 3.2), where there is a saw-toothed up-down pattern in the plot in the

column direction. This pattern is likely to be the result of extraneous variation within

the trial. These e�ects are also seen in the plot of the row face of the sample variogram

(corresponding to zero column displacement) in Figure 3.5 (a). The sill of the variogram

is much lower than the mean of the simulations and is near the lower boundary of the

coverage interval. As shown in Stefanova et al. (2009), this suggests random column

e�ects.

This e�ect can be accommodated in the model by including a random column e�ect

in uo, in the mixed model. This is �tted as model 3 in Table 3.1. This e�ect is shown to

be highly signi�cant based on the non standard REMLRT statistic (Stram & Lee, 1994)

of 15.12 (P < 0.001). The resulting sample variogram (Figure 3.3) no longer shows the

saw-toothed trend. Note that at large separations in both the row and column dimensions

the variogram is based on only a few points and should not be given much weight. The

variogram in Figure 3.3 no longer shows the trend due to the column e�ect but there

is evidence of global trend in the row direction with the variogram steadily increasing

and failing to reach a plateau in the row direction. This is also evident in the plot of

the row face of the sample variogram (Figure 3.5 (b)), where there is a steady increase

in semi-variance with increasing row displacement. This is indicative of a linear (global)

trend present in the residuals.

This global trend can be accommodated in the model in τ using a linear regression

over row number, denoted lin(Row). Model 4 builds on model 3 by including this �xed

linear row regression. Note that models 3 and 4 cannot be compared using the REMLRT

test as they do not contain the same �xed e�ects. However the linear row term can be

tested using the Wald test. It is shown to be signi�cant (P = 0.01). The variogram

from model 4 is given in Figure 3.4. The variogram no longer shows the trends associated

with the column e�ects or the global trend in the row direction. The row and column

faces of the variogram (Figure 3.5 (c) and (f)) now lie within the 95% coverage intervals

and follow the means of the simulations. The residual spatial autoregressive correlation
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Figure 3.1: Plot of residuals (from model 2 in Table 3.1 �tted to lucerne yield data from
harvest 5 at Terry Hie Hie) versus row number for each column
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parameters estimated in model 4 are 0.003 and 0.26 for the row and column directions

respectively. Tests to assess whether these parameters were signi�cantly di�erent to zero

were performed by �tting models 5 and 6. The tests showed the column spatial correlation

parameter was not signi�cant but the row correlation parameter was highly signi�cant.

Hence the �nal model for yield at Terry Hie Hie, harvest 5 (model 5) includes random

e�ects for Variety, Rep, Column, a �xed linear Row e�ect and assumes an id(Col).ar1(Row)

residual error process to model the local spatial correlation in the row direction. Therefore

the residual variance model �tted in the �nal model is given by

Rjk = σ2
jk(Icj ⊗ (Irj +

rj−1∑
p=1

ϕj
rjk
F p)

Figure 3.6 shows the BLUPs for each variety from the RCB model �tted to the yield

data from harvest 5 at Terry Hie Hie, (model 1) plotted against the BLUPs from the

spatial model (model 5). In this plot the cut-o� lines for the top 20% of varieties (top 12

varieties) under each method are displayed. It is of interest to compare the percentage of

varieties in common in the top ranking varieties from the two methods of analysis. There

are a number of varieties that are ranked in the top 20% under one approach but not the

other.
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Figure 3.2: Sample variogram of residuals from model 2 (in Table 3.1) �tted to lucerne
yield data from harvest 5 at Terry Hie Hie
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The analysis of the remaining 27 trial by harvest combinations from the 5 lucerne

trials, as detailed in Table 3.2, follows the same modelling approach. The �rst model

�tted in each case was the RCB model. The next step was to build on this randomisation

model to �t the ar1(Col).ar1(Row) model to the residuals. Using diagnostic tools such as

the variogram and plots of residuals against row number for each column (and column

number for each row), the adequacy of the model was assessed for each harvest. Based

on these diagnostics further terms were added to the model, where required, to account

for global and extraneous spatial variation. These terms are given in Table 3.2 (Linear

and Random Row, Random Column, Row1) and are included in uo or τ in (3.2.1).

The signi�cance of the ar1 spatial autocorrelation parameters in both row and column

directions was tested (using Residual Maximum Likelihood Ratio Tests (REMLRT)) and

in some cases it was su�cient to model the correlation in one dimension only (hence a

id(Col).ar1(Row) or ar1(Col).id(Row) model was �tted to the residuals.

To compare the �nal "best" spatial model against the RCB model for each harvest,

AIC values were calculated for the two models. The model with the smaller AIC value

is superior in terms of goodness of �t. In Table 3.2, the AIC values have been presented

for each of the best spatial models, as di�erences from the AIC value for the RCB model.

Hence negative values indicate the spatial to be a better �t than the RCB model. In cases
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Figure 3.3: Sample variogram of residuals from model 3 (in Table 3.1) �tted to lucerne
yield data from harvest 5 at Terry Hie Hie
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where extra �xed e�ect terms (e.g. lin(Row)) have been included in the spatial model the

AIC value for the RCB model has been calculated with the RCB model also including

these same �xed e�ects. In all but one harvest, the spatial models were a signi�cant

improvement on the RCB analysis. This illustrates spatial variation is an important

component of lucerne breeding trials that needs to be taken into account.

All three forms of spatial variation, local, global and extraneous (as described by

Gilmour et al., 1997) were evident in the lucerne trials. There was global trend in the

form of linear row e�ects present in harvests 2 to 5 at the Leadville site. There was

apparent extraneous variation in the data from harvest 10 at Terry Hie Hie. The �rst

row of this trial had very high residuals compared to the other rows. To account for this

variation, a factor with two levels (1 for plots in �rst row and 2 for others) was �tted as

a �xed e�ect.

Table 3.2 also presents the modelled local spatial trends as shown in the column and

row autocorrelation parameters. The correlation between adjacent plots was consistently

high in the row direction at all harvests at Euloma and Leadville, with correlations ranging

from 0.59 to 0.63 at Euloma and 0.31 to 0.67 at Leadville. The other trials had high

correlations at some harvests and not others, for example the correlations in the column

direction at Tamworth ranged from 0.18 to 0.59.
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Figure 3.4: Sample variogram of residuals from model 4 (in Table 3.1) �tted to lucerne
yield data from harvest 5 at Terry Hie Hie
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Heritabilities have been calculated for the spatial method and the non spatial ran-

domisation method using the following formula (Cullis et al. (2006)),

h2 = 1− A

2σ2
gj

(3.3.1)

where A is the average pairwise prediction error variance of variety e�ects and σ2
gj is the

genetic variance.

These heritabilities are also included in Table 3.2. In most cases the genetic variation

was very low and for some harvests it was zero hence many of the heritabilities are also

zero. In many cases the spatial method provided substantial increases in heritability, for

example at harvests 2 to 5 at Leadville where the heritabilities were essentially 0 under

the non spatial method and ranged from 0.22 to 0.46 under the spatial analysis method.
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Table 3.2: Summary of terms �tted to the lucerne yield data in the best spatial model for
each of the 28 lucerne trial by harvest combinations to account for non-genetic extraneous,
global and spatial variation in the data. AIC values for each model are given as di�erences
from the AIC for the RCB model. P values (based on the Wald test) are given for the
�xed e�ect terms accounting for global and extraneous trend in the model.

Trial / Residual Lin Ran Ran Spatial correlation AIC
Harvest Model Row Row Col Row1 Column Row ∆

(Col.Row)
Euloma 1 ar1.ar1 0.21 0.63 -82.5
Euloma 2 ar1.ar1 0.30 0.63 -85.8
Euloma 3 ar1.ar1 P<0.001 0.24 0.63 -96.8f

Euloma 4 id.ar1 - 0.59 -61.3
Euloma 5 ar1.ar1 0.26 0.61 -80.5
Euloma 6 id.ar1 - 0.62 -69.3
Leadville 1 id.ar1 - 0.45 -28.8
Leadville 2 id.ar1 P<0.001 - 0.66 -67.3f

Leadville 3 ar1.ar1 P<0.001 0.23 0.67 -76.0f

Leadville 4 id.ar1 P<0.001 - 0.59 -55.2f

Leadville 5 id.ar1 P<0.001 X - 0.31 -20.2f

Sandigo 1 ar1.ar1 P=0.01 0.27 0.60 -66.4f

Sandigo 2 ar1.ar1 X X 0.32 0.32 -55.1
Tamworth 1 ar1.ar1 0.59 0.45 -88.2
Tamworth 2 ar1.ar1 0.30 0.41 -43.3
Tamworth 3 ar1.ar1 0.18 0.17 -5.1
Tamworth 4 ar1.id X 0.23 - -31.1
Tamworth 5 ar1.ar1 X 0.44 0.21 -44.9
Terry Hie Hie 1 id.ar1 - 0.27 -10.8
Terry Hie Hie 2 id.ar1 X - 0.33 -19.7
Terry Hie Hie 3 id.ar1 X - 0.24 -12.8
Terry Hie Hie 4 id.ar1 X - 0.11 -24.0
Terry Hie Hie 5 id.ar1 P<0.001 X - 0.26 -79.5f

Terry Hie Hie 6 id.ar1 X - 0.37 -57.7
Terry Hie Hie 7 id.ar1 - 0.20 -3.2
Terry Hie Hie 8 id.ar1 X - 0.21 -14.9
Terry Hie Hie 9 id.id - - 0
Terry Hie Hie 10 id.ar1 P<0.001 - 0.27 -7.3

Lin Row = �xed linear regression over row number; Ran Row = random e�ects for rows;
Ran Col = random e�ects for columns
f denotes AIC calculated for RCB model with same �xed e�ects as best spatial model

51



Figure 3.5: Plot of faces of the sample variogram (solid line) and mean (dotted line) and
approximate 95% coverage intervals (dashed lines) for models 2,3,4 (in Table 3.1) �tted
to lucerne yield data from harvest 5 at Terry Hie Hie; (a) Model 2 row face, (b) Model
3 row face, (c) Model 4 row face, (d) Model 2 column face, (e) Model 3 column face, (f)
Model 4 column face
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Figure 3.7 presents the residuals from the analysis of each harvest at Terry Hie Hie.

It can be seen that the residuals exhibit temporal correlation between harvests. This

correlation is generally highest between successive times.

3.3.2 Lucerne persistence

The lucerne persistence data (based on percentages) was transformed prior to analysis,

using an empirical logit transformation (log((P + 0.5)/(n − P + 0.5))), where P is the

number of squares in the measurement grid (of n = 100 squares) that have a plant or

plants present. This transformation maps the percentage data from the (0, 1) range to

the real line, thereby providing a better approximation to the Gaussian distribution.

The analysis of the lucerne persistence data proceeded as for the yield data (above),
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Figure 3.6: BLUPs from model 1 (RCB) vs BLUPs from spatial model (model 5 in Table
3.1) for harvest 5 at Terry Hie Hie. Vertical and horizontal lines show the top 20% of
varieties based on each method
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commencing with �tting a Randomized Complete Block (RCB) model to data at each

harvest and then building on this model using the sequential spatial modelling approach

of Gilmour et al. (1997). The terms �tted to account for global and extraneous spatial

variation are given in Table 3.4. There were random Column e�ects identi�ed in 12 of

the 25 harvests.

There was signi�cant local spatial correlation between neighbouring plots in 15 of the

harvests, mostly in the row direction. These spatial correlation parameters are given

in Table 3.4. Once again, the di�erence between spatial correlations and trend terms

between sites and harvests within a site is observed. The AIC values show the spatial

model providing a better �t to the data than the RCB model in 21 out of 25 harvests.

3.3.3 Chicory

The chicory yield data was transformed prior to analysis using the cube root transfor-

mation (ytransf = (y + 1)1/3). This transformation was required to stabilize the variance

and better approximate the Gaussian distribution. The modelling process for the chicory

data followed that of the lucerne data (above).

There was evidence of local spatial correlation with 9 out of 11 harvests having sig-
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Table 3.3: Genetic and Residual variances and heritabilities calculated for the RCB and
spatial models �tted to the Yield data from 28 lucerne trial by harvest combinations

Trial / Harvest RCB Spatial Heritabilities
Genetic Residual Genetic Residual RCB Spatial

Euloma 1 4020.33 23649 1091.94 27298 0.33 0.23
Euloma 2 0.01 38688 0.17 42047 0 0
Euloma 3 0.01 102329 0.02 98699 0 0
Euloma 4 0.00 47948 0.01 52571 0 0
Euloma 5 2693.76 44896 690.79 49342 0.14 0.09
Euloma 6 201.95 50488 0.00 29069 0.01 0

Leadville 1 1842.60 18426 3701.16 41124 0.22 0.28
Leadville 2 0.00 16660 1663.68 13864 0 0.46
Leadville 3 0.00 32529 2219.58 20178 0 0.41
Leadville 4 0.00 25195 836.10 16722 0 0.22
Leadville 5 0.01 53354 1855.85 37117 0 0.17
Sandigo 1 1420.25 10925 1035.72 11508 0.29 0.38
Sandigo 2 4148.80 20744 2521.68 12008 0.38 0.41

Tamworth 1 473.68 47368 1990.32 49758 0.03 0.25
Tamworth 2 0.00 25513 0.00 25746 0 0
Tamworth 3 0.00 37990 0.00 38649 0 0
Tamworth 4 0.00 31703 0.00 23796 0 0
Tamworth 5 0.01 41747 1686.70 33734 0 0.19

Terry Hie Hie 1 0.02 50580 0.01 51034 0 0
Terry Hie Hie 2 1635.00 32700 2633.04 32913 0.14 0.23
Terry Hie Hie 3 0.00 33497 0.00 33975 0 0
Terry Hie Hie 4 2103.40 10517 1346.85 8979 0.37 0.31
Terry Hie Hie 5 944.08 11801 1437.16 7564 0.19 0.44
Terry Hie Hie 6 13131.85 11419 13175.36 7486 0.77 0.85
Terry Hie Hie 7 1825.44 15212 655.72 16393 0.27 0.13
Terry Hie Hie 8 1084.02 15486 439.50 14650 0.17 0.09
Terry Hie Hie 9 2289.60 12720 - - 0.34 -
Terry Hie Hie 10 1936.14 32269 2677.78 19127 0.14 0.33

ni�cant autocorrelation between plots in the row direction. In these harvests the spatial

correlation parameters ranged from 0.24 to 0.64 and are given in Table 3.5. There were

no terms identi�ed to account for global trend or extraneous variation. The AIC values

show the spatial model providing a better �t to the data than the RCB model in 9 out of

11 harvests.

3.4 Discussion

The analyses presented in this chapter demonstrate the presence of spatial variation in

lucerne and chicory pasture trials. This variation occurs in the form of global and ex-

traneous trends and local spatial correlation between neighbouring plots. These di�erent

types of spatial variation are unlikely to have been identi�ed using classical randomisation

methods or Nearest Neighbour methods of analysis.
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Table 3.4: Summary of terms �tted to the Persistence data in the best model for the
26 lucerne trial by harvest combinations, to account for non-genetic extraneous, global
and spatial variation in the data. AIC values are given as di�erences from the AIC for
the RCB model. P values (based on the Wald test) are given for the �xed e�ect terms
accounting for global and extraneous trend in the model.

Trial / Residual Lina Rana Rana Spatial correlation AIC
Harvest Model Row Row Col Column Row ∆

(Col.Row)
Euloma 1 id.ar1 - 0.20 -3.2
Euloma 2 ar1.ar1 0.21 0.17 -6.6
Euloma 3 id.ar1 P<0.001 - 0.15 -1.2f

Leadville 1 id.id - - 0
Leadville 2 id.id X - - -11.0
Leadville 3 id.ar1 X - 0.21 -10.3
Leadville 4 id.ar1 - 0.34 -9.9
Leadville 5 id.ar1 - 0.32 -10.2
Leadville 6 id.ar1 X - 0.20 -94.9
Leadville 7 id.id - - 0
Sandigo 1 ar1.ar1 0.23 0.25 -8.6
Sandigo 2 ar1.ar1 0.25 0.36 -15.5
Sandigo 3 id.ar1 X - 0.31 -29.1
Sandigo 4 ar1.ar1 0.47 0.45 -44.4
Tamworth 1 id.ar1 X - 0.30 -65.2
Tamworth 2 id.id X - - -27.4
Tamworth 3 ar1.id X 0.33 - -37.0
Tamworth 4 ar1.id X 0.17 - -15.1
Tamworth 5 id.id X - - -32.0
Terry Hie Hie 1 id.id X - - -11.1
Terry Hie Hie 2 id.id - - 0
Terry Hie Hie 3 id.id - - 0
Terry Hie Hie 4 id.id X - - -5.9
Terry Hie Hie 5 id.ar1 - 0.17 -1.9
Terry Hie Hie 6 id.id X - - -31.2

a Lin Row = �xed linear regression over row number; Ran Col = random e�ects for columns
f denotes AIC calculated for RCB model with same �xed e�ects as best spatial model
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Figure 3.7: Pairwise plots of residuals from individual analyses of yield data from harvests
at Terry Hie Hie
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Table 3.5: Summary of terms �tted to the chicory data, to account for non-genetic extra-
neous, global and spatial variation, in the best model for each of the 11 harvests at Keith.
AIC values are given as di�erences from the AIC for the RCB model. P values (based on
the Wald test) are given for the �xed e�ect terms accounting for global and extraneous
trend in the model.

Trial / Harvest Residual Spatial correlation AIC
Model(Col.Row) Column Row ∆

Keith 1 id.ar1 - 0.31 -2.2
Keith 2 id.ar1 - 0.24 -1.0
Keith 3 id.id - - 0
Keith 4 id.ar1 - 0.64 -23.4
Keith 5 id.ar1 - 0.61 -15.0
Keith 6 id.ar1 - 0.32 -1.0
Keith 7 id.id - - 0
Keith 8 id.ar1 - 0.32 -2.3
Keith 9 id.ar1 - 0.54 -8.3
Keith 10 id.ar1 - 0.55 -13.9
Keith 11 id.ar1 - 0.61 -19.4
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In all analyses the local spatial correlation parameters were positive, re�ecting the

ideas of Fisher (1935), in that plots that are in close proximity are likely to be more alike

than those further apart. There was no evidence of interplot competition which would be

indicated by negative spatial correlation parameters (Stringer & Cullis, 2002).

With the lucerne yield data all harvests except two showed local spatial correlation

in the row direction. Many harvests also showed local spatial correlation in the column

direction, including the harvests at Tamworth where the layout was di�erent to the other

trials (with 12 columns at Tamworth rather than 6 at the other sites). The spatial cor-

relation parameters across the harvests ranged from 0 − 0.67 in the row direction and

0 − 0.59 in the column direction. Within a trial the spatial correlation parameters were

similar across the harvests for some trials, (for example at Euloma where the row spatial

correlation parameters ranged from 0.59− 0.63), while for other trials the spatial correla-

tion varied across harvests (for example at Tamworth the column correlation parameters

ranged from 0.18−0.59). Many harvests showed extraneous variation associated with the

columns, and at the Leadville site there was clear global trend in the row direction for all

harvests besides the �rst.

There are many possible explanations for the extraneous and global variation evident

in the lucerne trials, depending on the trial and harvest. For example in the analysis of

the yield data at Terry Hie Hie the �rst three harvests show no signi�cant extraneous

variation associated with the columns but then four out of the next six harvests had such

extraneous variation, with the external columns (1 and 6) having lower residuals than

the internal columns. This may be due to the change in harvest area of the plots with

harvests 1 to 3 only harvesting a subsection of the length of the plot while harvests 4-10

cut the whole length of the plot (see Table 1.1. Therefore in harvests 4-10 the outside of

the trial area (outside of columns 1 and 6) are harvested whereas in harvests 1-3 this is

not included. This may have resulted in lower values for the external plots and hence the

column e�ect. The linear row e�ect for yield at Leadville may be related to the harvesting

pattern of the trial as the plots were harvested across columns (all row1 then row2, row3

etc.). Hence the trend could be associated with the time of harvest. Alternatively it could

be associated with soil trends or slope of the trial site.

The lucerne persistence data showed local spatial correlation between plots at a number

of harvests, especially in the row direction. The spatial correlation parameters across the

harvests ranged from 0−0.43 in the row direction and 0−0.47 in the column direction. In

general the local spatial correlation observed was lower for the persistence data than the

yield data (Tables 3.4 and 3.2). There was also evidence of extraneous variation associated

with the columns at many harvests. With the lucerne persistence data, a similar e�ect of

the external columns (to that of the Terry Hie Hie yield) is evident, but for some harvests,

e.g. at Sandigo harvest 3, the residuals are lower for the edge columns, whereas for Terry

Hie Hie the edge columns have higher residuals than the other columns.

The chicory yield data exhibited signi�cant local spatial correlation in the row direction

at many harvests. The spatial correlation parameters varied across the harvests, ranging

from 0− 0.64. With only four columns in the trial it was decided not to �t local spatial
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correlation models in the column direction. There was no obvious extraneous or global

spatial variation identi�ed.

It has been shown that one spatial model is not necessarily suitable for all trials

and harvests within a trial. Each spatial model for each trial and harvest needs to be

formulated using diagnostic aids and tests. There are many reasons why the spatial

variation is likely to be di�erent across trials and harvests within a trial. Trial sites will

vary in their soil fertility and soil moisture, and management practices are likely to di�er

between trials, all impacting on the spatial variation. Within a trial the spatial variation

may be expected to di�er between harvest times due to factors such as seasonal changes,

growth phase of the crop and changes in soil moisture levels. The results of analyses here

have shown that while the spatial correlation parameters between plots are consistent

across harvests at some trials, they vary considerably for others.

The importance of accounting for the di�erent forms of spatial variation can be clearly

seen in the improvement in AIC values between the RCB model and spatial model at

most harvests. Accounting for the spatial variation will result in more accurate variety

predictions. The di�erence between these predictions under the two models can be seen

in Figure 3.6 where the BLUPs from the spatial model and RCB model for the yield at

harvest 5 at Terry Hie Hie are plotted against one another. In the top 20% of varieties

under the two methods there are 9 out of 12 (75%) of varieties in common between the

two methods. Hence 3 of the varieties selected in the top 20% under the improved spatial

method would not have been selected if the RCB analysis had been used.

3.5 Conclusions

Spatial variation is clearly evident in variety selection trials in perennial pasture crops.

Variety selections will be a�ected if this spatial variation is not accounted for. Hence

approaches for analysing variety selection data from perennial crops need to incorporate

spatial analysis methods.

While in this chapter each harvest time has been analysed separately to better un-

derstand the spatial variation at each harvest, in order to obtain variety predictions for

selection of new varieties, it would be more informative for the breeder to analyse the

data across harvests and sites. Methods for analysing multi-site variety selection trials in

annual crops are well developed (see Smith et al., 2005 for a review) and the methods may

be extended to handle perennial crops. There are two extra issues that need considera-

tion in such an analysis; one being how best to model the residual correlation structure

within a trial with multiple harvests and secondly how best to model the genetic e�ects

over time. The residual correlation structure will need to take into account both spatial

variation between plots and temporal correlation between harvests. As has been shown

in this chapter the spatial correlation is likely to vary between harvests and hence the

residual correlation model will ideally provide for spatio-temporal interaction. This study

has provided new insight into the spatial and temporal issues impacting multi-harvest

data in perennial crops. In subsequent chapters methods addressing these issues will be
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presented.
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Chapter 4

Simulation study

4.1 Introduction

In Chapter 3, spatial analysis methods based on the approach of Gilmour et al. (1997)

and Stefanova et al. (2009), were presented and analyses performed on data from the

individual harvests of the lucerne and chicory trials. It was shown that the spatial models

provided a better �t than the RCB model for most harvests (based on REMLRT and AIC

values, see Tables (3.2, 3.4, 3.5). It was also shown (in the detailed analysis of harvest 5 at

Terry Hie Hie), that the variety BLUPs obtained from the two methods di�ered (Figure

3.6).

While it is clear that the spatial analysis methods provide models that are a better �t

to the data than the RCB model, it is important to assess the impact these models have

on estimating the genetic e�ects and how the estimates obtained from the spatial analysis

model and RCB model compare to the true genetic e�ects. This may be investigated

using simulation methods, where data may be generated with known genetic e�ects.

A further consideration is the issue of �tting a measurement error component, as ad-

vocated by Stefanova et al. (2009). In many cases the �tting of measurement error in

models to analyse data from �eld trials has been problematic and has not been routinely

implemented. For these reasons the �tting of measurement error was omitted in the anal-

yses presented in Chapter 3. It is important to assess the impact of �tting measurement

error, or omitting it, on the estimation of genetic e�ects. This may also be investigated

using simulation methods.

In this chapter, simulation studies based on the lucerne yield data, are conducted to in-

vestigate the above issues. To date there have been no known simulation studies published

looking into these issues. Firstly, a simulation study is presented to compare the variety

predictions obtained under the spatial model to those obtained from the RCB model (with

regards to how they compare to the true genetic e�ects). As discussed in the following

section, this simulation study is performed under the caveat that the issue of model selec-

tion (for the spatial model) has been disregarded, due to practicalities of implementation,

and the assumed underlying spatial trend takes the form of an ar1(Col).ar1(Row) process.

The results therefore are restricted but provide an insight into the comparison of spatial

modelling versus �tting the RCB model. A second simulation study is presented to show
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the impact of �tting measurement error in the spatial model, on the estimation of genetic

e�ects. The second simulation study is una�ected by the model selection caveat involved

in the �rst study but still assumes an underlying ar1(Col).ar1(Row) spatial process.

The underlying hypotheses being investigated are that, under a range of spatial cor-

relation and genetic variance (and where relevant, measurement error) levels,

• Variety predictions from the spatial model will be signi�cantly closer to the true

genetic e�ects than those from the RCB model

• Fitting a spatial model without including a measurement error term will not result

in any signi�cant loss of accuracy in variety predictions than �tting a spatial model

with a measurement error term

4.2 Methodology

4.2.1 Models

RCB versus spatial

A restricted simulation study was conducted to examine the importance of spatial mod-

elling on variety predictions and response to selection. The simulations were based on the

lucerne yield data from Terry Hie Hie harvest 5. This trial involved 60 genotypes grown

in a RCB design with 3 reps, laid out in 6 columns by 30 rows.

A number of di�erent sets of simulations were performed based on di�erent combina-

tions of estimates of the variance components and �xed e�ects in the linear mixed model

(2.2.1). The �rst set of simulated data (set 0 in Table 4.3) was based on the parameters

obtained from �tting Model 4 (in Table 3.1) to the lucerne yield data from Terry Hie Hie

harvest 5. The variance parameters are given in Table 4.1. The �xed e�ects in the model

involved a harvest mean and a linear Row term with parameter estimates denoted by τ0.

Based on the parameters in Table 4.1, the genetic variance parameter was taken to be

Table 4.1: Parameter values used for the �rst set of simulations for RCB vs spatial models

Component
Variety 0.021

Rep 0.046
Column 0.129

Residual variance (σ2) 0.097
Column correlation (ϕc) 0.003

Row correlation (ϕr) 0.255

0.216 times the residual error variance (0.097), the row spatial correlation parameter (ϕr)

was 0.255, and the spatial correlation parameter for the columns (ϕc) was 0.003. Given

the values for these parameters, values were simulated for the random e�ects. For exam-

ple, the genetic e�ects were obtained by sampling from the distribution N(0, σ2Gg(γg))
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where σ2 is the value of the residual error variance component (0.097), γg is the variance

component ratio for the genetic e�ects (0.216), and Gg = γgI. Hence a set of known

(true) genetic e�ects were obtained (g). Similarly, values for the other non genetic ran-

dom e�ects uo were generated by sampling from N(0, σ2Go(γo)) and e was generated by

sampling from N(0, σ2R(ϕ)), where R = Σc ⊗Σr where Σc and Σr are ar1 correlation

matrices corresponding to the column and row dimensions respectively, with parameters

ϕc and ϕr. Therefore a set of simulated data y(s), was generated as

y(s) =Xτ0 +Zgu
(s)
g +Zou

(s)
o + e(s) (4.2.1)

1000 such simulations were performed and hence 1000 data sets generated (y(s), s =

1, . . . , 1000). The RCB model and the spatial model were �tted to each of these simulated

data sets. For each simulation, variety BLUPs obtained from the two methods were

compared to the true genetic e�ects. The same spatial model was �tted to each of the

1000 data sets.

To investigate the more general situation, a further 12 sets of 1000 simulations (1−12

in Table 4.3) were performed for a range of combinations of parameters. These sets of

simulations covered a range of genetic variances (0.1, 0.5, 1, 2 times the residual variance)

and a range of spatial correlation scenarios (low (ϕr = 0.4, ϕc = 0.2), medium (ϕr = 0.6,

ϕc = 0.4), high (ϕr = 0.8, ϕc = 0.6)). These simulation sets did not include the linear

Row or random Column terms which were speci�c for the data at Terry Hie Hie harvest 5

(set 0). The spatial model �tted to each of these simulation sets included a random Rep

e�ect and an ar1(Col).ar1(Row) residual correlation structure.

The restriction in this study involves the spatial models �tted. In practice model

selection is an integral part of the spatial modelling process. That is, the best spatial

model is determined for each data set. In this simulation study the same spatial model

was �tted to all data sets within a simulation set. That is, for simulation sets 1− 12 the

only spatial model �tted was the separable ar1(Col).ar1(Row) residual model (plus Rep

e�ect); this is the model that generated the data. Thus the comparison between spatial

models and the RCBmodel ignores the additional source of variability that model selection

brings and assumes an underlying spatial trend in the form of an ar1(Col).ar1(Row) process.

Therefore whilst this study is not all encompassing, it does provide restricted information

on how the RCB and spatial models compare under varying levels of genetic variance and

also di�erent levels of spatial correlation.

Measurement error

The simulation study to assess the e�ect of including measurement error in the spatial

model was also initially based on the lucerne yield data from Terry Hie Hie harvest 5.

Subsequent variations of the variance parameter estimates were examined, to cover a wide

range of possible scenarios.

The error variance was partitioned into a spatially dependent random vector ξ, rep-

resenting the smooth local trend component and a measurement error component η,
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giving e = ξ + η, (in the linear mixed model (2.2.1)), where var (ξ) = σ2Σc ⊗ Σr and

var (η) = σ2
ηIc⊗Ir. Hence the total error variance is given byR = σ2Σc⊗Σr+σ

2
ηIc⊗Ir.

Simulated data sets were constructed based on (4.2.1) with e∗ generated as the sum of

ξ∗ and η∗ where ξ∗ was generated by sampling from N(0, σ2R(ϕ)), where R = Σc ⊗Σr

with Σc and Σr assumed to be ar1 correlation matrices corresponding to the column and

row dimensions respectively, and η∗ was generated by sampling from N(0, σ2
ηI).

The parameter values used in generating the data for the �rst set of simulations (set 0

in Table 4.5) were based on �tting Model 4 (in Table 3.1) plus a measurement error term,

to the yield data from harvest 5 at Terry Hie Hie. The parameter values for the random

e�ects are given in Table 4.2. The �xed e�ects in the model included a harvest mean and

linear Row term. 1000 simulations were based on these parameter values.

Table 4.2: Parameter values used for the �rst set of simulations for investigating mea-
surement error

Component
Variety 0.019

Rep 0.040
Column 0.121

units(measurement error) (σ2
η) 0.064

Residual variance (σ2) 0.039
Column correlation (ϕc) 0.193

Row correlation (ϕr) 0.738

To investigate the results for the more general case, a further 18 sets of 1000 simula-

tions were conducted based on a range of parameter values for genetic variance, spatial

correlation and measurement error. The parameter value combinations for the simulation

sets are detailed in Table 4.5. These simulation sets covered a range of genetic variances

(0.5, 1, 2 times the total error variance (i.e the sum of the measurement error variance

component and the local spatial variation component)), a range of spatial correlation

levels, medium (ϕr = 0.6, ϕc = 0.4), high (ϕr = 0.9, ϕc = 0.7), and a range of levels of

measurement error (1
3
, 1

2
and 2

3
times the total error variance ( i.e. 0.5, 1, 2 times the local

spatial trend component). Note that the total error variance in each of these simulation

sets has been arbitrarily set to 1 (i.e. σ2
η + σ2 = 1) without loss of generality. These

simulation sets did not include the linear Row and random Column terms speci�c to set

0. The spatial model �tted to each of these simulation sets included a random Rep e�ect

and an ar1(Col).ar1(Row) residual correlation structure plus a measurement error term.

The number of cases where the spatial plus measurement error model could not be

�tted (model did not converge within 100 iterations or parameter estimates went to the

boundary) was recorded (labelled dnc, for did not converge, in Table 4.5). The spatial

models without measurement error converged within 50 iterations for all simulations.
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4.2.2 Measures for comparison

To compare the di�erent models for their e�ectiveness in predicting variety e�ects, mea-

sures were calculated based on the response to selection. The response to selection is a

measure used by breeders to quantify the change produced by variety selection.

A key measure for comparing the models is the correlation between the true variety

e�ects and the predicted BLUPs for each variety under each model. This correlation

is referred to as accuracy. The stronger the correlation (accuracy), the greater is the

response to selection.

In the situation where a breeder selects the top p% of varieties to be retained for further

testing, the response to selection is calculated as the product of the narrow sense heri-

tability and the selection di�erential (the deviation of the mean of the selected individuals

from the population mean) (Falconer & Mackay, 1996).

The realised response to selection for a given trait can be calculated as the mean of

the BLUPs of the top p% of ranked varieties (Cullis et al., 2006). The relative bias and

relative mean squared error of the realised response to selection are two measures that

were used in the simulation study to compare the spatial and RCB models.

The measures were calculated as

• Mean accuracy

MAC =
1

s

s∑
i=1

cor(gi, g̃i)

where gi is the vector of true genetic e�ects and g̃i is the vector of variety BLUPs

for the ith simulation, and s is the number of simulations.

• The relative bias, and relative mean square error of the realised response to selection,

where the realised response to selection (RTS) is calculated as the mean of the

BLUPs of the top 10% of ranked varieties, and the relative bias (RBRTS) and

relative mean square error (RMSERTS) of the RTS are calculated as

RBRTS =
1

s

s∑
i=1

˜RTSi −RTSi

RTSi

and

RMSERTS =
1

s

s∑
i=1

(
˜RTSi −RTSi

RTSi

)2

where ˜RTSi is the estimated realised response to selection and RTSi is the true

response to selection, for the ith simulation
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4.3 Results

4.3.1 RCB versus spatial

The average values of the accuracy of the variety BLUPs from the RCB and spatial models

were compared under the di�erent spatial correlation and genetic variance combinations.

The relative bias and relative mean squared error of the realised response to selection,

based on the RCB model (and similarly the spatial model) were also calculated for each

of the di�erent simulation sets. The results are given in Table 4.3.

In all simulation sets the spatial model provided higher mean accuracy, lower RMSE

and relative bias values closer to zero, for response to selection, than the RCB model. As

expected, this improvement was greatest in the simulations involving the higher spatial

correlation parameters.

Figure 4.1 shows the accuracy obtained under the spatial and RCB models under the

low, medium and high spatial correlation scenarios, plotted against the genetic variance.

This plot shows the increase in accuracy as the genetic variance increases for both the

RCB and spatial model and the clear improvement in accuracy of the spatial model over

the RCB model as the spatial correlation increases. The improvement is considerable

when the spatial correlation is high and the genetic variance is low (accuracy of 0.55

under RCB versus 0.82 under spatial model, when the genetic variance is 0.1 times the

residual variance, i.e. heritability = 0.09).

Figure 4.2 presents the realised RTS versus the true RTS for each of the 1000 simu-

lations under the RCB model and the spatial model from simulation set 0, based on the

original data from Terry Hie Hie harvest 5. The RCB model performs poorly with many

RTS values predicted at zero and generally a low correlation with the true RTS values.

While the predicted RTS values for the spatial model are much closer to the true values

than the RCB model, the relatively low genetic variance and low spatial correlation in

this simulation set results in only moderate correlation with the true values even for the

spatial model. Figure 4.3 presents the RTS results of simulation set 10 (in Table 4.3)

which has higher spatial correlation and higher genetic variance. This plot shows that

there was greater agreement between the predicted RTS under the spatial model and the

true RTS and once again the improvement in the predictions from the spatial model as

compared to the RCB model.

4.3.2 Measurement error

Before conducting the simulations based on the inclusion of measurement error, the spatial

models �tted to the lucerne yield data from the individual harvests in Chapter 3 were

re-run with the inclusion of a measurement error term in each analysis. This was done to

see how the spatial model and spatial model with measurement error compared in terms of

goodness of �t (as compared using non standard REMLRT (Stram & Lee, 1994)). These

results are presented in Table 4.4. In 18 of the 28 harvests the addition of measurement

error improved the log-likelihood signi�cantly (P < 0.05) (or close to signi�cant with 3
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Table 4.3: Mean accuracy for BLUPs obtained from RCB and spatial models and cor-
relations between true response to selection and the response to selection obtained from
�tting RCB and spatial models based on 1000 simulations. Di�erent sets of simulations
were performed based on a range of genetic variances and spatial correlation parameters.

Set Genetic Var ϕr ϕc Mean accuracy RTS
Relative bias RMSE

RCB Spatial RCB Spatial RCB Spatial

0∗ 0.02 0.26 0.003 0.53 0.63 -0.64 -0.37 0.71 0.45

1 0.1 0.4 0.2 0.49 0.54 -0.53 -0.48 0.63 0.57
2 0.5 0.4 0.2 0.77 0.81 -0.23 -0.18 0.30 0.25
3 1 0.4 0.2 0.87 0.89 -0.13 -0.10 0.19 0.16
4 2 0.4 0.2 0.93 0.94 -0.07 -0.05 0.13 0.12
5 0.1 0.6 0.4 0.50 0.65 -0.55 -0.36 0.65 0.44
6 0.5 0.6 0.4 0.79 0.88 -0.24 -0.11 0.31 0.17
7 1 0.6 0.4 0.87 0.93 -0.14 -0.06 0.20 0.13
8 2 0.6 0.4 0.93 0.96 -0.08 -0.03 0.13 0.10
9 0.1 0.8 0.6 0.55 0.82 -0.61 -0.18 0.70 0.24
10 0.5 0.8 0.6 0.82 0.95 -0.24 -0.04 0.31 0.11
11 1 0.8 0.6 0.90 0.98 -0.14 -0.02 0.21 0.10
12 2 0.8 0.6 0.94 0.99 -0.07 -0.004 0.13 0.08

∗ indicates initial set of simulations based on data from harvest 5 at Terry Hie Hie. A linear

Row term and random Column term were included in the spatial analysis model for this set of

simulations.

harvests having P = 0.06). A measurement error term was unable to be �tted in 3 of the

28 analyses.

The results from the simulations for the models with and without measurement error

are given in Table 4.5. The mean accuracy and relative bias and relative mean square error

for response to selection were calculated for each of the simulation sets, covering a range

of genetic variation, spatial correlation and measurement error values. In all cases the

mean accuracy was almost exactly the same between the two models (with and without

measurement error). The relative bias and relative mean square error for response to

selection were also very similar for the two methods. The number of simulations out of

1000 in which the spatial plus measurement error term model was unable to be �tted or

did not converge within a reasonable number of iterations was large (ranged from 103 to

566).

It can be seen (Table 4.5) that the number of simulations that did not converge (dnc)

increased as the measurement error component increased. It can also be seen that the

number that did not converge was higher in the simulations with high spatial correlation,

than the simulations with moderate spatial correlation, and also generally increased as

the genetic variance increased.
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Table 4.4: Results from spatial models �tted with and without measurement error (M2
and M1 respectively) to the 28 lucerne yield harvests. REML log-likelihoods for each
model and P values based on adjusted REML likelihood ratio tests comparing the two
models, are given, as well as parameter estimates for the spatial correlation parameters,
measurement error and residual error variance.

Trial / M1 loglik M2 loglik P ϕ̂c ϕ̂r σ̂2
η σ̂2

Harvest σ2
η = 0 σ2

η ̸= 0

Euloma 1 -32.414 -32.414 0.500 0.211 0.628 0.000 0.807
Euloma 2 5.568 5.568 0.500 0.300 0.626 0.000 0.589
Euloma 3 -34.086 -33.557 0.152 0.311 0.679 0.062 0.821
Euloma 4 -23.136 -23.136 0.500 0.000 0.587 0.000 0.703
Euloma 5 -12.590 -12.590 0.500 0.259 0.610 0.000 0.660
Euloma 6 -37.133 -37.133 0.498 0.000 0.615 0.000 0.865

Leadville 1 34.703 35.953 0.057 0.000 0.661 0.086 0.184
Leadville 2 -3.845 -0.843 0.007 0.000 0.820 0.106 0.459
Leadville 3 1.578 6.088 0.001 0.625 0.870 0.141 0.456
Leadville 4 12.693 15.917 0.006 0.000 0.770 0.091 0.308
Leadville 5 30.026 34.981 0.001 0.000 0.842 0.154 0.137
Sandigo 1 4.357 6.654 0.016 0.447 0.749 0.081 0.396
Sandigo 2 -109.659 -98.973 0.000 0.857 0.946 0.549 3.958

Tamworth 1 -31.022 -22.345 0.000 0.837 0.723 0.166 1.071
Tamworth 2 -3.342 -0.656 0.010 0.612 0.718 0.156 0.422
Tamworth 3 -3.032 -3.032 0.500 0.181 0.167 0.000 0.384
Tamworth 4 11.178 12.339 0.064 0.652 0.000 0.183 0.106
Tamworth 5 -21.609 -16.661 0.001 0.775 0.485 0.180 0.364

Terry Hie Hie 1 41.560 42.720 0.064 0.000 0.605 0.134 0.108
Terry Hie Hie 2 30.446 33.183 0.010 0.000 0.730 0.128 0.136
Terry Hie Hie 3 80.484 81.753 0.056 0.000 0.679 0.093 0.060
Terry Hie Hie 4 71.044 NA
Terry Hie Hie 5 93.496 95.082 0.037 0.000 0.706 0.060 0.042
Terry Hie Hie 6 12.010 13.491 0.043 0.000 0.806 0.089 0.089
Terry Hie Hie 7 84.922 NA
Terry Hie Hie 8 66.775 67.540 0.108 0.000 0.700 0.114 0.056
Terry Hie Hie 9 93.286 NA
Terry Hie Hie 10 31.376 34.419 0.007 0.000 0.960 0.175 0.076
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Table 4.5: Mean accuracy for BLUPs obtained from spatial models with and without
measurement error (σ2

η ̸= 0 and σ2
η = 0 respectively), and relative bias and relative

mean square error of realised response to selection obtained from 1000 simulations. The
di�erent sets of simulations were based on a range of genetic variances and di�erent
spatial correlation and measurement error parameters. The number of simulations that
did not converge (dnc) for the spatial plus measurement error model are given in the last
column. Note, the results for the spatial plus measurement error model are based on the
simulations that converged (i.e. 1000-dnc simulations).

Set Gen ϕr ϕc σ2
η σ2 Mean accuracy RTS dnc

Var Relative bias RMSE
σ2
η = 0 σ2

η ̸= 0 σ2
η = 0 σ2

η ̸= 0 σ2
η = 0 σ2

η ̸= 0

0∗ 0.02 0.74 0.19 0.06 0.04 0.61 0.61 -0.37 -0.40 0.47 0.52 416

1 0.5 0.6 0.4 0.33 0.67 0.82 0.82 0.23 0.24 -0.16 -0.17 107
2 1.0 0.6 0.4 0.33 0.67 0.90 0.90 0.16 0.16 -0.09 -0.10 103
3 2.0 0.6 0.4 0.33 0.67 0.94 0.94 0.12 0.12 -0.05 -0.05 124
4 0.5 0.9 0.7 0.33 0.67 0.86 0.87 0.18 0.19 -0.10 -0.12 143
5 1.0 0.9 0.7 0.33 0.67 0.92 0.93 0.13 0.13 -0.05 -0.06 168
6 2.0 0.9 0.7 0.33 0.67 0.96 0.96 0.10 0.10 -0.02 -0.03 195
7 0.5 0.6 0.4 0.50 0.50 0.79 0.80 0.25 0.26 -0.19 -0.19 194
8 1.0 0.6 0.4 0.50 0.50 0.88 0.88 0.17 0.16 -0.10 -0.11 230
9 2.0 0.6 0.4 0.50 0.50 0.94 0.94 0.12 0.13 -0.06 -0.06 269
10 0.5 0.9 0.7 0.50 0.50 0.82 0.83 0.21 0.21 -0.14 -0.16 335
11 1.0 0.9 0.7 0.50 0.50 0.90 0.91 0.15 0.14 -0.08 -0.08 352
12 2.0 0.9 0.7 0.50 0.50 0.95 0.95 0.11 0.11 -0.04 -0.04 420
13 0.5 0.6 0.4 0.67 0.33 0.78 0.78 0.28 0.27 -0.22 -0.21 349
14 1.0 0.6 0.4 0.67 0.33 0.87 0.87 0.18 0.18 -0.12 -0.12 385
15 2.0 0.6 0.4 0.67 0.33 0.93 0.93 0.12 0.12 -0.06 -0.06 384
16 0.5 0.9 0.7 0.67 0.33 0.80 0.80 0.26 0.26 -0.19 -0.20 462
17 1.0 0.9 0.7 0.67 0.33 0.88 0.89 0.17 0.17 -0.10 -0.10 515
18 2.0 0.9 0.7 0.67 0.33 0.94 0.94 0.12 0.13 -0.06 -0.06 566

∗ indicates initial set of simulations based on data from harvest 5 at Terry Hie Hie. A
linear Row term and random Column term were included in the spatial analysis model
for this set of simulations.
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Figure 4.1: Plot of accuracy values for RCB and spatial model for varying levels of spatial
correlation (low, med, high) and genetic variance, based on simulation results for sets
1− 12 in Table 4.3
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4.4 Summary

The simulation studies in this chapter provide new insight into the value of spatial analysis

in perennial crops that is not known to be documented elsewhere in the literature. The

simulation results have clearly shown that the spatial model results in better predictions

of genetic e�ects (closer to the true genetic e�ects) than the RCB model, across a wide

range of di�erent genetic variance and spatial correlation levels. As would be expected,

this improvement is greater when the spatial correlation is higher. Therefore the spatial

analysis methods applied in Chapter 3, not only result in models that provide a better

�t to the data but also result in more accurate estimates of genetic e�ects, than the

RCB model, thereby supporting the original hypothesis. It is therefore important to

implement these spatial analysis models when analysing perennial crop variety selection

data, to obtain accurate variety selections. These spatial analysis methods will be used

in subsequent chapters when data is analysed across harvests.

The simulation results for the spatial models with or without �tting a measurement

error term, showed variety predictions were very similar under both models and while

the addition of a measurement error component to the spatial model resulted in a better

model �t in a number of cases, this did not result in an improvement in variety predic-
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Figure 4.2: Plots of response to selection for RCB (rts_rcb) and spatial model (rts_sp) vs
true RTS (rts_true) for each simulated data set in set 0 (in Table 4.3), based on original
data from Terry Hie Hie harvest 5
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tions. The original hypothesis was therefore accepted. The number of times where a

measurement error term was unable to be �tted was large (ranging from 103 − 566, out

of 1000 simulations). Due to the frequent di�culty in �tting a measurement error term

and the fact that the variety predictions were virtually the same under both approaches,

it would appear that when analysing perennial crop selection data at individual harvest

times the simplest approach is to omit the measurement error term. There are no known

published simulation studies investigating the merit of �tting a measurement error term

in the spatial analysis models �tted in this chapter.

While a measurement error term may be di�cult to �t and not impact on variety

predictions at the spatial level, it may be important to account for measurement error in

the spatio-temporal sense when data is analysed across harvests. This will be investigated

in subsequent chapters.
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Figure 4.3: Plots of response to selection for RCB (rts_rcb) and spatial model (rts_sp)
vs true RTS (rts_true) for each simulated data set in set 10 (in Table 4.3)
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Figure 4.4: Plots of response to selection for spatial models with (rts_spme) and without
(rts_sp) measurement error and true RTS (rts_true) for each simulated data set (in which
the spatial plus measurement error model converged) in set 6 in Table 4.5
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Chapter 5

Analysis of multi-harvest data using

separable variance models: Theory

The need for spatial analysis in perennial crops was established in chapters 3 and 4,

where the methods of Gilmour et al. (1997) were applied to the data from individual

harvests from the motivating data sets. Rather than concentrating on individual harvests

in isolation, variety selection in perennial crops is usually based on data from multiple

harvests over time, and analysis methods need to incorporate the data across harvests.

Such methods need to account for both the spatial correlation and temporal correlation

between measurements.

Smith et al. (2007) present a method for analysing data from multiple harvests in

perennial crops in the case of a short sequence of balanced repeated measurements in

sugarcane variety trials. Smith et al. (2007) use so-called separable residual covariance

structures. In this chapter the approach of Smith et al. (2007) is reviewed and then

new extensions are presented that may prove suitable for data from longer sequences of

multiple measurements, as is more typically the case in perennial crop trials. Firstly, a

linear mixed model is introduced for analysis of multi-harvest data, on which the method

of Smith et al. (2007) and the new extensions, are built.

5.1 Mixed model for single site multi-harvest data

Consider a perennial crop variety selection trial consisting of n plots in a rectangular array

of c columns by r rows (n = cr), in which m genotypes are grown and multiple harvests

are made. Let h denote the number of harvests (or assessment dates) for the trial and

let y be the hn × 1 vector of data observations across all the harvests, ordered as rows

within columns within harvests.

A linear mixed model for the data, y may be written, based on (2.2.1) as

y =Xτ +Zgug +Zouo + e (5.1.1)
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where τ is a (p× 1) vector of �xed e�ects with design matrix X(hn×p), ug is the hm× 1

vector of variety (or genetic) e�ects for individual harvests, ordered as varieties within

harvests, with associated design matrix Z(hn×hm)
g , uo is a vector of other random e�ects

with associated design matrix Zo and e is the hn× 1 vector of residuals.

The random e�ects from the linear mixed model (5.1.1) are assumed to follow a Normal

distribution with zero mean vector and variance-covariance matrix

var


 ug

uo

e


 =

 Gg 0 0

0 Go 0

0 0 R

 (5.1.2)

Therefore the distribution of the data y is Normal with meanXτ and variance matrix

H = var (y) = ZgGgZg
T +ZoGoZo

T +R

5.2 Multi-harvest analysis approach of Smith et al 2007

Smith et al. (2007) present an approach to analysing multi-harvest variety selection data

in perennial crops. Their approach actually models variety selection data from multi-

environment trials involving a small number of multiple harvests (balanced across the

sites). In this section their approach is summarized for the simpli�ed case of an analysis

of multi-harvest data from a single site.

Smith et al. (2007) base their analysis on the linear mixed model (5.1.1). They

use a sequential modelling process. The steps involve allowing for non-genetic variation,

through design, management and other sources of variation such as spatial trends in the

�eld, accounting for temporal variation and correlation that is inherent in the multiple

harvests, and importantly from the breeding point of view, modelling the genetic variation.

Their approach involves assuming a simple initial model for Gg in order to determine a

suitable residual (non-genetic) model (R) and then using this residual model to investigate

more complex genetic models.

5.2.1 Modelling non-genetic e�ects

Smith et al. (2007) recognised that in order to obtain e�cient predictions of genetic

e�ects it is essential to suitably model the non-genetic e�ects such as spatial variation in

the �eld and temporal correlation between repeated measurements. Smith et al. (2007)

followed the spatial modelling method of Gilmour et al. (1997), identifying spatial global

trend and extraneous variation terms for each harvest and including these terms in τ

or uo. They extended the spatial analysis approach to the spatio-temporal situation by

modelling the local spatial correlation and the temporal correlation between the multiple

measurements by assuming a three-way separable spatio-temporal process for the residual
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variance structure for a trial. Thus in (5.1.2), the structure for R is assumed to be,

R = Rh ⊗Σc ⊗Σr (5.2.3)

where Rh is a h × h covariance matrix that incorporates temporal correlation (between

harvests) and possibly heterogeneous variance across harvests, and Σc and Σr are the

c × c and r × r column and row spatial correlation matrices; in this formulation these

latter structures are common to all harvests within the trial.

Smith et al. (2007) model Rh using an unstructured matrix, the most general form

of covariance matrix, requiring the estimation of h(h + 1)/2 parameters. For a small

number of harvests (as in Smith et al., 2007) this may be suitable but for more extensive

sequences of repeated harvests the number of parameters to be estimated may become

prohibitive. More parsimonious covariance structures such as the uniform structure (with

equal variances and equal correlation between harvests) or heterogeneous covariance model

(with di�ering variances and equal correlation) could be considered but are unlikely to be

suitable in practice as correlations between the di�erent harvest times are unlikely to be

equal.

In subsequent sections more parsimonious covariance structures for R will be consid-

ered.

5.2.2 Modelling genetic e�ects

Smith et al. (2007) present various models for the genetic e�ects in the multi-harvest

situation where only a small number of harvests (in their case a maximum of three) are

involved. In particular they represent the variance matrix Gg in (5.1.2), for such e�ects

by

Gg = Gh ⊗ Im

where Gh is a h × h matrix (referred to as the genetic variance matrix) with diagonal

elements representing the genetic variance for each harvest and the o� diagonal elements

representing genetic covariances between the harvests, and Im (them×m identity matrix)

is the assumed structure for the varieties. This variety structure (Im) assumes the varieties

are unrelated. In Smith et al. (2007) Gh is modelled using an unstructured (us) matrix

but they note that factor analytic (fa) models may also be suitable.

In many cases of perennial pasture variety selection trials the number of harvests

h is likely to be greater than that in Smith et al. (2007). This makes the use of the

unstructured matrix problematic and more parsimonious models need to be used. It is also

desirable that the models used allow for investigation into variety by harvest interaction.

In the following sections suitable methods for modelling the genetic e�ects over multiple

harvests will be presented.
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5.3 Extensions

5.3.1 Contrasts/ deviations or modelling response over time

In the two analyses presented in Smith et al. (2007) of data sets consisting of 2 and 3

harvests the approach was to �t a �xed main e�ect for harvests in the linear mixed model

and hence the analyses were based on the deviations from the harvest means. When

there are more harvests involved, the issue arises of whether to model the deviations (or

contrasts) from the harvest means, or to model the overall response pro�le over time. This

choice will depend on the aim of the experiment and the trait involved. If the level of the

trait is of interest then the ideal approach would be to model the response over time. If

interest lies in the di�erences between varieties more than the actual level of a trait then

it may be best to base the analysis on the deviations from the harvest means. Evans &

Roberts (1979) show that while the absolute response pro�le of repeated measurement

data on perennial crops may be complex in nature, the sequence of deviations or contrasts

from the harvest means may be simpler to model.

For example, in the case of the lucerne persistence data at Terry Hie Hie, the actual

level of variety response is of interest as predictions of time to a certain level of persistence

are required. The trait response follows a systematic trend over time (Figure 1.4). The

ideal approach in this situation is to model the underlying overall trend over time using

a smooth curve (e.g. polynomial or cubic smoothing spline) and then investigate the

departures from this underlying trend for each variety. These variety departures may be

modelled using linear functions or may require more complex models including splines.

As discussed in Chapter 1 the cubic smoothing spline may be written as a mixed model

and hence it can easily be incorporated into the linear mixed model (5.1.1), and so may

be useful in this situation.

Alternatively, in the case of the lucerne yield data at Terry Hie Hie the yield response

does not follow a systematic trend over time (see Figure 1.2). This is due to the nature

of the trait where the yield data involves growth between cuts, with the cuts occurring at

di�erent spaced (time) intervals and the growth being very dependent on the environment

and management of the trial during these di�erent time intervals. Knowing the actual

level at each time is not imperative, but the di�erential impact of each variety from the

overall performance of all varieties is of most interest. For these reasons the ideal approach

for analysing the yield data is to model the variety deviations from the harvest means. In

terms of the mixed model (5.1.1) this means that the vector τ contains the main e�ects

for harvests.

5.3.2 Extensions for modelling non-genetic e�ects

A general model for R based on Diggle's model

As mentioned in section 5.2.1, the residual variance structure for a trial (R), may be

modelled using a separable spatio-temporal process, incorporating an unstructured matrix

for the temporal correlation componentRh in (5.2.3). This is suitable in some cases where
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harvest numbers are small but when more harvests are involved this model is not able

to be �tted. A more parsimonious model is proposed, based on the approach of Diggle

(1988).

In Chapter 1, the model proposed for longitudinal data by Diggle (1988) was reviewed.

An extension of this model is required that incorporates the spatial dependence present in

the motivating data sets. The Diggle model for yij (where yij denotes the j
th measurement

on the ith unit (or plot), with tij denoting the time that measurement yij was made) is

given by

yij = µij + eij

with

eij = ζi + ηij + ξi(tij)

where µij is the mean at time tij, ζi is a unit e�ect (that implies uniform correlation across

time), ηij is a measurement error and ξi(tij) is a temporally correlated process to account

for the serial correlation between measurements on the same unit. The latter three e�ects

are random and for a single unit with h measurements, the variance matrix generated is

var (ei) = σ2
pJh + σ2

mIh + σ2R∗
h(ϕ) (5.3.4)

where σ2
p is a between plot or unit variance, Jh is a hxh matrix with all elements equal

to 1, σ2
m is the measurement error variance, σ2 is the error scale parameter and R∗

h(ϕ)

is a smooth (typically) correlation structure over time. If R∗
h(ϕ) is a variance-covariance

matrix rather than a correlation matrix, then σ2 must be equal to 1.

Diggle (1988) assumes independent units, however in the case of multi-harvest data

the units are plots in the �eld trial which may be spatially correlated. Our model for

multi-harvest data should include terms for plot e�ects, measurement error and serial

dependence and allow for these e�ects to be spatially correlated. Thus, in the linear mixed

model for multi-harvest data (5.1.1), the residual term e can be partitioned into a vector

of random plot e�ects ζ, a temporal correlation process ξ and a vector of measurement

errors η, where each of these three random e�ects may have their own spatial structure.

Hence

e = ζ + η + ξ

where

(ζ,η,ξ) are pairwise independent, mean zero and have variance matrix

var


 ζη
ξ


 =

 σ2
pJh ⊗Σ(p)

c ⊗Σ(p)
r 0 0

0 σ2
mIh ⊗Σ(m)

c ⊗Σ(m)
r 0

0 0 σ2R∗
h(ϕ)⊗Σc ⊗Σr
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We note that if the same spatial correlation structure is assumed for the three random

e�ects (ζ,η, ξ), the variance model generalizes to

var (e) = (σ2
pJh + σ2

mIh + σ2R∗
h(ϕ))⊗Σr ⊗Σc

which is a separable spatial extension of (5.3.4) (the model of Diggle, 1988).

Whilst this separable extension may be theoretically appealing, it may be questionable

as to whether the measurement error term should be spatially correlated. For a purely

spatial (single harvest time) model the measurement error is assumed to be independently

and identically distributed (i.i.d) random "white noise", and similarly in the temporal case

with spatially independent measurements, the measurement error is also assumed to be

i.i.d. It may be more reasonable to assume the measurement error term in the spatio-

temporal context is also independent and not spatially correlated. It may however, be

reasonable to assume the same spatial structure for the overall plot (or unit) e�ect and

the plot by harvest e�ects and hence the variance matrix can be modi�ed to

var (e) = (σ2
pJh + σ2R∗

h(ϕ))⊗Σc ⊗Σr + σ2
mIh ⊗ Ic ⊗ Ir (5.3.5)

Model (5.3.5) is still restrictive, and a more desirable model may be to allow ζ and ξ to

have di�ering spatial correlation structures and to assume an independent measurement

error. Thus we may assume

var (e) = σ2
pJh ⊗Σ(p)

c ⊗Σ(p)
r + σ2

mIh ⊗ Ic ⊗ Ir + σ2R∗
h(ϕ)⊗Σc ⊗Σr (5.3.6)

This model has the advantage of increased �exibility and an independent measurement

error component.

Following Diggle (1988), R∗
h may be modelled using a decaying correlation model,

which implies the correlation between harvests decreases as the time between harvests

increases. For unequally spaced time points, the exponential (or power model) (exp) may

be appropriate, while for equally (or close to) spaced measurements the autoregressive

(ar1) correlation process may be suitable. This structure may be generalized to a hetero-

geneous variance process (e.g. ar1h, exph, or antedependence (ante) model) to account for

di�ering variances at each harvest. Details of these models may be found in Appendix B

and the notation is de�ned in Table 5.1.

The above model (based on 5.3.6), with R∗
h as an ar1h process (this requires σ2 = 1),

enables the spatial and temporal residual correlation structure to be modelled using a

maximum of h + 7 parameters in comparison to the h(h + 1)/2 + 2 parameters required

for the separable unstructured by autoregressive by autoregressive model (5.2.3) as used

in Smith et al. (2007). For a trial with 10 harvests this equates to a di�erence of 40

parameters.
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5.3.3 Extensions for modelling genetic e�ects

When the number of harvests h becomes large, the approach of Smith et al. (2007) of

estimating the genetic variance matrix, becomes di�cult. It may be possible to estimate

Gh using factor analytic models (Smith et al., 2001) and hence obtain variety predictions

at each of the h harvest times. However, it may be more desirable for selection purposes

to reduce the set of predictions to a smaller number. It may also be desirable to form

predictions at times other than the harvest times and to also investigate variety by harvest

interactions in more detail.

Two approaches that may may be suitable for modelling the genetic e�ects from multi-

harvest data are detailed below. One approach is the method of random regression (as

introduced in Chapter 2). A second approach (also introduced in Chapter 2) is to use

factor analytic models to generate a reduced set of factors that describe the covariance

structure between the genetic e�ects at the di�erent harvest times. These factors and

their loadings may be interpreted to identify traits that separate out the varieties, with

the traits then being used in the modelling and prediction process, or alternatively the

harvests may be clustered into groups and predictions formed for these groups.

Random regression

A suitable model for estimating the genetic response over time is the random regression

(or random coe�cients) model (Laird & Ware, 1982). Random regression analysis is a

common approach for the genetic analysis of repeated animal measurements over time

(Schae�er, 2004). Random regression models involve �tting regression coe�cients on

time (or other explanatory variables), for each variety, as random e�ects. This allows for

variation between varieties in the shape of the response pro�le over time.

Polynomial random regression

Let gik denote the random e�ect for variety i for harvest k (where k = 1, . . . , h), and

xk represent the value for the explanatory variable x for harvest k, then a polynomial

random regression model of order p, over x for genetic e�ects gik can be formulated as

gik = ui0 + ui1xk + . . .+ uipx
p
k + ϵik

= xT
kui + ϵik (5.3.7)

where xT
k =

[
1 xk x2k . . . xpk

]
and ui =

[
ui0 ui1 ui2 . . . uip

]T
. The term ϵik

represents a residual term for genetic e�ects, assumed to be independent and identically

distributed, with variance σ2
ϵ . This model can also be written as

gi =Xpui + ϵi
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where

Xp =


xT
1
...

xT
h

 =


1 x1 x21 . . . xp1
...

...
... . . .

...

1 xh x2h . . . xph

 (5.3.8)

If ui ∼ N(0,Gp), then

Gh = var (gi) =XpGpX
T
p + σ2

ϵIh

The covariance matrix of random polynomial terms,Gp is taken as an unstructured matrix

to ensure invariance to translation.

In the case of p = 1, (5.3.7) reduces to the linear random regression

gik = ui0 + ui1xk + ϵik (5.3.9)

where ui0 and ui1 are the random intercept and slope terms (respectively) for variety i.

Cubic smoothing spline random regression

While the polynomial random regression models above, may be used in instances to model

nonlinear trends, it may be preferable to use natural cubic smoothing splines (Verbyla

et al., 1999) to provide a more �exible speci�cation.

The standard approach to �tting cubic smoothing splines in a linear mixed model is to

�t a �xed linear component and a random "spline" component, as in (1.3.8). Alternatively

a cubic smoothing spline random regression model may be �tted with random linear and

spline components.

A random regression model incorporating cubic smoothing splines, for gik (the random

e�ect for variety i at harvest k, k = 1, . . . , h), with xk denoting the explanatory variable

x (e.g. time) at harvest k, can be written as

gik = ui0 + ui1xk + z
T
sk
usi + ϵik

= xT
kui + z

T
sk
usi + ϵik

where xT
k =

[
1 xk

]
and ui =

[
ui0 ui1

]T
, with ui0 and ui1 denoting the random

intercepts and slopes for variety i respectively. For each variety i, usi (a (h − 2) × 1

vector) is the random spline component of the mixed model formulation of the cubic

smoothing spline as presented in (1.3.8). The vector zTsk is the kth row of the matrix Zs

in (1.3.8).

Therefore for variety i the random regression spline model is

gi =X1ui +Zsusi + ϵi
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where

Zs =


zTs1
...

zTsh


and the matrix X1 is the design matrix for the linear random regression (p = 1) of

(5.3.8). The distribution of usi is assumed to be usi ∼ N(0, σ2
sGs), ϵi ∼ N(0, σϵI) and

Zs = Q(QTQ)−1 where Gs and Q are de�ned in (1.3.6) and (1.3.7) in Chapter 1.

As mentioned above, the usual mixed model formulation of cubic smoothing splines

has �xed e�ects for the intercept and slope. Verbyla et al. (1999) do consider the random

linear regression plus independent random spline component but note that there may

be issues with this model due to a lack of invariance to a change of basis. This issue

is discussed in White et al. (1998) where di�erent formulations of spline models are

compared and shown to be equivalent only if the linear trend and spline parameters are

correlated and the full set of covariances are estimated.

To incorporate these additional covariances of the cubic smoothing spline it is simpler

to consider an alternative formulation (used in the ASReml software). In this formulation

usi ∼ N(0, σ2
sI) and Zs = Q(QTQ)−1Ls, where Gs = LsL

T
s is the Cholesky decomposi-

tion of Gs. Using this form, ui and usi from the random regression model are assumed to

follow a Normal distribution with zero mean vector and variance-covariance matrix given

by

var

([
ui

usi

])
=



g11 g12 σ11s σ12s . . . σ1(h−2)s

g12 g22 σ21s σ22s . . . σ2(h−2)s

σ11s σ21s σ2
s 0 . . . 0

σ12s σ22s 0 σ2
s . . . 0

...
...

...
...

. . . 0

σ1(h−2)s σ2(h−2)s 0 0 . . . σ2
s


where g11 and g22 represent the variance of the random intercepts and slopes, respectively

and g12 the covariance between them, σ1js represents the covariance between the random

intercepts and jth element of usi , σ2js represents the covariance between the random slopes

and jth element of usi , and σ
2
s represents the variance of the elements of usi .

Note that while the cubic smoothing spline random regression may model the variety

responses over time reasonably well, the approach has limitations in how well it models

the underlying covariance structure. The above covariance structure is quite restrictive

and there may be alternative models such as the Matern class of covariance functions

(Haskard et al., 2007) that are more �exible in their covariance modelling. There are

variants of the Matern model that are di�erentiable and continuous over time and hence

may be used to model multi-harvest data over time.
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Factor analytic models

The application of factor analytic (fa) models to multi-environment trials is outlined

in Chapter 1. Similar principles could apply in the case of multi-harvest data where

measurements from di�erent harvests can be regarded as separate traits and variety e�ects

at di�erent harvest times are assumed correlated.

Hence a fa model (of order s) can be �tted to the variety e�ects at each harvest, with

the genetic e�ects given by

gik =
s∑

r=1

λkrfir + δik (5.3.10)

where gik is the random e�ect for variety i, i = 1, . . . ,m at harvest k, k = 1, . . . , h, fir is

the score for variety i in the rth factor, λkr is the loading for harvest k for the rth factor

and δik is a residual.

In vector notation the genetic e�ects are given by

g = (Λ⊗ Im)f + δ

where Λh×s = [λ1λ2 . . .λs], where λr is a t × 1 vector of loadings, {λjr}, fms×1 =

[fT
1 f

T
2 . . .f

T
s ]

T , where f r is a m×1 vector of factor scores, {fir}, and δ is a mh×1 vector

of residuals, {δik}.
The joint distribution of f and δ is assumed to be(

f

δ

)
∼ N

[(
0

0

)
,

[
Is ⊗ Im 0

0 Ψ⊗ Im

)]

where Ψh×h is a diagonal matrix of so called speci�c variances. Hence the variance matrix

for the vector g of genetic e�ects is given by

var (g) = (Λ⊗ Im)var (f) (ΛT ⊗ Im) + var (δ)

= (ΛΛT +Ψ)⊗ Im
= Gh ⊗ Im

In theory, this enables predictions for each variety at each harvest (g), to be calculated

and these predictions can be combined to form a weighted selection index (see Smith et al.,

2007). However in practice, when the number of harvests is large this may not be ideal

and it may be desirable to form a selection index based on a smaller number of "traits".

Exploiting the regression interpretation of the fa model may provide a method for doing

this.

The speci�cation of the fa model in Equation (5.3.10) has the form of a (random)

regression on s covariates, λ1, . . . ,λs, where the loading λkr is the value of the covariate

r for harvest k and the random regression coe�cient for variety i is given by fir, and the

lack of �t of the model is given by δik.
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So for example in the case of a 2 factor fa model

gik = λk1fi1 + λk2fi2 + δik (5.3.11)

and so the similarity with the linear random regression model given in Equation (7.4.3)

can be seen. If all λk1 are similar in value and of the same sign, the �rst term in (5.3.11)

can be interpreted as an intercept term in a linear random regression with fi1 representing

the random intercepts for variety i. The second term can be interpreted as comprising of

a random slope fi2 for each variety i and λk2 the explanatory variable that is regressed

upon. For example if the loadings λk2 are related to time of harvest then the model is like

a random regression on time. Alternatively if the loadings λk2 are related to the mean

at each harvest then the model indicates a random regression on harvest mean yield may

be appropriate. If no pattern is clear from the loadings the approach of Cullis et al.

(2010) may be used, in which cluster analysis is performed to group the harvests into

target groups and variety predictions obtained for each selection group. Hardner et al.

(2010) implements a similar clustering approach to investigate genotype by environment

interaction, after �tting a factor analytic model, to MET tree breeding data.

5.4 Summary

In this chapter an approach for the analysis of multi-harvest data, based on a linear mixed

model has been presented. The approach requires the genetic and non-genetic e�ects to be

modelled. A new model for the residual (non-genetic) e�ects has been developed based on

a spatial extension of the Diggle (1988) model for repeated measurements. The genetic

e�ects can be modelled in various ways depending on the trait of interest. Random

regression, splines and factor analytic models have been presented for modelling these

genetic e�ects.

The extension of the Diggle model developed in this thesis for modelling spatially cor-

related repeated measures data provides a new, more parsimonious approach to modelling

multi-harvest data than the models introduced in Smith et al. (2007). The approach is

able to handle data from a large number of harvests and accommodates all the major

sources of known spatial and temporal correlation.

Like the models in Smith et al. (2007), the models contain separable spatial by tempo-

ral structures, which while being attractive for ease of interpretation and computational

advantages (Galecki, 1994), are based on the assumption of separability of spatial and

temporal processes, which may not hold in all instances (Smith et al., 2007). We have

seen in Chapter 3 that the spatial correlation parameters may vary between harvests

within a trial and assuming constant spatial correlation across the harvest times may not

be sensible. Alternative, non separable models may need to be investigated. In the fol-

lowing chapter the new extended separable residual models will be applied to the lucerne

data. In further chapters non-separable models are investigated.

At the genetic level parsimonious models have been presented for modelling the variety
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by harvest e�ects. These methods extend the ideas of Smith et al. (2007). Approaches

to modelling variety response pro�les over time for traits that are smooth and continuous

over time and where interest is in predicting at times other than the harvest times have

been presented. Factor analytic models have been investigated and their interpretation as

a regression model discussed. As an aid to interpreting the results from the factor analytic

models the approach of Cullis et al. (2010) and Hardner et al. (2010) may be used. These

approaches allow for investigation into variety by harvest interactions. These approaches

are novel to the analysis of multi-harvest data in perennial crop variety selection trials.
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Chapter 6

Analysis of multi-harvest data using

separable variance models : Examples

6.1 Introduction

In Chapter 5, new approaches for modelling the genetic and residual variation in multi-

harvest data were presented that extend the approach of Smith et al. (2007). The issue

of whether to model the deviations or contrasts from the harvest means or to model

the response over time was discussed. In both approaches the residual models presented

were based on the assumption of separability between temporal and spatial correlation

processes. In this chapter these new methods are applied to the analysis of data from a

single site of the motivating lucerne yield and persistence data.

6.2 Lucerne trial at Terry Hie Hie

The motivating data considered in this section arises from the lucerne variety assessment

trial at Terry Hie Hie, NSW (30o48
′
S150o09

′
E). The data of interest is the yield and

persistence of each variety, measured on each plot at multiple times, as detailed in Tables

1.1 and 1.2. The trial was designed as a Randomized Complete Block (RCB) with 3

replicates and was laid out in a rectangular array of 180 plots consisting of 30 rows by 6

columns. The number of varieties tested in the trial was 60 (with eleven being commercial

varieties).

6.2.1 Yield

The aim of the analysis of yield data was to identify the best yielding lucerne varieties over

the course of the trial and to identify harvest times that discriminate between the varieties

and subsequently investigate those varieties that perform best at these times during the

trial. For example, winter activity is an important trait in lucerne breeding with varieties

ranging from highly winter active to dormant, and hence variety performance over the

winter harvests was of interest. It was also of interest how the variety performance changed

over harvest times, that is to investigate variety by harvest interaction.
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Yield was measured by cutting all trial plots at a consistent de�ned height at each

harvest time and drying the samples to obtain dry matter weights expressed as kg/ha.

There were 10 harvest times. The data was transformed prior to analysis using a cube

root transformation (ytransf = (y+1)
1
3 ), to stabilize the variance (as was the case for the

analysis of the data from individual harvests, in Chapter 3). A plot of the transformed

yield data for the 11 commercial varieties is presented in Figure 6.1.

Figure 6.1: Plot of mean lucerne yield (on transformed scale) for each of the 11 commercial
varieties across harvests at Terry Hie Hie
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As can be seen in Figure 6.1 the yield response pro�le over time is not a smooth curve

and modelling this pro�le using a polynomial or cubic smoothing spline is not suitable.

There are also good biological reasons (e.g. seasonal in�uences, variable harvest intervals)

why the actual level is not of interest. As discussed in the previous chapter, the ideal

approach is to model the variety deviations from the overall means at each harvest time.

The analysis of yield was based on the linear mixed model (5.1.1). This analysis

requires appropriate variance models for the genetic and residual e�ects (that is, suitable

models for R and Gg). As it is di�cult to �nd optimal models for both R and Gg at

the same time, the sequential approach of Smith et al. (2007) was followed by �rstly

assuming a simple genetic model, in order to determine a suitable residual model. Using

this residual model more complex models for the genetic e�ects were investigated. Care

must be taken with this approach. If the genetic e�ects are not modelled correctly this will

have an impact on the residual variation, and terms in the residual model may change

in signi�cance given changes in the genetic model. Hence, once more complex genetic

models were �tted, the �nal form of the residual variance model was re-examined. The
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initial simple genetic model has genetic variance matrix Gg given by

Gg = diag(σ2
gk)⊗ Im (6.2.1)

where σ2
gk is the genetic variance for harvest k. This initial genetic model therefore

allows for a di�erent genetic variance for each harvest and assumes the genetic e�ects are

independent between harvests. It also assumes the varieties are unrelated.

The description of the sequential model-building process has been separated into two

sections below, namely modelling the non-genetic (residual) e�ects and modelling the

genetic e�ects, with the residual models given in Table 6.1 and the genetic models given

in Table 6.3. A factor for harvests is �tted as a �xed e�ect in all models to ensure

modelling is based on deviations from the harvest means.

The terms used in the residual and genetic models are de�ned brie�y in in Table 5.1

and further in Appendix B.

Modelling non-genetic e�ects

The �rst step in modelling the non-genetic (residual) e�ects was to account for any spatial

variation in the data. Initially this involved investigating spatial models for each harvest

separately, as discussed in Chapter 3. In this case the residual variance matrix R was

given by a block diagonal matrix

R = diag (Rk)

where Rk denotes the residual variance matrix for harvest k. Rk is given by

Rk = σ2
kΣkc ⊗Σkr (6.2.2)

where Σkc and Σkr are the spatial correlation matrices in the column and row directions

respectively, for harvest k.

The initial model �tted to each of the harvests was a spatial model based on the results

of the analyses in Chapter 3. This model modelled the local spatial correlation between

plots at each harvest time using a separable autoregressive (ar1(Column).ar1(Row)) process

and also included terms to account for global and extraneous spatial variation at each

harvest time (identi�ed in Chapter 3). These terms included a random column e�ect for

harvests 2, 3, 4, 5, 6, 8 (included in uo) and a �xed e�ect for row 1 for harvest 10.

This represents the baseline model (Y1). In this model (and Y2-Y14, see Table 6.1)

the simple genetic model (6.2.1) was included at the genetic level.

Model Y2 �tted a common separable ar1(Column)×ar1(Row) spatial model across the

harvests and allowed for heterogeneity of variance across time. This model was not sig-

ni�cantly di�erent to model Y1 (REMLRT = 17.17, on 18df P=0.511) but required many

less parameters.

Models Y1 and Y2 did not attempt to account for the temporal correlation between
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the multiple harvests. Subsequent models allowed for such correlation at the residual

level.

Table 6.2: Lower triangle of the sample estimate of the between harvest variance matrix
(variances on the diagonals, correlations below the diagonal) based on predictions of the
residuals from from model Y1

1 2 3 4 5 6 7 8 9 10
1 0.241
2 0.481 0.253
3 0.475 0.597 0.155
4 0.354 0.469 0.393 0.114
5 0.470 0.420 0.440 0.576 0.096
6 0.288 0.376 0.280 0.594 0.523 0.115
7 0.438 0.359 0.405 0.501 0.550 0.409 0.130
8 0.303 0.280 0.392 0.496 0.557 0.478 0.615 0.153
9 0.344 0.304 0.372 0.308 0.456 0.245 0.543 0.479 0.095
10 0.351 0.405 0.373 0.386 0.440 0.174 0.420 0.358 0.273 0.204

To decide on an appropriate model for the residual covariance matrix, the empirical

variance and covariance matrix of the residuals from Y1 was calculated. The empirical

variances and correlations are presented in Table 6.2. This matrix provides an approxi-

mate guide to models for the residual variance structure. From these values it is apparent

that there is positive correlation between all harvests with the correlations generally de-

caying as the time between measurements increases, but that the correlations do not decay

to zero.

Based on these observations, a plausible model is to assume an overall average plot

e�ect (Column.Row), a decaying correlation process for the plot by harvest e�ects and a

measurement error e�ect (similar to the repeated measures model of Diggle, 1988), with

spatial extensions to incorporate the spatial correlation between plots, as discussed in the

previous chapter.

To build up to this model, �rstly a simpler model, similar to that used by Smith et al.

(2007) was �tted (Y3), using a 3 way separable process (ar1v(Harvest).ar1(Column).ar1(Row))

for the plot by harvest e�ects, thereby modelling the temporal correlation and the spatial

correlation in each direction (row and column) each with an autoregressive process of

order 1, with a common residual variance across the harvests. In this model the spatial

correlation model for plots was common for all harvests. The variances for each harvest in

Table 6.2 (ranging from 0.095 to 0.253), indicate that it may be more suitable to assume

heterogeneous residual variances for each harvest, despite the transformation to cube root.

Model Y4 allowed for di�ering variances across the harvests and was a signi�cant improve-

ment on model Y3. Model Y5 incorporated an overall average plot e�ect and allowed for

spatial correlation at the overall average plot level. In this model the spatial correlation

at the overall plot level was constrained to be the same as at the plot by harvest level.

It is clear that this model is a signi�cant improvement on previous models based on AIC

values.
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Model Y6 �tted a fully separable spatial extension of the repeated measures model

of Diggle (1988), with an heterogeneous variance autoregressive process (ar1h) for the

temporal serial correlation. As discussed in Chapter 5, this separable model imposes the

same spatial correlation structure on the plot by harvest e�ects, the overall plot e�ect

and the measurement error term. This spatial extension of the measurement error term

may not be ideal and a more suitable model may be one which also models the temporal

serial correlation using an ar1h process and constrains the spatial parameters to be the

same for the plot by harvest e�ects and the overall plot e�ect, but �ts an independent

measurement term. Alternatively an unconstrained model which allows the spatial corre-

lation parameters for the overall plot e�ect to di�er from the spatial parameters for the

plot by harvest e�ects may be more suitable. Attempts were made to �t all three above

models, but there were problems in �tting the models to the lucerne yield data. These

problems are most likely due to a combination of two things, �rstly due to the fact that

at harvest 9 there was very little spatial correlation (evident from the individual harvest

analyses in Chapter 3), which results in the residual variance for harvest 9 going to zero

and secondly the temporal correlation structure may not be adequately modelled using

the autoregressive model of order 1 (ar1).

On closer inspection of the empirical correlations of residuals in Table 6.2, it appears

that while the correlations are decaying, they are not decaying as quickly as what would

be expected from an ar1 process and it may be more reasonable to �t a correlation process

of higher order (for example ar2).

The next model to be �tted (Y7) �tted a model similar to Y5 but with an ar2 corre-

lation process for the temporal correlation rather than an ar1 process. This model was a

signi�cant improvement on Y5 as can be seen by the Residual Maximum Likelihood Ratio

Test Statistic (REMLRS) of 18.258 on 1 df (P<0.001).

The next model (Y8) �tted a fully separable model similar to Y6 but with an ar2

correlation process for the temporal correlation rather than an ar1 process. This model

�tted successfully but was not an improvement on Y7 based on AIC values. As mentioned

above a suitable extension to this model may be to allow for an independent measurement

error term but still constrain the spatial parameters to be the same for the plot by harvest

e�ects and the overall plot e�ect. This model was �tted as Y9. Unfortunately there were

problems with this model similar to Y5 with the REML estimate of the variance for

harvest 9 constrained at the boundary of the parameter space (zero).

The next model (Y10) retained the ar2 correlation process for the temporal correlation

but it allowed the spatial correlation parameters for the overall plot e�ect to di�er from the

spatial parameters for the plot by harvest e�ects. In this model the spatial correlation at

the overall plot level in the column direction was dropped (set to zero) in order to achieve

convergence (this is not surprising as the correlation in the column direction was very

small as evidenced in Y8 where the estimated correlation was ϕ̂c = 0.066).

Di�erent processes were �tted for the temporal correlation component in subsequent

models. The exponential model (exph) was considered (similar to that in Diggle (1988))

but unfortunately similar problems were found as for the ar1 process above. It would seem
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reasonable to consider the exponential model as the harvest times are unevenly spaced

and the exponential model takes into account the time between measurements. However

in models without the measurement error component �tted (which did converge) the

exponential model did not �t as well as the ar1 model. An explanation for this may be

that while the number of days between harvest times di�er, the harvests have been taken

after similar growth periods (when the varieties have reached a certain level of growth)

and hence may be considered to be evenly spaced with regards to stage of growth.

The antedependence structure was also investigated for modelling the temporal covari-

ance component. An antedependence model of order s assumes that the jth observation

(j > s), given the s proceeding observations, is independent of all other proceeding obser-

vations (Gabriel, 1962). The model is more �exible than the exponential or autoregressive

models in that it allows the variances for each harvest time to di�er and allows for dif-

ferent antedependence coe�cients for each harvest. Initially the antedependence model

of order 1 (ante) was tried but resulted in similar problems to the ar1 process above.

The antedependence model of order 2 (ante2) proved a better �t and models Y11,Y12,Y13

which incorporate the ante2 model were better than previous models based on AIC values.

Model Y11 �tted a fully separable model incorporating an ante2 model for the temporal

correlation component and constrained the spatial correlation parameters for the plot by

harvest e�ects, the overall plot e�ect and the measurement error term to be the same.

The next model, Y12, constrained the spatial correlation parameters in the row and col-

umn directions to be the same for the overall plot and the plot by harvest e�ects but

allowed for an independent measurement error term. This model had the same number

of parameters as model Y11 and resulted in a better �t (based on AIC values). Model

Y13 allowed the spatial correlation parameters to di�er between the plot and plot by har-

vest e�ects. In this model the spatial correlation at the overall plot level in the column

direction was set to zero to achieve model convergence. The model therefore required one

extra parameter to be estimated than Y12. Despite this extra parameter the model was a

signi�cant improvement on model Y12 based on AIC values. The �nal model in Table 6.1

(Y14) dropped the measurement error term from Y13 but did not result in a signi�cant

drop in log-likelihood (P=0.106). Hence the �nal 'best' residual model was deemed to

be model Y14 and this model will be used in the following section where more complex

genetic models are incorporated.

Modelling genetic e�ects

The �rst attempt at improving the genetic model from the simple model of (6.2.1), was

to �t an overall variety main e�ect plus variety by harvest interaction model (Y15 in

Table 6.3). This model allowed for heterogeneous genetic variances across the harvests

and assumed a common genetic covariance between each pair of harvests. This model was

not a signi�cant improvement on the previous model but it was useful to provide starting

values for subsequent models in the model building process.

Attempts were made to �t an antedependence model for the genetic e�ects (given the

time ordering of the genetic e�ects) but there were problems in �tting the model to this
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Table 6.3: Summary of genetic models �tted for yield at Terry Hie Hie. Residual log-
likelihoods (denoted by ℓ), number of parameters in Gg (npar), AIC values (given as
di�erences from the best model), are presented for each model.

Model Genetic Model Gg Gg ℓ AIC
npar

Y14 diag(Harvest).Variety diag(σ2
gk)⊗ Im 10 964.532 35.4

Y15 Variety + diag(Harvest).Variety (σ2
gJh + diag(σ2

gk))⊗ Im 11 964.722 37.0

Y16 fa(Harvest,1).Variety (Λ1Λ
T
1 +Ψ)⊗ Im 20 992.237 0

Y17 fa(Harvest,2).Variety (Λ2Λ
T
2 +Ψ)⊗ Im 29 998.465 5.5

where
all models have residual model of Y14 in Table 6.1
Λ1 is a h× 1 matrix of factor loadings
Λ2 is a h× 2 matrix of factor loadings
Ψ = diag (ψ1, . . . , ψh) is a diagonal matrix of speci�c variances

data, perhaps due to the very low genetic variance at some harvests.

The next genetic model to be �tted was the factor analytic model. The �tting of

the factor analytic model had two purposes: �rstly it enables the h by h genetic variance

matrix to be estimated and hence variety predictions to be obtained for each of the harvest

times. Secondly it may be used to identify a reduced number of "traits" that separate

out the varieties. The number of factors required to explain a su�cient amount of the

variation and the interpretation of their loadings are both of interest.

In model Y16 a factor analytic model with a single factor (fa1) model was �tted.

As model Y15 is nested within the fa1 model a direct comparison can be made using a

REMLRT. The fa1 model provided a signi�cant improvement in log-likelihood (REMLRT

= 55.030 on 9 df, P < 0.001). The percentage variance accounted for (%VAF) by the

fa1 model was low for some of the harvests and a more desirable model would be to �t a

factor model with two factors (fa2).

Model Y17 �tted a fa2 model, which whilst not providing a signi�cant improvement

in log-likelihood to the fa1 model, (REMLRT= 12.456 on 9 df, P = 0.189), explained a

much greater percentage of variation for many of the harvests which had low %VAF with

the fa1 model. The fa1 model also implied a very simplistic and restrictive structure with

the �rst 4 harvests being perfectly correlated (genetic correlation =1) which is unlikely

to be the case biologically. In the fa2 model �tted to this data the correlations are shown

to be quite di�erent from 1. The fa2 model was therefore chosen as the most suitable

model as the resulting genetic correlation structure between harvests made more sense

biologically and the model explained more of the total genetic variance. Note Beeck et al.

(2010) also use the %VAF as a tool to aid in model selection for factor analytic models.

The loadings and percent variance accounted for (%VAF) by the two factor model

is given in Table 6.4. The �rst factor shows Harvest 6 (the Winter harvest) as being

most important, with the highest genetic variance. This factor also shows harvest 9 being
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negatively correlated with the other harvests (but with low genetic variance). The second

factor is more di�cult to interpret but it may be interpreted as a contrast between harvests

1 and 2 and harvests 3, 5, 8 and 9, which may re�ect an establishment e�ect.

A number of the harvests exhibit low genetic variance, namely harvests 1,3,5 and 7.

Two of these harvests (1 and 3) have 100% variance accounted for by the fa2 model,

harvest 5 has 99% VAF, while harvest 7 has only 14% VAF. Of the remaining harvests,

all which have higher genetic variance, harvests 2,4,6 and 10 have most of their variance

explained by the �rst factor while the second factor contributes to most of the variance

accounted for at harvests 8 and 9.

The genetic correlations between harvests and the genetic variances for each harvest

from the fa2 model are presented in Table 6.5. As an aid to interpreting the genetic

covariance structure between harvests and investigate any variety by harvest interaction

the approach of Cullis et al. (2010) was followed. These authors use cluster analysis and

heat map representation of the genetic correlation matrix after �tting the fa model in the

aim of grouping the harvests into meaningful clusters that may be used for prediction and

selection.

A cluster analysis, using the agglomerative (nested) hierarchical clustering algorithm

in the agnes package in R (R Development Core Team, 2012), was performed using the

average clustering method (Kaufman & Rousseeuw, 1990). The dendrogram of the REML

estimates of the dissimilarity matrix (Ih −C2), where C2 is the REML estimate of the

genetic correlation matrix based on the fa2 model), is presented in Figure 6.2.

Cullis et al. (2010) suggest that clusters formed above a cuto� of approximately 0.6

may not be meaningful. Hence the dendrogram (Figure 6.2) suggests possibly 2 main

clusters with harvests 7 and 9 in groups of their own (making 4 clusters). The two main

clusters include one cluster with most harvests having higher genetic variance (harvests

1, 2, 4, 6, 10) and the second cluster consisting of harvests 3,8 and 5. These conclusions

on the groupings of harvests are supported by the correlations in Table 6.5 and the heat

map of correlations (Figure 6.3). From these correlations it can be seen that harvests

1, 2, 4, 6, 10 are highly correlated with each other, harvests 3, 5, 8 are highly correlated

with each other and also negatively correlated with the establishment harvest 1, while

there is little correlation between harvest 9 and the other harvests and also harvest 7 and

the other harvests.

The groups obtained from the cluster analysis provide a starting point to identify po-

tential target sets of harvests for which predictions of variety e�ects may be made. Table

6.6 presents a summary of key variables for each harvest including days between harvests,

harvest mean yield and average daily yield (which may re�ect rainfall and growth condi-

tions). The table also includes the groupings from the cluster analysis for a dissimilarity

level of 0.6 and a general summary of the groups. Cluster group 1 contains the winter

harvest 6 (which has substantially higher genetic variance than the other harvests), the

establishment harvest 1 (with little genetic variation) and the early harvests with genetic

variance (2, 4), plus harvest 10 which also has moderate genetic variance. This would seem

reasonable as winter active varieties are known to perform better in early harvests than
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their winter dormant counterparts. The varieties were also planted in winter so winter

active varieties may establish better and perform better in their �rst year. The second

cluster group is given by harvests 3, 8 and 5. These harvests have low genetic variance.

Harvest 9 is in it's own group possibly due to the very high rainfall occurring near this

harvest, with the time between harvest 8 and 9 containing the highest recorded rainfall

at nearby weather stations. Harvest 7 is also in a separate group.

It is useful to form selection indices for the main selection groups. Cullis et al. (2010)

discuss the issues of conditional and marginal predictions (which may occur if some va-

rieties are not measured at all harvests) and note that selection indices should be based

on conditional predictions. As all lucerne varieties are observed at each harvest the pre-

dictions of variety e�ects are conditional predictions and it is suitable to form selection

indices for each selection group. In these selection indices, equal weights are assigned to

harvests in each group. If uik represents the genetic e�ect of variety i at harvest k and ũik

is the BLUP of uik, the predicted selection index for variety i for the two main groups,

Î
(d)

i , for d = 1, 2 may be de�ned as

Î
(1)

i = ({ũi1}+ {ũi2}+ {ũi4}+ {ũi6}+ {ũi10})/5

Î
(2)

i = ({ũi3}+ {ũi8}+ {ũi5})/3

Figure 6.4 presents the predicted selection indices for each variety for each of the

groupings. This �gure can be used to see how varieties rank across the groups, for example

it can be seen that variety 15 (TL2003%05) performs well with high rankings in groups

1,4 and 2 but is ranked lower in group 3.

Together with the breeder, di�erent selection indices may be formed using di�erent

weightings of the harvests within the groups. In the end, how these selection indices are

formed and used to make selection decisions for the release of new varieties, is a challenge

faced by the breeder.

Table 6.4: REML estimates of rotated factor loadings and percentage variance accounted
for (%VAF) from the fa2 model �tted to lucerne yield data (model Y17)

Harvest Λ1 Λ2 Ψ %VAF
1 0.028 0.039 0.000 100.000
2 0.125 0.048 0.000 100.000
3 0.019 −0.040 0.000 100.000
4 0.177 −0.016 0.000 100.000
5 0.091 −0.088 0.000 98.984
6 0.545 0.006 0.025 92.271
7 0.027 −0.009 0.005 13.644
8 0.038 −0.120 0.000 100.000
9 −0.012 −0.067 0.015 23.541
10 0.137 0.037 0.005 80.461

The REML estimates of the residual variance parameters in the �nal model (Y17),
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Table 6.5: Lower triangle of the REML estimates of Gg, with genetic variances ×100 (on
diagonal) and genetic correlations (o� diagonals) from fa2 model (Y17) �tted to lucerne
yield data

Harvest 1 2 3 4 5 6 7 8 9 10
1 0.229
2 0.843 1.787
3 −0.476 0.072 0.191
4 0.513 0.894 0.511 3.145
5 −0.133 0.419 0.930 0.778 1.614
6 0.576 0.899 0.401 0.955 0.681 32.188
7 0.116 0.286 0.253 0.361 0.330 0.336 0.577
8 −0.589 −0.061 0.991 0.392 0.875 0.282 0.215 1.594
9 −0.437 −0.256 0.393 −0.044 0.265 −0.090 0.023 0.427 1.998
10 0.700 0.892 0.160 0.841 0.460 0.834 0.278 0.042 −0.188 2.490

Table 6.6: Table showing harvest variables including mean yield (yld), days between
harvests (dd), average daily yield (ady) and groupings based on the cluster analysis of
lucerne yield data

Harvest Harvest date yld dd ady group comments
1 13/11/03 1934 114 16.96 1 establishment and early harvests
2 16/12/03 1314 33 39.83 1 with higher genetic variance,
4 11/03/04 808 35 23.10 1 includes winter harvest
6 22/06/04 624 63 9.91 1
10 24/01/05 977 32 30.54 1
3 5/02/04 1948 51 38.19 2 harvests with little genetic variance
8 2/12/04 1012 51 19.86 2 all negatively correlated with harvest 1
5 20/04/04 779 40 19.48 2
7 12/10/04 1257 112 11.22 3 low average daily yield,

long growth period,
includes some winter and spring growth

9 23/12/04 1229 21 58.52 4 second year harvest with high rainfall
high average daily yield
negatively correlated with �rst
two harvests
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Figure 6.2: Dendrogram of the dissimilarity matrix from fa2 model (Y17) �tted to the
lucerne yield data
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where R is given by

R = σ2
pJh ⊗ Ic ⊗Σ(p)

r +Σante2
h ⊗Σc ⊗Σr

are given by σ̂2
p = 0.073, Σ(p)

r is an ar1 correlation matrix with correlation parameter

ϕ̂
(p)
r = 0.522, Σc is an ar1 correlation matrix with correlation parameter ϕ̂c = 0.089,

Σr is an ar1 correlation matrix with correlation parameter ϕ̂r = 0.170, and Σante2
h is an

antedependence (of order 2) covariance matrix with parameters given in terms of the
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Figure 6.3: Heat map representation of the genetic correlation matrix from the fa2 model
(Y17) �tted to the lucerne yield data. Harvests are ordered according to the dendrogram.
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inverse variance matrix Σ−1
ante2 = U

TDU where U is a lower triangular matrix given by

U =



1

-0.337 1

-0.036 -0.331 1

0 -0.092 0.013 1

0 0 -0.016 -0.196 1

0 0 0 -0.486 -0.311 1

0 0 0 0 -0.213 -0.187 1

0 0 0 0 0 -0.188 -0.456 1

0 0 0 0 0 0 -0.241 -0.076 1

0 0 0 0 0 0 0 -0.288 0.211 1
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and D is a diagonal matrix with elements

[6.319, 6.466, 13.141, 13.330, 21.982, 11.117, 14.843, 13.598, 15.411, 6.748].

Multiplying these matrices and taking the inverse, we can obtain the antedependence

covariance matrix Σ = (UTDU)−1

Σ = (UTDU)−1) =



0.16 0.05 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.05 0.17 0.06 0.01 0.00 0.01 0.00 0.00 0.00 0.00

0.02 0.06 0.10 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.01 0.00 0.08 0.01 0.04 0.01 0.01 0.00 0.00

0.00 0.00 0.00 0.01 0.05 0.02 0.01 0.01 0.00 0.00

0.00 0.01 0.00 0.04 0.02 0.12 0.03 0.03 0.01 0.01

0.00 0.00 0.00 0.01 0.01 0.03 0.07 0.04 0.02 0.01

0.00 0.00 0.00 0.01 0.01 0.03 0.04 0.10 0.02 0.02

0.00 0.00 0.00 0.00 0.00 0.01 0.02 0.02 0.07 −0.01

0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.02 −0.01 0.16


The residual structure consisted of two main components, namely a Plot e�ect (which

was spatially correlated in the row direction) and a decaying serial dependence compo-

nent (modelled by a separable antedependence of order two temporal component by an

autoregressive of order 1 spatial model in the Column and Row directions( ar1(Column)⊗
ar1(Row))). The Plot variance (0.073) was reasonably large and of similar magnitude to

the variances in the antedependence covariance matrix (diagonals in the matrix UTDU
−1

given above which models the serial dependence. The spatial correlation parameter in the

Row direction on the overall plot term was high (0.522) while the spatial correlation

parameters at the harvest level were lower (Col = 0.078 and Row = 0.172).
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Figure 6.4: Pairwise plots of the predicted selection indices for each of the four groups
described in the text. Numbers refer to variety names in Table 6.7
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6.2.2 Persistence

While in some circumstances it may be su�cient and desirable to model the di�erences

between varieties or variety contrasts over time (as in the previous section for yield),

in other instances it may be important to model the actual underlying response over

time. For example, with the lucerne persistence data the aim is to predict the time to a

certain level of persistence. This prediction cannot be obtained from an analysis based

on deviations from the harvest means and requires modelling of the persistence response

over time.

In this section the analysis of the lucerne persistence data from Terry Hie Hie, where

interest lies in predicting the time until the persistence level of each variety drops to

30%, is presented. The persistence data (based on percentages) from Terry Hie Hie was
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Table 6.7: Table of variety names and corresponding numbers for lucerne data

Variety No Variety Name Variety No Variety Name
1 Aquarius 31 TL2003%21
2 Cropper_Nine 32 TL2003%22
3 Genesis 33 TL2003%23
4 Pioneer_L90 34 TL2003%24
5 Prime 35 TL2003%25
6 Rippa 36 TL2003%26
7 SARDI_10 37 TL2003%27
8 Sceptre 38 TL2003%28
9 Sequel 39 TL2003%29
10 Sequel_HR 40 TL2003%30
11 TL2003%01 41 TL2003%31
12 TL2003%02 42 TL2003%32
13 TL2003%03 43 TL2003%33
14 TL2003%04 44 TL2003%34
15 TL2003%05 45 TL2003%35
16 TL2003%06 46 TL2003%36
17 TL2003%07 47 TL2003%37
18 TL2003%08 48 TL2003%38
19 TL2003%09 49 TL2003%39
20 TL2003%10 50 TL2003%40
21 TL2003%11 51 TL2003%52
22 TL2003%12 52 TL2003%53
23 TL2003%13 53 TL2003%54
24 TL2003%14 54 TL2003%55
25 TL2003%15 55 TL2003%56
26 TL2003%16 56 TL2003%57
27 TL2003%17 57 TL2003%58
28 TL2003%18 58 TL2003%59
29 TL2003%19 59 TL2003%60
30 TL2003%20 60 Venus

transformed using a logit transformation prior to analysis (as detailed in section 3.3.2).

A plot of the transformed persistence data for the 11 commercial varieties is presented in

Figure 6.5. From this plot it is seen that the varieties follow a similar trend over time.

One approach in analysing such data is to model the underlying overall trend over

time using a smooth curve (e.g. polynomial or cubic smoothing spline) and then inves-

tigate the deviations from this underlying smooth trend for each variety. These variety

deviations may be linear and hence a linear random regression approach may be applied.

Alternatively more complex random regression models including nonlinear functions or

splines at the individual variety level may be used to model the deviations from the overall

smooth curve (Verbyla et al., 1999).

Deciding on the most appropriate model to �t to the persistence data involved a

complex model building process. A sequential approach similar to that of the yield analysis

(in the previous section) was followed. The process commenced with a simple genetic
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Figure 6.5: Plot of mean lucerne persistence data (on transformed scale) for each of the
11 commercial varieties at Terry Hie Hie
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model in which harvests were treated separately in order to �nd suitable residual models

for modelling the spatial correlation at each harvest. Then the harvests were combined

and a residual model incorporating the temporal correlation between harvests was found.

At this stage the genetic model was also modi�ed to model the data across the harvests

(using a cubic smoothing spline) and in subsequent models the residual model was further

re�ned. Once a �nal residual model was selected then more complex genetic models were

investigated. The presentation of the process is separated into two sections, one focussing

on modelling the non-genetic (residual) e�ects and the second concentrating on modelling

the genetic e�ects. The sequence of residual models �tted is given in Table 6.8, and the

genetic models given in Table 6.10.

Modelling non-genetic e�ects

The analysis commenced by treating the 6 harvest (assessment) times separately, �rstly

by �tting a RCB model to each harvest (model TP1). In this model and models TP2-

TP5 (in Table 6.8) the simple genetic model of (6.2.1) was implemented and for these

models an intercept term was included for each harvest. The next step was to account

for any local spatial correlation between plots at each harvest. Model TP2 speci�ed

a separate spatial model for each harvest using an ar1(Column).ar1(Row) process for the

residual structure. This was a signi�cant improvement on TP1 (REMLRS = 38.90 on 12df,

P<0.001). Further spatial terms were investigated and included in the model following

the approach of Gilmour et al. (1997). The �nal spatial model included a random
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column term for each harvest plus spatial correlation in the row and column directions

(ar1(Column).ar1(Row)). This is model TP3.

The residuals from model TP3 were investigated and harvest variances and correlations

between harvests calculated (Table 6.9). There are positive correlations between harvests

which decay as the time between measurements increases. These correlations do not decay

to zero and suggest a plausible model of an overall average plot e�ect and an autoregressive

ar1 process to model the temporal correlation between the harvest measurements (similar

to the residual model assumed for the yield data). Spatial correlation between plots can

once again be incorporated at the overall plot level and also at the Plot by Harvest level.

As in the yield analysis, the residual spatio-temporal model of the 3 way separable

ar1v(Harvest).id(Column).ar1(Row) process for the plot by harvest e�ects (TP4) provided

a much better �t to the data than the separate spatial models for each harvest, based on

AIC values. Allowing for heterogeneous residual variances (TP5) provided an improve-

ment on model TP4 where the variances were assumed equal. Note that in all models

up to this point a simple diagonal genetic model was �tted which assumes no genetic

correlation between the harvests. At this point a genetic model to connect the data

across the harvests was implemented (TP6). This model �tted an overall mean cubic

smoothing spline (1 + lin(years) + spl(years) + dev(years), where years refers to time (in

years) from planting, lin(years) denotes the linear e�ect of time, spl(years) denotes the

random smooth spline component and dev(years) represents non-smooth deviations from

the overall smooth spline (Verbyla et al., 1999)) and a term for the variety deviations from

the overall spline (idv(Harvest.Variety)). Using this spline genetic model further residual

models were investigated.

The next model to be �tted (TP7) incorporated an overall plot e�ect and allowed

for spatial correlation on this e�ect. In this model the spatial correlation parameter was

constrained to be the same at both the overall plot level and the plot by harvest level.

This model was an improvement on model TP6 based on an adjusted REMLRT statistic

(Stram & Lee, 1994) of 82.124 (P<0.001). Next the fully separable residual model of

5.3.5 which provides a spatial extension to the repeated measures model of Diggle (1988)

was �tted (TP8). This model was a signi�cant improvement on model TP7 based on an

adjusted REMLRT statistic (Stram & Lee, 1994) of 14.4 (P<0.001)). This was followed

by a model which allowed for an independent measurement error term but still constrained

the spatial correlation parameters at the plot and plot by harvest levels to be the same

(TP9). This model had the same number of parameters as model TP8 and a similar

log-likelihood. Model TP10 �tted an unconstrained model incorporating the overall plot

e�ect and measurement error terms. In this model the spatial correlation parameter in

the column direction at the overall plot level was dropped (to achieve convergence). This

model was a signi�cant improvement on model TP9 (REMLRT = 9.812 on 1 df, P=0.002).

Model TP11 further dropped the spatial correlation parameter in the column direction at

the plot by harvest level. This model resulted in one less parameter and did not di�er

signi�cantly to model TP10 (REMLRT=0.54 on 1df, P=0.5).

Di�erent models were investigated for the temporal correlation part of the model as
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an alternative to the ar1h process; for example TP12 �tted an exponential model (exph)

while TP13 �tted an ante-dependence (ante) model. Neither of these models proved an

improvement on TP11. Hence the �nal best residual model was selected as TP11 and

this residual model was used for investigating subsequent more complex genetic models

as detailed in the following section.
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Modelling genetic e�ects

Table 6.10 presents the genetic models �tted to the persistence response over time. The

�rst model listed is TP14. This model included an overall mean spline (1 + lin(years) +

spl(years) +dev(years)) and a diagonal variance model for the variety deviations from this

overall spline (diag(Harvest).Variety). The residual variance model was given by σ2
pJh ⊗

Ic ⊗Σ(p)
r +DΣhD ⊗ Ic ⊗Σr + σ2

mIh ⊗ Ic ⊗ Ir. This residual model is common for all

models �tted in Table 6.10.

The subsequent models (TP15-18) speci�ed di�erent structures for the variety devia-

tions from the overall underlying spline. Model TP15 speci�ed a factor analytic structure

of order 1 to the variety deviations (fa1) in a manner similar to that in the analysis of

yield. Model TP16 speci�ed a fa2 model which provided an improvement on the single

factor model. Table 6.11 presents the estimated genetic variances for each harvest and

genetic correlations between harvests based on the fa2 model. The genetic correlations

were very high for successive times (ranging from 0.836 to 0.940) with the highest genetic

correlation for persistence occurring between harvest times 4 and 5 (approximately two,

and two and a half years after sowing). It is interesting to note that the genetic correlation

between the �rst and �nal harvest times (six months and three years after sowing) was

negative (−0.280), which may indicate a tendency for some varieties that performed well

early in the trial to not show as high persistence later.

Subsequent models followed the approach of Verbyla et al. (1999), that is by modelling

the overall mean pro�le over time using a cubic smoothing spline and then random regres-

sions for the variety deviations from this overall mean spline. Using notation based on

that of Verbyla et al. (1999) this model can be represented by 1 + lin(years) + spl(years)

+ dev(years) + Variety + Variety.lin(years) + Variety.spl(years) + Variety.dev(years) where 1

+ lin(years) + spl(years) denotes the overall mean spline and Variety, Variety.lin(years) and

Variety.spl(years) denote the variety intercepts, slopes and random spline components for

the variety deviations from the overall mean. The terms dev(years) and Variety.dev(years)

denote lack of �t terms at the mean and Variety by time levels.

Model TP17 �tted a linear random regression over time for the variety deviations. This

linear random regression model correlated the intercepts and slopes for varieties. The next

model TP18 introduced a spline random regression model for the variety deviations (with

correlation between the intercepts and slopes but not correlating these terms with the

spline terms). The spline component was statistically signi�cant (REMLRT = 3.671 on 1

df, P = 0.028) but the predicted variance component was very small. Attempts were made

to correlate the random intercepts, slopes and spline terms in this model (to make the

model invariant to a change of basis, as detailed in section 5.3.3) but were not successful.

Therefore, because these correlations could not be estimated, and the fact that the spline

component was so small relative to the other variance components, it was decided to

take the �nal model as TP17. Table 6.12 presents the predicted variance components for

models TP17 and TP18. It can be seen that the predicted variance components for the

variety random regression intercept and slope components were approximately 50 and 10

times the variety spline component, respectively. Note that the residual models in Table
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Table 6.9: Empirical/sample variances (on diagonal) and correlations (o� diagonals) of
residuals from model TP3

1 2 3 4 5 6
1 0.070
2 0.816 0.064
3 0.787 0.792 0.070
4 0.726 0.767 0.794 0.079
5 0.711 0.756 0.768 0.800 0.078
6 0.666 0.720 0.708 0.755 0.760 0.059

6.8 were re-�tted with the �nal genetic model (TP17). This process con�rmed that the

residual model chosen initially was still the most suitable.

A plot of the predicted splines for each variety from the �nal model (TP17) is presented

in Figure 6.6. This plot shows when each variety reaches 30% persistence as shown by

the horizontal line in each plot (at -0.838 on the logit scale). It is evident from this plot

that most of the variation is in the overall mean and the curvature is very similar for

all varieties. However, there is variation in the starting points of the curves and there is

variation between varieties in the rate at which the persistence declines. This variation is

more clearly seen in Figure 6.7 which presents the linear deviations from the overall mean

spline for each variety together with 95% prediction intervals. It can be seen that varieties

such as Genesis, TL2003%04, TL2003%12 have higher positive slopes than most varieties

and also medium to high intercepts indicating both good establishment and good longer

term persistence while some varieties such as TL2003%53 and TL2003%56 have negative

slopes indicating poorer persistence. Variety TL2003%34 has a high positive slope but

very low intercept and clearly did not have good persistence or coverage at the start of

the trial.

Predicting time to P%

To address the problem of predicting the time taken till the persistence level for each

variety declines to P%, the �nal model TP17 was used. The procedure �rstly involved

predicting the persistence value for each variety at each of the harvest times (knot points of

the splines). This involved prediction for the overall spline component plus the individual

linear random regression component for each variety. Denote the overall spline by f(t)

and the linear random regression for variety i by li(t) = ui0 + ui1t where ui0 and ui1 are

the random intercept and slope for variety i. Hence the persistence for variety i at harvest

time tk may be predicted by f(tk)+ li(tk). The next step involved identifying the interval

[tL, tR] where each variety crosses the P% level. That is, where f(tL)+ li(tL)−P > 0 and

f(tR) + li(tR) − P < 0. Once the interval was obtained for each variety, the root of the

equation f(t) + li(t)−P = 0 was required for each variety i. This was achieved using the

expression for the cubic smoothing spline f(t) presented in (1.3.8) (Green & Silverman,
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Table 6.11: Genetic variances (×100) at each harvest (on diagonal) and genetic correla-
tions between harvests (o� diagonals) estimated from the fa2 model (TP16) �tted to the
lucerne persistence data

1 2 3 4 5 6
1 0.741
2 0.842 0.805
3 0.741 0.864 1.065
4 0.343 0.625 0.885 1.324
5 0.077 0.413 0.710 0.940 0.923
6 -0.280 0.079 0.384 0.732 0.836 0.799

Figure 6.6: Plot showing predicted splines for each variety from model TP17 (in Table
6.10) for logit transformed persistence data over time for Terry Hie Hie
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Figure 6.7: Plot showing predicted variety linear deviations (and 95% prediction intervals)
from overall mean spline from model TP17 (in Table 6.10) for logit transformed persistence
data over time for Terry Hie Hie

Years from sowing

V
ar

ie
ty

 d
ev

ia
tio

ns
 fr

om
 o

ve
ra

ll 
m

ea
n 

sp
lin

e 
pl

us
 9

5%
 p

re
di

ct
io

n 
in

te
rv

al
s

−1.0
−0.5

Aquarius

0.5 2.0

Cropper_Nine Genesis

0.5 2.0

Pioneer_L90 Prime

0.5 2.0

Rippa SARDI_10

0.5 2.0

Sceptre

Sequel Sequel_HR TL2003%01 TL2003%02 TL2003%03 TL2003%04 TL2003%05

−1.0
−0.5

TL2003%06

−1.0
−0.5

TL2003%07 TL2003%08 TL2003%09 TL2003%10 TL2003%11 TL2003%12 TL2003%13 TL2003%14

TL2003%15 TL2003%16 TL2003%17 TL2003%18 TL2003%19 TL2003%20 TL2003%21

−1.0
−0.5

TL2003%22

−1.0
−0.5

TL2003%23 TL2003%24 TL2003%25 TL2003%26 TL2003%27 TL2003%28 TL2003%29 TL2003%30

TL2003%31 TL2003%32 TL2003%33 TL2003%34 TL2003%35 TL2003%36 TL2003%37

−1.0
−0.5

TL2003%38

−1.0
−0.5

TL2003%39 TL2003%40 TL2003%52 TL2003%53 TL2003%54 TL2003%55 TL2003%56 TL2003%57

0.5 2.0

TL2003%58 TL2003%59

0.5 2.0

TL2003%60

−1.0
−0.5

Venus

Table 6.12: REML estimates of the variance components (×103 from the random regres-
sion models (TP17, TP18) �tted to lucerne persistence data

Term Var comp TP17 Var comp TP18
spl(years) 10.465 10.454
dev(years) 4.806 4.784

Variety 8.961 9.268
Variety.lin(years) 2.842 2.990
Variety.spl(years) - 0.204
Variety.dev(years) 0.690 0.000
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1994). That is

f(t) =
(t− tL)fR + (tR − t)fL

h

− 1

6
(t− tL)(tR − t)[(1 +

t− tL
h

)γR + (1 +
tR − t

h
)γL]

where γR and γL are the second derivatives of the cubic smoothing spline at knot points

tR and tL respectively, h = tR− tL, fL = f(tL) and fR = f(tR) (see Chapter 1 for details).

A number of methods are available to solve the equation, f(t)+li(t)−P = 0, including

the bi-section or Newton Rhapson method.

The results for the predicted times for each variety to decline to 30% (−0.838 on logit

scale) were obtained using the R function uniroot to solve the above equation. The results

are presented in Figure 6.8, where it can be seen that Genesis took the longest time to

decline to 30% persistence. A plot of the predicted splines plus 95% prediction intervals for

the top 5 and bottom 5 varieties is given in Figure 6.9. While there is almost a six month

di�erence in predicted time to 30% persistence between the top and bottom varieties, the

prediction intervals are quite large and many varieties may not be statistically di�erent.

The R code for �tting the model and subsequently predicting the time till 30% per-

sistence is presented in Appendix C.

6.3 Discussion

The methods presented in this chapter provide a new approach for the analysis of multiple

harvest variety selection data from a single site, that accounts for both spatial variation

between plots and temporal correlation between harvests, and allows the genetic e�ects

to be modelled over time. In both data sets analysed there was substantial spatial and

temporal correlation. The three components of temporal correlation identi�ed in Diggle

(1988) were found across the two analyses. There were large plot e�ects and serial correla-

tion in both analyses and signi�cant measurement error in the analysis of the persistence

data.

The combined approach of �tting the new extended spatial and temporal residual

models (developed in Chapter 5) plus the di�erent models for genetic e�ects is a new

approach that builds on the models of Smith et al. (2007). At the residual level, it has

been shown that the models presented provide an approach that is signi�cantly better in

�t than assuming independence between harvest times. However the three way separable

(harvest by column by row) structure assumed for the spatio-temporal correlation may

not always be appropriate (Smith et al., 2007). The model assumes common spatial

parameters over harvest times which has been shown in Chapter 3 not to always be the

case. It may be expected that the spatial variation between harvest times may di�er

due to seasonal changes and growth phase of the crop. This may vary between trials.

For example in the yield analysis at Terry Hie Hie the spatial correlation parameters did

not di�er greatly in the individual analyses (see Chapter 3) and this is also shown in

the comparison between models Y1 and Y2 (Table 6.1) where separate spatial models are

111



Figure 6.8: Predicted time to persistence level of 30% (-0.838 on logit scale) for each
variety based on model TP17 in Table 6.10
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shown not to be signi�cantly di�erent to a common spatial model across the harvests. This

could indicate that the separable residual model may be reasonable in this case. A similar

comparison between individual spatial models and common spatial model for yield data at

the other sites (details not presented here) showed a signi�cant di�erence between models

(with the separate spatial models providing a better �t than the common spatial model)

for the trials at Leadville (P=0.022), Tamworth (P<0.001) and Sandigo (P=0.045). In

these cases it may not be appropriate to assume a separable residual model with common

spatial parameters and a more �exible model which allows for di�erent spatial correlation

parameters for each harvest may be more suitable.

The genetic models presented relate to the repeated measures nature of the data

and performance is modelled at speci�c times or as a trend over time. The genetic
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Figure 6.9: Plot showing predicted splines plus 95% prediction intervals for logit trans-
formed persistence for the top 5 (top panel) and bottom 5 (bottom panel) varieties as
ranked on time to reach 30% persistence
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models aim to provide a reduced set of genetic e�ects to enable varietal selection to take

place. In some instances the data may warrant a random regression over time approach

while in others a di�erent approach, for example a random regression over harvest mean

yield, may be desirable, or in other circumstances predictions may be required at each

harvest time or for target groups of harvests. Identi�cation of the appropriate approach is

facilitated through the implementation of factor analytic (fa) models (Smith et al., 2001),

and interpretation of their loadings. The factor analytic models enable predictions to be

made at each harvest time, or for target groups of harvests which may be identi�ed using

cluster analysis (Cullis et al., 2010). The random regression models for genetic e�ects

provide intercepts and slopes for each variety giving the deviation of the variety from the

overall harvest mean pro�le.

Appropriate selection indices could be developed in collaboration with breeders using

the genetic parameters from these models, and hence rankings of varieties presented for

selection (Kelly et al., 2007). Smith et al. (2007) presents selection indices based on a

weighted sum of the predictions from each harvest time with user supplied weights. This

approach can be used to form selection indices for the data in this chapter, based on

the predictions obtained at each harvest time, or for groups of harvests, from the Factor

analytic model. A similar approach could be used to weight the intercepts and slopes

from the random regression models and hence form a selection index.

6.4 Conclusions

The multi-harvest analyses in this chapter have added greater insight into perennial crop

variety selection trials than the individual analyses at each harvest time. The temporal

correlation between harvests has been identi�ed as an important component to model.

The di�erent components of temporal correlation identi�ed by Diggle (1988) have been

found and spatial extensions to these components have been able to be �tted. The genetic

models have allowed the variety responses to be modelled over time providing further in-

sight into variety by harvest e�ects. The individual harvest analyses are still important in

that they identi�ed global and extraneous spatial trends that needed to be accommodated

for each harvest in the multi-harvest analyses thereby resulting in a good starting point

for the multi-harvest analyses.

In practice variety selection would normally be based on an analysis of data from

multiple sites and methods for across site (MET) analysis are required. In the following

chapter the methods used here will be extended to the multi-site situation. It would

also be desirable to base selection on a number of key traits, rather than just yield or

persistence alone. Ideally a single multivariate analysis of these correlated traits across

harvests could be performed and a selection index calculated, based on the multiple traits.

To address the issue of modelling the spatio-temporal correlation at the residual level

in a more �exible way that does not assume constant spatial correlation parameters over

time, methods incorporating non separable spatio-temporal models need to be investi-

gated. In subsequent chapters such non separable residual models are presented.
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Chapter 7

Analysis of multi-environment,

multi-harvest trial (MEMHT) data

using separable residual models

7.1 Introduction

In Chapters 5 and 6, new methods for modelling the genetic and residual variation in a

single multi-harvest trial were presented. Rather than base evaluations purely on results

from a single trial, variety selection in perennial crops usually involves a number of tri-

als, conducted across a range of environments, and speci�c interest lies in investigating

variety by environment (location and time) interaction. Therefore, analysis methods for

these variety selection trials need to be applicable to the combined data across multiple

trials. The approach to analysis is highly motivated by the type of data and how best to

connect the data across the trials. In this chapter, the single site, multi-harvest analysis

approaches developed in the previous chapters are extended to the multi-environment,

multi-harvest trial (MEMHT) situation where varieties are tested across a number of en-

vironments. Suitable models are presented for MEMHT data and the approaches applied

to the analysis of the lucerne yield and persistence data across trials.

7.2 Model for multi-environment, multi-harvest trial

(MEMHT) data

Suppose we have t trials in which m varieties are grown (not all varieties need to be

grown in all trials). The jth trial consists of nj plots in a rectangular array consisting

of cj columns by rj rows (nj = cjrj). Let hj denote the number of harvests for the j
th

trial and let h+ be the total number of trial by harvest combinations (h+ =
∑t

j=1 hj).

Let yj be the hjnj × 1 vector of observations (for example yield) for trial j, ordered

as rows within columns within harvests. The data combined across trials is denoted by

y = (yT
1 ,y

T
2 , . . . ,y

T
t )

T ; this is an N × 1 vector with N =
∑t

j=1 hjnj.

115



A linear mixed model for the data, y may be written, based on (2.2.1) as

y =Xτ +Zgug +Zouo + e (7.2.1)

where τ is a vector of �xed e�ects with design matrix X, ug is the h+m × 1 vector of

variety (or genetic) e�ects for individual trial by harvest combinations with associated

design matrix Z(N×h+m)
g , uo is a vector of other random e�ects with associated design

matrix Zo and e is the N × 1 vector of residuals.

The random e�ects from the linear mixed model (Equation 7.2.1) are assumed to

follow a Normal distribution with zero mean vector and variance-covariance matrix

var


 ug

uo

e


 =

 Gg 0 0

0 Go 0

0 0 R


7.3 Modelling residual e�ects

In multi-environment (MET) trials, the full residual covariance matrixR is typically given

by a block diagonal matrix

R = diag(Rj)

where Rj is the residual variance matrix for the jth trial. Therefore each trial has it's

own residual covariance structure and residuals are assumed independent between trials.

The same approach implemented in the previous chapters in modelling the spatial and

temporal residual covariance structure for each trial is therefore applicable in the MEMHT

analysis.

7.4 Modelling genetic e�ects

At the genetic level in MEMHT trials the aim is to model the interaction between trial,

harvest within trial and variety. This is variety by environment interaction where envi-

ronment not only includes location but also harvest or time e�ects. In general form the

variance matrix Gg for these genetic e�ects across harvests and trials may be represented

by

Gg = Gth ⊗ Im

where Gth is a h+ × h+ genetic variance matrix indexed by all the trial by harvest com-

binations and Im is the assumed structure for the varieties.

In the balanced (or near balanced) case of the same number of harvests at the same

times at each site Smith et al. (2007) show that Gth may be modelled using a separable
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form as

Gth = Gt ⊗Gh (7.4.2)

where Gt represents the trial genetic covariance structure (variances and covariances

within and between trials), and Gh represents the harvest genetic covariance structure

(variances and covariances for the harvests). Smith et al. (2007) recommend using the

factor analytic (fa) or unstructured (us) models for Gt and Gh depending on the number

of trials and harvests, noting that there may need to be restrictions on Gt⊗Gh to ensure

parameters are identi�able. In unbalanced situations where harvests vary considerably

in time and number across the trials, for example in the lucerne trials considered in this

thesis, the separable model may not be applicable and alternative approaches need to be

considered. Alternative models, for example random regression models, may be consid-

ered when the aim is to model the genetic e�ects using a continuous function over time.

Note that while the separable form is desirable for it's ease of interpretation and comput-

ing advantages, the separable structure implies that the genetic correlation between pairs

of harvests is the same for all trials. This is unlikely to be the case in practice.

7.4.1 Factor analytic models

When the number of harvests is not balanced across the trials and the separable trial by

harvest genetic model of (7.4.2) is not able to be used, the full h+ × h+ genetic variance

matrixGth may be modelled using factor analytic models. The number of trial by harvest

combinations may be large and hence many factors may be required to adequately explain

the covariance structure. To interpret the results from �tting the factor analytic model

the clustering techniques of Cullis et al. (2010) may be implemented. This approach will

be illustrated below with the analysis of the lucerne yield data across the �ve trials.

7.4.2 Random regression models

Where the aim is to model the variety responses over time using a continuous function, the

random regression model (Laird & Ware, 1982) provides a suitable approach for MEMHT

data. A linear random regression model may be used that allows for random intercepts

and slopes (and correlation between these terms) for each variety (as a main e�ect) and

correlated random intercepts and slopes for each variety by environment (trial) response.

Suppose gijk denotes the random e�ect for variety i, trial j and harvest k, and tjk

represents the harvest time for harvest k at trial j. A linear random regression model for

variety by environment interactions gijk can be formulated as

gijk = ui0 + ui1tjk + uij0 + uij1tjk + ϵijk (7.4.3)

where ui0 and ui1 are the random intercept and slope terms (respectively) for an average

variety e�ect (over environments) for variety i, and uij0 and uij1 are the random intercept

and slope terms for variety i at trial j. The term ϵijk represents a residual term for genetic
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e�ects, assumed to be independent and identically distributed. For the random regression

model, it is assumed [
ui0

ui1

]
∼ N

([
0

0

]
,Ggrr =

[
gg00 gg01

gg01 gg11

])
(7.4.4)

and [
uij0

uij1

]
∼ N

([
0

0

]
,Ggerr =

[
gge00 gge01

gge01 gge11

])
(7.4.5)

so that Ggrr and Ggerr are 2×2 covariance matrices for the random intercepts and slopes

for each variety (averaged over environments) and for each variety at each site, respec-

tively. Note that the random regression approach could also be extended to encompass

semi-parametric regression using cubic smoothing splines as in the previous chapter.

The random regression model provides a balanced genetic variance structure with

equal numbers of genetic e�ects (intercepts and slopes) for each trial, no matter how

varied the harvest times or numbers are across trials. Hence the forms for the covariance

matrices for the random intercepts and slopes above, are di�erent forms thatGh in (7.4.2)

may take.

It may also be desirable to correlate the random coe�cients for a variety across the

di�erent environments. This may be done by providing a structure forGt in the separable

model (7.4.2). Alternatively, rather than assume a separable structure, the full 2t ×
2t matrix of random intercepts and slopes for the t trials may be considered and the

covariance structure modelled using an unstructured covariance matrix.

To fully understand the di�erent covariance structures implied by the di�erent random

regression models above, it is useful to consider the full 2t × 2t covariance matrix for

random intercepts and slopes for the t trials, under each model. These matrices are

presented below for a selection of cases (note the parameters are ordered as intercepts for

trials 1 to t and then slopes 1 to t).

(a) If the random regression model of (7.4.3) is �tted (corh(1,years):id(Variety) +

id(Trial):corh(1,years):id(Variety)), resulting in the two 2× 2 covariance matrices Ggrr and

Ggerr as de�ned in (7.4.4) and (7.4.5), the full 2t× 2t covariance matrix is given by

G2t =

[
gg00J t + gge00I t gg01J t + gge01I t

gg01J t + gge01I t gg11J t + gge11I t

]

where J t is a t× t matrix with all elements equal to 1.

This model correlates the genetic e�ects across trials but it assumes the same cor-

relation for intercepts between trials and similarly for slopes. It also assumes the same

correlation between intercepts and slopes within a trial, for all trials and the same variance

for intercepts at all trials and the same variance for slopes at all trials.

(b) If the overall random regression for each variety averaged over the trials, is omitted

from model (a) and just the individual random regression for each variety at each trial is
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�tted ( id(Trial).corh(1,years).Variety) the resulting covariance matrix is given by

G2t =

[
gge00I t gge01I t

gge01I t gge11I t

]

This model does not correlate the genetic e�ects across the trials. It also assumes the

same correlation between intercepts and slopes within a trial, for all trials and the same

variance for intercepts at all trials and the same variance for slopes at all trials.

(c) If a model is �tted that estimates a di�erent 2 × 2 Ggerr random regression co-

variance matrix for each trial (at(Trial).corh(1.years).id(Variety)), where these matrices are

referred to as Gge1, . . .Gget with

Ggei =

[
ggei00 ggei01

ggei01 ggei11

]

then the full 2t× 2t covariance matrix is given by

G2t =



gge100 0 . . . 0 gge101 0 . . . 0

0 gge200 . . . 0 0 gge201 . . . 0
...

...
. . .

...
...

...
. . .

...

0 0 . . . gget00 0 0 . . . gget01

gge101 0 . . . 0 gge111 0 . . . 0

0 gge201 . . . 0 0 gge211 . . . 0
...

...
. . .

...
...

...
. . .

...

0 0 . . . gget01 0 0 . . . gget11


This model does not correlate the intercepts and slopes between trials. It does however

allow for di�erent variances for intercepts and slopes from di�erent trials and di�erent

correlation between intercepts and slopes within a trial for the di�erent trials.
(d) A combination of the overall random regression and model (c) (corh(1,years):id(Variety)

+ at(Trial).corh(1.years).id(Variety)) results in

G2t =



gge100 + gge00 gg00 . . . gg00 gg01 + gge101 gg01 . . . gg01

gg00 gg00 + gge200 . . . gg00 gg00 gge201 . . . gg00
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

gg00 gg00 . . . gg00 + gget00 gg00 gg00 . . . gget01

gge101 gg00 . . . gg00 gg00 + gge100 gg00 . . . gg00

gg00 gge201 . . . gg00 gg00 gg00 + gge200 . . . gg00
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

gg00 gg00 . . . gget01 gg00 gg00 . . . gg00 + gget00



This model correlates the genetic e�ects across trials and allows for di�erent correla-

tions between intercepts and slopes at each trial. It is still restrictive in that it restricts

the covariances for intercepts between trials to be equal and also the covariances for slopes

between trials to be equal.
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(e) The genetic e�ects may be correlated across the trials by providing a structure for

Gt in the separable model (7.4.2) for example a common correlation model

(cor(Trial).corh(1,years).id(Variety)). This model results in a t× t correlation matrix mod-

elling the genetic correlation between trials (Gt) where

Gt =


1 ρ . . . ρ

ρ 1 . . . ρ
...

...
. . .

...

ρ ρ . . . 1


and a 2×2 covariance matrix (Ggerr)modelling the covariance structure between intercepts

and slopes within a trial with

Ggerr =

[
gge00 gge01

gge01 gge11

]

Hence the full 2t× 2t covariance matrix is given by

G2t =



gge00 ρgge00 . . . ρgge00 gge01 ρgge01 . . . ρgge01

ρgge00 gge00 . . . ρgge00 ρgge01 gge01 . . . ρgge01
...

...
. . .

...
...

...
. . .

...

ρgge00 ρgge00 . . . gge00 ρgge01 ρgge01 . . . gge01

gge01 ρgge01 . . . ρgge01 gge11 ρgge11 . . . ρgge11

ρgge01 gge01 . . . ρgge01 ρgge11 gge11 . . . ρgge11
...

...
. . .

...
...

...
. . .

...

ρgge01 ρgge01 . . . gge01 ρgge11 ρgge11 . . . gge11


This model assumes genetic e�ects are correlated between trials but all pairs of inter-

cepts and slopes have the same correlation. It also assumes that all trials have the same

correlation between intercepts and slopes within a trial.

(f) If a similar model to (e) is assumed but with an unstructured covariance structure

forGt (us(Trial).corh(1,years).id(Variety)) then the following full covariance matrix is given

by

G2t =



σ11gge00 σ12gge00 . . . σ1tgge00 σ11gge01 σ12gge01 . . . σ1tgge01

σ12gge00 σ22gge00 . . . σ2tgge00 σ12gge01 σ22gge01 . . . σ2tgge01
...

...
. . .

...
...

...
. . .

...

σ1tgge00 σ2tgge00 . . . σttgge00 σ1tgge01 σ2tgge01 . . . σttgge01

σ11gge01 σ12gge01 . . . σ1tgge01 σ11gge11 σ12gge11 . . . σ1tgge11

σ12gge01 σ22gge01 . . . σ2tgge01 σ12gge11 σ22gge11 . . . σ2tgge11
...

...
. . .

...
...

...
. . .

...

σ1tgge01 σ2tgge01 . . . σttgge01 σ1tgge11 σ2tgge11 . . . σttgge11


This model assumes the genetic e�ects are correlated between trials and allows for di�erent
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variances for intercepts and slopes at each trial and di�erent covariances between all pairs.

However it does impose the restriction that the correlation between intercepts and slopes

within a trial is the same for each trial.

(g) The most general of all forms for the 2t×2t covariance matrix is a fully unstructured

covariance matrix (us(Trial+Trial:years).id(Variety)).

The full variance model in all cases is given by

Gth = ZthG2tZ
T
th

where Zth is a h+ × 2t block diagonal design matrix.

7.5 Analysis of multi-environment, multi-harvest trial

(MEMHT) lucerne data

7.5.1 Yield

The lucerne yield data was obtained from �ve trials (Euloma, Leadville, Sandigo, TCCI,

Terry Hie Hie) as detailed in Table 1.1 in Chapter 1. The harvest times were quite varied

across these �ve trials and hence result in an unbalanced trial by harvest data set, with

28 trial by harvest combinations. The yield data was transformed using a cube root

transformation (as in Chapter 6) to better approximate the Gaussian distribution.

The residual modelling techniques detailed in Chapter 5 for modelling the spatial and

temporal correlation structures within a trial were conducted for each of the �ve trials

and a �nal residual model was decided upon. This �nal residual model assumes a 3 way

separable temporal by spatial process ante1(Harvest).ar1(Column).ar1(Row) for trials at

Euloma, Leadville and TCCI, ante2(Harvest).ar1(Column).ar1(Row) for Terry Hie Hie and

us(Harvest).ar1(Column).ar1(Row) for Sandigo (only 2 harvests), together with overall plot

(Column.Row) e�ects for all trials, with spatial correlation on these plot e�ects in the

Row direction for TCCI and Terry Hie Hie. The global and extraneous spatial terms

identi�ed in Chapter 3 (Table 3.2) for each trial were also included.

The genetic covariance structure across the 28 trial by harvest combinations was mod-

elled using a factor analytic model (fa). A sequence of genetic models was �tted (as

detailed in Table 7.1) to arrive at the �nal factor analytic model of order 3 (fa3). A model

with four factors (fa4 model) was �tted but was not a signi�cant improvement on the fa3

model as based on REMLRT. Reduced rank models were �tted (where speci�c variances

were constrained to zero) at each stage (for example fa1 to fa2) in order to obtain suitable

starting values for the next model.

The rotated factor loadings from the fa3 model are presented in Table 7.2. As an aid

to interpreting the results from the fa model a cluster analysis was performed based on

the correlation matrix estimated from the fa model. A dendrogram showing the cluster

analysis results is presented in Figure 7.1 and a heat map representation of the correlations

for genetic e�ects between the harvests and trials is given in Figure 7.2. The genetic
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variances for each trial by harvest combination are presented in Table 7.2.

The dendrogram and heat map show three main groups in the trial by harvest com-

binations and four separate harvests in their own individual groups, as detailed in Table

7.3.

Selection indices have been formed for these groups, using the approach in Cullis et al.

(2010) (and as discussed in Chapter 6), using equal weights for harvests within each group.

That is, if uij represents the genetic e�ect of variety i at trial by harvest combination j,

(j = 1, . . . , 28) (as given in Table 7.2) and ũij is the BLUP of uij, the predicted selection

index for variety i for the 7 groups, Î
(d)

i , for d = 1, . . . , 7, may be de�ned as

Î
(1)

= ({ũi1}+ {ũi4}+ {ũi26}+ {ũi6}+ {ũi14}+ {ũi9}+ {ũi2}

+{ũi23}+ {ũi18}+ {ũi21}+ {ũi3})/11

Î
(2)

= ({ũi5}+ {ũi15}+ {ũi22}+ {ũi24}

+ {ũi20}+ {ũi28}+ {ũi8}+ {ũi12}+ {ũi19}+ {ũi25})/10

Î
(3)

= ({ũi7}+ {ũi10}+ {ũi16})/3

Î
(4)

= ({ũi11})

Î
(5)

= ({ũi13})

Î
(6)

= ({ũi17})

Î
(7)

= ({ũi27})

Figure 7.3 presents the predicted selection indices for each variety for each of the

groups. It can be seen that group 3 is negatively correlated with groups 2 and 4. Varieties

may be ranked for each of these groups. For example, variety number 51 is the highest

ranked variety for groups 1 and 6 but ranked fairly low for groups 4 and 5.

7.5.2 Persistence

The lucerne persistence data was measured at 5 sites at a number of assessment times

(varying from 3 times at Euloma to 7 times at Leadville), as detailed in Table 1.2 in

Chapter 1. The assessment times varied across the trials and resulted in an unbalanced

trial by harvest data set of 25 trial by harvest combinations. The data (percentages) was

transformed using a logit transformation to better approximate the Gaussian distribution

(as in Chapter 6).

As discussed in Chapters 5 and 6 the lucerne persistence data is continuous over time

and the aim is to model the genetic response over time. Random regression is therefore an

ideal approach as it may be used to model variety deviations from the underlying overall

mean response at each trial and to correlate the genetic e�ects (through the random

intercepts and slopes) across trials. In Chapter 6 the aim was to predict the time when

varieties persistence dropped to 30% at Terry Hie Hie, however across the 5 trials, only

Terry Hie Hie and Sandigo were measured for su�cient length or had persistence levels
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Table 7.2: Rotated factor loadings(Λ), % Variance accounted for(%VAF) and genetic
variances estimated from the fa3 factor analytic model (MY5) �tted to the lucerne yield
data across all trials

Trial Harvest Harvest Λ1 Λ2 Λ3 %VAF Genetic
No. Date Variance

1 Euloma 1 1/11/03 0.19 0.18 -0.05 100 0.074
2 Euloma 2 18/12/03 0.07 0.02 0.06 100 0.009
3 Euloma 3 16/02/04 0.02 0.10 0.09 100 0.018
4 Euloma 4 14/04/04 0.13 0.10 0.00 100 0.029
5 Euloma 5 14/10/04 0.15 0.04 0.00 99 0.023
6 Euloma 6 30/11/04 0.03 0.12 -0.04 100 0.018
7 Lead 1 14/10/04 -0.14 0.07 -0.04 100 0.025
8 Lead 2 25/11/04 0.12 -0.02 -0.11 100 0.026
9 Lead 3 21/12/04 0.09 0.11 0.01 62 0.030
10 Lead 4 3/02/05 -0.05 0.10 -0.03 100 0.015
11 Lead 5 24/11/05 0.02 -0.05 0.00 19 0.016
12 Sandi 1 17/11/03 0.16 -0.04 -0.08 89 0.038
13 Sandi 3 04/01/05 0.07 -0.16 -0.00 14 0.225
14 TCCI 2 10/12/03 0.14 0.09 -0.12 100 0.043
15 TCCI 3 16/02/04 0.09 -0.00 0.01 100 0.009
16 TCCI 4 08/10/04 -0.03 0.04 -0.09 100 0.010
17 TCCI 5 19/11/04 0.02 0.10 -0.02 36 0.028
18 TCCI 6 21/12/04 0.12 0.13 0.12 100 0.048
19 Terry 1 13/11/03 0.03 -0.03 -0.03 100 0.002
20 Terry 2 16/12/03 0.10 -0.07 0.00 100 0.015
21 Terry 3 05/02/04 0.02 0.01 0.04 100 0.002
22 Terry 4 11/03/04 0.17 -0.03 0.03 100 0.032
23 Terry 5 20/04/04 0.10 0.04 0.08 100 0.017
24 Terry 6 22/06/04 0.53 -0.09 0.01 90 0.323
25 Terry 7 12/10/04 0.02 -0.03 -0.03 100 0.002
26 Terry 8 02/12/04 0.05 0.09 0.02 100 0.011
27 Terry 9 23/12/04 -0.02 0.01 0.06 21 0.017
28 Terry 10 24/01/05 0.13 -0.09 0.02 100 0.026

above 30% to make this speci�c problem relevant across trials. It may be of more interest

to look at all trial locations and investigate the variety deviations (intercepts and slopes of

deviations) from the overall underlying mean pro�le at each site. By investigating these

deviations across the sites variety by environment interactions may be identi�ed. By

modelling the variety pro�les over time across the sites, predictions may also be obtained

and varieties ranked, at times of interest which may not have been an assessment time.

The modelling process commenced with modelling the underlying overall mean at each

trial. This was done using a linear model (1 + lin(years)) for trials at Leadville, Sandigo

and TCCI and a cubic smoothing spline model (1 + lin(years)+ spl(years) + dev(years)) for

Terry Hie Hie (as in Chapter 6). (Note Euloma was excluded from this MET analysis as

it was only measured at 3 times and not over a su�ciently long period of time to compare

with the other trials).

The residual modelling process for each trial followed that outlined in Chapters 5 and
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Figure 7.1: Dendrogram of the dissimilarity matrix from the fa3 model (MY5 in Table
7.1) �tted to the lucerne MEMHT yield data
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6 in order to model the residual spatial and temporal correlation structure at each trial.

The �nal residual model across all trials included a 3 way separable temporal by spatial

process with a heterogeneous variance autoregressive process of order1 (ar1h) for the

temporal component and an autoregressive process of order1 for the spatial components

in the row and column directions (ar1h(Harvest).ar1(Column).ar1(Row)) for all trials. The

model also included an overall plot e�ect (Column.Row) for each trial and the global and

extraneous spatial terms identi�ed for each trial in Chapter 3 (Table 3.4).

The genetic response over time was modelled using the random regression models

detailed in section 7.4.2. The sequence of genetic random regression models �tted is

presented in Table 7.4.

The �rst model (MP1) �tted a random regression model with correlated random in-
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Figure 7.2: Heat map representation of the genetic correlation matrix from the fa3 model
(MY5 in Table 7.1) �tted to the lucerne MEMHT yield data
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tercepts and slopes for each variety by environment response but with no correlation of

random e�ects (random intercepts and slopes) between the trials. Hence a single 2 × 2

covariance matrix Gge was estimated. This is the covariance structure discussed in (b) in

section 7.4.2. The next model (MP2) included the random regression of MP1 but with

an additional overall random regression for an average variety e�ect (over environments).

This is the model presented in (a) in section 7.4.2. This model correlates the genetic

e�ects across the trials. It was a signi�cant improvement on MP1 (REMLRT = 62.668

on 3 df, P < 0.001).

Both models MP1 and MP2 assumed that the correlation between intercepts and slopes

within a trial was the same for all trials, and also assumed that the variance for intercepts

at all trials was the same and the variance for slopes at all trials was the same. The next
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Figure 7.3: Plot of predicted selection indices from the seven groups (in Table 7.3) iden-
ti�ed in the cluster analysis based on the genetic correlation matrix from the fa3 model
�tted to the lucerne MEMHT yield data. Numbers refer to variety names in Table 6.7
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Table 7.3: Table showing groupings of trial by harvest combinations based on the cluster
analysis after �tting a fa3 model (MY5 in Table 7.1) to the lucerne MEMHT yield data,
as well as harvest variables

TrialHarv harvest date yld group
EULOM1 1/11/03 551 1
EULOM4 14/04/04 884 1
TERRY8 2/12/04 1012 1
EULOM6 30/11/04 771 1
TCCI2 10/12/03 664 1
LEAD3 21/12/04 637 1
EULOM2 18/12/03 910 1
TERRY5 20/04/04 779 1
TCCI6 21/12/04 843 1
TERRY3 5/02/04 1948 1
EULOM3 16/02/04 1084 1
EULOM5 14/10/04 834 2
TCCI3 16/02/04 701 2
TERRY4 11/03/04 808 2
TERRY6 22/06/04 624 2
TERRY2 16/12/03 1314 2
TERRY10 24/01/05 977 2
LEAD2 25/11/04 447 2
SANDI1 17/11/03 381 2
TERRY1 13/11/03 1934 2
TERRY7 12/10/04 1257 2
LEAD1 14/10/04 909 3
LEAD4 3/02/05 538 3
TCCI4 8/10/04 1056 3
LEAD5 24/11/05 1472 4
SANDI3 04/01/05 237 5
TCCI5 19/11/04 954 6
TERRY9 23/12/04 1229 7

model (MP3) allowed for di�erent 2×2 covariance structures for correlated intercepts and

slopes for each trial, but this model did not correlate the genetic e�ects across the trials.

This model was not an improvement on MP2 (based on AIC values). The next models

(MP4 and MP5) added an overall average variety e�ect random regression to MP3. Model

MP4 did not correlate the random intercepts and slopes within a trial and was �tted more

to get starting values for MP5. Unfortunately model MP4 identi�ed some of the slopes

and intercepts at some trials as having zero variance (when the overall average random

regression was also included) so attempts at �tting MP5 where the intercepts and slopes

were correlated, were unsuccessful.

The next two models (MP6 and MP7) followed the separable form of (7.4.2), where a

2× 2 covariance matrix was estimated for the covariance structure for the intercepts and

slopes within a trial (Gh) and a 4 × 4 covariance matrix was estimated to correlate the

random e�ects across the trials (Gt). Model MP6 �tted an equal correlation structure
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to Gt (cor) thereby assuming equal correlations between all pairs of trials and equal

variances. It is unlikely all pairs of trials will be correlated in the same way and have the

same variance, so a more plausible model would be to �t an unstructured model for Gt.

This was �tted as model MP7. To make this model estimable, a constraint needed to be

applied to either Gh or Gt. As Smith et al. (2007) point out, the choice of constraint will

cause di�erent parameters forGh andGt but the Kronecker productGh⊗Gt is unique no

matter what constraint is chosen. In model MP7 the �rst element (variance) for Gt was

set to 1 so all variances and covariances in Gh and Gt were relative to this. Unfortunately

there were problems with this model with some correlations being estimated greater than

1. An attempt to �t a factor analytic (fa1) model to Gt also had problems converging.

The next models (MP8,MP9,MP10,MP11,MP12) �tted a direct covariance structure

to the full 8 intercepts and slopes. Model MP8 �tted a diagonal structure to the 8

random e�ects in order to provide starting values for the subsequent models. Model

MP9 �tted an unstructured covariance structure for the full set of intercepts and slopes

(thereby allowing for di�erent variances and correlations between intercepts and slopes

both within and between trials). This model had a high log-likelihood but required many

parameters to be estimated. More parsimonious models (MP10, MP11 and MP12) were

�tted using the factor analytic model with 1,2 and 3 factors respectively. The fa2 model

(MP11) was a signi�cant improvement on MP10 (REMLRT= 32.574 on 7 df, P < 0.001).

The fa3 model (MP12)was not a signi�cant improvement on the fa2 model (MP11).

Comparing AIC values for all models in Table 7.4 it can be seen that models MP2 and

MP6 are very similar in goodness-of-�t to MP11. Models MP2 and MP6 are much more

restrictive than MP11 in that they assume the same correlation between intercepts and

slopes within a trial for all trials, and they also assume the same correlation for intercepts

between trials and the same correlation between slopes between trials, whereas MP11

allows for di�erent correlations between all pairs of intercepts and slopes.

Given that it has been suggested (see Vaida & Blanchard, 2005) that a di�erence of

2 or less in AIC may not be reliable in ranking two models, and the fact that model

MP11 provides greater insight into the genetic covariance structure across the harvests

and trials, the �nal model has been chosen as MP11.

The results from �tting model MP11 are presented in Table 7.5 and Figures 7.4 and

7.5. These �gures show the intercepts and slopes from the random regression model for

each variety across the 4 trials while the table presents the genetic correlations (between

intercepts and slopes) for the 4 trials. The data has been adjusted so that time zero

is actually 6 months after sowing. Hence the intercepts are predicted deviations from

trial harvest means at time 6 months and the intercepts may be interpreted to re�ect an

establishment e�ect with a positive intercept indicating an above average establishment.

The slopes re�ect whether the varieties rate of persistence is above or below average after

establishment. It is clearly desirable to �nd varieties with a large positive intercept and

large positive slope (hence varieties in the top right hand corner of each panel in Figure

7.5).

It is apparent from Figure 7.4 and Table 7.5 that intercepts were highly positively
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correlated between trials for all pairs of trials. This indicates generally consistent results

in establishment across the trials. The slopes were also very consistent between trials,

with the possible exception between Terry Hie Hie and Sandigo. At all trials (except

Sandigo) the intercepts and slopes were negatively correlated within a trial.

From Figure 7.5 it can be seen that varieties 8 and 44 perform quite di�erently to other

varieties. Variety 44 has a high slope for all trials indicating a high rate of persistence but

while the intercept for this variety at Sandigo is average, it is below average at the other

trials, being very low at Terry Hie Hie. This variety therefore shows good establishment

and persistence at Sandigo but did not establish well at the other trials. Variety 45

performed consistently well with both moderately high intercepts and slopes across all

trials.

Figure 7.4: Pairwise plots of intercepts(i) and slopes(sl) for the four trials from random
regression model (MP11) �tted to the lucerne MEMHT persistence data
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Figure 7.5: Plot of predicted intercepts and slopes for each variety at each trial from ran-
dom regression model (MP11) �tted to the lucerne MEMHT persistence data. Numbers
refer to variety names in Table 6.7
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Table 7.5: REML estimates of variances (on diagonal) and correlations (o� diagonals) for
intercepts (int) and slopes (sl) from model MP11 �tted to the lucerne MEMHT persistence
data

int lead int sandi int tcci int terry sl lead sl sandi sl tcci sl terry

int lead 0.010
int sandi 0.637 0.016
int tcci 0.981 0.775 0.012

int terry 0.983 0.768 1.000 0.020
sl lead -0.485 0.364 -0.307 -0.316 0.003
sl sandi -0.462 0.166 -0.338 -0.344 0.746 0.009
sl tcci -0.657 0.162 -0.498 -0.507 0.978 0.754 0.003

sl terry -0.363 0.187 -0.251 -0.257 0.650 0.491 0.647 0.002

7.6 Summary

The methods presented in this chapter provide a new approach for the analysis of multi-

harvest variety selection data from multiple trials. The approach allows variety predictions

to be made across environments and gives an insight into variety by environment interac-

tions. The approach extends that of Smith et al. (2007) by including the new extended

spatial by temporal residual models for each trial, enabling trials with large numbers of

harvests to be analysed, as well as being able to model the genetic e�ects over time for

each trial.

At the residual level, the models assumed a three way separable harvest by column

by row Kronecker product to model the spatial and temporal correlation within a trial.

The residual models �tted assume constant row and column spatial correlations across all

harvests within each trial. As we have found in Chapter 3 and Chapter 6 this assumption

may not hold for some sites and it may be more sensible to assume more �exible non-

separable residual models allowing for di�ering spatial correlation parameters across the

harvests.

The genetic models for yield are quite general with the fa model �tted to all trial

by harvest combinations with no harvest within trial structure. The clustering aids in

interpretation from this fa model however the groups obtained from the cluster analysis

are slightly di�cult to interpret. The random regression models �tted to persistence

across trials result in intercepts and slopes (from the linear deviation random regressions)

for each variety for each trial. It is possible to rank the varieties on their intercepts (which

re�ect establishment) and slopes however it may not be straightforward to make variety

selections based on these two traits. The di�erences between intercepts and slopes for a

variety across the trials gives insight into genotype by environment (gxe) interaction.

In the following chapters such non-separable residual models will be investigated.
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Chapter 8

Non-separable residual models:

Multivariate AR1 in 1 spatial

dimension

8.1 Introduction

In Chapters 5, 6 and 7, models were presented for the analysis of multi-harvest data using

separable residual covariance structures. In these models the residual covariance structure

can be written as the product of a temporal and a spatial component as in (5.2.3), where

the spatial correlation parameters are common to all harvests in the trial. This assumption

of separability of the temporal and spatial covariance processes is a strong assumption

and may not hold in many situations. In Chapter 3 the analysis of the example data

sets at each individual harvest time revealed some sites having similar spatial correlation

parameters across the harvest times while other sites had quite di�erent spatial correlation

over the harvests. It may be more reasonable in some situations to assume a non-separable

residual covariance model that allows for varying spatial correlation parameters across the

harvests.

In this chapter the multivariate autoregressive model (MVAR1) is investigated as a

suitable non-separable model for modelling the residual covariance structure from multi-

harvest (or multi-trait) data collected from plots in a single spatial dimension (e.g. along

a row) or for data from plots in a row column lattice, but where spatial correlation is only

evident in one direction (e.g. row) and the residuals are assumed to be uncorrelated in

the column direction.

While the multivariate autoregressive model can be found in the literature to model

time series data, there are no known published examples of the MVAR1 model being used

to model multi-harvest data on spatially correlated plots in the �eld. This chapter inves-

tigates the suitability of these models for the analysis of perennial crop variety selection

data and develops the framework for their implementation in the linear mixed model with

estimation using REML.

The chapter begins with the general form of the multivariate autoregressive model
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and then looks at the conditions necessary for this model to be suitable for multivariate

data measured on plots in a row or column in the �eld. Di�erent forms of the MVAR1

model are presented and investigated for di�erent situations. Code has been written in

R (R Development Core Team, 2012) and these models are then applied to two multi-

trait examples (using the lucerne yield and persistence data from two sites) and a multi-

harvest example (using the lucerne yield data from Terry Hie Hie). In these examples

spatial correlation was only evident in the row direction and independence between plots

assumed in the column direction.

8.2 Multivariate AR1 model (MVAR1)

Consider a multivariate autoregressive model for the residuals from a linear mixed model

(2.2.1) modelling data from t measurements (harvests or multiple traits) on each of n

plots in a row in the �eld. Let ei denote the t×1 vector of residuals at plot i, i = 1, . . . , n

and eik denote the kth residual on the ith plot, k = 1, . . . , t. As well as the residuals being

spatially correlated the t residuals are also likely to be related across time (or traits).

The multivariate analogue of the �rst order autoregressive process (hereafter referred

to as MVAR1) can be written as

e1 = ϵ1 (8.2.1)

ei+1 = Ωei + ϵi+1 (8.2.2)

for i = 1, . . . , n − 1, where ei represents the t × 1 vector of residuals for plot i, Ω is a

t × t matrix of spatial dependency parameters (a multivariate version of ϕ introduced

in Chapter 1) which has spatial dependency parameters between neighbouring plots at

the same time (or same trait) on the diagonals and the spatial dependency parameters

between neighbouring plots at di�erent times (or di�erent traits) on the o�-diagonals, and

the ϵi's are independent t× 1 vectors with ϵ1 ∼ N(0,Σ) and ϵi+1 ∼ N(0,Σ−ΩΣΩT ).

Therefore

e1 ∼ N(0,Σ) (8.2.3)

ei+1|ei ∼ N(Ωei,Σ−ΩΣΩT ) (8.2.4)

Now,

E(ei+1) = E(E(ei+1|ei))

= E(Ωei)

= ΩE(ei)

= Ω× 0

= 0
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and

var (ei+1) = E(var (ei+1|ei)) + var (E(ei+1|ei))

= E(Σ−ΩΣΩT ) + var (Ωei)

= Σ−ΩΣΩT +Ωvar (ei)Ω
T

Thus,

var (e2) = Σ−ΩΣΩT +ΩΣΩT

= Σ

and by induction var (ei) = Σ, for all i. Thus ei ∼ N(0,Σ).

The ei are correlated. Note �rstly that

cov (ei+1, ei) = cov (Ωei + ϵi+1, ei)

= cov (Ωei, ei) + cov (ϵi+1, ei)

= Ωcov (ei, ei) + 0

= Ωvar (ei)

= ΩΣ

and hence

cov (ei, ei+1) = (ΩΣ)T = ΣΩT

by de�nition. Furthermore,

cov (ei+2, ei) = cov (Ωei+1 + ϵi+2, ei)

= Ωcov (ei+1, ei)

= ΩΩΣ

= Ω2Σ

and so cov (ei, ei+2) = Σ(ΩT )2. Thus cov (ei+j, ei) = ΩjΣ, j = 1, . . . , n − 1. Therefore

the variance covariance matrix of e can be written as

var (e) = R =



Σ ΣΩT Σ(ΩT )2 . . . Σ(ΩT )n−1

ΩΣ Σ ΣΩT . . . Σ(ΩT )n−2

Ω2Σ ΩΣ Σ . . . Σ(ΩT )n−3

...
...

...
. . .

...

Ωn−1Σ Ωn−2Σ Ωn−3Σ . . . Σ


and e ∼ N(0,R).
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8.2.1 Inverse variance matrix for MVAR1

The joint density function of e, f(e), can be written as the product of conditional densities

and the marginal density of one or more variables. Hence

f(e) = f(e1)f(e2|e1)f(e3|e2, e1).......f(en|en−1...e1)

Using (8.2.3) and (8.2.4), the log density of e may be written as

log f(e) = log detΣ−1 − 1

2
eT1Σ

−1e1 +
n− 1

2
log detU

−1

2

n−1∑
i=1

(ei+1 −Ωei)
TU(ei+1 −Ωei) (8.2.5)

where U = (Σ−ΩΣΩT )−1.

From this joint density function the elements of the inverse variance covariance matrix

could be derived by taking the negative of the second partial derivatives as in Verbyla

(1985). Alternatively, by simply expanding the quadratic forms in (8.2.5) the exponent of

the full multivariate normal distribution of e can be obtained. Thus the quadratic forms

can be written as

eT1Σ
−1e1 +

n−1∑
i=1

(ei+1 −Ωei)
TU(ei+1 −Ωei)

= eT1Σ
−1e1 + e

T
1Ω

TUΩe1 − eT1ΩTUe2 − eT2UΩe1 + e
T
2Ue2 +

eT2ΩUΩe2 − eT2ΩUe3 − eT3UΩe2 + . . .+

= eT1 (Σ
−1 +ΩTUΩ)e1 − eT1ΩTUe2 − eT2UΩe1 + e

T
2 (U +ΩTUΩ)e2

−eT2ΩTUe3 − eT3UΩe3 + . . .+ eTnUen

= eTR−1e

where

R−1 =



Σ−1 +ΩTUΩ −ΩTU 0 . . . 0

−UΩ U +ΩTUΩ −ΩTU . . . 0

0 −UΩ U +ΩTUΩ . . . 0
...

...
...

. . .
...

0 0 . . . −UΩ U


Recall that R = var (e), so that R−1 = var (e)−1 is the inverse covariance matrix. Note

that the �rst and last diagonal elements of R−1 are not the same. In some examples

where there is a de�ned ordering of the "units" on which the multivariate measurements

are made, for instance in the case of multiple variables measured on an animal at a number

of times (time is ordered) there may be no issue with this di�erence in the �rst and last

elements of R−1. However in the case here, of multivariate data measured on plots in a
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row (or column) in a �eld, the same results are required to hold no matter if observations

are observed from left to right along the row or from right to left. In this case the inverse

covariance matrix is required to be directionally invariant and hence the the �rst diagonal

element must be equal to the last. This will mean constraints will need to be applied to

the elements of R or R−1.

8.2.2 Constraint for directional invariance of inverse covariance

matrix of MVAR1

For the inverse variance covariance matrix R−1 to be directionally invariant, the �rst and

last diagonal elements are required to be equal. i.e U = Σ−1 + ΩTUΩ. To investigate

the condition for this to hold, the following may be written:

U = (Σ−ΩΣΩT )−1

= Σ−1(Σ−1 −Σ−1ΩΣΩTΣ−1)−1Σ−1 (8.2.6)

Now

Σ−1 +ΩTUΩ = Σ−1(Σ+ΣΩT (Σ−ΩΣΩT )−1ΩΣ)Σ−1

= Σ−1(Σ−ΣΩT (ΩΣΩT −Σ)−1ΩΣ)Σ−1

= Σ−1(Σ−1 −ΩTΣ−1Ω)−1Σ−1 (8.2.7)

Thus for (8.2.6) to equal (8.2.7) it is su�cient that

ΩTΣ−1Ω = Σ−1ΩΣΩTΣ−1

This can be achieved if

ΩΣ = ΣΩT (8.2.8)

This condition is su�cient, but may not be necessary. The condition implies

Σ−1ΩΣ = Σ−1ΣΩT

Σ−1ΩΣΣ−1 = ΩTΣ−1

Σ−1Ω = ΩTΣ−1

Now as (ΩΣ)T = ΣTΩT = ΣΩT this would mean (ΩΣ)T = ΩΣ. ThusΩΣ = ΣΩT means

that cov (ei, ei+1) = cov (ei+1, ei) for i = 1, . . . , n − 1, or symmetry in the relationship
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between successive pairs. Notice also that

Ω2Σ = ΩΩΣ

= ΩΣΩT

= (ΩΣ)ΩT

= ΣΩTΩT

= Σ(ΩT )2

a result that carries over to all powers.

Therefore, under the constraint ΩΣ = ΣΩT the variance covariance matrix for e is a

symmetric matrix as follows:

var (e) = R =



Σ ΩΣ Ω2Σ . . . Ωn−1Σ

ΩΣ Σ ΩΣ . . . Ωn−2Σ

Ω2Σ ΩΣ Σ . . . Ωn−3Σ
...

...
...

. . .
...

Ωn−1Σ Ωn−2Σ Ωn−3Σ . . . Σ



=



I t Ω Ω2 . . . Ωn−1

Ω I t Ω . . . Ωn−2

Ω2 Ω I t . . . Ωn−3

...
...

...
. . .

...

Ωn−1 Ωn−2 Ωn−3 . . . I t


(In ⊗Σ)

and the inverse of the variance covariance matrix is:

R−1 =



U −ΩTU 0 . . . 0

−UΩ U +ΩTUΩ −ΩTU . . . 0

0 −UΩ U +ΩTUΩ . . . 0
...

...
...

. . .
...

0 0 . . . −UΩ U


If we further consider the constraint and it's implications on the above form of R−1,

we may be able to write the inverse variance covariance matrix in more simple terms

involving Ω and Σ. To see this consider the following: U = (Σ − ΩΣΩT )−1 and as

ΩΣ = ΣΩT under the constraint, then

U = (Σ−ΣΩTΩT )−1

= (I − (ΩT )2)−1Σ−1
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or

U = (Σ−ΩΩΣ)−1

= ((I −Ω2)Σ)−1

= Σ−1(I −Ω2)−1

Now

U−1 = Σ−ΩΣΩT (8.2.9)

but also

U−1 = Σ−Ω2Σ (8.2.10)

Hence using (8.2.10)

ΩU−1 = ΩΣ−Ω3Σ

= ΣΩT −Σ(ΩT )3

and using (8.2.9)

U−1ΩT = ΣΩT −Σ(ΩT )3

Therefore

ΩU−1 = U−1ΩT

and

ΩTU = UΩ

Note also that

UΩ = Σ−1(I −Ω)−1Ω

so that

(I −Ω2)−1Ω = Ω(I −Ω2)−1
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Now,

U +ΩTUΩ = U(I +Ω2)

= Σ−1(I −Ω2)−1(I +Ω2)

Therefore the inverse variance covariance matrix of e can be written as var (e−1) =

R−1 = In ⊗ (Σ−1(I t −Ω2)−1)



I −Ω 0 . . . 0

−Ω I +Ω2 −Ω . . . 0

0 −Ω I +Ω2 . . . 0
...

...
...

. . .
...

0 0 0 . . . I


= [In ⊗ (Σ−1(I t −Ω2)−1)][Int − F 1n ⊗Ω+E1n ⊗Ω2] (8.2.11)

where F 1n is a n × n matrix which has 'ones' on the �rst sub and super-diagonals and

zeroes elsewhere, and E1n is a n× n diagonal matrix of 'ones' with the exception of the

�rst and last diagonal elements which equal zero. Note F 1k and E1k are similarly de�ned

k× k matrices for any k. It can be seen that this inverse covariance matrix resembles the

univariate ar1 inverse covariance matrix.

8.2.3 Constraints: Special cases

Given speci�c forms for Ω and Σ, there are a number of situations where ΩΣ is auto-

matically symmetric. For example

• IfΣ = diag (σ2
i ) andΩ = diag (ωi), the resultingMVAR1 residual model is equivalent

to the residual structure resulting from a separate analysis of each harvest time

(or trait), assuming an ar1 correlation structure between plots, with ωi the spatial

correlation parameter for time i. This model is similar to model Y1 in Table 6.1 but

with spatial correlation in only one direction.

• If Ω = ωI t then any suitable covariance matrix for Σ (e.g. corv, corh, us, ar1v,

ar1h, as de�ned in Table 5.1) will result in a symmetric ΩΣ. This MVAR1 model is

equivalent to the separable residual covariance structure in (5.2.3) but in one spatial

dimension e.g. row (i.e. ar1r ⊗Rh where Rh = Σ), with ω the spatial correlation

parameter in the row direction. To see this consider (8.2.11) and the following:

R−1 = [In ⊗ (Σ−1(I t − ω2I t)
−1)][Int − F 1n ⊗ ωI t +E1n ⊗ ω2I t]

= [In ⊗ (1− ω2)−1Σ−1][(In − ωF 1n + ω2E1n)⊗ I t]

= [(1− ω2)−1(In − ωF 1n + ω2E1n)]⊗Σ−1

= (ar1(ω)⊗Σ)−1

This model is similar to models Y3 and Y4 in Table 6.1 but with spatial correlation

in only one direction.
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• If Σ = corv, Ω = ωJ t, where J t is a t× t matrix of 1's

• If Σ = ar1v, Ω = ω1I t + ω2E1t − ω2F 1t

where E1t and F 1t are t× t matrices as de�ned above.

Other more general forms of Σ and Ω will need constraints applied to the parameters

to ensure ΩΣ is symmetric.

8.2.4 Constraints required to impose symmetry condition for ΩΣ.

Firstly consider the 2 × 2 case. If ΩΣ = ΣΩT with Σ a symmetric 2 × 2 covariance

matrix,

Σ =

[
σ11 σ12

σ12 σ22

]

and

Ω =

[
ω11 ω12

ω21 ω22

]

Then

ΩΣ =

[
ω11σ11 + ω12σ12 ω11σ12 + ω12σ22

ω21σ11 + ω22σ12 ω21σ12 + ω22σ22

]

and

ΣΩT =

[
ω11σ11 + ω12σ12 ω21σ11 + ω22σ12

ω11σ12 + ω12σ22 ω21σ12 + ω22σ22

]

Hence for these two matrices to be equal we require,

ω11σ12 + ω12σ22 = ω21σ11 + ω22σ12

Note that if ω12 = ω21 = 0 then ω11 = ω22 = ω, say, and Ω = ωI. If ω12 = ω21 but not

equal to 0, then the constraint reduces to ω12(σ22 − σ11) = (ω22 − ω11)σ12.

For the 3× 3 case there are 3 constraints, namely

ω11σ12 + ω12σ22 + ω13σ32 = σ11ω21 + σ12ω22 + σ13ω23

ω11σ13 + ω12σ23 + ω13σ33 = σ11ω31 + σ12ω32 + σ13ω33

ω21σ13 + ω22σ23 + ω23σ33 = σ12ω31 + σ22ω32 + σ23ω33

For the 4× 4 case there are 6 constraints.
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The general form for the constraints for each element (i, j) of the matrix ΩΣ, is given

by

t∑
k=1

ωikσkj =
t∑

k=1

σikωjk

with the constraints for the diagonal elements automatically holding, and the constraints

for the upper o� diagonals being the same as those for the lower o� diagonals. Hence in

general there are t(t − 1)/2 constraints where t is the number of measurements on each

plot.

8.2.5 Impact of symmetry constraint on cross correlations

Consider the case of 2 measurements made on each plot in a row (take the measurements

to be at times 1 and 2 but note that the same principles hold for multi-trait data). The

matrix of covariances for plots 1 apart (e.g. for plots 1 and 2) is given by ΩΣ. Let its

elements be referred to as {cij} so that the diagonal elements cii represent the covariance
between plots 1 and 2 at time i. The element c12 represents the covariance between plot

1 at time 1 and plot 2 at time 2 while c21 represents the covariance between plot 2 at

time 1 and plot 1 at time 2. This matrix is symmetric (due to the symmetry constraint)

so that implies the covariance between plot 1 at time 1 and plot 2 at time 2 is equal

to the covariance between plot 2 at time 1 and plot 1 at time 2. As the variance for

each plot is equal, this implies that the correlation between these measurements is also

equal. These are similar to the cross correlations that Sain & Cressie (2007) refer to in

a Multivariate conditional autoregressive (MCAR) model, in which they allow for non-

equal cross correlations. In their example of zinc and cadmium measurements upstream

and downstream in a river this di�erence in cross correlations makes sense as the plots

(sites) are ordered and cannot be reversed (the upstream site is always upstream of the

downstream site). However in the example here of data on plots in a row the results are

required to hold if the order of the plots is reversed and ordered from left to right along

the row or right to left. Therefore intuitively it makes sense for the cross correlations in

this case to be the same.

8.2.6 Alternative forms for Ω and Σ requiring constraints

Σ

The matrix Σ represents the covariance structure within each plot, hence needs to be a

suitable covariance matrix for the situation involved. For multi-trait data (di�erent traits

measured on each plot at a single time), this covariance structure may be best represented

using an unstructured (us) model in which di�erent variances are assumed for each trait

and di�erent covariances between all pairs of traits are also assumed. The us model may

require a large number of parameters to be estimated.

For multi-harvest data (where measurements are made for the same trait on each plot
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at multiple times) more parsimonious models may be suitable that make use of the order-

ing of the measurement times, and the fact that the correlation between measurements

in time usually decays as the time between the measurements increases. For example,

exponential or autoregressive or antedependence structures may be used to model the

covariance matrix.

Ω

The matrix Ω is a spatial dependence matrix which connects the plots in a suitable way.

The form of Ω will also depend on the situation involved and may also depend on the

choice of Σ due to the symmetry constraint.

The separable residual models of the previous chapter are equivalent to the MVAR1

model de�ned by (8.2.1) and (8.2.2), with Ω being represented by a diagonal matrix i.e.

Ω = ωI. Hence

e(i+1)k = ωeik + ϵ(i+1)k

where eik represents the residual on plot i at time (or trait) k, for k = 1, . . . , t. Therefore,

the same spatial dependency parameter between neighbouring plots (ω) is assumed for

each time (or trait). Ideally a model that allows for di�erent spatial dependency at each

time (or trait) would be more suitable and it may also be desirable to specify spatial

dependencies between residuals on a plot and it's neighbouring plots at other times (or

traits).

Due to the symmetry constraint a purely diagonal form for Ω with di�erent spatial

dependency parameters for each time (or trait) cannot be �tted, unlessΣ is also a diagonal

matrix (this is equivalent to a separate analysis of each trait or each time). That is, if

Ω =


ω11 0 . . . 0

0 ω22 . . . 0
...

...
. . .

...

0 0 . . . ωtt


and Σ is not a diagonal matrix, then the symmetry constraints force this model to revert

to the separable case with ω11 = ω22 = . . . ωtt. To see this consider

ΩΣ =


ω11 0 . . . 0

0 ω22 . . . 0
...

...
. . .

...

0 0 . . . ωtt



σ11 σ12 . . . σ1t

σ12 σ22 . . . σ2t
...

...
. . .

...

σ1t σ2t . . . σtt



=


ω11σ11 ω11σ12 . . . ω11σ1t

ω22σ12 ω22σ22 . . . ω22σ2t
...

...
. . .

...

ωttσ1t ωttσ2t . . . ωttσtt
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For this matrix to be symmetric each of the o�-diagonals above and below the diagonal

must be equal. Thus for example,

ω11σ12 = ω22σ12

which implies

ω11 = ω22

Similarly it can be shown that

ω11 = ω22 = ω33 = . . . = ωtt

Hence to allow for di�erent spatial dependency parameters at each time (or trait) the

model for Ω will need to have elements in the o�-diagonals and therefore the model must

allow for spatial dependency between measurements on neighbouring plots at other times

(or traits).

This means Ω contains many parameters to be estimated. It also makes interpretation

(in a practical sense) ofΩ slightly di�cult. While it is reasonable to consider the diagonals

of Omega as the spatial dependency parameters between neighbouring plots measured at

the same time or on the same trait, the o�-diagonals (which re�ect the spatial dependency

between measurements on neighbouring plots at di�erent times (or between di�erent

traits)) may be more di�cult to interpret. The �rst o� diagonal gives a measure of how

variable 1 at plot i impacts spatially on variable 2 on neighbouring plot (i+1).

General omega (genΩ)

The most general form of Ω is the fully parameterized non-symmetric matrix (hereafter

referred to as genΩ), given by

Ω =


ω11 ω12 . . . ω1t

ω21 ω22 . . . ω2t

...
...

. . .
...

ωt1 ω2t . . . ωtt


This form for Ω may be most suitable for multi-trait data. While this model may also be

applicable to the multi-harvest situation when there are small numbers of harvests, for

large numbers of harvests the number of parameters requiring estimation is likely to make

�tting this model di�cult. Alternative more parsimonious forms of Ω may be required.

Possible alternative models for Ω that allow for di�erent spatial dependencies between

neighbouring plots at each time, but have less parameters than a fully parameterised

non-symmetric general Ω are :
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Symmetric omega (symΩ)

Ω =


ω11 ω12 . . . ω1t

ω12 ω22 . . . ω2t

...
...

. . .
...

ω1t ω2t . . . ωtt


Hence the model can be written as

e(i+1)1 = ω11ei1 + ω12ei2 + . . .+ ω1teit + ϵ(i+1)1

e(i+1)2 = ω12ei1 + ω22ei2 + . . .+ ω2teit + ϵ(i+1)2

...

e(i+1)t = ω1tei1 + ω2tei2 + . . .+ ωtteit + ϵ(i+1)t

This form of Ω is suitable for all valid covariance matrices Σ (corh, ar1h, ante, us).

This symmetric model for Ω assumes the spatial dependency between plot 1 at time 1 and

plot 2 at time 2 is equal to the spatial dependency between plot 2 at time 1 and plot 1 at

time 2 (and similarly for all neighbouring plots). It has been shown (in section 8.2.5) that

the symmetry constraint forces the cross correlations to be equal. That is, the correlation

between plot 1 time 1 and plot 2 time 2 is constrained to be the same as the correlation

between plot 2 time 1 and plot 1 time 2. Hence while this model may not be as �exible

as the fully general Ω it may enable a reduction in the number of parameters without

forcing too many extra restrictions on the covariance structure. It may be a useful model

for providing starting values for the full general Ω (genΩ).

Banded omega (bandΩ)

Ω =



ω11 ω12 0 . . . 0

ω21 ω22 ω23 . . . 0

0 ω32 ω33 . . . 0
...

...
...

. . .
...

0 0 . . . ωt(t−1) ωtt


Hence the model can be written as

e(i+1)1 = ω11ei1 + ω12ei2 + ϵ(i+1)1

e(i+1)2 = ω21ei1 + ω22ei2 + ω23ei3 + ϵ(i+1)2

...

e(i+1)t = ωt(t−1)ei(t−1) + ωtteit ++ϵ(i+1)t
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This model provides spatial dependency parameters between observations one time

apart but no further apart. While this form of Ω would seem appealing due to the reduced

number of parameters, the symmetry constraint may make this model very restrictive.

If we consider the general form of the inverse covariance matrix for the ar1v, ar1h

and ante forms for Σ we can investigate the impact of the symmetry constraint on the

parameters in Ω and Σ when the above banded form for Ω is assumed. The general form

of the inverse covariance matrix in all three cases can be written as a banded tri-diagonal

matrix as follows:

Σ−1 =



ϕ11 ϕ12 0 . . . 0

ϕ21 ϕ22 ϕ23 . . . 0

0 ϕ32 ϕ33 . . . 0
...

...
...

. . .
...

0 0 . . . ϕt(t−1) ϕtt


Hence assuming the banded form of Ω above, Σ−1Ω is given by

Σ−1Ω =


ϕ11ω11 + ϕ12 + ω21 ϕ11ω12 + ϕ12ω22 ϕ12ω23 . . .

ϕ21ω11 + ϕ22ω21 ϕ21ω12 + ϕ22ω22 + ϕ23ω32 ϕ22ω23 + ϕ23ω33 . . .

ϕ32ω21 ϕ32ω22 + ϕ33ω32 . . . . . .
...

...
... . . .


Now under the symmetry condition this matrix is symmetric and hence there are

constraints required on these parameters. Noting that in the antedependence case (also

ar1v and ar1h) ϕij = ϕji we can write these constraints in the general form

ϕi(i−1)/ϕi(i+1) = ωi(i−1)/ωi(i+1)

for i = 2, . . . , t− 1 and

ϕi(i+1)(ωii − ω(i+1)(i+1)) = ϕiiωi(i+1) − ϕ(i+1)(i+1)ω(i+1)i

for i = 1, . . . , t− 1

In the ar1h case where ϕij = −ϕσiσj for all i ̸= j, ϕ11 = σ2
1, ϕtt = σ2

t , and ϕii =

(1 + ϕ2)σ2
i for i = 2, . . . , t− 1, then these conditions reduce further to

σi−1/σi+1 = ωi(i−1)/ωi(i+1)

for i = 2, . . . , t− 1 and

ϕσiσi+1(ωii − ω(i+1)(i+1)) = (1 + ϕ2)[σ2
i ωi(i+1) − σ2

i+1ω(i+1)i]

for i = 1, . . . , t− 1
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In the ar1v case where ϕij = −ϕ for all i ̸= j, ϕ11 = ϕtt = 1, and ϕii = (1 + ϕ2) for

i = 2, . . . , t− 1, then these conditions reduce further to

ωi(i−1) = ωi(i+1)

for i = 2, . . . , t− 1 and

ϕ(ωii − ω(i+1)(i+1)) = ωi(i+1) − (1 + ϕ2)ω(i+1)i

for i = 1, . . . , t− 1.

8.2.7 Multi-harvest, multi-trait models

The above models for the residual structure for multi-trait data incorporating an un-

structured (us) variance matrix for Σ and a fully parameterized matrix for Ω may also be

suitable in the case of multi-harvest, multi-trait data where observations have been made

at a small number of harvest times on a small number of traits. The number of parameters

to be estimated becomes prohibitive as the number of harvest times and/or number of

traits increases. An alternative, more parsimonious model may be written based on the

model of Ja�rezic et al. (2003) for bivariate data collected at multiple times.

Ja�rezic et al. (2003) present a bivariate Structured Antedependence Model (SAD)

model for repeated measures bivariate data that has inverse covariance matrix given by

LTD−1L where L is a lower triangular block matrix containing the antedependence pa-

rameters for the traits and D is a block diagonal matrix containing the variance param-

eters.

In a multi-harvest, multi-trait case of 4 harvest times by 2 traits (with data ordered

as plots within traits within harvests), a non-separable MVAR1 model, with Σ based on

the bivariate SAD model, could be proposed for the residuals from each plot. The vector

of residuals (for plot i) may be written as

ei =



ei11

ei21

ei12

ei22

ei13

ei23

ei14

ei24


where eizh is the residual value for trait z at harvest h on plot i. If a bivariate SAD model

is assumed for the residuals within each plot we may write

ei1h = ϕ1ei1(h−1) + ψ1ei2(h−1) + εi1h

ei2h = ϕ2ei2(h−1) + ψ2ei1(h−1) + εi2h
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with the initial conditions ei11 = εi11 and ei21 = εi21, In this model ϕz denotes the

antedependence parameter connecting trait z at harvest h, and trait z at the previous

harvest time, h− 1, and ψz denotes the antedependence parameter connecting trait z at

harvest time h, and trait w at the previous harvest time, h− 1. The εizh's are assumed to

be bivariate normally distributed with mean 0 and variance for trait z at harvest time h

given by σ2
zh, and covariance between trait z time h and trait w at time h given by σzhwh.

In this model ϕz and ψz are assumed constant for all harvests.

The inverse covariance matrix Σ−1 containing the variances and covariances between

traits and times for each plot for this bivariate SAD model is given by Σ−1 = LTD−1L

where

L =



1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

−ϕ1 −ψ1 1 0 0 0 0 0

−ψ2 −ϕ2 0 1 0 0 0 0

0 0 −ϕ1 −ψ1 1 0 0 0

0 0 −ψ2 −ϕ2 0 1 0 0

0 0 0 0 −ϕ1 −ψ1 1 0

0 0 0 0 −ψ2 −ϕ2 0 1


and

D =



σ2
11 σ1121 0 0 0 0 0 0

σ1121 σ2
21 0 0 0 0 0 0

0 0 σ2
12 σ1222 0 0 0 0

0 0 σ1222 σ2
22 0 0 0 0

0 0 0 0 σ2
13 σ1323 0 0

0 0 0 0 σ1323 σ2
23 0 0

0 0 0 0 0 0 σ2
14 σ1424

0 0 0 0 0 0 σ1424 σ2
24


In this MVAR1 model Ω may be speci�ed as a general fully parameterized matrix

(genΩ).

8.2.8 Estimation of parameters: Derivatives for speci�c cases of

Ω and Σ

REML (Chapter 2) is used to estimate the parameters in the MVAR1 model. This requires

maximizing the REML log-likelihood subject to the symmetry constraints. This can be

achieved using Lagrange multipliers ψij. Let

C =
∑∑

i<j

ψij

t∑
k=1

(ωikσkj − ωjkσik)
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for i < j.

The constrained log-likelihood l∗r needs to be maximized, where

l∗r = lr + C

= lr +
∑∑

i<j

ψijcij

= lr +
t−1∑
i=1

t∑
j=i+1

ψij

t∑
k=1

(ωikσkj − ωjkσik)

where lr is the REML log-likelihood (2.3.10).

Note that C can be written as

C = [vechl(ψ)]T [vechl(ΩΣ)− vechl(ΣΩT )]

where vechl(A) is the lower half vectorization of the n× n symmetric matrix A. That is,

the n(n− 1)/2 column vector obtained by vectorizing the lower triangular part (without

diagonals) of A. ψ is the t× t symmetric matrix of Lagrange multipliers ψij with ψii = 0.

To maximize the log-likelihood, the derivatives of l∗r are taken with respect to the

variance parameters and are equated to zero. Therefore for parameters in Σ and Ω (for

example σrs) this will mean calculating

∂l∗r
∂σrs

= U (σrs) +
∂C

∂σrs

where U(σrs) is the score equation for σrs described in Chapter 2.

This requires the derivatives of the full MVAR1 covariance matrix R, where

R−1 = [In ⊗Σ−1(I t −Ω2)−1][Int − F 1n ⊗Ω+E1n ⊗Ω2]

= P 1P 2

where

P 1 = In ⊗Σ−1(I t −Ω2)−1 (8.2.12)

and

P 2 = Int − F 1n ⊗Ω+E1n ⊗Ω2 (8.2.13)

The derivatives for the constraints C are also required. These derivatives are presented

below.

Derivatives for Σ = us and Ω =genΩ (fully parameterized): model for multi-

trait data

The MVAR1 model referred to as USgen (in the code in Appendix D) with Σ an unstruc-

tured symmetric covariance matrix, and Ω being a fully parameterized non-symmetric

matrix (genΩ) is likely to be suitable for modelling the residual covariance structure for

multivariate data collected from spatially correlated plots. This model may be most suit-
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able for modelling the covariance for multi-trait data where all traits may be correlated.

The t× t matrices Σ and Ω may be written as follows (assuming there are n plots and t

traits (or times) measured on each plot).

Σ =


σ11 σ12 . . . σ1t

σ12 σ22 . . . σ2t
...

...
. . .

...

σ1t σ2t . . . σtt

 = {σrs}

and

Ω =


ω11 ω12 . . . ω1t

ω21 ω22 . . . ω2t

...
...

. . .
...

ωt1 ω2t . . . ωtt

 = {ωij}

The derivatives of R−1 with respect to the variance parameters {σrs} and {ωij} (com-
bined in vector κk, k = 1, . . . , t(t+ 1)/2 + t2) are given by

∂R−1

∂κk
=
∂P 1

∂κk
P 2 + P 1

∂P 2

∂κk

where P 1 and P2 are given in (8.2.12) and (8.2.13).

For the parameters in κk, with k = 1, . . . , t(t+ 1)/2 (parameters σrs from Σ)

∂P 1

∂σrs
=

∂In
∂σrs

⊗Σ−1(I t −Ω2)−1 + In ⊗
∂

∂σrs
(Σ−1(I t −Ω2)−1)

= In ⊗ [
∂Σ−1

∂σrs
(I t −Ω2)−1 +Σ−1 ∂

∂σrs
(I t −Ω2)−1]

= In ⊗
∂Σ−1

∂σrs
(I t −Ω2)−1

= In ⊗ [−Σ−1 ∂Σ

∂σrs
Σ−1(I t −Ω2)−1] (8.2.14)

where

∂Σ

∂σrs
= (zrz

T
s ) + (zrz

T
s )

T − I t ⊙ (zrz
T
s )

where zi, is a t × 1 vector containing all zeros except for the ith element (row) which

equals 1 and A⊙B gives the Hadamard (elementwise) product of matrices A and B.

The derivative of P 2 wrt σrs is given by

∂P 2

∂σrs
= 0× Int = 0
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For the parameters from Ω, that is in κk for k = (1 + t(t+ 1)/2, . . . , t2)

∂P 1

∂ωij

= In ⊗
∂

∂ωij

(Σ−1(I t −Ω2)−1)

= In ⊗Σ−1 ∂

∂ωij

(I t −Ω2)−1

= In ⊗Σ−1((I t −Ω2)−1∂Ω
2

∂ωij

(I t −Ω2)−1)

= In ⊗Σ−1((I t −Ω2)−1(Ω
∂Ω

∂ωij

+
∂Ω

∂ωij

Ω)(I t −Ω2)−1) (8.2.15)

where

∂Ω

∂ωij

= ziz
T
j

where zi is de�ned as above.

The derivative of P 2 wrt ωij is given by

∂P 2

∂ωij

= −F 1n ⊗
∂Ω

∂ωij

+E1n ⊗
∂Ω2

∂ωij

= −F 1n ⊗
∂Ω

∂ωij

+E1n ⊗ (Ω
∂Ω

∂ωij

+
∂Ω

∂ωij

Ω) (8.2.16)

where ∂Ω
∂ωij

is de�ned as above.

Derivatives of constraints

The derivative of the constraints C with respect to σrs is given by

∂C

∂σrs
=

∂

∂σrs
([vechl(ψ)]T [vechl(ΩΣ)− vechl(ΣΩT )])

= [vechl(ψ)]T [vechl(Ω
∂Σ

∂σrs
)− vechl(

∂Σ

∂σrs
ΩT )]

where ∂Σ
∂σrs

is de�ned as above and vechl(A) is the lower half vectorization of the n × n

symmetric matrix A. That is, the n(n− 1)/2 column vector obtained by vectorizing the

lower triangular part (without diagonals) of A.

The derivative of the constraints C with respect to ωrs is given by

∂C

∂ωrs

= [vechl(ψ)]T [vechl(
∂Ω

∂ωrs

Σ)− vechl(Σ
∂ΩT

∂ωrs

)]

where ∂ΩT

∂ωrs
=
(

∂Ω
∂ωrs

)T
and ∂Ω

∂ωrs
is de�ned as above.

The derivative of the constraints C with respect to ψrs is given by

∂C

∂ψrs

= [vechl(
∂ψ

∂ψrs

)]T [vechl(ΩΣ)− vechl(ΣΩT )]

= [vechl(zrz
T
s )]

T [vechl(ΩΣ)− vechl(ΣΩT )]
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The second di�erentials of the constraints are also required to update the Average

Information matrix. Many of these are zero but the non zero di�erentials are as follows.

The second derivative of the constraints C with respect to ψrs and ωuv is given by

∂C

∂ψrs∂ωuv

=
∂

∂ωuv

[vechl(zrz
T
s )]

T [vechl(ΩΣ)− vechl(ΣΩT )]

= [vechl(zrz
T
s )]

T [vechl(
∂Ω

∂ωuv

Σ)− vechl(Σ
∂ΩT

∂ωuv

)]

The second derivative of the constraints C with respect to ψrs and σuv is given by

∂C

∂ψrs∂σuv
=

∂

∂σuv
[vechl(zrz

T
s )]

T [vechl(ΩΣ)− vechl(ΣΩT )]

= [vechl(zrz
T
s )]

T [vechl(Ω
∂Σ

∂σuv
)− vechl(

∂Σ

∂σuv
ΩT )]

The second derivative of the constraints C with respect to ωrs and σuv is given by

∂C

∂ωrs∂σuv
=

∂

∂σuv
[vechl(ψ)]T [vechl(

∂Ω

∂ωrs

Σ)− vechl(Σ(
∂Ω

∂ωrs

)T )]

= [vechl(ψ)]T [vechl(
∂Ω

∂ωrs

∂Σ

∂σuv
)− vechl(

∂Σ

∂σuv
(
∂Ω

∂ωrs

)T )]

where ∂Σ
∂σrs

and ∂Ω
∂ωrs

are de�ned as above.

Derivatives for Σ = ar1h and Ω = symΩ (fully parameterized symmetric ma-

trix): model for multi-harvest data

As discussed above, theMVAR1 model (referred to as ar1hsym in the code in the appendix)

with Σ = ar1h and Ω =symΩ (a symmetric fully parameterized matrix) may be suitable

for multi-harvest data collected at evenly spaced times. This model will not be suitable

for multi-trait data. The t × t matrices Σ and Ω may be written as follows (assuming

there are n plots and t times where measurements have been made on each plot).

Σ =D(I t +
t−1∑
j=1

ϕjF jt)D

where D is a diagonal matrix of standard deviations for each harvest time (diag(σ0.5
ii )) for

i = 1, . . . t and F jt is a t× t matrix which has 'ones' on the jth sub and super-diagonals

and zeroes elsewhere.

Ω =


ω11 ω12 . . . ω1t

ω12 ω22 . . . ω2t

...
...

. . .
...

ω1t ω2t . . . ωtt


As the inverse variance matrix Σ−1 is a sparse banded matrix it will be used to form

153



the derivatives. The inverse variance matrix is given as follows

Σ−1 = D−1(
1

1− ϕ2
)(I t + ϕ2E1t − ϕF 1t)D

−1

= D−1(Σ−1
ar1v)D

−1say

As above, the derivatives of R−1 with respect to (wrt) the variance parameters {σrr},
ϕ, and {ωij} (combined in vector κk, k = 1, . . . , t(t+ 1)/2 + t+ 1) are given by

∂R−1

∂κk
=
∂P 1

∂κk
P 2 + P 1

∂P 2

∂κk

where

P 1 = [In ⊗Σ−1(I t −Ω2)−1]

and

P 2 = [Int − F 1n ⊗Ω+E1n ⊗Ω2]

For the parameters in κk, with k = 1, . . . , t (parameters σrr from Σ−1 in D)

∂P 1

∂κk
=
∂P 1

∂σrr
= In ⊗

∂Σ−1

∂σrr
(I t −Ω2)−1

as in (8.2.14), where

∂Σ−1

∂σrr
=
∂D−1

∂σrr
(Σ−1

ar1vD
−1) +D−1Σ−1

ar1v

∂D−1

∂σrr

and

∂D−1

∂σrr
= −0.5(σ−1.5

rr )(zrz
T
r )

The derivative of P 2 wrt σrr is given by

∂P 2

∂σrr
= 0× Int = 0

For the parameter ϕ in Σ (that is κk with k = t+ 1) the derivatives are as follows

∂P 1

∂ϕ
= In ⊗

∂Σ−1

∂ϕ
(I t −Ω2)−1

where

∂Σ−1

∂ϕ
=D−1∂Σ

−1
ar1v

∂ϕ
D−1

and

∂Σ−1
ar1v

∂ϕ
= (1− ϕ2)−1(2ϕE1t − F 1t) + 2ϕ(1− ϕ2)−2(I t + ϕ2E1t − ϕF 1t)
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The derivative of P 2 wrt ϕ is given by

∂P 2

∂ϕ
= 0× Irt = 0

For the parameters ωij from Ω, that is in κk for k = (t+ 2, . . . , t(t+ 1)/2 + t+ 1)

∂P 1

∂κk
=
∂P 1

∂ωij

= In ⊗Σ−1((I t −Ω2)−1(Ω
∂Ω

∂ωij

+
∂Ω

∂ωij

Ω)(I t −Ω2)−1)

using (8.2.15) where

∂Ω

∂ωij

= (ziz
T
j ) + (ziz

T
j )

T − I t ⊙ (ziz
T
j )

where zi and zj are de�ned above.

The derivative of P 2 wrt ωij is given by

∂P 2

∂ωij

= −F 1n ⊗
∂Ω

∂ωij

+E1n ⊗ (Ω
∂Ω

∂ωij

+
∂Ω

∂ωij

Ω)

using (8.2.16), where ∂Ω
∂ωij

is given above.

Derivatives of constraints

As Σ−1 is a sparse matrix, it is simpler computationally to express the constraints C in

terms of Σ−1. That is,

C = [vechl(ψ)]T [vechl(Σ−1Ω)− vechl(ΩTΣ−1)]

Therefore the derivatives of the constraints wrt the parameters {σrr}, ϕ and {ωij} can be

written as

∂C

∂σrr
= [vechl(ψ)]T [vechl(

∂Σ−1

∂σrr
Ω)− vechl(ΩT ∂Σ

−1

∂σrr
)]

∂C

∂ϕ
= [vechl(ψ)]T [vechl(

∂Σ−1

∂ϕ
Ω)− vechl(ΩT ∂Σ

−1

∂ϕ
)]

∂C

∂ωij

= [vechl(ψ)]T [vechl(Σ−1 ∂Ω

∂ωij

)− vechl(
∂ΩT

∂ωij

Σ−1)]

∂C

∂ψrs

= [vechl(zrz
T
s )]

T [vechl(Σ−1Ω)− vechl(ΩTΣ−1)]

The second derivatives of the constraints are
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∂2C

∂σ2
rr

= [vechl(ψ)]T [vechl(
∂2Σ−1

∂σ2
rr

Ω)− vechl(ΩT ∂
2Σ−1

∂σ2
rr

)]

where

∂2Σ−1

∂σ2
rr

=
∂2D−1

∂σ2
rr

(Σ−1
ar1vD

−1) +
∂D−1

∂σrr
(Σ−1

ar1v

∂D−1

∂σrr
) +D−1Σ−1

ar1v

∂2D−1

∂σ2
rr

+
∂D−1

∂σrr
Σ−1

ar1v

∂D−1

∂σrr

If r ̸= s

∂2C

∂σrr∂σss
= 0

∂2C

∂ϕ2
= [vechl(ψ)]T [vechl(

∂2Σ−1

∂ϕ2
Ω)− vechl(ΩT ∂

2Σ−1

∂ϕ2
)]

where

∂2Σ−1

∂ϕ2
=D−1∂

2Σ−1
ar1v

∂ϕ2
D−1

and where

∂2Σ−1
ar1v

∂ϕ2
= 2(1− ϕ2)−1E1t + 4ϕ(1− ϕ2)−2(2ϕE1t − F 1t) +

(2(1− ϕ2)−2 + 8ϕ2(1− ϕ2)−3)(I t + ϕ2E1t − ϕF 1t)

∂2C

∂σrr∂ωij

= [vechl(ψ)]T [vechl(
∂Σ−1

∂σrr

∂Ω

∂ωij

)− vechl(
∂ΩT

∂ωij

∂Σ−1

∂σrr
)]

∂2C

∂ϕ∂ωij

= [vechl(ψ)]T [vechl(
∂Σ−1

∂ϕ

∂Ω

∂ωij

)− vechl(
∂ΩT

∂ωij

∂Σ−1

∂ϕ
)]

∂2C

∂ψuv∂ωij

= [vechl(
∂ψ

∂ψuv

)]T [vechl(Σ−1 ∂Ω

∂ωij

)− vechl(
∂ΩT

∂ωii

Σ−1)]

= [vechl(zuz
T
v )]

T [vechl(Σ−1 ∂Ω

∂ωij

)− vechl(
∂ΩT

∂ωii

Σ−1)]

∂2C

∂ψuv∂σrr
= [vechl(zuz

T
v )]

T [vechl(
∂Σ−1

∂σrr
Ω)− vechl(ΩT ∂Σ

−1

∂σrr
)]
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∂2C

∂ψuv∂ϕ
= [vechl(zuz

T
v )]

T [vechl(
∂Σ−1

∂ϕ
Ω)− vechl(ΩT ∂Σ

−1

∂ϕ
)]

∂2C

∂ϕ∂σrr
= [vechl(ψ)]T [vechl(

∂2Σ−1

∂ϕ∂σrr
Ω)− vechl(ΩT ∂

2Σ−1

∂ϕ∂σrr
)]

where

∂2Σ−1

∂ϕ∂σrr
=
∂D−1

∂σrr

∂Σ−1
ar1v

∂ϕ
D−1 +D−1∂Σ

−1
ar1v

∂ϕ

∂D−1

∂σrr

8.3 Application of MVAR1 model

In this section the non-separable multivariate autoregressive (MVAR1) residual variance

model is applied in analyses of the multi-harvest lucerne yield data from Terry Hie Hie,

and also in two separate bivariate analyses of multi-trait data (the yield and persistence

at a common time) from two sites (Terry Hie Hie and Leadville). The results from each

analysis are compared to an analysis using a separable residual model �tted in ASReml

(as described in the previous chapter). The non-separable MVAR1 model has not yet

been implemented into ASReml so code for �tting these models (using REML) has been

written in R (R Development Core Team, 2012). The code is presented in Appendix D.

To investigate the di�erent residual models a similar modelling approach to that ap-

plied in the previous chapter has been taken, in that a simple genetic model has been

assumed while the residual models are investigated. Once the best residual model has

been decided upon more complex genetic models may be investigated. In this section

focus has only been on the residual models under a simple genetic model.

The convergence of these models is very dependent on providing good starting values

for the parameters. In some cases the number of starting values required is very large.

In the following analyses starting values have been found for Ω by �tting a separate

(id(Column).ar1(Row)) spatial residual model for each harvest (or trait) in ASReml to get

a separate spatial correlation parameter estimate for each time (or trait). These values

have been taken as the starting values for the diagonal elements of the spatial dependency

matrix Ω, while the o� diagonal elements have been set to a small value (0.001). The

starting values for the covariance matrix Σ have been taken from the temporal (or multi-

trait) covariance structure estimated from �tting a comparable separable residual model

in ASReml. For example, for the multi-trait examples the starting values have been taken

from an analysis �tting a separable (us(Trait).id(Column).ar1(Row)) model.
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8.3.1 Multi-trait examples

Yield and persistence at Terry Hie Hie

To illustrate the MVAR1 models presented above, and their suitability for modelling the

residual structure for multi-trait data, a bivariate analysis of the lucerne yield (at harvest

time 22/6/2004) and persistence (at harvest time 30/6/2004) from Terry Hie Hie was

performed.

Table 8.1 presents the log-likelihoods and parameter estimates for the models �tted

and presents a comparison between the separable us(Trait).id(Column).ar1(Row) model

�tted in ASReml, the MVAR1 code (referred to as USI in Table 8.1 and in the code in

Appendix D) with Σ an unstructured matrix and Ω = ϕrI (which is equivalent to the

separable model), and the non-separable MVAR1 model with an unstructured (us) 2 × 2

matrix for Σ and a non-symmetric fully parameterized matrix (2× 2) for Ω (referred to

as USgen in Table 8.1 and in the code in Appendix D). For further comparison purposes

the results from �tting a non-separable MVAR1 model with an unstructured (us) form for

Σ and a symmetric matrix (symΩ) for Ω (referred to as USsym in Table 8.1 and in the

code in Appendix D) are also presented.

The spatial correlation parameters from the individual analyses of the two traits at

the individual harvest times performed in Chapter 3 (including a random column e�ect

for yield), were 0.37 for yield and 0 for persistence (see Tables 3.2 and 3.4).

The modelling process commenced with a very simple genetic model (Trait:ID +

Trait:Rep) and �tted a separate residual structure for each trait, assuming a �rst or-

der autoregressive spatial correlation structure in the row direction and independence in

the column direction. The estimated spatial correlation parameter in the row direction

for persistence was 0.021 and for yield was 0.628. These parameter estimates provided

starting values for the diagonal elements of Ω for the non-separable models. Note the

large di�erence between spatial correlation parameters for the two traits (this is larger

than the di�erence between the spatial parameters obtained from the analyses in Chap-

ter 3), as a random column e�ect for yield (which was �tted in Chapter 3) has not yet

been included. Comparing the log-likelihood value for the non-separable residual model

with fully parameterized Ω matrix (USgen) (LL = 104.719) to that of the separable model

(LL = 90.097), it can be seen that the non-separable model provides a signi�cantly better

�t (REMLRT = 29.244 on 3 df, P < 0.001). The values estimated for Ω are quite di�er-

ent for the diagonal elements (ω11 = 0.059, the spatial dependency between neighbouring

plots for persistence and ω22 = 0.646, the spatial dependency between neighbouring plots

for yield). It is also clear that the o� diagonal elements are quite di�erent from each

other with ω21 (the spatial dependency parameter between yield on the �rst plot and

persistence on the neighbouring plot) being larger than ω12 (the spatial dependency be-

tween persistence on the �rst plot and yield on the neighbouring plot). This provision for

di�erent o� diagonal elements in Ω provides a better model �t than the assumption of

a symmetric Ω as shown by the REMLRT comparison of the USsym and USgen models

(REMLRT = 9.334 on 1df, P = 0.002).
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The next models �tted included a separate genetic variance for each trait and a sepa-

rate Rep e�ect for each Trait (section 2 in Table 8.1). Once again, the comparison between

non-separable and separable residual models demonstrate that the non-separable model

is signi�cantly better (log-likelihood for USgen = 138.622 and log-likelihood for separable

model = 121.981, with REMLRT= 33.282 on 3 df, P < 0.001).

The �nal set of models included the random column e�ect for yield that was signi�cant

in the previous analyses in Chapter 3. The inclusion of this spatial e�ect had the e�ect

of reducing the spatial correlation estimate in the row direction for yield and hence the

spatial correlation between the two traits to be more similar. It is interesting to note that

the di�erence between log-likelihoods for the non-separable model USgen (LL = 141.608)

and the separable model (LL = 138.955) is now less and no longer signi�cant (REMLRT=

5.306 on 3 df, P = 0.15).

The parameter estimates from the �nal non-separable model USgen for Σ and Ω are

given in Table 8.1. The values estimated for the diagonal elements of Ω are quite di�erent,

with ω11 = 0.141 (the spatial dependency between neighbouring plots for persistence)

and ω22 = 0.427 (the spatial dependency between neighbouring plots for yield). The o�

diagonal elements also di�er from each other with ω21 = −0.192 (the spatial dependency

between yield on the �rst plot and persistence on the neighbouring plot) being larger in

magnitude than ω12 = −0.066 (the spatial dependency between persistence on the �rst

plot and yield on the neighbouring plot). The symmetric ω model USsym did not �t as

well as the USgen model (REMLRT = 4.732 on 1 df, P = 0.03).

Yield and persistence at Leadville

To further investigate the suitability of the MVAR1 model for modelling the residual

covariance structure in a bivariate situation, an analysis was also performed on the lucerne

yield and persistence data at harvest time 25/11/04, from Leadville. Table 8.2 gives an

overview of the di�erent models �tted to the Leadville data.

The initial set of models (1) in Table 8.2 �tted a simple genetic plus randomisa-

tion model with a variance component estimated for Trait:ID and Trait:Rep. The non-

separable models (USgen and USsym) provided a better �t to the data than the separable

model (REMLRT for USgen vs separable = 15.702 on 3 df, P=0.001, and REMLRT for

USsym vs separable = 14.584 on 2 df, P<0.001). The second set of models (2) also in-

cluded additional random and �xed e�ect spatial terms identi�ed as being important in

the initial spatial analyses of each separate trait in earlier chapters. The non-separable

residual models are a signi�cant improvement on the separable model (REMLRT for US-

gen vs separable = 15.164 on 3 df, P=0.002, and REMLRT for USsym vs separable =

12.388 on 2 df, P=0.002).

The separable residual model in model 2 estimates the common spatial correlation

parameter as 0.5 while the non-separable residual model estimates the spatial dependency

parameter for persistence (ω11) as 0.240 and the spatial dependency parameter for yield

(ω22) as 0.668, which are quite di�erent. It can be seen that the change in residual model

has had an e�ect on the genetic variance estimates with the persistence genetic variance
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Table 8.1: Summary of models �tted for bivariate analysis of yield and persistence at
Terry Hie Hie using separable and non-separable MVAR1 residual models. Residual log-
likelihoods (l) are presented for each model, as are variance components for the random
terms in the models and parameter estimates for Σ(σij), ϕr and Ω(ωij). The traits are
ordered persistence then yield.

Separable residual model Non separable MVAR1 residual model
us(Harvest):id(Col):ar1(Row)

ASReml USI USsym USgen
1. l = 90.097 l = 90.097 l = 100.052 l = 104.719
Trait:ID 0.132 0.132 0.164 0.166
Trait:Rep 0.087 0.087 0.065 0.058
σ̂11 = σ̂pp 0.087 0.087 0.072 0.072
σ̂12 = σ̂yp 0.017 0.017 -0.013 -0.002
σ̂22 = σ̂yy 0.249 0.249 0.275 0.282

Spatial param ϕ̂r = 0.369 ω̂11 0.369 0.004 0.059
ω̂12 0 -0.041 -0.091
ω̂21 0 -0.041 -0.342
ω̂22 0.369 0.641 0.646

2. l = 121.981 l = 121.981 l = 133.448 l = 138.622
Trait1(p):ID 0.014 0.014 0.011 0.012
Trait2(y):ID 0.326 0.326 0.341 0.345
Trait1:Rep 0.001 0.001 0.004 0.003
Trait2:Rep 0.177 0.177 0.172 0.172
σ̂11 0.097 0.097 0.081 0.077
σ̂12 0.018 0.018 -0.023 -0.006
σ̂22 0.215 0.215 0.265 0.268

Spatial param ϕ̂r = 0.421 ω̂11 0.421 0.091 0.128
ω̂12 0 -0.073 -0.104
ω̂21 0 -0.073 -0.317
ω̂22 0.421 0.673 0.655

3. l = 138.955 l = 138.955 l = 139.242 l = 141.608
Trait1(p):ID 0.013 0.013 0.014 0.013
Trait2(y):ID 0.328 0.328 0.326 0.335
Trait1:Rep 0.003 0.003 0.003 0.003
Trait2:Rep 0.092 0.092 0.088 0.112
Trait2:Col 0.192 0.192 0.195 0.143
σ̂11 0.079 0.079 0.076 0.076
σ̂12 0.021 0.021 0.018 0.012
σ̂22 0.151 0.151 0.157 0.168

Spatial param ϕ̂r = 0.209 ω̂11 0.209 0.167 0.141
ω̂12 0 0.025 -0.066
ω̂21 0 0.025 -0.192
ω̂22 0.209 0.277 0.427
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changing from 0.014 to 0.006 and the genetic variance estimate for yield changing from

0.026 to 0.044.

Table 8.2: Summary of models �tted for bivariate analysis of yield and persistence
at Leadville using separable and non-separable MVAR1 residual models. Residual log-
likelihoods (l) are presented for each model, as are variance components for the random
terms, P-values for the �xed e�ect terms, and parameter estimates for Σ(σij), ϕr and
Ω(ωij). The traits are ordered persistence then yield.

Separable residual model Non separable MVAR1 residual model
us(Harvest):id(Col):ar1(Row)

ASReml USI USsym USgen
1. l = 101.880 l = 101.880 l = 109.172 l = 109.731
Trait:ID 0.018 0.018 0.015 0.015
Trait:Rep 0.231 0.231 0.176 0.174
σ̂11 = σ̂pp 0.127 0.127 0.094 0.094
σ̂12 = σ̂yp 0.033 0.033 0.034 0.027
σ̂22 = σ̂yy 0.533 0.533 0.717 0.723

Spatial param ϕ̂r = 0.581 ω̂11 0.581 0.325 0.320
ω̂12 0 0.021 0.003
ω̂21 0 0.021 -0.095
ω̂22 0.581 0.721 0.731

2. l = 107.774 l = 107.774 l = 113.968 l = 115.356
Trait1(p):ID 0.014 0.014 0.006 0.006
Trait2(y):ID 0.026 0.026 0.042 0.044
Trait1:Rep 0.038 0.038 0.037 0.038
Trait2:Rep 0.476 0.476 0.453 0.458
Trait1:Range 0.008 0.008 0.013 0.012
Trait2:lin(Row) P<0.001 P<0.001 P<0.001 P<0.001
σ̂11 0.111 0.111 0.091 0.091
σ̂12 0.023 0.023 0.011 0.003
σ̂22 0.427 0.427 0.520 0.523

Spatial param ϕ̂r = 0.500 ω̂11 0.500 0.238 0.240
ω̂12 0 0.010 -0.028
ω̂21 0 0.010 -0.174
ω̂22 0.500 0.661 0.668

8.3.2 Multi-harvest example

An analysis of the complete set of multi-harvest yield data from Terry Hie Hie (10 har-

vests) was performed. As there were so many parameters required in both Ω and Σ,

more parsimonious structures than the USgen and USsym (used above) were required. A

summary of the models �tted to this multi-harvest data is presented in Table 8.3.

The �rst non-separable MVAR1 model to be �tted was a model with Σ as a heteroge-

neous autoregressive structure (ar1h) and Ω as a symmetric fully parameterized matrix

(symΩ), referred to as ar1hsym (in Table 8.3 and in the code in Appendix D). In this
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case Σ required 11 parameters to be estimated and Ω required 55 parameters. In or-

der to obtain suitable starting values for these structures, initial models were �tted to a

subset of the harvests (�rst 4 harvests, then �rst 6 harvests, then �rst 8 harvests etc.)

with the initial starting values for the 4 harvest problem obtained from �tting a separable

ar1h(Harvest).id(Column).ar1(Row) residual model for the starting values for Σ and a sepa-

rate residual structure for each harvest to get the starting values for the diagonal elements

of Ω. This illustrates the di�culty in �tting these models for extensive multi-harvest data.

The ar1hsym model for 10 harvests (with simple genetic/ blocking model of Trait:ID +

Trait:Rep) converged with a log-likelihood of 747.2687. The comparable separable model

�tted in ASReml (with residual model ar1h(Harvest).id(Column).ar1(Row)) and genetic /

blocking model as above, converged with a log-likelihood of 706.855). There is a di�erence

of 54 parameters between these two models. A REMLRT on this result shows the non-

separable (MVAR1) model to be a signi�cant improvement in �t than the separable model

(REMLRT = 80.829 on 54 df, P = 0.011).

The resulting parameter estimates forΣ in the ar1hsymmodel were as follows: diagonal

elements (variances) for harvests 1 to 10 equal to 0.330, 0.316, 0.168, 0.214, 0.196, 0.671,

0.132, 0.177, 0.140, 0.606 and the autoregressive parameter is 0.579.

The REML parameter estimates for symmetric Ω in the ar1hsym model were as follows

(for brevity only the upper half of the symmetric matrix is presented):

Ω̂ =



0.484 0.124 0.013 -0.074 -0.108 0.098 0.029 0.030 -0.002 -0.067

0.419 0.012 -0.015 0.125 -0.054 -0.033 -0.018 -0.007 -0.054

0.374 0.220 -0.103 -0.006 -0.012 -0.058 -0.053 -0.012

0.415 0.059 -0.030 -0.040 -0.072 -0.044 -0.016

0.497 -0.032 -0.048 -0.015 0.004 -0.043

0.395 0.097 0.028 -0.018 -0.107

0.084 0.087 0.011 -0.002

0.140 0.095 0.057

0.108 0.144

0.573


The second non-separable MVAR1 model to be �tted also assumed an ar1h form for Σ,

but assumed a general fully parameterised form forΩ. This model is referred to as ar1hgen

(in Table 8.3 and in the code in the appendix). This model required a large number of

parameters (111) to be estimated. The parameter estimates from the previous model

were used as starting values for this model. The model converged with a log-likelihood

of 813.386. Despite there being a di�erence of 45 parameters between this model and

the ar1hsym model the improvement in log-likelihood was highly signi�cant (REMLRT

= 132.234 on 45 df, P< 0.001).

The parameter estimates for Σ in the ar1gen model were as follows: diagonal elements

(variances) for harvests 1 to 10 = (0.285, 0.345, 0.186, 0.250, 0.311, 0.779, 0.170, 0.199, 0.179, 0.961)

and the autoregressive parameter = 0.610.
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The REML parameter estimates for the non-symmetric Ω in the ar1gen model were

as follows:

Ω̂ =



0.337 0.123 -0.034 0.031 -0.006 0.002 -0.180 -0.044 0.119 -0.040

0.046 0.483 -0.148 0.139 0.101 -0.078 -0.099 -0.018 -0.066 0.006

0.016 0.017 0.224 0.261 0.045 -0.076 -0.058 0.011 -0.115 0.022

-0.059 0.010 0.217 0.330 0.260 -0.127 -0.055 -0.030 -0.188 0.014

-0.094 0.064 -0.047 -0.144 0.921 -0.038 0.000 -0.090 -0.192 0.042

-0.054 -0.033 -0.032 -0.515 0.558 0.291 0.470 -0.095 -0.131 -0.008

-0.081 -0.004 0.008 -0.196 0.054 0.119 0.323 0.044 -0.108 0.027

-0.039 -0.023 0.047 -0.174 -0.011 0.057 0.010 0.360 0.017 0.042

0.037 -0.040 0.026 -0.171 -0.014 0.038 -0.098 0.145 0.057 0.203

-0.091 -0.013 0.143 -0.315 0.138 -0.052 -0.053 -0.236 0.429 0.721



Table 8.3: Summary of models �tted for multi-harvest analysis of yield at Terry Hie
Hie (10 harvests) using separable and non-separable MVAR1 residual models. Number
of parameters (npar and totpar) and residual log-likelihoods (l) are presented for each
model. REMLRT results comparing models with the previous model are also presented

Model Σ npar Ω npar totpar l REMLRT
Separable
ar1h(Harvest):id(Col):ar1(Row) 12 706.855
Non Separable MVAR1
ar1hsym ar1h 11 sym 55 66 747.269 P=0.011
ar1hgen ar1h 11 gen 100 111 813.386 P<0.001

In an attempt to reduce the number of parameters required to be estimated, a model

with Σ = ante and Ω = bandΩ (referred to as anteband in the code in the appendix)

was �tted to the multi-harvest data. Despite numerous attempts with di�erent starting

values and �tting to subsets of smaller number of harvests this model would not achieve

convergence.

8.4 Summary

In this chapter models have been developed for modelling the residual covariance structure

in multi-harvest and multi-trait data, that appear to be a signi�cant �rst step extension

to the separable residual models of the previous chapter. The MVAR1 models introduced

here are suitable for modelling the spatio-temporal (or multi-trait) residual covariance

when there is spatial correlation present in one direction. Extensions are required to

accommodate spatial correlation in two directions. The MVAR1 models developed in this

chapter di�er from other previously published applications of multivariate autoregressive

models in that they are suitable for modelling multi-variate data on spatially correlated,
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evenly spaced plots (due to a symmetry constraint). They are also implemented in a linear

mixed model with estimation using REML which di�ers from other published examples.

Prior to this thesis MVAR1 models had not been used to model the spatial and temporal

covariance structure in multi-harvest variety selection data in perennial crops.

In the investigations into structures for Ω it is not obvious whether more parsimonious

structures for multi-harvest data are available or suitable. Forms such as banded Ω were

investigated and while they appeared to be suitable the models would not converge when

applied to the example data sets. It is possible that the restrictions imposed by the

symmetry constraint make these models too restrictive and unable to be �tted in general.

This could be an area of further research. The proposed general and symmetric forms for

Ω do require a large number of parameters for a large number of harvests however they

were able to be �tted to a 10 harvest example. With careful selection of starting values,

these models may be suitable for even larger numbers of harvests. Models for Σ have

been proposed for multi-harvest, multi-trait examples but there may be di�culties �tting

these models to large numbers of traits and times if more parsimonious structures are not

available for Ω. In the analysis of the multi-harvest data from Terry Hie Hie (with 10

harvests) the non-separable MVAR1 models provided a signi�cantly better �t to the data

(based on REMLRT) than the comparable separable model even despite the large number

of parameters that were required to be estimated. The MVAR1 model is desirable from a

practical viewpoint as it allows the provision for di�erent spatial correlation parameters

for each of the harvest times rather than assuming constant spatial correlation parameters

for all times. Similar improvements in model �t were seen for the MVAR1 model over the

separable model in the bivariate analysis examples. However it may be the case that if the

spatial correlation is not greatly di�erent between the two traits the separable model may

be similar in goodness of �t to the non-separable MVAR1 model. It is clear that there are

instances where the MVAR1 model will outperform the separable model for bivariate data

especially if the spatial correlation is substantially di�erent between the two traits. The

model also makes more sense from a practical viewpoint by allowing for di�erent spatial

correlation parameters for the di�erent traits.

The MVAR1 models provide a signi�cant improvement in model �t than the separable

residual models in both multi-harvest and multi-trait examples where there is spatial

correlation in one direction. Extensions are required to extend these non-separable models

to the two dimensional spatial case. This will be the focus of the next chapter.

164



Chapter 9

Non-separable residual models:

Multivariate AR1 in 2 spatial

dimensions

9.1 Introduction

In the previous chapter it was shown that the MVAR1 model may be used to model the

residual spatio-temporal correlation for multi-harvest or multi-trait data on plots that are

spatially correlated in one direction (e.g. row direction). To extend this to two directions

(row and column) in a lattice is not as straightforward as the univariate case, where

the spatial correlation between plots in 2 directions may be modelled using a separable

residual model Σc ⊗ Σr (where Σc and Σr are spatial correlation matrices (typically ar1)

in the column and row directions respectively). Simply taking the Kronecker product of

two multivariate autoregressive processes (MVAR1c ⊗MVAR1r) will not su�ce. This can

be seen by considering the individual MVAR1 covariance matrices which are of dimension

tc× tc and tr× tr respectively (where t is the number of harvest times, r is the number of
rows, c is the number of columns). The full covariance matrix of the Kronecker product

of these two matrices would be of dimension t2rc × t2rc, when what is required is a

covariance matrix of dimension trc× trc. A full non-separable model for time by row by

column covariance is required. In this chapter the Multivariate Conditional Autoregressive

(MCAR) model is used as a vehicle to de�ne a suitable non-separable model.

While the MCAR model has been used in the literature to model spatio-temporal data

there is no known application or theory developed for the model to be suitable to �t a

MVAR1 structure to data in both row and column directions. Firstly the univariate case is

re-visited and the links between the univariate Conditional Autoregressive (CAR) model

in 2 spatial directions and the separable ar1(Column).ar1(Row) model are established.

The models are subsequently extended to the multivariate case which may be suitable for

multi-harvest and/or multi-trait data.
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9.2 Link between CARmodel and ar1(Column).ar1(Row)

model

In Chapter 1 it was shown that a CAR model can be de�ned to give the same covariance

structure as an ar1 process in a row of r plots. This result was obtained using the

ideas of Cressie (1993) who shows that any Gaussian distribution on a �nite set of sites

(y ∼ N(µ,Σ)) can be expressed as a CAR model. That is, by taking

M = diag (Σ) = diag
(
Σ−1

)−1

where Σ is the variance covariance matrix for the autoregressive process of order 1 ar1,

and

B = I −MΣ−1

results in

Σ = (I −B)−1M

and

Σ−1 =M−1(I −B)

Hence, taking

M =

[
1

σ2
diag

(
1

1− ϕ2
,
1 + ϕ2

1− ϕ2
,
1 + ϕ2

1− ϕ2
, . . . ,

1

1− ϕ2

)]−1

= σ2diag

(
1− ϕ2,

1− ϕ2

1 + ϕ2
,
1− ϕ2

1 + ϕ2
, . . . , 1− ϕ2

)
and

B =



0 ϕ 0 . . . 0
ϕ

1+ϕ2 0 ϕ
1+ϕ2 . . . 0

0 ϕ
1+ϕ2 0 . . . 0

...
...

...
. . .

...

0 0 . . . ϕ 0


a CAR model, which has the same covariance structure as the ar1 process, can be de�ned

in terms of the following conditional distributions

E (yi|y−i) = µi +
r∑

j=1

bij(yj − µj)

var (yi|y−i) = σ2
i
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for i, j = 1, . . . , r, where y−i indicates all yj such that j ̸= i, and where the conditional

variances (σ2
i ), are the diagonal elements of M , and the spatial dependency parameters

(bij) between neighbouring plots i and j, are given by the elements of B.

It can be seen in this example of r plots in a row, the end plots (i = 1 and i = r)

have di�erent conditional variances (�rst and last diagonal elements ofM ) and di�erent

spatial dependency parameters (b12 and br(r−1)) than the internal (i = 2, . . . , r− 1) plots.

These end plots have only 1 neighbour while the internal plots have 2 neighbours. This

is an important point that will carry over to the 2 dimensional lattice case.

Now consider a 2 dimensional lattice of r rows and c columns. It is desirable to de�ne

a 2 dimensional CAR model on this lattice that has an equivalent covariance structure

to the separable ar1(Column).ar1(Row) structure. The inverse covariance matrix for the

ar1(Column).ar1(Row) process (where data is ordered as rows within columns) is given by

Σ−1 =
1

σ2(1− ϕ2
r)(1− ϕ2

c)



A0 A2 0 . . . 0

A2 A1 A2 . . . 0

0 A2 A1 . . . 0
...

...
...

. . .
...

0 0 . . . A2 A0


where A0, A1 and A2 are r × r matrices given by

A0 = (Ir + ϕ2
rE1r − ϕrF 1r)

A1 = (1 + ϕ2
c)(Ir + ϕ2

rE1r − ϕrF 1r)

A2 = −ϕc(Ir + ϕ2
rE1r − ϕrF 1r)

where F 1r and E1r are de�ned previously.

Following the approach above, takingM = diag
(
Σ−1

)−1

M = σ2(1− ϕ2
r)(1− ϕ2

c)



M 1 0 0 . . . 0

0 M 2 0 . . . 0

0 0 M 2 . . . 0
...

...
...

. . .
...

0 0 . . . 0 M 1


where

M 1 = diag

(
1,

1

1 + ϕ2
r

, . . . ,
1

1 + ϕ2
r

, 1

)
and

M 2 = diag

(
1

1 + ϕ2
c

,
1

(1 + ϕ2
c)(1 + ϕ2

r)
, . . . ,

1

(1 + ϕ2
c)(1 + ϕ2

r)
,

1

1 + ϕ2
c

)
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and also taking B = I −MΣ−1 results in

B =



B1 B2 0 . . . 0

B3 B1 B3 . . . 0

0 B3 B1 . . . 0
...

...
...

. . .
...

0 0 . . . B2 B1


where B is a rc× rc matrix of c blocks of B1 down the diagonal, with

B1 =


0 ϕr 0 . . . 0
ϕr

1+ϕ2
r

0 ϕr

1+ϕ2
r

. . . 0
...

...
...

. . .
...

0 0 . . . ϕr 0


and

B2 =


ϕc −ϕrϕc 0 . . . 0

−ϕrϕc

1+ϕ2
r

ϕc
−ϕrϕc

1+ϕ2
r

. . . 0
...

...
...

. . .
...

0 0 . . . −ϕrϕc ϕc


and

B3 =


ϕc

1+ϕ2
c

−ϕrϕc

1+ϕ2
c

0 . . . 0
−ϕrϕc

(1+ϕ2
c)(1+ϕ2

r)
ϕc

1+ϕ2
c

−ϕrϕc

(1+ϕ2
c)(1+ϕ2

r)
. . . 0

...
...

...
. . .

...

0 0 . . . −ϕrϕc

1+ϕ2
c

ϕc

1+ϕ2
c


Then

Σ−1
2dCAR =M−1(Irc −B) (9.2.1)

has the same covariance structure as the ar1(Column).ar1(Row) process.

The conditional variances and spatial dependency parameters di�er between corner

plots of the lattice (those with only 3 neighbours), plots on the edge of the lattice (�rst and

last rows and columns, with 5 neighbours) and internal plots (those with 8 neighbours).

The conditional variances (fromM ) and the spatial dependency parameters (from B)

can be used to write the 2dCARmodel (with same covariance structure as an ar1(Column).ar1(Row))

in terms of conditional expectations and variances as follows (assuming µij = 0):
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For corner plots (3 neighbours) the conditional expectations are given by

E (y11|y−11) = ϕry21 + ϕcy12 − ϕrϕcy22

E (yrc|y−rc) = ϕryr,c−1 + ϕcyr−1,c−1 − ϕrϕcyr−1,c

E (yr1|y−r1) = ϕryr−1,1 + ϕcyr,2 − ϕrϕcyr−1,2

E (y1c|y−1c) = ϕry2,c + ϕcy1,c−1 − ϕrϕcy2,c−1

(Note that in this model de�nition, to have the same variance structure as the

ar1(Column).ar1(Row) the spatial dependency parameter for diagonal neighbours of the

corner plots is de�ned to be ϕrc = −ϕrϕc.)

For edge plots (in �rst and similarly for last column) with 5 neighbours

E (yi,1|y−i1) =
ϕr

1 + ϕ2
r

yi−1,1 +
ϕr

1 + ϕ2
r

yi+1,1 +
−ϕrϕc

1 + ϕ2
r

yi−1,2 + ϕcyi,2 +
−ϕrϕc

1 + ϕ2
r

yi+1,2

For edge plots (in �rst and similarly for last row) with 5 neighbours

E (y1,j|y−1j) =
ϕc

1 + ϕ2
c

y1,j−1 +
ϕc

1 + ϕ2
c

y1,j+1 +
−ϕrϕc

1 + ϕ2
c

y2,j−1 + ϕry2,j +
−ϕrϕc

1 + ϕ2
c

y2,j+1

and for internal plots (with 8 neighbours)

E (yi,j|y−ij) =
−ϕrϕc

(1 + ϕ2
r)(1 + ϕ2

c)
yi−1,j−1 +

ϕc

1 + ϕ2
c

yi,j−1 +
−ϕrϕc

(1 + ϕ2
r)(1 + ϕ2

c)
yi+1,j−1 +

ϕr

1 + ϕ2
r

yi−1,j +
ϕr

1 + ϕ2
r

yi+1,j +
−ϕrϕc

(1 + ϕ2
r)(1 + ϕ2

c)
yi−1,j+1 +

ϕc

1 + ϕ2
c

yi,j+1 +
−ϕrϕc

(1 + ϕ2
r)(1 + ϕ2

c)
yi+1,j+1

The conditional variances are de�ned as follows: For corner plots (3 neighbours)

var (y11|y−11) = (1− ϕ2
r)(1− ϕ2

c)σ
2

var (yrc|y−rc) = (1− ϕ2
r)(1− ϕ2

c)σ
2

var (yr1|y−r1) = (1− ϕ2
r)(1− ϕ2

c)σ
2

var (y1c|y−1c) = (1− ϕ2
r)(1− ϕ2

c)σ
2

For edge plots (in �rst and similarly for last column) with 5 neighbours

var (yi,1|y−i1) =
1

1 + ϕ2
r

(1− ϕ2
r)(1− ϕ2

c)σ
2

For edge plots (in �rst and similarly for last row) with 5 neighbours

var (y1,j|y−1j) =
1

1 + ϕ2
c

(1− ϕ2
r)(1− ϕ2

c)σ
2
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and for internal plots (with 8 neighbours)

var (yi,j|y−ij) =
1

(1 + ϕ2
c)(1 + ϕ2

r)
(1− ϕ2

r)(1− ϕ2
c)σ

2

9.3 Two dimensional lattice MCAR model

The 2dCAR model of (9.2.1) may be extended to the multivariate MCAR case, with the

aim of modelling the residual covariance structure from data collected at multiple times

(or traits) on each plot in a two dimensional (2d) array of r rows and c columns (n = r×c).
If eij is a t (t being the number of measurements on each plot) dimensional vector of

residuals (assumed to have zero mean) from plot (i,j) (in the 2d lattice) then a MCAR

model for the residuals can be written in terms of conditional expectations and conditional

variances as

E(eij|e−ij) =
∑

(uv)∈N(ij)

Ω(ij)(uv)e(uv)

and

var (eij|e−ij) = Γij

where Ω(i,j),(u,v) represents the (possibly asymmetric) t × t spatial dependence matrix

(between neighbouring plots (i,j) and (u,v)), Γij represents the t×t conditional covariance
matrix for plot (i,j). Let Ω be a nt×nt block matrix with blocks of t×t Ω(ij)(uv) matrices,

and Γ a block diagonal matrix with n blocks of t× t Γij covariance matrices. Assuming

the following conditions also hold (Mardia, 1988)

• Ω(ij)(uv)Γuv = ΓijΩ
T
(uv)(ij)

• Ω(ij)(ij) = 0 and Ω(ij)(uv) = 0 if plot (u,v) is not a neighbour of (i,j)

• (Irct −Ω)−1Γ is positive de�nite

then the full distribution for e can be written as

e ∼ N(0,R)

where

R = (Irct −Ω)−1Γ

This implies the inverse covariance matrix is given by

R−1 = Γ−1(Irct −Ω)

9.4 Two dimensional lattice multivariate autoregressive

(2dMVAR1) model

The MCAR model presented in the previous section may be used to de�ne a model

suitable for the residual covariance structure for multivariate data collected on n spatially
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correlated plots in a 2 dimensional lattice of r rows and c columns (where n = r × c),

with correlation between plots assumed to follow an autoregressive ar1(Column).ar1(Row)

process. For this to be the case some additional conditions (to those above) need to be

satis�ed. Generalizing from the univariate ar1(Column).ar1(Row) case requires the model

to be second order stationary and hence:

• The variance matrix is constant for all plots. That is var (eij) = Σ.

• The matrix of covariances between plots at the same displacement is constant. Hence

the matrices of covariances between plots may be referred to in terms of the row and

column lags between the plots. Let Σg1g2 de�ne the matrix of covariances between

plots at row and column lags g1 and g2 respectively.

The model will also need to be invariant to direction in both the row and column

directions. That is starting at �rst row or last row or �rst or last column will produce the

same model. Hence symmetry conditions such as those discussed in the previous chapter

for the MVAR1 model will be assumed to hold in both the row and column directions.

The form of the MCAR model to satisfy these conditions to be a multivariate AR1

model in 2 spatial dimensions (hereafter referred to as a 2dMVAR1 model) will be derived

below.

As in the univariate case the plots may be separated into three groups, namely those

that are corner plots (with only 3 neighbours), edge plots (with 5 neighbours) and internal

plots (with 8 neighbours). Each of these sets of plots may require di�erent conditional

variances and di�erent spatial dependency parameters (as was the case for the univariate

2dCAR model).

Plots with 3 neighbours (corner plots) e.g. plot(1, 1)

The spatial dependency parameters for the corner plots are de�ned as

• Ωr for adjacent plots in the the row direction

• Ωc for adjacent plots in the column direction

• Ωrc for adjacent plots in the diagonal direction

and the conditional variance of each of the corner plots is de�ned to be

var (eij|e−ij) = Γ3

where (ij) = (11), (1c), (r1), (rc).

As for the MVAR1 model of the previous chapter we must consider the symmetry

constraints introduced to make the model invariant to direction. In the case of a single

row the symmetry constraint is

ΩrΣ = ΣΩT
r (9.4.2)
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In the case of a single column the symmetry constraint is given by

ΩcΣ = ΣΩT
c (9.4.3)

Hence for the model to hold in general and hence both of these cases of a single row or

column it is intuitive to assume the above constraints both hold.

Consider the four corner plots (without loss of generality consider the corner plot (in

row 1 column 1) with residual e11). The conditional expectation of this corner plot is

given by

E (e11|e−11) = Ωre21 +Ωce12 +Ωrce22

We wish to �nd the form of the covariances of the corner plots in terms of Ωr, Ωc and

Σ.

The covariance between neighbouring plots in the row direction (for corner plot e11)

is

cov (e11, e21) = Σ10 = E
(
e11e

T
21

)
= E

(
E
(
e11e

T
21|e−11

))
= E

(
E (e11|e−11) e

T
21

)
= E

(
(Ωre21 +Ωce12 +Ωrce22)e

T
21

)
= ΩrΣ+ΩcΣ11 +ΩrcΣ01

The covariance between neighbouring plots in the column direction may similarly be

expressed as

cov (e11, e12) = Σ01 = ΩrΣ11 +ΩcΣ+ΩrcΣ10

and the covariance between �rst neighbour plots in the diagonal direction may be written

as

cov (e11, e22) = Σ11 = ΩrΣ01 +ΩcΣ10 +ΩrcΣ

These relationships can be rearranged to give

Σ10 −ΩrcΣ01 −ΩcΣ11 = ΩrΣ (9.4.4)

−ΩrcΣ10 +Σ01 −ΩrΣ11 = ΩcΣ (9.4.5)

−ΩcΣ10 −ΩrΣ01 +Σ11 = ΩrcΣ (9.4.6)

and now solve for Σ10, Σ01 and Σ11.
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Taking (9.4.4) and adding Ωc multiplied by (9.4.6) results in

(I −Ω2
c)Σ10 − (Ωrc +ΩcΩr)Σ01 = (Ωr +ΩcΩrc)Σ

and taking (9.4.5) and adding Ωr times (9.4.6) gives

−(Ωrc +ΩrΩc)Σ10 + (I −Ω2
r)Σ01 = (Ωc +ΩrΩrc)Σ (9.4.7)

Hence

Σ10 = (I −Ω2
c)

−1[(Ωr +ΩcΩrc)Σ+ (Ωrc +ΩcΩr)Σ01] (9.4.8)

and substituting (9.4.8) into (9.4.7) results in

−(Ωrc +ΩrΩc)(I −Ω2
c)

−1(Ωr +ΩcΩrc)Σ

−(Ωrc +ΩrΩc)(I −Ω2
c)

−1(Ωrc +ΩcΩr)Σ01

+(I −Ω2
r)Σ01 = (Ωc +ΩrΩrΩrc)Σ

Therefore

[(I −Ω2
r)− (Ωrc +ΩrΩc)(I −Ω2

c)
−1(Ωrc +ΩcΩr)]Σ01

= [(Ωc +ΩrΩrc) + (Ωrc +ΩrΩc)(I −Ω2
c)

−1(Ωr +ΩcΩrc)]Σ

and

Σ01 = [(I −Ω2
r)− (Ωrc +ΩrΩc)(I −Ω2

c)
−1(Ωrc +ΩcΩr)]

−1[(Ωc +ΩrΩrc) +

(Ωrc +ΩrΩc)(I −Ω2
c)

−1(Ωr +ΩcΩrc)]Σ

If the following is assumed

Ωrc = −ΩrΩc = −ΩcΩr (9.4.9)

which is similar to the univariate case, then the equations simplify greatly. It follows that

(I −Ω2
r)Σ01 = (I −Ω2

r)ΩcΣ

and hence

Σ01 = ΩcΣ

The simplifying constraint Ωrc = −ΩrΩc = −ΩcΩr will be assumed for the remaining

derivations.
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Substituting (9.4.9) into (9.4.4), (9.4.5) and (9.4.6) it can be shown in a similar fashion

that

Σ10 = ΩrΣ

and

Σ11 = ΩcΩrΣ = ΩrΩcΣ

using (9.4.9).

Hence for all plots the covariance between plots

• 1 apart in row direction = Σ10 = ΩrΣ

• 1 apart in column direction = Σ01 = ΩcΣ

• 1 apart in diagonal direction = Σ11 = ΩcΩrΣ = ΩrΩcΣ

If the covariance between plots separated by 2 rows and 1 column is de�ned as Σ21

and similarly for plots separated by 1 row and 2 columns the covariance is de�ned as Σ12

then for plots two apart in the row direction the covariance may be written as

cov (e11, e31) = Σ20 = E
(
e11e

T
31

)
= E

(
E (e11|e−11) e

T
31

)
= E

(
(Ωre21 +Ωce12 +Ωrce22)e

T
31

)
= ΩrΣ10 +ΩcΣ21 +ΩrcΣ11

= Ω2
rΣ+ΩcΣ21 −Ω2

rΩ
2
cΣ (9.4.10)

In the column direction the covariance may be written as

cov (e11, e13) = Σ02 = E
(
e11e

T
13

)
= ΩrΣ12 +ΩcΣ01 +ΩrcΣ11

= ΩrΣ12 +Ω2
cΣ−Ω2

rΩ
2
cΣ

while the covariance between plots in the direction one column across and two rows down

is

cov (e11, e32) = Σ21 = E
(
e11e

T
32

)
= ΩrΣ11 +ΩcΣ20 +ΩrcΣ10

= Ω2
rΩcΣ+ΩcΣ20 −Ω2

rΩcΣ

= ΩcΣ20

Similarly

Σ12 = ΩrΣ02
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Hence substituting into (9.4.10) gives

Σ20 = Ω2
rΣ+Ω2

cΣ20 −Ω2
rΩ

2
cΣ

(I −Ω2
c)Σ20 = (I −Ω2

c)Ω
2
rΣ

Σ20 = Ω2
rΣ

It also follows that Σ02 = Ω2
cΣ and Σ22 = Ω2

rΣ.

Furthermore, it can be shown that

Σj0 = Ωj
rΣ

Σ0j = Ωj
cΣ

Σjj = Ωj
rΩ

j
cΣ

for j = 1, 2, . . . , r − 1.

Conditional variances for corner plots

Now consider the variances of the corner plots (those with 3 neighbours) in order to work

out the form of the conditional variances for the corner plots.

var (e11) = E (var (e11|e−11)) + var (E (e11|e−11))

Therefore

Σ = var (e11|e−11) + var (Ωre21 +Ωce12 +Ωrce22)

= Γ3 +ΩrΣΩT
r +ΩcΣΩT

c +ΩrcΣΩT
rc

+Ωrcov (e21, e12)Ω
T
c +Ωccov (e12, e21)Ω

T
r

+Ωccov (e12, e22)Ω
T
rc +Ωrccov (e22, e12)Ω

T
c

+Ωrcov (e21, e22)Ω
T
rc +Ωrccov (e22, e21)Ω

T
r

Using (9.4.2), (9.4.3) and (9.4.9) it can be shown that

Σ = Γ3 +Ω2
rΣ+Ω2

cΣ+Ω2
rcΣ+ΩrΣ11Ω

T
c +ΩcΣ11Ω

T
r +ΩcΣ10Ω

T
rc +ΩrcΣ10Ω

T
c +

ΩrΣ01Ω
T
rc +ΩrcΣ01Ω

T
r

= Γ3 +Ω2
rΣ+Ω2

cΣ+Ω2
rcΣ+Ω2

rΩcΣΩT
c +Ω2

cΩrΣΩT
r +ΩcΩrΣΩT

rc +

ΩrcΩrΣΩT
c +ΩrΩcΣΩT

rc +ΩrcΩcΣΩT
r

= Γ3 + (Ω2
r +Ω2

c +Ω2
rΩ

2
c +Ω2

rΩ
2
c +Ω2

cΩ
2
r −Ω2

cΩ
2
r −Ω2

rΩ
2
c −Ω2

rΩ
2
c −Ω2

rΩ
2
c)Σ
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Therefore

Γ3 = (I −Ω2
r −Ω2

c +Ω2
rΩ

2
c)Σ

= (I −Ω2
r)(I −Ω2

c)Σ

= (I −Ω2
c)(I −Ω2

r)Σ

Plots with 5 neighbours (edge plots) e.g. plot(2, 1)

Now consider the edge plots (those that have 5 neighbours) for example Plot(2, 1). Dif-

ferent spatial dependency parameters are de�ned for these plots and the aim is to express

these spatial dependency parameters in terms of Ωr, Ωc and Ωrc. The spatial dependency

parameters for the edge plots are de�ned as

• Ωr5 for adjacent plots in the the row direction

• Ωc5 for adjacent plots in the column direction

• Ωrc5 for adjacent plots in the diagonal direction

The constraint Ωrc5 = −Ωc5Ωr5 = −Ωr5Ωc5, is assumed as for the corner plots.

The covariances are de�ned to be the same for all plots (corner, edge and internal),

therefore the covariance 1 apart across the rows is given by

cov (e21, e11) = Σ10 = ΩrΣ

= E (e21e11)

= E
(
E (e21|e−21) e

T
11

)
= E ((Ωr5e11 +Ωr5e31 +Ωc5e22 +Ωrc5e12 +Ωrc5e32)e11)

= Ωr5Σ+Ωr5cov (e31, e11) +Ωc5cov (e22, e11) +Ωrc5cov (e12, e11)

= Ωr5Σ+Ωr5Σ20 +Ωc5Σ11 +Ωrc5Σ01 +Ωrc5Σ21 (9.4.11)

Using the results derived previously

Σ20 = ΩrΣ10 = Ω2
rΣ

Σ02 = ΩcΣ01 = Ω2
cΣ

Σ21 = ΩcΣ20 = ΩcΩ
2
rΣ

and substituting these into (9.4.11) gives

Ωr = Ωr5(I +Ω2
r) +Ωc5ΩrΩc +Ωrc5(Ωc +Ω2

rΩc)

= Ωr5(I +Ω2
r) +Ωc5ΩrΩc +Ωrc5(I +Ω2

r)Ωc
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The covariance for plots 1 apart across columns is given by

cov (e21, e22) = Σ01 = ΩcΣ

= E (e21e22)

= E
(
E (e21|e−21) e

T
22

)
= E ((Ωr5e11 +Ωr5e31 +Ωc5e22 +Ωrc5e12 +Ωrc5e32)e22)

= Ωr5cov (e11, e22) +Ωr5cov (e31, e22) +

Ωc5Σ+Ωrc5cov (e12, e22) +Ωrc5cov (e32, e22)

= Ωr5Σ11 +Ωr5Σ11 +Ωc5Σ+Ωrc5Σ10 +Ωrc5Σ10

= Ωr5ΩrΩcΣ+Ωr5ΩrΩcΣ+Ωc5Σ+Ωrc5ΩrΣ+ΩΩrΣ

Therefore

Ωc = Ωr5ΩrΩc +Ωr5ΩrΩc +Ωc5 +Ωrc5Ωr +Ωrc5Ωr

= 2Ωr5ΩrΩc +Ωc5 + 2Ωrc5Ωr

The covariance for plots 1 apart diagonally e.g. cov (e21, e12) is given by

cov (e21, e12) = Σ11 = ΩrΩcΣ

= E (e21e12) = E (E (e21|e−21) e12)

= Ωr5cov (e11, e12) +Ωr5cov (e31, e12) +

Ωc5cov (e22, e12) +Ωrc5Σ+Ωrc5cov (e32, e12)

= Ωr5Σ01 +Ωr5Σ21 +Ωc5Σ10 +Ωrc5Σ+Ωrc5Σ20

= Ωr5ΩcΣ+Ωr5ΩcΩ
2
rΣ+Ωc5ΩrΣ+Ωrc5Σ+Ωrc5Ω

2
rΣ

Therefore

ΩrΩc = Ωr5Ωc +Ωr5Ω
2
rΩc +Ωc5Ωr +Ωrc5 +Ωrc5Ω

2
r

= Ωr5(Ωc +Ω2
rΩc) +Ωc5Ωr +Ωrc5(I +Ω2

r)

= Ωr5(I +Ω2
r)Ωc +Ωc5Ωr +Ωrc5(I +Ω2

r)

Therefore

Ωr = Ωr5(I +Ω2
r) +Ωc5ΩrΩc +Ωrc5(I +Ω2

r)Ωc (9.4.12)

Ωc = 2Ωr5ΩrΩc +Ωc5 + 2Ωrc5Ωr (9.4.13)

ΩrΩc = Ωr5(I +Ω2
r)Ωc +Ωc5Ωr +Ωrc5(I +Ω2

r) (9.4.14)
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Taking (9.4.13) multiplied by Ωr minus (9.4.14) gives

2Ωr5ΩrΩcΩr −Ωr5(I +Ω2
r)Ωc + 2Ωrc5Ω

2
r −Ωrc5(I +Ω2

r) = ΩcΩr −ΩrΩc

2Ωr5Ω
2
rΩc −Ωr5Ωc −Ωr5Ω

2
rΩc + 2Ωrc5Ω

2
r −Ωrc5 −Ωrc5Ω

2
r = 0

Ωr5Ω
2
rΩc −Ωr5Ωc +Ωrc5Ω

2
r −Ωrc5 = 0

Ωr5(Ω
2
r − I)Ωc +Ωrc5(Ω

2
r − I) = 0 (9.4.15)

Taking (9.4.12) minus (9.4.13) multiplied by ΩrΩc results in

Ωr5(I +Ω2
r)− 2Ωr5Ω

2
rΩ

2
c +Ωrc5(I +Ω2

r)Ωc − 2Ωrc5Ω
2
rΩc = Ωr −ΩcΩrΩc

Ωr5(I +Ω2
r − 2Ω2

rΩ
2
c) +Ωrc5(I −Ω2

r)Ωc = Ωr(I −Ω2
c)(9.4.16)

Now taking (9.4.15) multiplied by Ωc and adding (9.4.16) gives

Ωr5(Ω
2
r − I)Ω2

c +Ωr5(I +Ω2
r − 2Ω2

rΩ
2
c) = Ωr(I −Ω2

c)

Ωr5(I +Ω2
r −Ω2

c −Ω2
rΩ

2
c) = Ωr(I −Ω2

c)

Ωr5(I +Ω2
r)(I −Ω2

c) = Ωr(I −Ω2
c)

Hence

Ωr5 = Ωr(I +Ω2
r)

−1

Substituting Ωr5 into (9.4.15) gives

Ωr(I +Ω2
r)

−1(Ω2
r − I)Ωc = Ωrc5(I −Ω2

r)

and hence

Ωrc5 = −Ωr(I +Ω2
r)

−1Ωc

= −ΩrΩc(I +Ω2
r)

−1

Substituting into (9.4.13) gives

Ωc5 = Ωc − 2Ωr5ΩrΩc − 2Ωrc5Ωc

= Ωc − 2Ωr(I +Ω2
r)

−1ΩrΩc + 2Ωr(I +Ω2
r)

−1ΩrΩc

= Ωc

178



Therefore the three spatial dependency parameters for edge plots (in the �rst and last

column of the lattice) are given by

Ωr5:c = Ωr(I +Ω2
r)

−1

Ωc5:c = Ωc

Ωrc5:c = −Ωr(I +Ω2
r)

−1Ωc = −ΩrΩc(I +Ω2
r)

−1

Similarly it can be shown that the spatial dependency parameters for edge plots in

the �rst and last row are given by

Ωr5:r = Ωr

Ωc5:r = Ωc(I +Ω2
c)

−1

Ωrc5:r = −ΩrΩc(I +Ω2
c)

−1

Now consider the variances of edge plots in the �rst and last column. The conditional

variance for edge plots in the �rst and last column is denoted by Γ5col.

var (e21) = Σ = E (var (e21|e−21)) + var (E (e21|e−21))

= var (e21|e−21) + var (Ωr5e11 +Ωr5e31 +Ωc5e22 +Ωrc5(e12 + e32))

= Γ5col + 2Ωr(I +Ω2
r)

−1Σ(Ωr(I +Ω2
r)

−1)T +ΩcΣΩT
c +

2Ωrc5ΣΩT
rc5 + 2Ωr5Σ20Ω

T
r5 +Ωr5Σ11Ω

T
c5 +

Ωc5Σ11Ω
T
r5 +Ωr5Σ01Ω

T
rc5 +Ωrc5Σ01Ω

T
r5 +Ωr5ΩrΣ11Ω

T
rc5 +Ωrc5ΩrΣ11Ω

T
r5 +

Ωr5Σ11Ω
T
c5 +Ωc5Σ11Ω

T
r5 +Ωr5ΩrΣ11Ω

T
rc5 +Ωrc5ΩrΣ11Ω

T
r5 +

Ωr5Σ01Ω
T
rc5 +Ωrc5Σ01Ω

T
r5 +Ωc5Σ10Ω

T
rc5 +Ωrc5Σ10Ω

T
c5 +Ωc5Σ10Ω

T
rc5 +

Ωrc5Σ10Ω
T
c5 + 2Ωrc5ΩrΣ10Ω

T
rc5

Hence

Σ = Γ5col + 2Ω2
r5Σ+Ω2

cΣ+ 2Ω2
rc5Σ+

2Ωr5Ω
2
rΩr5Σ+ 2Ωr5ΩrΩcΩc5Σ+

2Ωc5ΩrΩcΩr5Σ+ 2Ωr5ΩcΩrc5Σ+

2Ωrc5ΩcΩrc5Σ+ 2Ωr5Ω
2
rΩcΩrc5Σ+

2Ωrc5Ω
2
rΩcΩr5Σ+ 2Ωc5ΩrΩrc5Σ+

2Ωrc5ΩrΩc5Σ+ 2Ωrc5Ω
2
rΩrc5Σ

Now substituting Ωc5 = Ωc and Ωrc5 = −ΩcΩr5 gives
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Σ = Γ5col + [2Ω2
r5 +Ω2

c + 2Ω2
rc5 + 2Ωr5Ω

2
rΩr5 + 2Ωr5ΩrΩ

2
c + 2ΩrΩ

2
cΩr5 − 2Ωr5Ω

2
cΩr

−2Ω2
cΩ

2
r5 − 2Ωr5Ω

2
rΩ

2
cΩr5 − 2ΩcΩr5Ω

2
rΩcΩr5 − 2ΩcΩrΩcΩr5

−2ΩcΩr5ΩrΩc + 2ΩcΩr5Ω
2
rΩcΩr5]Σ

= Γ5col + [2Ω2
r5 +Ω2

c + 2Ω2
r5Ω

2
r − 2Ω2

r5Ω
2
c − 2Ω2

r5Ω
2
rΩ

2
c ]Σ

Therefore

Γ5col = [I − 2Ω2
r5 − 2Ω2

r5Ω
2
r −Ω2

c(I − 2Ω2
r5 − 2Ω2

r5Ω
2
r)]Σ

= (I −Ω2
c)(I − 2Ω2

r5 − 2Ω2
r5Ω

2
r)Σ

= (I −Ω2
c)(I − 2Ω2

r(I +Ω2
r)

−2 − 2Ω4
r(I +Ω2

r)
−2)Σ

= (I −Ω2
c)(I − 2Ω2

r(I +Ω2
r)

−2(I +Ω2
r))Σ

= (I −Ω2
c)(I − 2Ω2

r(I +Ω2
r)

−1)Σ

= (I −Ω2
c)((I +Ω2

r)− 2Ω2
r)(I +Ω2

r)
−1Σ

= (I −Ω2
c)(I −Ω2

r)(I +Ω2
r)

−1Σ

= (I +Ω2
r)

−1(I −Ω2
c)(I −Ω2

r)Σ

Using a similar approach it can be shown that the conditional variance for edge plots

with 5 neighbours in the �rst and last row is given by

Γ5row = (I +Ω2
c)

−1(I −Ω2
c)(I −Ω2

r)Σ

Internal plots with 8 neighbours (e.g. plot (2, 2))

Di�erent spatial dependency parameters are de�ned for the internal plots, namely

• Ωr8 for adjacent plots in the the row direction

• Ωc8 for adjacent plots in the column direction

• Ωrc8 for adjacent plots in the diagonal direction

with Ωrc8 = −Ωr8Ωc8 = −Ωc8Ωr8.

Once again it is required to �nd the form of these spatial dependencies in terms of Ωr,

Ωc and Ωrc so that the conditions of equal variances and covariances hold for all plots.

The same approach as for the edge plots is followed, namely taking the covariance

between plots 1 apart in the column direction (cov (eij, ei,j+1) = Σ01 = ΩcΣ), the

covariance between plots 1 apart in the row direction (cov (eij, ei+1,j) = Σ10 = ΩrΣ)

and the covariance between plots in the diagonal direction (cov (eij, ei+1,j+1) = Σ11 =

ΩrΩcΣ) and solving the resulting three equations for Ωr8, Ωc8 and Ωrc8.
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The algebra has been omitted here but it can be shown that

Ωc8 = Ωc(I +Ω2
c)

−1

Ωr8 = Ωr(I +Ω2
r)

−1

Ωrc8 = −ΩrΩc(I +Ω2
r)

−1(I +Ω2
c)

−1

In a similar way the conditional covariance matrices for internal plots (with 8 neigh-

bours) can be shown to be

Γ8 = (I +Ω2
c)

−1(I +Ω2
r)

−1(I −Ω2
c)(I −Ω2

r)Σ

Therefore, in summary the 2dMVAR1 model is de�ned with conditional covariance

matrices as follows,

for corner plots:

Γ3 = (I −Ω2
r)Σ(I −Ω2

c)

= (I −Ω2
c)(I −Ω2

r)Σ

for edge plots, �rst and last row:

Γ5row = (I +Ω2
c)

−1(I −Ω2
c)(I −Ω2

r)Σ

= (I +Ω2
c)

−1Γ3

for edge plots, �rst and last column:

Γ5col = (I +Ω2
r)

−1(I −Ω2
c)(I −Ω2

r)Σ

= (I +Ω2
r)

−1Γ3

for internal plots:

Γ8 = (I +Ω2
c)

−1(I +Ω2
r)

−1(I −Ω2
c)(I −Ω2

r)Σ

= (I +Ω2
c)

−1(I +Ω2
r)

−1Γ3

The spatial dependency matrices are de�ned as follows,

for corner plots (3 neighbours):

Row : Ωr

Col : Ωc

Diagonal : Ωrc = −ΩrΩc = −ΩcΩr
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for edge plots (5 neighbours), �rst and last column

Row : Ωr5:c = Ωr(I +Ω2
r)

−1

Col : Ωc5:c = Ωc

Diagonal : Ωrc5:c = −ΩrΩc(I +Ω2
r)

−1

for edge plots, �rst and last row

Row : Ωr5:r = Ωr

Col : Ωc5:r = Ωc(I +Ω2
c)

−1

Diagonal : Ωrc5:r = −ΩrΩc(I +Ω2
c)

−1

for internal plots (8 neighbours)

Row : Ωr8 = Ωr(I +Ω2
r)

−1

Col : Ωc8 = Ωc(I +Ω2
c)

−1

Diagonal : Ωrc8 = −ΩrΩc(I +Ω2
c)

−1(I +Ω2
r)

−1

Using these results the form for Γ, (the block diagonal matrix with blocks Γij, rep-

resenting the conditional covariance matrix for each plot (i,j)) can be written. The plots

are ordered rows within columns (i = 1, . . . , r and j = 1, . . . , c). Therefore

Γ = diag (Γ11,Γ21,Γ31, . . . ,Γr1,Γ12,Γ22,Γ32, . . . ,Γr2, . . . ,Γ1c,Γ2c,Γ3c, . . . ,Γrc)

= diag (Γ3,Γ5col,Γ5col, . . . ,Γ3,Γ5row,Γ8,Γ8, . . . ,Γ5row, . . . ,Γ3,Γ5col,Γ5col, . . . ,Γ3)

Now using this form of Γ,

Γ−1 = diag (M 1,M 2, . . . ,M 2,M 1)

where

M 1 = (Ir ⊗ Γ−1
3 )(diag

(
I, (I +Ω2

r), . . . , I
)
)

= (Ir ⊗ Γ−1
3 )(Irt +E1r ⊗Ω2

r)

= (Ir ⊗ (Σ−1(I −Ω2
r)

−1(I −Ω2
c)

−1))(Irt +E1r ⊗Ω2
r)

182



and

M 2 = (Ir ⊗ Γ−1
3 )(diag

(
(I +Ω2

c), (I +Ω2
c)(I +Ω2

r), . . . , (I +Ω2
c)
)
)

= (Ir ⊗ Γ−1
3 )(Irt +E1r ⊗Ω2

r)[Ir ⊗ (I t +Ω2
c)]

= M 1[Ir ⊗ (I t +Ω2
c)]

This can be simpli�ed to

Γ−1 = (Ic ⊗M 1)[diag
(
Irt, Ir ⊗ (I t +Ω2

c), . . . , Irt
)
]

= (Ic ⊗M 1)(Irct +E1c ⊗ (Ir ⊗Ω2
c))

= [Ic ⊗ ((Ir ⊗ (Σ−1(I −Ω2
r)

−1(I −Ω2
c)

−1))(Irt +E1r ⊗Ω2
r))][Irct +E1c ⊗ Ir ⊗Ω2

c ]

The form for Ω, the rct× rct block matrix of spatial dependency matrices for neigh-

bouring plots can also be written as (Note the plots are ordered rows within columns)

Ω =



B0 B2 0 . . . 0

B3 B1 B3 . . . 0

0 B3 B1 . . . 0
...

...
...

. . .
...

0 . . . 0 B2 B0


(9.4.17)

where where B0 is a rt× rt matrix with

B0 =



0 Ωr 0 . . . 0

Ωr5:c 0 Ωr5:c . . . 0

0 Ωr5:c 0 . . . 0
...

...
...

. . .
...

0 0 . . . Ωr 0



=



0 Ωr 0 . . . 0

(I +Ω2
r)

−1Ωr 0 (I +Ω2
r)

−1Ωr . . . 0

0 (I +Ω2
r)

−1Ωr 0 . . . 0
...

...
...

. . .
...

0 0 . . . Ωr 0
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and B1 is a rt× rt matrix with

B1 =



0 Ωr5:r 0 . . . 0

Ωr8 0 Ωr8 . . . 0

0 Ωr8 0 . . . 0
...

...
...

. . .
...

0 0 . . . Ωr5:r 0



=


0 Ωr 0 . . . 0

Ωr(I +Ω2
r)

−1 0 Ωr(I +Ω2
r)

−1 . . . 0
...

...
...

. . .
...

0 0 . . . Ωr 0


= B0

These matrices can be written as

B1 = F 1r ⊗ (Ωr(I +Ω2
r)

−1) +Dr ⊗ (Ωr − (Ωr(I +Ω2
r)

−1))

= (F 1r −Dr)⊗ (Ωr(I +Ω2
r)

−1) +Dr ⊗Ωr

where Dr is a r × r matrix of all zeros except elements Dr[1, 2] and Dr[r, (r − 1)] which

equal 1 and F 1r is a r × r matrix previously de�ned.

The matrix B2 in (9.4.17) is given by

B2 =



Ωc Ωrc 0 . . . 0

Ωrc5:c Ωc Ωrc5:c . . . 0

0 Ωrc5:c Ωc . . . 0
...

...
...

. . .
...

0 0 . . . Ωrc Ωc



=



Ωc −ΩrΩc 0 . . . 0

−ΩrΩc(I +Ω2
r)

−1 Ωc −ΩrΩc(I +Ω2
r)

−1 . . . 0

0 −ΩrΩc(I +Ω2
r)

−1 Ωc . . . 0
...

...
...

. . .
...

0 0 . . . −ΩrΩc Ωc


= Ir ⊗Ωc + (F 1r −Dr)⊗Ωrc5:c +Dr ⊗Ωrc

= Ir ⊗Ωc − (F 1r −Dr)⊗ (ΩrΩc(I +Ω2
r)

−1)−Dr ⊗ (ΩrΩc)

= (Ir ⊗Ωc)(Irt −B1)

184



The matrix B3 in (9.4.17) is given by

B3 =



Ωc5:r Ωrc5:r 0 . . . 0

Ωrc8 Ωc8 Ωrc8 . . . 0

0 Ωrc8 Ωc8 . . . 0
...

...
...

. . .
...

0 0 . . . Ωrc5:r Ωc5:r



=


Ωc(I +Ω2

c)
−1 −ΩrΩc(I +Ω2

c)
−1 . . . 0

−ΩrΩc(I +Ω2
c)

−1(I +Ω2
r)

−1 Ωc(I +Ω2
c)

−1 . . . 0
...

...
. . .

...

0 . . . −ΩrΩc(I +Ω2
c)

−1 Ωc(I +Ω2
c)

−1


= Ir ⊗Ωc(I +Ω2

c)
−1 − (F 1r −Dr)⊗ (ΩrΩc(I +Ω2

r)
−1(I +Ω2

c)
−1)−

Dr ⊗ (ΩrΩc(I +Ω2
c)

−1)

= B2(Ir ⊗ (I +Ω2
c)

−1)

Hence,

Ω = Ic ⊗B1 + (F 1c −Dc)⊗B3 +Dc ⊗B2

= Ic ⊗ [(F 1r −Dr)⊗ (Ωr(I +Ω2
r)

−1) +Dr ⊗Ωr]

+(F 1c −Dc)⊗ [Ir ⊗Ωc(I +Ω2
c)

−1 − (F 1r −Dr)⊗ (ΩrΩc(I +Ω2
r)

−1(I +Ω2
c)

−1)

−Dr ⊗ (ΩrΩc(I +Ω2
c)

−1)]

+Dc ⊗ [Ir ⊗Ωc − (F 1r −Dr)⊗ (ΩrΩc(I +Ω2
r)

−1)−Dr ⊗ (ΩrΩc)]

where Dc is a c × c matrix of all zeros except elements Dc[1, 2] and Dc[c, (c − 1)] which

equal 1.

The full inverse covariance matrix is given by

R−1 = Γ−1(Irct −Ω)

= {[Ic ⊗ ((Ir ⊗ (Σ−1(I −Ω2
r)

−1(I −Ω2
c)

−1))(Irt +E1r ⊗Ω2
r))] (9.4.18)

[Irct +E1c ⊗ Ir ⊗Ω2
c ]}{Irct −

(Ic ⊗ [(F 1r −Dr)⊗ (Ωr(I +Ω2
r)

−1) +Dr ⊗Ωr]

+(F 1c −Dc)⊗ [Ir ⊗Ωc(I +Ω2
c)

−1 − (F 1r −Dr)⊗ (ΩrΩc(I +Ω2
r)

−1(I +Ω2
c)

−1)

−Dr ⊗ (ΩrΩc(I +Ω2
c)

−1)]

+Dc ⊗ [Ir ⊗Ωc − (F 1r −Dr)⊗ (ΩrΩc(I +Ω2
r)

−1)−Dr ⊗ (ΩrΩc)])} (9.4.19)

For this result to be valid, there are 3 sets of constraints that need to hold, namely

ΩrΣ = ΣΩT
r

ΩcΣ = ΣΩT
c

ΩrΩc = ΩcΩr
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Note that the third constraint holds if the �rst two constraints hold and ΩrΩcΣ is also

symmetric.

That is, if

ΩrΩcΣ = ΣΩT
c Ω

T
r

= ΩcΣΩT
r

= ΩcΩrΣ

then

ΩrΩc = ΩcΩr

If the above form for R−1 (9.4.19) is multiplied out it can be seen that the explicit

form of the inverse covariance matrix (written here for a lattice of 3 rows and 3 columns,

for brevity) is as follows:

R−1 = [Irc ⊗ (Σ−1(I −Ω2
r)

−1(I −Ω2
c)

−1)]∆

where ∆=

I −Ωr 0 −Ωc −Ωrc 0 0 0 0

−Ωr I +Ω2
r −Ωr −Ωrc −(I +Ω2

r)Ωc −Ωrc 0 0 0

0 −Ωr I 0 −Ωrc −Ωc 0 0 0

−Ωc −Ωrc 0 I +Ω2
c −(I +Ω2

c)Ωr 0 −Ωc −Ωrc 0

−Ωrc −(I +Ω2
r)Ωc −Ωrc −(I +Ω2

c)Ωr (I +Ω2
c)(I +Ω2

r) −(I +Ω2
c)Ωr −Ωrc −(I +Ω2

r)Ωc −Ωrc

0 −Ωrc −Ωc 0 −(I +Ω2
c)Ωr I +Ω2

c 0 −Ωrc −Ωc

0 0 0 −Ωc −Ωrc 0 I −Ωr 0

0 0 0 −Ωrc −(I +Ω2
r)Ωc −Ωrc −Ωr I +Ω2

r −Ωr

0 0 0 0 −Ωrc −Ωc 0 −Ωr I


which can be seen to be the direct multivariate extension of the inverse covariance ma-

trix for a univariate ar1(Column).ar1(Row) process (with multivariate structures Ωr and

Ωc replacing ϕr and ϕc and Σ replacing σ. However, it is clear that this multivariate

inverse covariance matrix cannot be simply written as the Kronecker product of two one

directional (row) and (column) multivariate MVAR1 processes, as in the univariate case.

It can also be seen that these results follow from simply replacing the univariate spatial

dependency parameters and variances with their multivariate counterparts in the MCAR

model of (9.2.1).

9.4.1 Fitting the 2dMVAR1 model

To estimate the parameters in the 2dMVAR1 model the REML log-likelihood must be

maximized subject to the three sets of constraints. The constraints can be imposed using

Lagrange multipliers, as follows

Cr = [vechl(Ψr)]
T [vechl(ΩrΣ)− vechl(ΣΩT

r )]
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where Ψr is the t× t symmetric matrix of Lagrange multipliers Ψrij with Ψrii = 0 for the

constraint involving ΩrΣ,

Cc = [vechl(Ψc)]
T [vechl(ΩcΣ)− vechl(ΣΩT

c )]

where Ψc is the t× t symmetric matrix of Lagrange multipliers Ψcij with Ψcii = 0 for the

constraint involving ΩcΣ, and

Crc = [vechl(Ψrc)]
T [vechl(ΩrcΣ)− vechl(ΣΩT

rc)]

where Ψrc is the t × t symmetric matrix of Lagrange multipliers Ψrcij with Ψrcii = 0 for

the constraint involving ΩrcΣ.

Therefore the constrained log-likelihood l∗r needs to be maximized, where

l∗r = lr + Cr + Cc + Crc

To maximize the log-likelihood the derivatives of l∗r are taken with respect to the variance

parameters and are equated to zero. Therefore for parameters in Σ, Ωr and Ωc for

example σrs, this will mean calculating

∂l∗r
∂σrs

= U(σrs) +
∂Cr

∂σrs
+
∂Cc

∂σrs
+
∂Crc

∂σrs

This requires the derivatives of the full 2dMVAR1 covariance matrix R, where

R−1 = Γ−1(I −Ω)

The derivatives for the constraints C are also required. These derivatives are presented

below.

The derivatives ofR−1 with respect to the variance parameters {σrs} and {ωrij} {ωcij}
(combined in vector κk, k = 1, . . . , t(t+ 1)/2 + 2t2) are given by

∂R−1

∂κk
=
∂R1

∂κk
R2 +R1

∂R2

∂κk

where

R1 = Γ−1

and

R2 = (I −Ω)

= Irct − Ic ⊗B1 − (F 1c −Dc)⊗B3 −Dc ⊗B2

For the parameters in κk, with k = 1, . . . , t(t + 1)/2 (parameters σrs from Σ) the
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derivative of R1 wrt σrs is given by

∂R1

∂σrs
= [Ic ⊗ ([Ir ⊗ (

∂Σ−1

∂σrs
(I −Ω2

r)
−1(I −Ω2

c)
−1)][Irt +E1r ⊗Ω2

r])][Irct +E1c ⊗ Ir ⊗Ω2
c ]

The derivative of R2 wrt σrs is given by

∂R2

∂σrs
= 0× Irct = 0

For the parameters in Ωr, that is in κk for k = (1 + t(t+ 1)/2, . . . , t(t+ 1)/2 + t2)

∂R1

∂ωrij

= [Ic ⊗ ([Ir ⊗ (Σ−1∂(I t −Ω2
r)

−1

∂ωrij

(I t −Ω2
c)

−1)][Irt +E1r ⊗Ω2
r])][Irct +E1c ⊗ Ir ⊗Ω2

c ]

+ [Ic ⊗ ([Ir ⊗ (Σ−1(I t −Ω2
r)

−1(I t −Ω2
c)

−1)][Irt +E1r ⊗
∂Ω2

r

∂ωrij

])][Irct +E1c ⊗ Ir ⊗Ω2
c ]

where

∂(I t −Ω2
r)

−1

∂ωrij

= (I t −Ω2
r)

−1(Ωr
∂Ωr

∂ωrij

+
∂Ωr

∂ωrij

Ωr)(I t −Ω2
r)

−1

and

∂Ω2
r

∂ωrij

= Ωr
∂Ωr

∂ωrij

+
∂Ωr

∂ωrij

Ωr

The derivative of Ωr wrt ωrij is given by

∂Ωr

∂ωrij

= ziz
T
j

where zi is a t×1 vector containing all zeros except for the ith element (row) which equals

1.

The derivative of R2 wrt ωrij is given by

∂R2

∂ωrij

= −Ic ⊗
∂B1

∂ωrij

− (F 1c −Dc)⊗
∂B3

∂ωrij

−Dc ⊗
∂B2

∂ωrij

where

∂B1

∂ωrij

= (F 1r −Dr)⊗ (
∂Ωr

∂ωrij

(I +Ω2
r)

−1 +Ωr
∂(I +Ω2

r)
−1

∂ωrij

) +Dr ⊗
∂Ωr

∂ωrij

∂B2

∂ωrij

= −(Ir ⊗Ωc)
∂B1

∂ωrij
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and

∂C3

∂ωrij

=
∂C2

∂ωrij

(Ic ⊗ (I t +Ω2
c)

−1)

where

∂(I +Ω2
r)

−1

∂ωrij

= −(I t +Ω2
r)

−1(Ω
∂Ω

∂ωrij

+
∂Ω

∂ωrij

Ω)(I t +Ω2
r)

−1

and ∂Ωr

∂ωrij
is de�ned as above.

The derivatives of R1 wrt ωcij are as follows

∂R1

∂ωcij

= [Ic ⊗ ([Ir ⊗ (Σ−1(I t −Ω2
r)

−1)
∂(I t −Ω2

c)
−1

∂ωcij

][Irt +E1r ⊗Ω2
r])]

[Irct +E1c ⊗ Ir ⊗Ω2
c ]

+ [Ic ⊗ ([Ir ⊗ (Σ−1(I t −Ω2
r)

−1(I t −Ω2
c)

−1)][Irt +E1r ⊗Ω2
r])][E1c ⊗ Ir ⊗

∂Ω2
c

∂ωcij

]

where

∂(I t −Ω2
c)

−1

∂ωcij

= (I t −Ω2
c)

−1(Ωc
∂Ωc

∂ωcij

+
∂Ωc

∂ωcij

Ωc)(I t −Ω2
c)

−1

and

∂Ω2
c

∂ωcij

= Ωc
∂Ωc

∂ωcij

+
∂Ωc

∂ωcij

Ωc

The derivative of Ωc wrt ωcij is given by

∂Ωc

∂ωcij

= ziz
T
j

where zi is a t×1 vector containing all zeros except for the ith element (row) which equals

1.

The derivative of R2 wrt ωcij is given by

∂R2

∂ωcij

= −(F 1c −Dc)⊗
∂B3

∂ωcij

−Dc ⊗
∂B2

∂ωcij

where

∂B2

∂ωcij

= (Ir ⊗
∂Ωc

∂ωcij

)(Irt −B1)

and

∂B3

∂ωcij

=
∂B2

∂ωcij

(Ir ⊗ (I t +Ω2
c)

−1) +B2(Ir ⊗
∂(I t +Ω2

c)
−1

∂ωcij

)
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and where

∂(I t +Ω2
c)

−1

∂ωcij

= −(I t +Ω2
c)

−1 ∂Ω
2
c

∂ωcij

(I t +Ω2
c)

−1

and ∂Ω2
c

∂ωcij
is de�ned above.

Derivatives of constraints

The derivative of the constraints C = Cr + Cc + Crc with respect to σrs is given by

∂C

∂σrs
=

∂Cr

∂σrs
+
∂Cc

∂σrs
+
∂Crc

∂σrs

where

∂Cr

∂σrs
=

∂

∂σrs
([vechl(ψr)]

T [vechl(ΩrΣ)− vechl(ΣΩT
r )])

= [vechl(ψr)]
T [vechl(Ωr

∂Σ

∂σrs
)− vechl(

∂Σ

∂σrs
ΩT

r )]

where ∂Σ
∂σrs

is de�ned as above.

Similarly

∂Cc

∂σrs
= [vechl(ψc)]

T [vechl(Ωc
∂Σ

∂σrs
)− vechl(

∂Σ

∂σrs
ΩT

c )]

and

∂Crc

∂σrs
= [vechl(ψrc)]

T [vechl(ΩrΩc
∂Σ

∂σrs
)− vechl(

∂Σ

∂σrs
ΩT

c Ω
T
r )]

The derivative of the constraints C with respect to ωrij is given by

∂C

∂ωrij

=
∂Cr

∂ωrij

+
∂Crc

∂ωrij

where

∂Cr

∂ωrij

= [vechl(ψr)]
T [vechl(

∂Ωr

∂ωrij

Σ)− vechl(Σ
∂ΩT

r

∂ωrij

)]

and

∂Crc

∂ωrij

= [vechl(ψrc)]
T [vechl(

∂Ωr

∂ωrij

ΩcΣ)− vechl(ΣΩT
c

∂ΩT
r

∂ωrij

)]

where ∂ΩT
r

∂ωrij
=
(

∂Ωr

∂ωrij

)T
and ∂Ωr

∂ωrij
is de�ned as above.

The derivative of the constraints C with respect to ωcij is given by

∂C

∂ωcij

=
∂Cc

∂ωcij

+
∂Crc

∂ωcij
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where

∂Cc

∂ωcij

= [vechl(ψc)]
T [vechl(

∂Ωc

∂ωcij

Σ)− vechl(Σ
∂ΩT

c

∂ωcij

)]

and

∂Crc

∂ωcij

= [vechl(ψrc)]
T [vechl(Ωr

∂Ωc

∂ωcij

Σ)− vechl(Σ
∂ΩT

c

∂ωcij

ΩT
r )]

where ∂ΩT
c

∂ωcij
=
(

∂Ωc

∂ωcij

)T
and ∂Ωc

∂ωcij
is de�ned as above.

The derivative of the constraints C with respect to ψrij is given by

∂C

∂ψrij

= [vechl(
∂ψr

∂ψrij

)]T [vechl(ΩrΣ)− vechl(ΣΩT
r )]

= [vechl(ziz
T
j )]

T [vechl(ΩrΣ)− vechl(ΣΩT
r )]

The derivative of the constraints C with respect to ψcij is given by

∂C

∂ψcij

= [vechl(ziz
T
j )]

T [vechl(ΩcΣ)− vechl(ΣΩT
c )]

The derivative of the constraints C with respect to ψrcij is given by

∂C

∂ψrcij

= [vechl(ziz
T
j )]

T [vechl(ΩrΩcΣ)− vechl(ΣΩT
c Ω

T
r )]

The second di�erentials of the constraints are also required to update the Average

Information matrix. A number of these are zero but the non zero di�erentials are as

follows.

The second derivative of the constraints C with respect to ψrij and ωruv is given by

∂C

∂ψrij∂ωruv

= [vechl(ziz
T
j )]

T [vechl(
∂Ωr

∂ωruv

Σ)− vechl(Σ
∂ΩT

r

∂ωruv

)]

The second derivative of the constraints C with respect to ψcij and ωcuv is given by

∂C

∂ψcij∂ωcuv

= [vechl(ziz
T
j )]

T [vechl(
∂Ωc

∂ωcuv

Σ)− vechl(Σ
∂ΩT

c

∂ωcuv

)]

The second derivative of the constraints C with respect to ψrcij and ωruv is given by

∂C

∂ψrcij∂ωruv

= [vechl(ziz
T
j )]

T [vechl(
∂Ωr

∂ωruv

ΩcΣ)− vechl(ΣΩT
c

∂ΩT
r

∂ωruv

)]

The second derivative of the constraints C with respect to ψrcij and ωcuv is given by

∂C

∂ψrcij∂ωcuv

= [vechl(ziz
T
j )]

T [vechl(Ωr
∂Ωc

∂ωcuv

Σ)− vechl(Σ
∂ΩT

c

∂ωcuv

ΩT
r )]
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The second derivative of the constraints C with respect to ψrij and σuv is given by

∂C

∂ψrij∂σuv
= [vechl(ziz

T
j )]

T [vechl(Ωr
∂Σ

∂σuv
)− vechl(

∂Σ

∂σuv
ΩT

r )]

The second derivative of the constraints C with respect to ψcij and σuv is given by

∂C

∂ψcij∂σuv
= [vechl(ziz

T
j )]

T [vechl(Ωc
∂Σ

∂σuv
)− vechl(

∂Σ

∂σuv
ΩT

c )]

The second derivative of the constraints C with respect to ψrcij and σuv is given by

∂C

∂ψrcij∂σuv
= [vechl(ziz

T
j )]

T [vechl(ΩrΩc
∂Σ

∂σuv
)− vechl(

∂Σ

∂σuv
ΩT

c Ω
T
r )]

The second derivative of the constraints C with respect to ωrij and σuv is given by

∂C

∂ωrij∂σuv
= [vechl(ψr)]

T [vechl(
∂Ωr

∂ωrij

∂Σ

∂σuv
)− vechl(

∂Σ

∂σuv

∂ΩT
r

∂ωrij

)]

+ [vechl(ψrc)]
T [vechl(

∂Ωr

∂ωrij

Ωc
∂Σ

∂σuv
)− vechl(

∂Σ

∂σuv
ΩT

c

∂ΩT
r

∂ωrij

)]

The second derivative of the constraints C with respect to ωcij and σuv is given by

∂C

∂ωcij∂σuv
= [vechl(ψc)]

T [vechl(
∂Ωc

∂ωcij

∂Σ

∂σuv
)− vechl(

∂Σ

∂σuv

∂ΩT
c

∂ωcij

)]

+ [vechl(ψrc)]
T [vechl(Ωr

∂Ωc

∂ωcij

∂Σ

∂σuv
)− vechl(

∂Σ

∂σuv

∂ΩT
c

∂ωcij

ΩT
r )]

The second derivative of the constraints C with respect to ωrij and ωcuv is given by

∂C

∂ωrij∂ωcuv

= [vechl(ψrc)]
T [vechl(

∂Ωr

∂ωrij

∂Ωc

∂ωcuv

Σ)− vechl(Σ
∂ΩT

c

∂ωcuv

∂ΩT
r

∂ωrij

)]

9.5 Application to multivariate examples with spatial

correlation in row and column directions

To illustrate the 2dMVAR1 model presented in this chapter and it's suitability for mod-

elling the residual covariance structure for multivariate data collected on a 2 dimensional

lattice, a number of bivariate analyses have been performed on lucerne yield and per-

sistence data collected at a number of times and sites. In each bivariate data set the

yield and persistence measures were made on the same day or within a couple of weeks

of each other. In these analyses the 2dMVAR1 model has been used to model the residual

spatial and temporal covariance structure. Code has been written in R (R Development

Core Team, 2012) to implement these models. This code is presented in Appendix E
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(and is referred to as MCARUSgen). In these models the matrix Σ is assumed to be an

unstructured symmetric covariance matrix (us) and Ωr and Ωc are fully parameterized

non symmetric matrices (genΩ).

The results from �tting the 2dMVAR1 models are presented in Table 9.1. Comparisons

have been made between the log-likelihood from the 2dMVAR1 model and the separable

us(Trait).ar1(Column).ar1(Row) model using REMLRT.

The �rst data set analysed was the yield and persistence data from Euloma measured

on 1/11/2003 and 14/10/2003 for yield and persistence respectively. The spatial correla-

tion parameters estimated from individual analyses of each of these traits are presented

in Table 9.1. The spatial correlation parameters in the column direction were reasonably

similar between the two traits (0.210 and 0.140 for persistence and yield respectively),

while the spatial correlation parameters in the row direction were quite di�erent (0.640

and 0.180 for persistence and yield respectively). These estimates were used as starting

values for the diagonal elements of the spatial dependency matrices Ωc and Ωr in the

2dMVAR1 model, while the starting values for the o� diagonal elements were set at a

small number (0.001).

The log-likelihood obtained from �tting the separable us(Trait).ar1(Column).ar1(Row)

model to the Euloma data set in ASReml-R was 54.852 (Table 9.1). The spatial correlation

parameter estimates (here common for both traits) from this separable model were 0.18

and 0.52 for the column and row directions respectively. The estimates for the us temporal

covariance matrix from this separable model were used as starting values for Σ in the

2dMVAR1 model.

The 2dMVAR1 model converged with a log-likelihood of 66.512, which was a signi�cant

improvement in �t than the separable model (REMLRT = 23.32 on 6 df, P < 0.001).

The parameters estimated from this non-separable model are as follows:

Σ̂ =

[
0.134 0.132

0.132 0.840

]
Ω̂r =

[
0.169 0.015

−0.435 0.709

]
Ω̂c =

[
0.158 0.001

−0.039 0.207

]

The spatial dependency parameters for the two traits di�er in the row direction with

the spatial dependency parameter for persistence on neighbouring plots in the row direc-

tion estimated as 0.169 while the spatial dependency between neighbouring plots for yield

was 0.709. The parameters in the column direction were more similar.

A similar model �tting process was followed for the remaining eight data sets (Table

9.1). Out of the nine data sets, six showed a signi�cant improvement in model �t with the

non-separable 2dMVAR1 residual model than the separable residual model. The parameter

estimates from the 2dMVAR1 models are presented in Table 9.2.

In the three analyses that did not show a signi�cant improvement with the 2dMVAR1

residual model, the spatial correlation parameters (as estimated from the individual anal-

yses of each trait) were fairly similar between the two traits for both column and row

directions. Where the spatial parameters (from the individual analyses) di�ered by ap-

proximately 0.4 or more in either direction, the non-separable 2dMVAR1 model was a

signi�cant improvement on the separable model (see Table 9.1).
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Table 9.1: Summary of models �tted for bivariate analysis of yield and persistence at each
site using separable and non-separable 2dMVAR1 residual models.

Site Harvest Yld Persistence Separable 2dMVAR1 P
Spatial par Spatial par us(Tr):ar1:ar1 MCARUSgen
Col Row Col Row LL LL

Euloma 11/03 0.210 0.640 0.140 0.180 54.852 66.512 <0.001
Euloma 02/04 0.315 0.676 0.210 0.165 93.997 112.564 <0.001
Euloma 10/04 0.251 0.607 0.196 0.232 100.566 109.834 0.005
Lead 11/04 0.056 0.709 0.030 0.318 102.595 109.927 0.023
Lead 11/05 0.248 0.520 -0.046 0.314 149.926 154.479 0.168 n.s
Sand 11/03 0.292 0.627 0.234 0.251 127.139 133.729 0.040
TCCI 11/03 0.262 0.174 0.024 0.601 -64.108 -49.252 <0.001
TCCI 12/04 0.359 0.370 0.245 0.460 141.324 142.737 0.830 n.s
Terry 11/03 -0.017 0.270 -0.068 0.207 163.758 165.143 0.837 n.s

9.6 Summary

In this chapter the MVAR1 model of the previous chapter has been extended to the 2

directional (row and column) situation by using the theory of MCAR models. While ex-

amples of MCAR models can be found in the literature to model spatio-temporal data in

alternate areas such as �nance, real-estate, disease epidemics, mostly on irregular lattices

and �tted in a Bayesian framework (for example Carlin & Banerjee (2003), Gelfand &

Vounatsou, 2003), the covariance structure imposed by these MCAR models is not desir-

able for our situation of residuals from plots in a �eld trial. The CAR model has been

shown to have a centro-symmetric correlation structure (see Wall (2004) and Assuncao

& Krainski, 2009) where plot variances and correlations between neighbouring plots in a

regular lattice are not stationary but instead increase towards the centre of the lattice.

This structure carries over to the multivariate MCAR case.

Instead the 2dMVAR1 model we have developed imposes the desired covariance struc-

ture we require for our situation. That is, the variance matrix is constant for all plots

and the matrix of covariances between plots at the same displacement is constant. The

model is also easily implemented into the linear mixed model framework with estimation

using REML.

The resulting 2dMVAR1 model has been applied to a number of bivariate data sets,

modelling the residual spatio-temporal correlation structure in row and column directions.

In most cases the non-separable 2dMVAR1 model was a signi�cant improvement in model

�t than the comparable separable us(Trait).ar1(Column).ar1(Row) model.

The approach allows for separate spatial dependency parameters to be estimated for

each time (or trait) thereby providing a much more �exible range of residual models for

multi-harvest (or multi-trait) data. The models allow for further insight into the spatial

structure of the data by allowing for di�erent spatial parameters rather than assuming

a common spatial correlation parameter across times or between traits, as is the case in
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Table 9.2: REML estimates of parameters from 2dMVAR1 residual model �tted to bivari-
ate lucerne yield and persistence data sets at a number of sites and times.

Site Harvest 2dMVAR1 estimates

Σ̂ Ω̂r Ω̂c

Euloma 11/03 σ̂11 = 0.134 ω̂r11 = 0.169 ω̂c11 = 0.158
σ̂12 = 0.132 ω̂r12 = 0.015 ω̂c12 = 0.001
σ̂21 = 0.132 ω̂r21 = −0.435 ω̂c21 = −0.039
σ̂22 = 0.840 ω̂r22 = 0.709 ω̂c22 = 0.207

Euloma 02/04 σ̂11 = 0.079 ω̂r11 = 0.044 ω̂c11 = 0.114
σ̂12 = 0.131 ω̂r12 = 0.071 ω̂c12 = 0.023
σ̂21 = 0.131 ω̂r21 = −0.140 ω̂c21 = −0.045
σ̂22 = 1.013 ω̂r22 = 0.680 ω̂c22 = 0.319

Euloma 10/04 σ̂11 = 0.102 ω̂r11 = 0.118 ω̂c11 = 0.164
σ̂12 = 0.091 ω̂r12 = 0.081 ω̂c12 = 0.018
σ̂21 = 0.091 ω̂r21 = 0.108 ω̂c21 = 0.024
σ̂22 = 0.660 ω̂r22 = 0.580 ω̂c22 = 0.265

Lead 11/04 σ̂11 = 0.093 ω̂r11 = 0.304 ω̂c11 = 0.019
σ̂12 = 0.025 ω̂r12 = −0.003 ω̂c12 = 0.000
σ̂21 = 0.025 ω̂r21 = −0.131 ω̂c21 = 0.020
σ̂22 = 0.669 ω̂r22 = 0.700 ω̂c22 = 0.079

Lead 11/05 σ̂11 = 0.078 ω̂r11 = 0.305 ω̂c11 = −0.063
σ̂12 = 0.023 ω̂r12 = −0.016 ω̂c12 = 0.024
σ̂21 = 0.023 ω̂r21 = −0.008 ω̂c21 = 0.012
σ̂22 = 0.342 ω̂r22 = 0.519 ω̂c22 = 0.249

Sand 11/03 σ̂11 = 0.068 ω̂r11 = 0.208 ω̂c11 = −0.221
σ̂12 = 0.044 ω̂r12 = −0.044 ω̂c12 = 0.007
σ̂21 = 0.044 ω̂r21 = −0.062 ω̂c21 = 0.010
σ̂22 = 0.528 ω̂r22 = 0.643 ω̂c22 = 0.288

TCCI 11/03 σ̂11 = 0.181 ω̂r11 = 0.605 ω̂c11 = 0.040
σ̂12 = 0.267 ω̂r12 = −0.003 ω̂c12 = 0.001
σ̂21 = 0.267 ω̂r21 = 0.794 ω̂c21 = −0.338
σ̂22 = 2.181 ω̂r22 = 0.046 ω̂c22 = 0.278

TCCI 12/04 σ̂11 = 0.090 ω̂r11 = 0.386 ω̂c11 = 0.197
σ̂12 = 0.131 ω̂r12 = 0.000 ω̂c12 = 0.009
σ̂21 = 0.131 ω̂r21 = 0.011 ω̂c21 = −0.236
σ̂22 = 0.618 ω̂r22 = 0.376 ω̂c22 = 0.400

Terry 11/03 σ̂11 = 0.094 ω̂r11 = 0.228 ω̂c11 = −0.019
σ̂12 = 0.041 ω̂r12 = 0.035 ω̂c12 = −0.051
σ̂21 = 0.041 ω̂r21 = 0.090 ω̂c21 = −0.130
σ̂22 = 0.236 ω̂r22 = 0.222 ω̂c22 = −0.011
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the separable models. This �exibility makes more sense biologically as it is likely that the

spatial correlation will di�er between harvest times and also between traits (as shown in

Chapter 3).

The 2dMVAR1 models are not without their potential disadvantages. For large num-

bers of harvests the number of parameters that are required to be estimated for the spatial

dependency matrix (Ω) becomes very large. Interpretation of the parameters in this spa-

tial dependency matrix may also be di�cult. In most cases observed in the examples here,

the diagonal terms of Ω (the spatial dependency parameters for each trait) are the larger

components (in magnitude), with the o�-diagonal terms (the spatial dependency parame-

ters between yield on one plot and persistence on the neighbouring plot) being very small.

However there are cases where the diagonal terms are quite large and more di�cult to

interpret. Rather than dissecting the individual spatial and temporal components it is

really the full spatial and temporal interaction (ΩΣ) which gives the covariances between

neighbouring plots that is of most importance.

The main interest in these analyses for perennial crops is at the genetic level, however

providing a better model �t at the residual level with better modelling of the spatial

and temporal correlation structures will provide better estimates of genetic e�ects. The

results from �tting these 2dMVAR1 residual models are very promising with the model

providing a signi�cant improvement in modelling the residual covariance structure than

previously implemented methods. These models will provide a signi�cant improvement

in the analysis of multi-harvest and multi-trait data in perennial crops. The models also

have the potential to provide signi�cant improvement to multi-trait analyses in annual

crops.
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Chapter 10

General Discussion

10.1 Overview of thesis

The motivation behind this thesis was to investigate and develop e�cient methods for

analysing data from variety selection trials in perennial crops. The analysis of such data

aims to be as accurate and comprehensive as possible in order for the best variety selections

to be made across a range of environments (times and locations).

The main issues involved with the analysis of data from perennial crops over and above

that of annual crops, are how to best model the spatial correlation between plots in the

�eld as well as modelling the temporal correlation between multiple harvests, and how

to provide insight into variety by time by environment interactions. In this thesis, meth-

ods have been proposed that successfully model both the residual spatial and temporal

covariance structure and also model variety performance over time. It has been demon-

strated that these methods are a signi�cant improvement on the historical approach of

individually analysing each harvest time separately.

While it is relatively common practice to model the spatial correlation between plots in

annual crop �eld trials using the spatial analysis approach of Gilmour et al. (1997), these

methods have not been widely adopted in the analysis of perennial crop data. Exceptions

include Smith et al. (2007) and Stringer & Cullis (2002) in sugarcane, Davik & Honne

(2005) in strawberry, Resende et al. (2006) in tea, Murison et al. (2006) in perennial pas-

ture trials, and Jones et al. (2009) in grapes, who all found signi�cant spatial correlation

in their trials. In Chapter 3 of this thesis, spatial analysis techniques were applied to a

number of data sets from multiple trials and harvests in the perennial crops lucerne and

chicory at individual harvest times. The analysis methods were based on a combination

of a randomisation (or design) based approach (which includes terms to account for the

randomisation used in the experimental design) combined with that of Gilmour et al.

(1997) which includes terms for global and extraneous spatial trends and models the local

spatial correlation between neighbouring plots using an autoregressive process of order 1

in the row and column directions. This hybrid approach is now recommended (see Smith

et al., 2005, Smith et al., 2007 and Beeck et al., 2010) as is using the additional diagnostic

plots of Stefanova et al. (2009) of the row and column faces of the semivariogram of the

residuals, together with 95% coverage intervals.
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The spatial analyses performed on the lucerne and chicory data sets identi�ed a number

of spatial trends and signi�cant local spatial correlation between plots and the models

were shown to provide a signi�cantly better �t to the data than traditional designed

based (e.g. RCB) models. Of the 64 spatial analyses performed, 57 of those exhibited

signi�cant spatial trend and/or location spatial correlation. The local spatial correlation

parameters were all positive, re�ecting that neighbouring plots are more likely to be similar

than those further apart. There was no evidence of interplot competition (which would be

indicated by negative spatial correlation parameters) as found by Stringer & Cullis (2002)

in sugarcane trials. Many harvests showed global or extraneous spatial trends associated

with the columns of the trials and at Leadville there was signi�cant global trend in the

row direction for all harvests besides the �rst. This may be due to the harvesting pattern

at this trial as the plots were harvested across columns (row 1 �rst, then row 2 etc).

One of the main aims of the analyses in Chapter 3 was to investigate the levels of spatial

correlation found at each harvest time within a trial and to see how the spatial correlation

di�ered between harvests. For some trials the local spatial correlation parameters di�ered

substantially between harvests while at other trials the spatial correlation parameters were

more similar. For example, for yield at Euloma the row spatial correlation parameters were

quite similar (ranging from 0.59−0.63) while at Tamworth the column spatial correlation

parameters were more variable (0.18−0.59). A REMLRT test between models (for yield)

assuming common spatial parameters across harvests versus separate spatial parameters

(with no modelling of temporal correlation) showed the separate spatial parameter model

to be signi�cantly better than the common spatial model for 3 sites (Tamworth, Leadville

and Sandi) while the models were not signi�cantly di�erent for Euloma and Terry Hie Hie

(in Chapter 6). This provides new insight as there are no other known published studies

investigating the changes in spatial correlation parameters across harvests in perennial

crops.

The bene�ts of �tting these spatial analyses were that spatial trends were identi�ed

and spatial correlation parameters estimated for each harvest, providing a better insight

into the spatial variation impacting each trial. This insight will aid in future trial design

and trial practices. These analyses were successful in identifying spatial terms that will

be required in more complex analyses across harvests. The analyses also showed that the

spatial correlation is not constant across harvests within some trials and this fact needs

to be taken into account in analyses across harvests. The spatial correlation parameters

from the individual harvests will provide useful starting values for such analyses. Plots of

the residuals from the spatial analyses within a trial also showed that the residuals were

correlated between harvest times (evidence of temporal correlation). It must be noted that

the trials investigated here involved simple Randomised Complete Block (RCB) designs

(which are still commonly found in perennial crops). The abundant global and extraneous

spatial trends may be reduced with the implementation of better, more e�cient spatial

designs (for example Cullis et al., 2006), however it has been found that the autoregressive

residual structure still best represents the spatial variation than design terms in more

sophisticated designs (see Beeck et al., 2010, Smith et al., 2007, Dutkowski et al., 2002).
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While there have been many studies showing that spatial models provide a better

model �t to data from �eld trials it is not apparent that there have been studies performed

to evaluate how well the spatial models predict the genetic e�ects in variety selection trials,

especially in the case of perennial crops. A simulation study was performed in Chapter 4

which showed that the spatial models not only �tted the data better, but provided more

accurate variety predictions (closer to the true genetic e�ects) than the RCB models. It is

therefore recommended that these spatial analysis methods should be applied in variety

selection trials in perennial crops in order to get the most accurate variety predictions.

The other issue investigated in the simulations in Chapter 4 was the merit of �tting

a measurement error term in the spatial analyses. A number of authors have recom-

mended the inclusion of a measurement error component including Stefanova et al. (2009),

Gilmour et al. (1997), Dutkowski et al. (2002) and Wilkinson et al. (1983) who suggest

there are strong statistical and biological reasons for including a measurement error term.

However Zimmerman & Harville (1991) suggest that it may be unnecessary to include

such a term, based on empirical results found by Besag & Kempton (1986). Cullis et al.

(1998) demonstrated that including a measurement error term with an autoregressive

separable residual model did not necessarily cause computation problems but there may

be problems when the autoregressive correlation parameters are small. The simulation

study conducted in Chapter 4 showed that while the addition of a measurement error

term to the spatial model resulted in a better model �t in many cases, this did not result

in an improvement in variety predictions. There were a large number of situations where

the measurement error component was unable to be �tted, with models failing to con-

verge. It was observed that the number of simulations that did not converge increased as

the measurement error component increased. It was also observed that the number that

did not converge was higher in the simulations with high spatial correlation, than the

simulations with moderate spatial correlation, and also generally increased as the genetic

variance increased. Due to the di�culty in �tting the measurement error term and given

the variety predictions were so similar under models with or without a measurement error

term, the recommendation from these analyses is to omit the measurement error term

from spatial analyses of individual harvests. However, it is shown in later chapters that

there still may be a need to account for measurement error in the spatio-temporal sense

when data is analysed across harvests.

While the analyses in Chapters 3 and 4 showed clearly that the spatial analysis meth-

ods should be implemented in the analysis of perennial crop data, complications arise

because the data is usually obtained from multiple harvest times, and hence there is also

a need to simultaneously model the temporal covariance structure between measurements.

In Chapter 5 models were presented to model the residual spatial and temporal corre-

lation between multiple harvests within a single trial, using separable residual models,

incorporating global and extraneous spatial trends identi�ed using the spatial analysis

techniques of Chapter 3. In Chapter 6 these models were applied to the analysis of data

from a single site of the lucerne yield and persistence data.

Prior to this thesis, separable spatial by temporal residual models were investigated
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in perennial crops for only a very small number of harvests, by Smith et al. (2007). Their

models were not directly applicable to the data sets in this thesis due to the larger numbers

of harvests. In this thesis the separable residual models have been extended to cater for

greater numbers of measurements, often typical in perennial variety selection trials, using

an approach based on the model of Diggle (1988) for longitudinal analysis. Diggle's model

(with terms for plot (or unit) e�ects, measurement error and serial temporal correlation)

has been extended to the spatial context for repeated measurements on a row column

lattice to create a new approach to modelling the residual covariance structure in multi-

harvest data. These extended separable models provide a novel set of �exible residual

models that accommodate both spatial and temporal correlation that has been shown to

be evident in variety selection trials in perennial crops.

The concept of using separable spatial by temporal models for the residual correla-

tion structure is appealing as it provides easy interpretation and clear insight into both

the spatial component and the temporal component contributing to the overall residual

covariance structure. The other advantage lies in the numerous computational bene�ts

(discussed in Galecki, 1994 and Naik & Rao, 2001) of separable models. The limitations

in the separable residual models are that they may not model the interaction between

spatial and temporal components adequately. The added bene�ts of the new proposed

separable residual models based on the model of Diggle (1988) are that they include terms

for all the major identi�ed components of spatial and temporal correlation and they can

be �tted to data sets with large numbers of harvests.

The analyses in Chapter 6 showed that temporal correlation was clearly evident and

important to model. The three components of temporal correlation discussed in Diggle

(1988) were found across the two examples, namely plot e�ects, measurement error and

serial correlation. The spatial extensions to the plot term and serial correlation component

were signi�cant however the spatial extension to the measurement error was not. The tem-

poral serial component was best modelled in the yield analysis using an antedependence

model which is similar to Núñez-Antón & Zimmerman (2000) where antedependence mod-

els were found to best model the serial correlation in their examples of longitudinal data.

The autoregressive ar1 model was best for modelling the serial correlation in persistence,

which is similar to the models of Patterson & Lowe (1970) and Bjornsson (1978) where

they used models with autoregressive errors to model perennial crop data.

At the genetic (or variety) level, models were presented for modelling the genetic e�ects

over time. In this thesis di�erent models have been proposed for di�erent situations and for

di�erent types of traits observed in perennial crops. One such model is the Factor Analytic

(fa) model (which is routinely used in the analysis of MET data in annual crops), presented

here to model variety e�ects at the di�erent harvest times. Interpretation from this model

and investigation into variety by harvest interactions may be enhanced by implementing

a cluster analysis approach to the between harvest genetic correlation structure estimated

from the factor analytic (fa) model. While this approach has been implemented for MET

data in annual crops (Cullis et al., 2010) and forestry (Hardner et al., 2010), it is a novel

approach to multi-harvest data in perennial crops. The fa model has advantages in it's
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parsimony, however it may have limitations in this application in that it does not take

into account the time ordering of the harvests. The groups of harvests formed from the

cluster analysis on the results from the fa model were slightly di�cult to interpret.

Another method presented for modelling the genetic e�ects over time was the random

regression model. In this thesis the approach was to model the underlying trend over time

using a cubic smoothing spline and then the variety deviations from this trend were mod-

elled using random regressions. In the example data set of lucerne persistence, analysed

in Chapter 6, linear random regressions were found su�cient to model the deviations from

the overall underlying trend but in other situations cubic smoothing spline random regres-

sions may be required and these models were also presented. The models were successful

in modelling the persistence response for each variety over time and predictions made for

the time taken to reach a certain level of persistence. These models provide an extension

to the models for genetic e�ects in perennial crops presented by Smith et al. (2007) in

that traits are able to be modelled using smooth functions over time. This allows further

insight into the variety responses over time and allows for predictions to be made at any

time in the trial, not just at the harvest times. Not all traits will be suitable for this type

of modelling but growth traits such as trunk circumference, tree height, canopy diameter

are just some of the other potential traits in perennial crops that could bene�t from this

type of model.

As variety selection in perennial crops is usually based on a number of trials grown

in di�erent environments (METs), approaches for analysis need to be applicable to data

across sites. The methods introduced for analysis of multi-harvest data at a single site

were extended to the multi-environment situation in Chapter 7. These approaches pro-

vided insight into variety by environment (time and location) interaction. These models

extended the ideas of Smith et al. (2007) to include the new residual models developed in

Chapter 5, enabling examples with large numbers of harvests to be analysed and genetic

e�ects to be modelled over time. At the genetic level the factor analytic models and

random regression models were applied to the variety by harvest by trial e�ects. One

possible limitation with the factor analytic genetic models applied to lucerne yield is that

there is no structure of harvests within trials being taken into account. This is mainly to

do with the structure of the example data set with unequal harvest numbers and times

being conducted at each trial. More structure may be included with alternative data sets.

A result of this is that the groupings from the cluster analysis were slightly di�cult to

interpret. The random regression genetic models allowed insight into variety by environ-

ment interaction in establishment and persistence with some varieties shown to perform

well at some sites and not so well at others.

While the separable residual models presented in Chapters 5, 6 and 7 provided an

approach to modelling the residual spatial and temporal covariance structure in perennial

crops that was signi�cantly better than assuming independence between harvests, the

separable models are quite restrictive. The models assume that the spatial correlation

parameters are constant across all harvests, which may be a condition that may not hold in

practice. In the spatial analyses of individual harvests in Chapter 3 the spatial correlation
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parameters were found to vary substantially across the harvests at a number of sites. This

is to be expected given the di�erent environmental conditions and the di�erent stage of

growth of the plants at the di�erent harvests. Hence, it was identi�ed that a model that

allowed for di�erent spatial correlation parameters across the harvests, such as a non-

separable spatio-temporal model that could be implemented into the linear mixed model

may be more desirable.

Initially in Chapter 8, the multivariate autoregressive (MVAR1) model (with the h

harvest measurements forming the multi-variate vector on each plot) was investigated as

a possible suitable non-separable model for modelling the residual spatial and temporal

covariance structure in perennial crop data. The model was investigated for data from

plots spatially correlated in a single direction, for example plots in a long row or plots

in a lattice where spatial correlation was evident in only one direction (e.g. row but not

column direction).

The multivariate autoregressive model can be found in the literature, most commonly

to model time series applications, where a number of traits have been measured on units

at repeated times, for example Harison et al. (2003) modelling brain activity over time

and Hytti et al. (2006) modelling cardiovascular measurements over time. The temporal

component is therefore assumed to follow an autoregressive of order 1 (ar1) process. These

published applications di�er from our approach in that we require a model that models

the spatial correlation between plots using the ar1 process while the multi-variate vector

of measurements on each plot consists of the multi-harvest (or multi-trait) measurements.

This application raises an additional issue than the standard multivariate autoregressive

model over time, as time has a distinct order (�rst to last) whereas we require our model

to be the same whether we move in either direction across the �eld. We also require the

model to be �tted as the residual component in a linear mixed model using REML. An

extensive literature search failed to �nd any such applications or theory developed for

multivariate autoregressive models suitable for spatially correlated plots in a �eld, with

estimation using REML.

TheMVAR1model formulation developed in this thesis allows the model to be invariant

to direction. This is facilitated by a symmetry constraint that is applied to the model.

This constraint makes the model suitable for data measured on spatially correlated plots

in the �eld, di�ering from the usual application of multivariate autoregressive models in

time series applications.

Code was written in R (R Development Core Team, 2012) to implement these MVAR1

models using REML for estimation and they were applied to a selection of multi-harvest

and multi-trait examples using the lucerne yield and persistence data. These models

performed signi�cantly better than their comparable separable model forms implemented

in Chapters 5 and 6. Prior to this thesis MVAR1 models had not been used to model

the spatial and temporal covariance structure in multi-harvest data, or the spatial and

between trait covariance structure in multi-trait data, in �eld trials.

The MVAR1 residual model has many bene�ts over the separable residual models in

Chapters 5 and 6 including the ability to model the interaction between spatial and tem-
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poral processes rather than assuming them to be separable. The model has been shown to

provide a better �t than the separable model in a variety of examples in the thesis and so

is likely to provide more accurate estimates of genetic e�ects. The downside to this model

is that it is only applicable to plots in one direction (for example in the row direction) and

cannot directly be extended to the two directional lattice case. Another issue is that the

parameters are less interpretable than in the separable models. The model is de�ned in

terms of spatial dependency parameters and conditional correlations rather than spatial

correlations as in the separable model. Another potential limitation is the large number of

parameters that may need to be estimated as the number of harvests becomes large. For

example in the 10 harvest example of yield at Terry Hie Hie presented in the thesis, there

were 100 parameters that needed to be estimated for the spatial dependency matrix. This

was made possible by using good starting values from the initial individual harvest anal-

yses in Chapter 3. By taking the individual harvest spatial parameters as starting values

for the diagonal elements of the spatial dependency matrix and allowing the o�-diagonals

to be very small and constant for a reduced number of harvests, the model was slowly

built up, one harvest at a time for the symmetrical spatial dependency model. Once the

full symmetric spatial dependency matrix was estimated these parameter values were used

as starting values to �t the full general spatial dependency structure. Using this process

the model was able to be successfully �tted to the 10 harvest case, however the model

may be di�cult to �t for examples with many more harvests. It is of particular interest

that for this data set at Terry Hie Hie, the non-separable model provided a signi�cantly

better �t than the separable form, even though the spatial correlation parameters (from

individual harvest analyses) did not di�er greatly between harvests. In Chapter 6 it was

shown that for this data set, allowing for separate spatial parameters for each harvest

rather than common spatial parameters (prior to modelling the temporal correlation) was

not a signi�cant improvement. There is clearly bene�t in the non-separable models even

for trials where spatial parameters may not di�er greatly, and it is the improved modelling

of the interaction between spatial and temporal processes that is important.

To be entirely suitable for modelling the covariance structure in perennial crop �eld

trials planted in a row by column lattice in the �eld, the non-separable MVAR1 resid-

ual models needed to be extended to 2 spatial dimensions. To extend the model to

accommodate spatial correlation in both the row and column directions was not straight-

forward. In the univariate case the covariance structure on a row column lattice can

simply be modelled by taking the kronecker product of two autoregressive ar1 processes

(ar1(Column)⊗ar1(Row)) but this is not possible using the MVAR1 model in the multi-

variate case, as the MVAR1⊗MVAR1 model is of the wrong dimension. An alternative

approach was investigated based on the theory of Multivariate Conditional Autoregres-

sive Models (MCAR) which are de�ned in terms of neighbouring plots in two directions on

a two dimensional lattice. This allowed the MVAR1 model to be extended to a 2dMVAR1

model which was suitable for modelling the covariance structure for data from spatially

correlated plots in both row and column directions, as well as being correlated across times

(or traits). Code for �tting the resulting 2dMVAR1 model in a linear mixed model using
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REML was written in R (R Development Core Team, 2012) and applied to a number of bi-

variate lucerne yield and persistence examples. The model was a signi�cant improvement

in �t for most applications than the separable models of the previous chapters.

MCAR models can be found in the literature to model multivariate data on a lat-

tice (mostly irregular lattices) over space and time, for example Billheimer et al. (1997)

for modelling biological ecosystems, Jin et al. (2005) for disease mapping, and Carlin

& Banerjee (2003) for modelling cancer survival data, all using Bayesian methods for

estimation. One of the most important issues in MCAR models is how the spatial depen-

dency structure is de�ned. The 2dMVAR1 model presents a di�erent formulation of the

MCAR model than other published cases in that it provides a MVAR1 structure to hold

in the row and column directions, resulting in a multivariate analogue of the univariate

ar1(Column)⊗ar1(Row) spatial process. It also is �tted in a linear mixed model with esti-

mation of parameters by REML, unlike most other applications of MCAR models which

are �tted using Bayesian methods.

A common formulation of the spatial dependency structure in MCAR models found in

the literature is to de�ne the spatial dependency matrices for each plot to be a diagonal

matrix weighted for the number of neighbours of each plot (for example Billheimer et al.,

1997, Gelfand & Vounatsou, 2003 and Carlin & Banerjee, 2003). This model gives a very

restrictive form for the spatial dependency, which in some ways is similar to the special

case in Section 8.3.2 of a separable model, however it does not follow the ar1 process

that we have assumed. A more �exible and sophisticated model was presented by Sain &

Cressie (2007) which allows for a non-symmetric spatial dependency matrix. This results

in non-symmetric cross correlations (which implies the correlation between trait 1 on plot

i and trait 2 on neighbouring plot i + 1 does not have to equal the correlation between

trait 2 on plot i and trait 1 on plot i + 1). This model assumes a common general form

of the spatial dependency for all plots (with small departures allowed due to di�ering

degrees of variability at each plot), which results in an undesirable covariance structure

for the application of modelling multi-harvest data in �eld trials. This is similar to the

covariance issues discussed by Wall (2004) and Assuncao & Krainski (2009) implied in

univariate CAR models. In contrast the 2dMVAR1 model presented in this thesis assumes

a di�erent form for spatial dependency in the row and column directions and for corner,

edge and internal plots. This results in the covariance structure that is required to model

the residuals from multi-harvest data in �eld trials. The 2dMVAR1 model also allows for

non-symmetric spatial dependency matrices, but unlike Sain & Cressie (2007) the model

requires the cross correlations to be equal, as the results are required to be the same

in either direction across the �eld. The symmetry conditions introduced in Section 9.4

ensure this condition.

The �exibility of the 2dMVAR1 model comes with some disadvantages, similar to those

identi�ed for the MVAR1 model. The main issue is the large number of parameters that

need to be estimated. For example just in the spatial dependency matrices for a 10 harvest

example there would be 200 spatial dependency parameters to be estimated in the general

case. The examples presented in this thesis were based on multi-trait bivariate data sets
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which did not su�er from this limitation. The models �tted quickly and without any

convergence issues. The speed and success of model �tting will be aided by good initial

starting values which can be obtained from the initial analyses of individual harvest (or

trait) data. The other potential limitation is the di�culty in interpretation of spatial

and temporal parameters (as compared to a separable residual model) as the model is

modelling the spatial by temporal interaction rather than just the separate individual

components.

Despite the potential limitations, the 2dMVAR1 models have great potential. The

models developed in this thesis provide a novel, �exible approach for modelling the residual

spatial and temporal correlation from multi-harvest and multi-trait data from perennial

crop variety selection trials, that are a signi�cant improvement on previously implemented

models. The models allow modelling of the interaction between spatial and temporal

processes and allow for di�ering spatial correlations for di�erent harvests (or traits) which

makes more sense biologically than assuming common spatial parameters. More e�cient

modelling of the residual covariance structure will result in more accurate predictions of

the genetic e�ects. Hence, together with the proposed genetic models presented in this

thesis, analyses implementing these models have the potential to have a signi�cant impact

on improving the accuracy of variety selections made in perennial crops.

The application of these models is not only restricted to perennial crops, as these

models also have the potential to be very useful for analyses of multi-trait data in annual

crops.

10.1.1 Future research

Multi-harvest / multi-trait

While the MVAR1 model in this thesis was presented for modelling the residual covariance

structure in multi-harvest data in perennial crops, it is also clear how this model could

be useful at the genetic level for multi-trait, multi-harvest data. In this situation the

multi-trait measurements made at each time would form the multivariate vector and the

harvest times the "units" on which the multivariate measurements are made. There is

a possible issue with the symmetry constraints discussed in Chapter 7 as while these

constraints may not be strictly needed (as time is an ordered variable, in contrast to plots

in a row) it would seem necessary to impose the constraints to be able to write the model

in a simple form. Code would need to be written for this application but the theory has

been developed in this thesis. Suitable non-separable models for multi-harvest, multi-trait

data have been proposed for the residual level in Chapter 8.

METs

The MVAR1 model may also prove a suitable non-separable model for modelling MET

multi-harvest data at the genetic level. This would be suitable only for balanced data

sets where each site is measured at the same harvest times. In many situations the

harvest times are not conducted at the same times across sites, for example in the lucerne
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data set, and hence this approach may not be applicable for MET analyses of such data.

Separable harvest by site models are also not practical in this situation. More research

into modelling the genetic e�ects over time for such unbalanced MET data sets would be

desirable.

More parsimonious forms for Ω in MVAR1 and 2dMVAR1 models

The non-separable MVAR1 and 2dMVAR1 models developed in this thesis require suitable

forms forΩ (the dependency matrix linking observations across times or traits). For multi-

trait data the suitable form for Ω is clearly a general form with full parameterisation, but

for the multi-harvest case there may be more parsimonious forms of Ω that may be more

suitable. In this thesis models were successfully �tted using a symmetric form for Ω

but further research may reveal more suitable forms that require less parameters. More

parsimonious forms will aid in the speed of model �tting.

Simulations for non-separable residual models

It has been shown that the non-separable 2dMVAR1 residual models outperformed their

comparable separable models in most of the analyses performed here. The examples used

in this thesis were mostly with data sets showing quite di�erent spatial correlation param-

eters for the di�erent harvests or traits. It would be of interest to do a detailed simulation

study for a range of spatial correlations and temporal (or between trait) correlations to

see how these models perform and also together with more complex genetic models to see

the impact of these models on the prediction of variety e�ects.

Conclusion

In conclusion, the models presented in this thesis provide new approaches for the analysis

of variety selection trials that will be of signi�cant practical bene�t for both multi-harvest

and multi-trait data in perennial crops. Further research into the topics raised in this

discussion may add further insight into these approaches and may allow them to be

introduced to a wider range of applications.
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Appendix

A Matrix results

Result A.1

If A is a m ×m matrix, B is a m × n matrix, C is a n ×m matrix and D is a m ×m
matrix

(A+BCD)−1 = A−1 − A−1B(DA−1B + C−1)−1DA−1

Result A.2

(ZTR−1Z +G−1)−1ZTR−1 = GZTH−1

Proof
Using Result A.1

ZTH−1 = ZT (R+ZGZT )−1

= ZTR−1 −ZTR−1Z(ZTR−1Z +G−1)−1ZTR−1

= ((ZTR−1Z +G−1)−ZTR−1Z)(ZTR−1Z +G−1)−1ZTR−1

= G−1(ZTR−1Z +G−1)−1ZTR−1

Therefore

GZTH−1 = (ZTR−1Z +G−1)−1ZTR−1

Result A.3

If A is a n × n matrix, a is a n × 1 vector and B is a n × n matrix whose elements are
functions of ηi and is non-singular then the following hold:

• ∂AT = (∂A)T

• ∂aTA
∂a

= A

• ∂aTAa
∂a

= 2Aa

• ∂B−1

∂ηi
= −B−1 ∂B

∂ηi
B−1

• ∂log|B|
∂ηi

= tr(B−1 ∂B
∂ηi

)

also

• ∂P
∂ηi

= −P ∂H
∂ηi
P where P =H−1 −H−1X(XTH−1X)−1XTH−1
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Result A.4

Conditional mean and variance.
If [

y1
y2

]
∼ N

([
µ1

µ2

]
,

[
Σ11 Σ12

Σ21 Σ22

])
then

y1|y2 ∼ N(µ1 + Σ12Σ
−1
22 (y2 − µ2),Σ11 − Σ12(Σ22)

−1Σ21)

Result A.5

If the matrices X and L2 satisfy L
T
2X = 0 and H is positive de�nite then

H −HL2(L
T
2HL2)

−1LT
2H =X(XTH−1X)−1XT

Proof See Verbyla (1990)

Result A.6

The Kronecker product of two matrices A (p×q) and B (n×m) is de�ned as the pn×qm
matrix

A⊗B =


a11B a12B . . . a1qB
a21B a22B . . . a2qB
...

...
. . .

...
ap1B ap2B . . . apqB


B Variance Models for R and G

The Residual and Genetic variance matrices R and G as speci�ed in the mixed model
2.2.1, can have many possible forms. The following section outlines some of the possibil-
ities.

Autoregressive (AR) models

A zero mean, pth order autoregressive process (AR(p)) may be written as

yt =

p∑
s=1

ϕsyt−s + ϵt (B.1)

t = 1, 2, . . . T , where the ϕ's are the autoregressive parameters and the errors ϵt are
assumed to be normally distributed (and de�ned below).

We consider the cases where p = 1, p = 2, p = 3 and general p, and present the
covariance matrix, inverse covariance matrix and matrix of derivatives with respect to ϕs.
In all cases the matrices are symmetric and hence the lower half (given) is su�cient to
determine the complete matrix.

To form these matrices we need to use the following results for the autocorrelation
function (see above) between observations at lag k apart. Box & Jenkins (1970) show
that by multiplying both sides of Equation(B.1) by yt−k and taking expected values gives

E[(yt−kyt)] = E[ϕ1yt−kyt−1 + ϕ2yt−kyt−2 + . . .+ ϕpyt−kyt−p + yt−kϵt] (B.2)

= ϕ1γk−1 + ϕ2γk−2 + . . . ϕpγk−p = γk

where γk is the autocovariance between observations k apart. Note E[yt−kϵt] = 0 as ϵt is
uncorrelated with previous values of the process. If we now divide through by γ0 then we
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obtain an equation for the autocorrelation function at lag k.

ρk = ϕ1ρk−1 + ϕ2ρk−2 + . . .+ ϕpρk−p (B.3)

where ρ0 = 1. If we take k = 0 in (B.2) we note that E[yt−kϵt] = E[ϵ2t ] = σ2. Hence

γ0 = ϕ1γ−1 + ϕ2γ−2 + . . .+ ϕpγ−p+ σ2

If we divide through by γ0 = σ2
y we obtain the following expression for the variance of yt.

σ2
y =

σ2

1− ϕ1ρ1 − ϕ2ρ2 − . . .− ϕpρp
(B.4)

AR(1)

A �rst order autoregressive process {yt} with mean zero is de�ned by

yt = ϕ1yt−1 + ϵt

y1 = ϵ1

where

ϵt ∼ N(0, σ2)

for t > 1. The condition |ϕ1| < 1 is assumed for the process to be stationary.
Using (B.3) and (B.4) we have ρ1 = ϕ1 and the variance of yt is given by

var(yt) =
σ2

1− ρ1ϕ1

=
σ2

1− ϕ2
1

.

It follows that

ϵ1 ∼ N(0,
σ2

1− ϕ2
1

).

The process has covariance matrix given by σ2Σ where the (i, j)th element of Σ is given
by

Σij =
1

1− ϕ2
1


1 for i = j
ϕ1 |i− j| = 1
ϕ1Σi−1,j i > j + 1

Therefore the matrix Σ is given by

Σ =
1

1− ϕ2
1


1 ϕ1 ϕ2

1 . . . ϕT−1
1

ϕ1 1 ϕ1 . . . ϕT−2
1

ϕ2
1 ϕ1 1 . . . ϕT−3

1
...

. . . . . . . . .
...

ϕT−1
1 . . . ϕ2

1 ϕ1 1


Using the results of Verbyla (1985) we can show that the inverse covariance matrix is
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given by 1
σ2Σ

−1, where

Σ−1 =


1 −ϕ1 0 . . . 0

−ϕ1 1 + ϕ2
1 −ϕ1 . . . 0

0 −ϕ1 1 + ϕ2
1 . . . 0

...
. . . . . . . . .

...
0 . . . 0 −ϕ1 1

 (B.5)

We can write the inverse using the following closed form expression

1

σ2
Σ−1 =

1

σ2
(IT + ϕ2

1E1 − ϕ1F 1)

where IT is the T × T identity matrix, E1 is like the identity matrix but with the �rst
and last one set to zero, and F 1 has ones along the upper and lower 1st minor diagonals
and zeroes elsewhere.
We can also write the inverse covariance matrix in the form of

1

σ2
Σ−1 =

1

σ2
(M−1 −W )

where M is a diagonal matrix and W is a neighbour matrix with zeros on the main
diagonal and non zero elements on the diagonals one element removed from the main
diagonal.
The matrices are given by

M−1 =


1 0 0 . . . 0
0 1 + ϕ2

1 0 . . . 0
0 0 1 + ϕ2

1 . . . 0
...

. . . . . . . . .
...

0 . . . 0 0 1



W =


0 ϕ1 0 . . . 0
ϕ1 0 ϕ1 . . . 0

0 ϕ1 0
. . .

...
...

. . . . . . . . . ϕ1

0 . . . 0 ϕ1 0

 = ϕ1


0 1 0 . . . 0
1 0 1 . . . 0

0 1 0
. . .

...
...

. . . . . . . . . 1
0 . . . 0 1 0



So that

M−1 = IT + ϕ2
1E1 (B.6)

W = ϕ1F 1 (B.7)

If the matrix of derivatives of Σ is required we can use the result ∂Σ
∂ϕ

= −Σ∂Σ−1

∂ϕ
Σ. It is
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easy to calculate the derivatives of Σ−1 with respect to ϕ1, using (B.6) and (B.7), as

∂Σ−1

∂ϕ1

=
∂M−1

∂ϕ1

− ∂W

∂ϕ1

= 2ϕ1E1 − F 1

The logarithm of the determinant (log det) of Σ is given by

log |Σ| = log(
1

1− ϕ2
1

) = − log(1− ϕ2
1)

.

AR(2)

The second order autoregressive process is given by

yt+2 = ϕ1yt+1 + ϕ2yt + ϵt+2

y1 = ϵ1

y2 = ϕ1y1 + ϵ2

where |ϕ1±ϕ2| < 1, |ϕ1| < 1 and |ϕ2| < 1 are assumed to ensure the process is stationary.
Using (B.3) the autocorrelation functions of order 1 and 2 (ρ1 and ρ2) are given by

ρ1 = ϕ1 + ϕ2ρ1

hence

ρ1 =
ϕ1

1− ϕ2

and
ρ2 = ϕ1ρ1 + ϕ2

hence

ρ2 =
ϕ2
1

1− ϕ2

+ ϕ2

.
The ϵ's are de�ned as follows

ϵt ∼ N(0, σ2)

for t > 2
From B.4 the variance of yt is given by

V ar(yt) =
σ2

(1− ϕ1ρ1 − ϕ2ρ2)

It follows that

ϵ1 ∼ N(0,
σ2

(1− ϕ1ρ1 − ϕ2ρ2)

ϵ2 ∼ N(0,
σ2

(1− ϕ1ρ1 − ϕ2ρ2)
(1− ϕ2

1))

The process has covariance matrix given by σ2Σ where the (i, j)th element of Σ is
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given by

Σij =
1

(1− ϕ1ρ1 − ϕ2ρ2)


1 i = j
ϕ1

1−ϕ2
|i− j| = 1

ϕ1Σi−1,j + ϕ2Σi−2,j i > j + 1

The inverse covariance matrix is given by 1
σ2Σ

−1 where

Σ−1 = IT +
2∑

j=1

ϕ2
jEj −

2∑
j=1

ϕjF j + ϕ1ϕ2G1,1

where IT is the T × T identity matrix, Ej is like the identity matrix but with the �rst
and last j ones set to zero, F j has ones along the upper and lower jth minor diagonals
and zeroes elsewhere and G1,1 = E1F 1E1 which equals F 1 except the top and bottom 1
ones along the 1st minor diagonals are replaced by zeroes.

Explicitly, the inverse covariance matrix is given by

Σ−1 =



1
−ϕ1 1 + ϕ2

1

−ϕ2 −ϕ1 + ϕ1ϕ2 1 + ϕ2
1 + ϕ2

2

0 −ϕ2 −ϕ1 + ϕ1ϕ2 1 + ϕ2
1 + ϕ2

2
...

. . . . . . . . . . . .

−ϕ2 −ϕ1 + ϕ1ϕ2 1 + ϕ2
1

0 . . . 0 −ϕ2 −ϕ1 1


We can also write the inverse covariance matrix in the form of

1

σ2
Σ−1 =

1

σ2
(M−1 −W )

where

M−1 = IT +
2∑

j=1

ϕ2
jEj (B.8)

W =
2∑

j=1

ϕjF j − ϕ1ϕ2G1,1 (B.9)

If the matrix of derivatives of Σ is required we can use the result ∂Σ
∂ϕ

= −Σ∂Σ−1

∂ϕ
Σ.

It is easy to calculate the derivatives of Σ−1 with respect to ϕ1 and ϕ2, using (B.8) and
(B.9), as

∂Σ−1

∂ϕ1

=
∂M−1

∂ϕ1

− ∂W

∂ϕ1

= 2ϕ1E1 − F 1 + ϕ2G1,1

∂Σ−1

∂ϕ2

=
∂M−1

∂ϕ2

− ∂W

∂ϕ2

= 2ϕ2E2 − F 2 + ϕ1G1,1
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The logarithm of the determinant (log det) of Σ is given by Siddiqui (1958)

log|Σ| = log(
1

(1 + ϕ2)2[(1− ϕ2)2 − ϕ2
1]
)

which can also be obtained using Haddad (1998) from the roots (r1 and r2) of the char-
acteristic equation

z2 − ϕ1z − ϕ2 = 0

that is

r1 =
ϕ1 +

√
ϕ2
1 + 4ϕ2

2

r2 =
ϕ1 −

√
ϕ2
1 + 4ϕ2

2

and using the following expression for the determinant of Σ

det(Σ) =
2∏

i,j=1

(1− rirj)
−1

AR(p)

The pth order autoregressive process (AR(p)) may be written as

yt =

p∑
s=1

ϕsyt−s + ϵt

t = 1, 2, . . . , T , where

ϵt ∼ N(0, σ2)

and

V ar(yt) =
σ2

1−
∑p

i=1 ϕiρi

where ρi is the autocorrelation between observations i apart, de�ned previously.
We can write the general form for the inverse covariance matrix of the AR(p) model as

Σ−1 =
1

σ2

(
IT +

p∑
j=1

ϕ2
jEj −

p∑
j=1

ϕjFj +

p−1∑
j=1

p−j∑
i=1

ϕiϕi+jGi,j

)

where Ej is like the identity matrix but with the �rst and last j ones set to zero, F j

has ones along the upper and lower jth minor diagonals and zeroes elsewhere, and Gi,j =
EiF jEi which equals F j except the top and bottom i ones along the jth minor diagonals
are replaced by zeroes. We can also write this as

1

σ2
Σ−1 =

1

σ2
(M−1 −W )

where

M−1 = IT +

p∑
j=1

ϕ2
jEj
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and

W =

p∑
j=1

ϕjFj −
p−1∑
j=1

p−j∑
i=1

ϕiϕi+jGi,j

To calculate the matrix of derivatives of Σ w.r.t ϕ1 . . . ϕp it is easier to calculate the

derivatives of Σ−1 and use the result ∂Σ
∂ϕ

= −Σ∂Σ−1

∂ϕ
Σ.

∂Σ−1

∂ϕs

=
∂M−1

∂ϕs

− ∂W

∂ϕs

= 2ϕsEs − F s +

p−s∑
j=1

ϕs+jGs,j +
s−1∑
j=1

ϕs−jGs−j,j

The logarithm of the determinant (log det) of Σ can be obtained (using Haddad (1998))
from the roots (r1, r2, . . . rp) of the characteristic equation

zp − ϕ1z
p−1 − . . .− ϕp−1z − ϕp = 0

and using

det(Σ) =

p∏
i,j=1

(1− rirj)
−1

SAR symmetric simultaneous autoregressive model

A stationary symmetric simultaneous autoregressive SAR(p) model can be written as

ei =

p∑
j=1

λj(ei−j + ei+j) + ξi

Hence a SAR(1) model is given by

ei = λ(ei−1 + ei+1) + ξi

where ξi ∼ N(0, σ2) and |λ| < 0.5.
This model has the same covariance structure as an AR(2) model where

ei = ϕ1ei−1 + ϕ2ei−2 + ξ∗i

with ϕ1 = 2ϕ, ϕ2 = −ϕ2 = −ϕ2
1

4
, λ = ϕ

1+ϕ2 and ξ∗i ∼ N(0, ν2).

The variance covariance matrix is given by ν2Σ = ν2{Σij} where

Σij =


1 i = j
ϕ1

1+
ϕ21
4

|i− j| = 1

ϕ1Σi−1,j +
ϕ2
1

4
Σi−2,j i > j + 1

(B.10)
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The inverse covariance matrix is given by

1

ν2
Σ−1 =

1

ν2



1
−ϕ1 1 + ϕ2

1
ϕ2
1

4
−ϕ1 − ϕ3

1

4
1 + ϕ2

1 +
ϕ4
1

16

0
ϕ2
1

4
−ϕ1 − ϕ3

1

4
1 + ϕ2

1 +
ϕ4
1

16
...

. . . . . . . . . . . .
ϕ2
1

4
−ϕ1 − ϕ3

1

4
1 + ϕ2

1

0 . . . 0
ϕ2
1

4
−ϕ1 1


(B.11)

and hence

Σ−1 = IT + ϕ2
1E1 +

ϕ4
1

16
E2 − ϕ1F 1 −

ϕ3
1

4
G1,1 +

ϕ2
1

4
F 2

Again we can write
Σ−1 = (M−1 −W )

where

M−1 = IT + ϕ2
1E1 +

ϕ4
1

16
E2

W = ϕ1F 1 +
ϕ3
1

4
G1,1 −

ϕ2
1

4
F 2

To calculate the matrix of derivatives of Σ we use the standard result ∂Σ
∂ϕ

= −Σ∂Σ−1

∂ϕ
Σ.

and calculate the derivatives of the inverse covariance matrix Σ−1. That is

∂Σ−1

∂ϕ1

=
∂M−1

∂ϕ1

− ∂W

∂ϕ1

where
∂M−1

∂ϕ1

= 2ϕ1E1 +
4ϕ3

1

16
E2

∂W

∂ϕ1

= F 1 +
3ϕ2

1

4
G1,1 −

ϕ1

2
F 2

The logarithm of the determinant (log det) of Σ is given by

log|Σ| = log[
1

(1− ϕ2
1

4
)2[(1 +

ϕ2
1

4
)2 − ϕ2

1]
]

CAR Conditional Autoregressive Models

CAR models are de�ned by conditional distributions as given by

E[yi|y−i] = µi +
n∑

j=1

cij(yj − µj)

V ar[yi|y−i] = σ2
i

for i, j = 1 . . . n where y−i indicates all yj such that j ̸= i.
It can be shown in the Gaussian case

y ∼ N(µ, (I −C)−1M ) (B.12)

provided (I −C) is invertible and (I −C)−1M is symmetric and positive de�nite, where
M = diag(σ2

1, . . . , σ
2
n) and C is a n × n matrix specifying spatial dependencies between
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locations with cii = 0 and cij ̸= 0 if j a neighbour of i, j ∈ Ni. The requirement that
(I −C)−1M is symmetric gives the condition cijσ

2
j = cjiσ

2
i .

Therefore the inverse covariance matrix is given by

Σ−1 =M−1(I − C) =M−1 −M−1C

A CAR model of order 1 has C given by

Cij =


0 for i = j
cij where cijσ

2
j = cjiσ

2
i |i− j| = 1

0 |i− j| > 1
(B.13)

The logarithm of the determinant of Σ−1 is given by

log|Σ−1| = log(
n∏

i=1

1

σ2
i

) + log|I − C)|

Exponential model

An exponential covariance model (based on distance between observations (dij = |xi−xj|)
is given by σ2Σ = σ2{Σij} where

Σij =

{
1 for i = j

b1exp(− |xi−xj |
b2

) = ϕ|xi−xj | i ̸= j
(B.14)

where |ϕ| < 1 and xi are co-ordinates.
The matrix of derivatives is given by

∂Σ

∂ϕ
=

{
0 i = j
|xi − xj|ϕ|xi−xj |−1 i ̸= j

AR1 × AR1

The separable AR(1) by AR(1) model in a grid of c columns by r rows has covariance
matrix given by

Σ = σ2(Σc ⊗ Σr)

where Σr is the covariance matrix in the row dimension and Σc is the covariance matrix
in the column direction.
Explicitly

Σr =


1 ϕr ϕ2

r . . . ϕr−1
r

ϕr 1 ϕr . . . ϕr−2
r

ϕ2
r ϕr 1 . . . ϕr−3

r
...

. . . . . . . . .
...

ϕr−1
r . . . ϕ2

r ϕr 1
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and

Σc =


1 ϕc ϕ2

c . . . ϕc−1
c

ϕc 1 ϕc . . . ϕc−2
c

ϕ2
c ϕc 1 . . . ϕc−3

c
...

. . . . . . . . .
...

ϕc−1
c . . . ϕ2

c ϕc 1


and hence for the case of 9 plots in 3 rows and 3 columns

Σ = σ2



1 ϕr ϕ2
r ϕc ϕcϕr ϕcϕ

2
r ϕ2

c ϕ2
cϕr ϕ2

cϕ
2
r

ϕr 1 ϕr ϕcϕr ϕc ϕcϕr ϕ2
cϕr ϕ2

c ϕ2
cϕr

ϕ2
r ϕr 1 ϕcϕ

2
r ϕcϕr ϕc ϕ2
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cϕr ϕ2
c

ϕc ϕcϕr ϕcϕ
2
r 1 ϕr ϕ2

r ϕc ϕcϕr ϕcϕ
2
r

ϕcϕr ϕc ϕcϕr ϕr 1 ϕr ϕcϕr ϕc ϕcϕr

ϕcϕ
2
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2
r ϕc ϕcϕr ϕcϕ

2
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cϕr ϕ2

c ϕ2
cϕr ϕcϕr ϕc ϕcϕr ϕr 1 ϕr

ϕ2
cϕ

2
r ϕ2

cϕr ϕ2
c ϕcϕ

2
r ϕcϕr ϕc ϕ2

r ϕr 1



The inverse covariance matrix is given by

Σ−1 =
1

σ2
(Σ−1

c ⊗ Σ−1
r )

where

Σ−1
c =


1 −ϕc 0 . . . 0

−ϕc 1 + ϕ2
c −ϕc . . . 0

0 −ϕc 1 + ϕ2
c . . . 0

...
. . . . . . . . .

...
0 . . . 0 −ϕc 1


Similarly for Σ−1

r .

Hence

Σ−1 =
1

σ2
[(ITc + ϕ2

cE1 − ϕcF1)⊗ (ITr + ϕ2
rE1 − ϕrF1)]

= ITc ⊗ ITr + ϕ2
rITc ⊗ Er1 − ϕrITc ⊗ Fr1 + ϕ2

cEc1 ⊗ ITr + ϕ2
rϕ

2
cEc1 ⊗ Er1 − ϕ2

cϕrEc1 ⊗ Fr1

−ϕcFc1 ⊗ ITr − ϕcϕ
2
rFc1 ⊗ Er1 + ϕrϕcFc1Fr1

That is

Σ−1 =
1

σ2


Σ−1

r A2 0 . . . 0
A2 A1 A2 . . . 0
0 A2 A1 0
...

. . . . . . . . . A2

0 . . . 0 A2 Σ−1
r
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where
A1 = (1 + ϕ2

c)Σ
−1
r

A2 = −ϕcΣ
−1
r

To calculate the matrix of derivatives of Σ w.r.t ϕr and ϕc, we use the result ∂Σ
∂ϕ

=

−Σ∂Σ−1

∂ϕ
Σ and calculate the derivatives of Σ−1.

∂Σ−1

∂ϕr

= 2ϕrITc ⊗ Er1 − ITc ⊗ Fr1 + 2ϕrϕ
2
cEc1 ⊗ Er1 (B.15)

−ϕ2
cEc1 ⊗ Fr1 − 2ϕcϕrFc1 ⊗ Er1 + ϕcFc1 ⊗ Fr1 (B.16)

∂Σ−1

∂ϕc

= 2ϕcEc1 ⊗ ITr + 2ϕ2
rϕcEc1 ⊗ Er1 (B.17)

−2ϕcϕrEc1 ⊗ Fr1 − Fc1 ⊗ ITr − ϕ2
rFc1 ⊗ Er1 + ϕrFc1 ⊗ Fr1 (B.18)

The determinant of Σ is given by

det(Σ) = det(σ2(Σc ⊗ Σr))

= (σ2)rc(det(Σ−1
c )r(det(Σ−1

r ))c

= (σ2)rc(
1

1− ϕ2
c

)r(
1

1− ϕ2
r

)c

CAR1 ⊗ CAR1

We now consider a separable CAR1⊗CAR1 model on a 2 dimensional array of r rows and
c columns. If Σ−1

r = M−1
r (Ir − Cr) gives the inverse covariance matrix of a CAR model

(of order1) in the row direction and Σ−1
c =M−1

c (Ic −Cc) is the inverse covariance matrix
in the column direction, then the separable CAR1⊗CAR1 model has inverse covariance
matrix given by

Σ−1 = Σ−1
r ⊗ Σ−1

c

= M−1
r (Ir − Cr)⊗M−1

c (Ic − Cc)

= (M−1
r ⊗M−1

c )((Ir − Cr)⊗ (Ic − Cc))

= (M−1
r ⊗M−1

c )(Ir ⊗ (Ic − Cc)− Cr ⊗ (Ic − Cc))

= (M−1
r ⊗M−1

c )(Ir ⊗ Ic − Ir ⊗ Cc − Cr ⊗ Ic + Cr ⊗ Cc)

This can be written as
Σ−1 =M−1(Irc − C)

with M−1 =M−1
r ⊗M−1

c and C = Ir ⊗ Cc + Cr ⊗ Ic − Cr ⊗ Cc.
The spatial dependency matrix Cc has (i, j)

th element given by

Cc =


0 for i = j
ccij where ccijσ

2
j = ccjiσ

2
i |i− j| = 1

0 |i− j| > 1

for i, j = 1 . . . c. Similarly for Cr.
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We can write the model in terms of conditional distributions as

E[yij|y−ij] = µij + cri−1,j(yi−1,j − µi−1,j) +

cri+1,j(yi+1,j − µi+1,j) +

cci−1,j(yi,j−1 − µi,j−1) +

cci+1,j(yi,j+1 − µi,j+1) +

−cri−1,jc
c
i−1,j(yi−1,j−1 − µi−1,j−1)

−cri−1,jc
c
i+1,j(yi−1,j+1 − µi−1,j+1)

−cri+1,jc
c
i−1,j(yi+1,j−1 − µi+1,j−1)

−cri+1,jc
c
i+1,j(yi+1,j+1 − µi+1,j+1)

The rc× rc matrix C can be written as

C =


Cc C12 0 . . . 0
C21 Cc C23 . . . 0
0 C32 Cc 0
...

. . . . . . . . . Cr−1,r

0 . . . 0 Cr,r−1 Cc


where Cc is the c× c matrix de�ned above and

Cij = crij(I +Cc)

where |i− j| = 1.

proper 2d CAR

If the data Y are observed on a regular 2 dimensional lattice of n plots in r rows and c
columns (n = r × c) then we can de�ne a 2d �rst order CAR model similar to that of
Cressie (1993), using just three spatial dependency parameters (in C), with two (γr and γc)
for adjacent plots in the row and column direction respectively and γrc for neighbouring
diagonal plots. Therefore if we have plots

yi−1,j−1 yi−1,j yi−1,j+1

yi,j−1 yi,j yi,j+1

yi+1,j−1 yi+1,j yi+1,j+1

Then we de�ne the 2d CAR model of order 1 as

E[yij|y−ij] = µij + γr(yi−1,j − µi−1,j) + (B.19)

γr(yi+1,j − µi+1,j) +

γc(yi,j−1 − µi,j−1) +

γc(yi,j+1 − µi,j+1) +

γrc[(yi−1,j−1 − µi−1,j−1)

+(yi−1,j+1 − µi−1,j+1)

+(yi+1,j−1 − µi+1,j−1)

+(yi+1,j+1 − µi+1,j+1)]

We assume a common conditional variance for all plots. That is

V ar(yij|y−ij) = σ2
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Now the variance matrix of y is given by

V ar(y) = (I − C)−1M = Σ

and hence
Σ−1 =M−1(I − C)

where M is a diagonal matrix containing the conditional variances M = diag(σ2) and C
is the spatial dependency matrix which can be written as

C =


C1 C2 0 . . . 0
C2 C1 C2 . . . 0
0 C2 C1 0
...

. . . . . . . . . C2

0 . . . 0 C2 C1


where

C1 = γcF 1c

and
C2 = γrcF 1r + γrIr.

Therefore we can write

I −C = (Ic ⊗ (Ir − γrF 1r) + F 1c ⊗ (−γcIr − γrcF 1r))

and hence

Σ−1 =
1

σ2
[Ic ⊗ (Ir − γrF1r) + F1c ⊗ (−γcIr − γrcF1r)]

=
1

σ2
[Ic ⊗ Ir − γr(Ic ⊗ F1r)− γc(F1c ⊗ Ir)− γrc(F1c ⊗ F1r)] (B.20)

If we take γrc = −γcγr we can get a separable form for Σ−1 as follows

Σ−1 =
1

σ2
[Ic ⊗ Ir − γr(Ic ⊗ F1r)− γc(F1c ⊗ Ir) + γcγr(F1c ⊗ F1r)]

=
1

σ2
[Ic ⊗ (Ir − γrF1r)− γc(F1c ⊗ (Ir − γrF1r))]

=
1

σ2
[(Ic − γcF1c)⊗ (Ir − γrF1r)] (B.21)

If the matrix of derivatives of Σ w.r.t γr, γc and γrc is required then we use the standard
result ∂Σ

∂ϕ
= −Σ∂Σ−1

∂ϕ
Σ and calculate the derivatives of Σ−1. Hence, using B.20,

∂Σ−1

∂γr
= − 1

σ2
(Ic ⊗ F1r)

∂Σ−1

∂γc
= − 1

σ2
(F1c ⊗ Ic)

∂Σ−1

∂γrc
= − 1

σ2
(F1c ⊗ F1r)
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US Unstructured general covariance

An unstructured general covariance matrix is given by σ2Σ = σ2{Σij} where

Σij = ϕij

where |ϕ| < 1.

COR Uniform correlation

A uniform correlation model is given by σ2Σ = σ2{Σij} where

Σij =

{
1 for i = j
θ i ̸= j

(B.22)

where θ < 1.
The matrix of derivatives is given by

∂Σ

∂θ
=

{
0 i = j
1 i ̸= j

ANTE Antedependence order k

An antedependence model of order s is de�ned by the fact that the jth observation (j > s)
given the s proceeding observations is independent of all other proceeding observations.

An antedependence variance model is similar to an autoregressive model but it does
not restrict the variances to be constant and it allows correlations between measurements
at same lags to vary. We can write a sth order antedependence model for Y = (y1, . . . yT )
where Y ∼ N(µ,Σ) as

Yj = µj +

sj∑
k=1

γkj(Yj−k − µj−k) + ϵj (B.23)

where ϵj ∼ N(0, dj) and sj = min(j − 1, s).
The inverse covariance matrix of Y can be written as

Σ−1 = UTDU

where D is de�ned as a T ×T diagonal matrix with dj (conditional variances) as diagonal
elements and U is a t× t lower triangular matrix with elements

uij =


1 i = j
−γi,j 1 ≤ i− j < s
0 elsewhere

The determinant of Σ−1 is then equal to the product of the diagonal elements of D.
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That is

det(Σ−1) = det(UTDU) =
T∏
i=1

dj

.

FA Factor analytic

A factor analytic model (Smith et al. (2001) is a multiplicative model (based on the
multivariate technique of factor analysis) that gives a good approximation to the fully
unstructured model but with many less parameters. The covariance model is given by

Σ = ΓΓT +Ψ (B.24)

where Γ is a matrix of environmental loadings and Ψ is a diagonal matrix containing the
speci�c variances, one for each trial.

The inverse covariance model is given by

Σ−1 = Ψ−1 −Ψ−1Γ(ΓTΨ−1Γ + I)−1ΓTΨ−1

DIAG diagonal

A diagonal covariance matrix is given by

Σij =

{
ϕi for i = j
0 i ̸= j

(B.25)

C R code for �tting random regression model in Chap-

ter 6

# Code for fitting overall cubic smoothing spline plus linear random regression model

# to the lucerne persistence data and subsequently estimating the time for each

# variety to decline to 30% persistence

#

# fit model with overall spline to mean response and linear random regressions for

# variety deviations from this overall trend

# dev(years) - fits years as a factor which is given by ExptTime

# random intercepts and slopes need to be correlated

terrycnew.m51.sv <- asreml(logisP~1+ years ,

random=~spl(years)+ExptTime+ str(~ID+ years:ID,

~corh(2):id(60)) +

ExptTime:ID+ at(ExptTime):Rep + diag(ExptTime):Range

+Range:ar1v(Row) + ExptTime:Range:Row,

rcov=~ ar1h(ExptTime):Range:ar1(Row), start.values=T,

G.param=terrycnew.mod5o.asr$G.param,

R.param=terrycnew.mod5o.asr$R.param,

data=terryc,maxit=30)

gammasm51.tab <- terrycnew.m51.sv$gammas.table

gammasm51.tab[c(19,20,21),'Value'] <- c(-0.2,0.03,0.01)

terrycnew.m51.asr <- asreml(logisP~1+ years ,

random=~spl(years)+ExptTime+ str(~ID+ years:ID,
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~corh(2):id(60)) +

ExptTime:ID+ at(ExptTime):Rep + diag(ExptTime):Range

+Range:ar1v(Row) + ExptTime:Range:Row,

rcov=~ ar1h(ExptTime):Range:ar1(Row),

G.param=gammasm51.tab, R.param=gammasm51.tab,

data=terryc,maxit=30)

#

# now predict time to 30% based on terrycnew.m51.asr

##########################################

# try and predict time to 30% - based on mod51 (with correlation between

# intercept & slope terms)

# calculate time to p% persistence

# calc gamma = R^{-1}Q^Tg

# calc h, Q, G_s all as above

# calc overall gamma = R^{-1}Q^Tg - a p-2 x 1 matrix

# # overall spline g

terrycnew.m51.pred<- predict(terrycnew.m51.asr, classify="years",

levels=list(years=unique(terryc$years)),

only=c("years","spl(years)","(Intercept)"))

t5.pred<-terrycnew.m51.pred$pred$pvals

g5<-t5.pred$predicted.value

# calculate time to p% persistence

# calc gamma = R^{-1}Q^Tg

hdat.df<-data.frame(yr=unique(terryc$years))

# calc h

h<-c()

ty<-length(unique(terryc$years))

for (i in 1:(ty-1))

{h <- c(h, hdat.df$yr[i+1] - hdat.df$yr[i])}

# calc Q matrix - from Green Silverman

q<-c(h[1]^{-1}, 0,0,0,-(h[1]^{-1}+h[2]^{-1}), h[2]^{-1}, 0,0, h[2]^{-1},

-(h[2]^{-1}+h[3]^{-1}),

h[3]^{-1},0,0,h[3]^{-1},-(h[3]^{-1}+h[4]^{-1}),h[4]^{-1},

0,0,h[4]^{-1}, -(h[4]^{-1}+h[5]^{-1}), 0,0,0,h[5]^{-1})

qmat<-matrix(nrow=6,ncol=4,byrow=TRUE,data=q)

# calc G_s matrix (also called R in book)

gs<-c((h[1]+h[2])/3, h[2]/6, 0,0,h[2]/6, (h[2]+h[3])/3, h[3]/6,0,0,h[3]/6,

(h[3]+h[4])/3,

h[4]/6,0,0,h[4]/6,(h[4]+h[5])/3)

gsmat<-matrix (nrow = 4, ncol = 4 , byrow = TRUE , data = gs )

# calc gamma = R^{-1}Q^Tg - a p-2 x 1 matrix

library(MASS)

gamm5<-ginv(gsmat)%*%t(qmat)%*%g

# set first and last elements to zero

gamm5<- rbind(0,gamm5,0)

# get intercepts & slopes from linear random regression

# and add line values to spline

t51.sum<- summary(terrycnew.m51.asr,all=T)

t5rr<-t51.sum$coef.random[grep("ID", dimnames(t51.sum$coef.random)[[1]]),]

t5rrint<-t5rr[1:60,1]

t5rrsl<-t5rr[61:120,1]

yval<-unique(terryc$years)

line.df<-data.frame(yr=rep(unique(terryc$years),each=60),

ID=rep(levels(terryc$ID),6),
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int=rep(t5rrint,6), sl=rep(t5rrsl,6))

line.df$lin<-line.df$int+line.df$sl*line.df$yr

line.df$g5<-rep(g5,each=60)

line.df$val<-line.df$lin+line.df$g5

# get values for overall spline and individual RR together

# gi in order years then ID so need to change everything else

line.df$yro<-rep(unique(terryc$yearso),each=60)

xyplot(val~yro|ID,type="b", xlab='Years from sowing',

ylab='Predicted persistence (logit) from final model',

par.strip.text=list(cex=0.6),as.table=T,data=line.df)

# calc target value on transformed scale - 30%?

p<-30

target<-log((p+0.5)/(100-p+0.5))

# sort line.df so on ID then yr

line.dfo<-line.df[order(line.df$ID,line.df$yr),]

# find interval where each variety crosses target

#(decreases to target - val_l > target and val_r < target

s<-0

time<-list()

for (i in 1:60)

{ for (h in 1:6)

{if ((line.dfo$val[h+(i-1)*6] > target) & (line.dfo$val[h+1+(i-1)*6] < target))

{time[[i]]<-h}

}

}

t5_l<-t5_r<-t_m<-g5_l<-g5_r<-gam5_l<-gam5_r<-result5<-yrres5<-list()

for (i in 1:60)

{t5_l[[i]] <- yval[time[[i]]]

t5_r[[i]] <- yval[time[[i]]+1]

# get g(t) and gam at t_l and t_r

g5_l[[i]] <- g5[time[[i]]]

g5_r[[i]] <- g5[time[[i]]+1]

gam5_l[[i]] <- gamm5[time[[i]]]

gam5_r[[i]] <- gamm5[time[[i]]+1]

#z(t)=g(t)+h(t)

# g(t) use eqn 2.19 in Green Silverman

# h(t) = int + slope*t for each i

#h_t[[i]] <- t5rrint[i] + t5rrsl[i]*t

result5[[i]] <- uniroot(function(t) (((t-t5_l[[i]])*g5_r[[i]]) +

((t5_r[[i]]-t)*g5_l[[i]]))/(t5_r[[i]]-t5_l[[i]])

-(1/6)*(t-t5_l[[i]])*(t5_r[[i]]-t)*((1+(t-t5_l[[i]])/(t5_r[[i]]-t5_l[[i]]))*gam5_r[[i]]

+ (1+(t5_r[[i]]-t)/(t5_r[[i]]-t5_l[[i]]))*gam5_l[[i]]) +t5rrint[i] + t5rrsl[i]*t

- target,

lower=t5_l[[i]], upper=t5_r[[i]] )

# get year value for each variety (add on mean year)

yrres5[[i]]<- mean(terryc$yearso)+result5[[i]]$root

}

results5.df<-data.frame(ID=levels(terryc$ID), yrres5=unlist(yrres5))

resord5.df<-results5.df[order(results5.df$yrres,decreasing=F),]

library(xtable)

xtable(resord5.df)

resord5.df$count<-c(1:60)
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#plot results

stripplot(resord5.df$count ~ resord5.df$yrres5, data=resord5.df,

scales=list(y=list(labels=resord5.df$ID, cex=0.6)), ylab="Variety",

xlab="Time (years) till 30% persistence")

####################################################################################

D R Code for implementing MVAR models in Chapter

8

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

##################################################################################

# getsigimodmv

# for multivariate data in Row dir (MCAR x ID)

# modified by JDF Mar2010

##################################################################################

getsigimodmv <- function(rows,times, rowmod, dirname = "Row")

{

partype <- ifelse(dirname == "Row", 1, 2)

psi<-rowmod$psi

if(rowmod$name == 'USI') {

asig <- USI(rows, times,phi = rowmod$phi)

sig <- asig$sig

sigi <- asig$sigi

dsig <- asig$dsig

phi <- rowmod$phi

partype <- rep(partype, length(phi))

}

else if(rowmod$name == 'USgen') {

asig <- USgen(rows, times,phi = rowmod$phi, psi=rowmod$psi)

sig <- asig$sig

sigi <- asig$sigi

dsig <- asig$dsig

phi <- rowmod$phi

psi <- rowmod$psi

partype <- rep(partype, length(phi))

}

else if(rowmod$name == 'USsym') {

asig <- USsym(rows, times,phi = rowmod$phi, psi=rowmod$psi)

sig <- asig$sig

sigi <- asig$sigi

dsig <- asig$dsig

phi <- rowmod$phi

psi <- rowmod$psi

partype <- rep(partype, length(phi))

}

else if(rowmod$name == 'ar1hgen') {

asig <- ar1hgen(rows, times,phi = rowmod$phi, psi=rowmod$psi)

sig <- asig$sig

sigi <- asig$sigi

dsig <- asig$dsig
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phi <- rowmod$phi

psi <- rowmod$psi

partype <- rep(partype, length(phi))

}

else if(rowmod$name == 'ar1hsym') {

asig <- ar1hsym(rows, times,phi = rowmod$phi, psi=rowmod$psi)

sig <- asig$sig

sigi <- asig$sigi

dsig <- asig$dsig

phi <- rowmod$phi

psi <- rowmod$psi

partype <- rep(partype, length(phi))

}

else if(rowmod$name == 'anteband') {

asig <- anteband(rows, times,phi = rowmod$phi, psi=rowmod$psi)

sig <- asig$sig

sigi <- asig$sigi

dsig <- asig$dsig

phi <- rowmod$phi

psi <- rowmod$psi

partype <- rep(partype, length(phi))

}

list(sig=sig,sigi = sigi, dsig = dsig, phi = phi, psi=psi, partype = partype)

}

# end getsigimodmv

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

##################################################################################

#

# USgen

##################################################################################

USgen<-function(r,t,phi=c(rep(0.1,(t*(t+1)/2+t^2))), psi=NULL)

{

# forms the inverse sig and derivatives of sigma for the MVAR1 model

# with general Lambda (t times)and Sigma = US (symmetric) with constraints)

# r=rows t=times phi = sigma_11 sigma_12, sigma_13, ...sigma_1t, sigma_22,

#sigma_23, ... lambda_11, lambda_12,...lambda_1t,lambda_21, lambda_22,... lambda_2t

# Mar2010

#JDF

##################################################################################

F1<-mydiag(1,1,r-1,r-1)+mydiag(1,-1,r-1,r-1)

E1<- diag(c(0,rep(1,r-2),0))

Ir<-diag(r)

It<-diag(t)

Irt<-diag(r*t)

Jt<-matrix(1,nrow=t,ncol=t)

#sigt<-matrix(ncol=2,nrow=2,data=c(phi[1],phi[2],phi[2],phi[3]))

#lamt<-matrix(ncol=2,nrow=2,data=c(phi[4], phi[5],phi[6],phi[7]))

# sigt = Sigma for times dS - derivatives of Sigma wrt phi[k]

#phi<-c(1:(t*(t+1)/2+t^2))

sigphi<-t*(t+1)/2

totphi<-t*(t+1)/2 + t^2

lamphi<- totphi-sigphi

Sigma<-matrix(0,t,t)

ei<-ej<-matrix(0,t,1)
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dS<-dSo<-list()

k<-0

for (i in 1:t)

{for (j in i:t)

{k<-k+1

Sigma[i,j]<- phi[k]

ei<-ej<-matrix(0,t,1)

ei[i,1]<-1

ej[j,1]<-1

dSo[[k]]<-ei%*%t(ej)

dS[[k]]<- dSo[[k]] + t(dSo[[k]]) - diag(diag(dSo[[k]]))

}

}

sigt<-Sigma+t(Sigma)-diag(diag(Sigma))

# Lambda

lamt<-matrix(0,t,t)

dL<-list()

k<-(t*(t+1)/2)

for (i in 1:t)

{ for (j in 1:t)

{k <- k+1

lamt[i,j] <- phi[k]

ei<-ej<-matrix(0,t,1)

ei[i,1]<-1

ej[j,1]<-1

dL[[k]]<-ei%*%t(ej)

}

}

sti<-ginv.new(sigt)$invx

s0<-sti%*%ginv.new(It-(lamt%*%lamt))$invx

s1<-kronecker(Ir,s0)

s2<-kronecker(F1,lamt)

s3<-kronecker(E1,(lamt%*%lamt))

sigi<-s1%*%(Irt-s2+s3)

sig<-ginv.new(sigi)$invx

P1<-s1

P2<-Irt-s2+s3

# diff wrt phi[k]

dP1<-list()

dP2<-list()

for (k in 1:sigphi)

{dP1[[k]]<- kronecker(Ir, -sti%*%(dS[[k]])%*%s0)

dP2[[k]]<-0*Irt

}

for (k in (1+sigphi):totphi)

{dP1[[k]]<- kronecker(Ir, s0%*%(lamt%*%dL[[k]]+

dL[[k]]%*%lamt)%*%ginv.new(It-(lamt%*%lamt))$invx )

dP2[[k]]<-kronecker(-F1,dL[[k]]) + kronecker(E1,(lamt%*%dL[[k]]+dL[[k]]%*%lamt))

}

dsigi<-list()

dsig<-list()

for (k in 1:totphi)

{dsigi[[k]]<-dP1[[k]]%*%P2 + P1%*%dP2[[k]]
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dsig[[k]]<- -sig%*%dsigi[[k]]%*%sig

}

list(sig=sig,sigi=sigi,dsig=dsig,phi=phi,partype=rep(1,length(phi)))

}

#

#end USgen

############################################################

#

# derivatives of constraints using vech - tdconsgen

###############################################

dconsgen<-function(t,tp,qran,rowmod)

{

phi<-rowmod$phi

psi<-rowmod$psi

sigphi<-t*(t+1)/2

totphi<-t*(t+1)/2 + t^2

lamphi<- totphi-sigphi

# function to get constraints and differentials of constraints

Sigma<-matrix(0,t,t)

dS<-dSo<-list()

k<-0

for (i in 1:t)

{for (j in i:t)

{k<-k+1

Sigma[i,j]<- phi[k]

ei<-ej<-matrix(0,t,1)

ei[i,1]<-1

ej[j,1]<-1

dSo[[k]]<-ei%*%t(ej)

dS[[k]]<- dSo[[k]] + t(dSo[[k]]) - diag(diag(dSo[[k]]))

}

}

sigt<-Sigma+t(Sigma)-diag(diag(Sigma))

lamt<-matrix(0,t,t)

dL<-list()

k<-(t*(t+1)/2)

for (i in 1:t)

{ for (j in 1:t)

{k <- k+1

lamt[i,j] <- phi[k]

ei<-ej<-matrix(0,t,1)

ei[i,1]<-1

ej[j,1]<-1

dL[[k]]<-ei%*%t(ej)

}

}

# now for constraints

dcons<-matrix(0,t,t)

psimat<-matrix(0,t,t)

cons<-matrix(0,t,t)

dcon<-list()

dconpsi<-list()

c<-list()
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l<-0

# allocate psi[k] across top half of psimat (then make as a symmetric matrix)

for (i in 1:(t-1))

{ for (j in (i+1):t)

{ l<-l+1

psimat[i,j]<-psi[l]

# cons[i,j]<-sum(lamt[i,1:t]*sigt[1:t,j]) - sum(sigt[i,1:t]*lamt[j,1:t])

# c[[l]]<- cons[i,j]

}

}

# now create full matrices

psimatf<-psimat+t(psimat)-diag(diag(psimat))

psimat<-psimatf

#cons<-consf

# now differentiate the constraints wrt phi[k] - from Sigma - sigma_rs

pvec<-mvec<-list()

M<-list()

for (k in 1:sigphi)

{

pvec[[k]]<-matrix(0,t*(t+1)/2,1)

mvec[[k]]<-matrix(0,t*(t+1)/2,1)

M[[k]] <- lamt%*%dS[[k]] - dS[[k]]%*%t(lamt)

pvec[[k]]<-as.vector(psimat[lower.tri(psimat)])

mvec[[k]]<-as.vector(M[[k]][lower.tri(M[[k]])])

dcon[[k]] <-(t(pvec[[k]])%*%mvec[[k]])

}

# now differentiate C wrt phi[k] - from Lambda - lambda_ij

for (k in (sigphi+1):totphi)

{

pvec[[k]]<-matrix(0,t*(t+1)/2,1)

mvec[[k]]<-matrix(0,t*(t+1)/2,1)

M[[k]] <- dL[[k]]%*%sigt - sigt%*%t(dL[[k]])

pvec[[k]]<-as.vector(psimat[lower.tri(psimat)])

mvec[[k]]<-as.vector(M[[k]][lower.tri(M[[k]])])

dcon[[k]] <-(t(pvec[[k]])%*%mvec[[k]])

}

# do using vech

P<-list()

l<-0

for (s in 1:(t-1))

{for (r in (s+1):t)

{l<-l+1

pvec[[l]]<-mvec[[l]]<-matrix(0,t*(t-1)/2,1)

er<-es<-matrix(0,t,1)

er[r,1]<-1

es[s,1]<-1

P[[l]]<-er%*%t(es)

M[[l]]<-lamt%*%sigt - sigt%*%t(lamt)

pvec[[l]]<-as.vector(P[[l]][lower.tri(P[[l]])])

mvec[[l]]<-as.vector(M[[l]][lower.tri(M[[l]])])

dconpsi[[l]]<-t(pvec[[l]])%*%mvec[[l]]

# match up constraints with psis in correct order
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c[[l]]<-dconpsi[[l]]

}

}

# now need to adjust AI matrix with second derivatives where relevant

# use matrix O to add extra bits to AI matrix (AI in order sigma2, gammas,

# phi[k] , phi_col, psi[l])

# tp= total number of parameters - O is tpxtp

# second differentials wrt psi_rs and sigma_uv

O<-matrix(0,tp,tp)

evec<-mvec<-list()

E<-M<-list()

l<-(tp-length(psi))

for (s in 1:(t-1))

{ for (r in (s+1):t)

{l<-l+1

evec[[l]]<-matrix(0,t*(t-1)/2,1)

er<-es<-matrix(0,t,1)

er[r,1]<-1

es[s,1]<-1

E[[l]]<-er%*%t(es)

for ( k in (1+qran+1):(1+qran+sigphi))

{q<- k-(1+qran)

mvec[[k]]<-matrix(0,t*(t-1)/2,1)

M[[k]]<-lamt%*%dS[[q]] - dS[[q]]%*%t(lamt)

evec[[l]] <-as.vector(E[[l]][lower.tri(E[[l]])])

mvec[[k]] <-as.vector(M[[k]][lower.tri(M[[k]])])

O[l,k]<- -(t(evec[[l]])%*%mvec[[k]])

O[k,l]<-O[l,k]

}

}

}

#stop (print (mvec))

#

# second differentials wrt psi_rs and lambda_uv

l<-(tp-length(psi))

for (s in 1:(t-1))

{ for (r in (s+1):t)

{l<-l+1

evec[[l]]<-matrix(0,t*(t-1)/2,1)

er<-es<-matrix(0,t,1)

er[r,1]<-1

es[s,1]<-1

E[[l]]<-er%*%t(es)

for (k in (1+qran+sigphi+1):(1+qran+totphi))

{q<- k-(1+qran)

mvec[[k]]<-matrix(0,t*(t-1)/2,1)

M[[k]]<-dL[[q]]%*%sigt - sigt%*%t(dL[[q]])

evec[[l]] <-as.vector(E[[l]][lower.tri(E[[l]])])

mvec[[k]] <-as.vector(M[[k]][lower.tri(M[[k]])])
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O[l,k]<- -(t(evec[[l]])%*%mvec[[k]])

O[k,l]<-O[l,k]

}

}

}

# second differential wrt sigma_rs and lambda_uv

for (l in (1+qran+1):(1+qran+sigphi))

{ p<-l-(1+qran)

pvec[[l]]<-matrix(0,t*(t-1)/2,1)

for (k in (1+qran+sigphi+1):(1+qran+totphi))

{q<-k - (1+qran)

mvec[[k]]<-matrix(0,t*(t-1)/2,1)

M[[k]]<-dL[[q]]%*%dS[[p]] - dS[[p]]%*%t(dL[[q]])

pvec[[l]] <-as.vector(psimat[lower.tri(psimat)])

mvec[[k]] <-as.vector(M[[k]][lower.tri(M[[k]])])

O[l,k]<- -(t(pvec[[l]])%*%mvec[[k]])

O[k,l]<-O[l,k]

}

}

list(phi=phi,constraint=c,dcons=dcon,dconspsi=dconpsi,psi=psi,Omat=O)

}

#

# end dconsgen

###################################################################################

#

# USsym

##################################################################################

USsym<-function(r,t,phi=NULL, psi=NULL)

{

# forms the inverse sig and derivatives of sigma for the MVAR1 model

# with symmetric Lambda (t times)and Sigma = US (symmetric) with constraints)

# r=rows t=times phi = sigma_11 sigma_12, sigma_13, ...sigma_1t, sigma_22,

#sigma_23, ... lambda_11, lambda_12,...lambda_1t,lambda_22, lambda_23,...

# Mar2010

#JDF

##################################################################################

F1<-mydiag(1,1,r-1,r-1)+mydiag(1,-1,r-1,r-1)

E1<- diag(c(0,rep(1,r-2),0))

Ir<-diag(r)

It<-diag(t)

Irt<-diag(r*t)

Jt<-matrix(1,nrow=t,ncol=t)

sigphi<-t*(t+1)/2
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totphi<-t*(t+1)

lamphi<- totphi-sigphi

Sigma<-matrix(0,t,t)

ei<-ej<-matrix(0,t,1)

dS<-dSo<-list()

k<-0

for (i in 1:t)

{for (j in i:t)

{k<-k+1

Sigma[i,j]<- phi[k]

ei<-ej<-matrix(0,t,1)

ei[i,1]<-1

ej[j,1]<-1

dSo[[k]]<-ei%*%t(ej)

dS[[k]]<- dSo[[k]] + t(dSo[[k]]) - diag(diag(dSo[[k]]))

}

}

sigt<-Sigma+t(Sigma)-diag(diag(Sigma))

# Lambda

lam<-lamt<-matrix(0,t,t)

dL<-dLo<-list()

k<-(sigphi)

for (i in 1:t)

{ for (j in i:t)

{k <- k+1

lam[i,j] <- phi[k]

ei<-ej<-matrix(0,t,1)

ei[i,1]<-1

ej[j,1]<-1

dLo[[k]]<-ei%*%t(ej)

dL[[k]]<-dLo[[k]] + t(dLo[[k]]) - diag(diag(dLo[[k]]))

}

}

lamt<-lam+t(lam)-diag(diag(lam))

sti<-ginv.new(sigt)$invx

s0<-sti%*%ginv.new(It-(lamt%*%lamt))$invx

s1<-kronecker(Ir,s0)

s2<-kronecker(F1,lamt)

s3<-kronecker(E1,(lamt%*%lamt))

sigi<-s1%*%(Irt-s2+s3)

sig<-ginv.new(sigi)$invx

P1<-s1

P2<-Irt-s2+s3

# diff wrt phi[k]

dP1<-list()

dP2<-list()

for (k in 1:sigphi)

{dP1[[k]]<- kronecker(Ir, -sti%*%(dS[[k]])%*%s0)

dP2[[k]]<-0*Irt

}

for (k in (1+sigphi):totphi)

{dP1[[k]]<- kronecker(Ir, s0%*%(lamt%*%dL[[k]]+

dL[[k]]%*%lamt)%*%ginv.new(It-(lamt%*%lamt))$invx )

dP2[[k]]<-kronecker(-F1,dL[[k]]) + kronecker(E1,(lamt%*%dL[[k]]+dL[[k]]%*%lamt))

}
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dsigi<-list()

dsig<-list()

for (k in 1:totphi)

{dsigi[[k]]<-dP1[[k]]%*%P2 + P1%*%dP2[[k]]

dsig[[k]]<- -sig%*%dsigi[[k]]%*%sig

}

list(sig=sig,sigi=sigi,dsig=dsig,phi=phi,partype=rep(1,length(phi)))

}

#

# end USsym

############################################################

#

# USsym constraints

###############################################

USsymcons<-function(r,t,tp,qran,rowmod)

{

phi<-rowmod$phi

psi<-rowmod$psi

sigphi<-t*(t+1)/2

totphi<-t*(t+1)

lamphi<- totphi-sigphi

# function to get constraints and differentials of constraints

# allocate sigmas across top half of matrix (then make into a symmetric matrix)

Sigma<-matrix(0,t,t)

dS<-dSo<-list()

k<-0

for (i in 1:t)

{for (j in i:t)

{k<-k+1

Sigma[i,j]<- phi[k]

ei<-ej<-matrix(0,t,1)

ei[i,1]<-1

ej[j,1]<-1

dSo[[k]]<-ei%*%t(ej)

dS[[k]]<- dSo[[k]] + t(dSo[[k]]) - diag(diag(dSo[[k]]))

}

}

sigt<-Sigma+t(Sigma)-diag(diag(Sigma))

# allocate lambdas across matrix (symmetric)

# Lambda

lam<-lamt<-matrix(0,t,t)

dL<-dLo<-list()

k<-(sigphi)

for (i in 1:t)

{ for (j in i:t)

{k <- k+1

lam[i,j] <- phi[k]

ei<-ej<-matrix(0,t,1)

ei[i,1]<-1

ej[j,1]<-1

dLo[[k]]<-ei%*%t(ej)

dL[[k]]<-dLo[[k]] + t(dLo[[k]]) - diag(diag(dLo[[k]]))

}
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}

lamt<-lam+t(lam)-diag(diag(lam))

# now for constraints

dcons<-matrix(0,t,t)

psimat<-matrix(0,t,t)

cons<-matrix(0,t,t)

dcon<-list()

dconpsi<-list()

c<-list()

l<-0

# allocate psi[k] across top half of psimat (then make as a symmetric matrix)

for (i in 1:(t-1))

{ for (j in (i+1):t)

{ l<-l+1

psimat[i,j]<-psi[l]

# cons[i,j]<-sum(lamt[i,1:t]*sigt[1:t,j]) - sum(sigt[i,1:t]*lamt[j,1:t])

# c[[l]]<- cons[i,j]

}

}

# now create full matrices

psimatf<-psimat+t(psimat)-diag(diag(psimat))

psimat<-psimatf

#cons<-consf

# now differentiate the constraints wrt phi[k] - from Sigma - sigma_rs

pvec<-mvec<-list()

M<-list()

for (k in 1:sigphi)

{

pvec[[k]]<-matrix(0,t*(t+1)/2,1)

mvec[[k]]<-matrix(0,t*(t+1)/2,1)

M[[k]] <- lamt%*%dS[[k]] - dS[[k]]%*%t(lamt)

pvec[[k]]<-as.vector(psimat[lower.tri(psimat)])

mvec[[k]]<-as.vector(M[[k]][lower.tri(M[[k]])])

dcon[[k]] <-(t(pvec[[k]])%*%mvec[[k]])

}

# now differentiate C wrt phi[k] - from Lambda - lambda_ij

for (k in (sigphi+1):totphi)

{

pvec[[k]]<-matrix(0,t*(t+1)/2,1)

mvec[[k]]<-matrix(0,t*(t+1)/2,1)

M[[k]] <- dL[[k]]%*%sigt - sigt%*%t(dL[[k]])

pvec[[k]]<-as.vector(psimat[lower.tri(psimat)])

mvec[[k]]<-as.vector(M[[k]][lower.tri(M[[k]])])

dcon[[k]] <-(t(pvec[[k]])%*%mvec[[k]])

}

# do using vech

P<-list()

l<-0

for (s in 1:(t-1))

{for (r in (s+1):t)

{l<-l+1
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pvec[[l]]<-mvec[[l]]<-matrix(0,t*(t-1)/2,1)

er<-es<-matrix(0,t,1)

er[r,1]<-1

es[s,1]<-1

P[[l]]<-er%*%t(es)

M[[l]]<-lamt%*%sigt - sigt%*%t(lamt)

pvec[[l]]<-as.vector(P[[l]][lower.tri(P[[l]])])

mvec[[l]]<-as.vector(M[[l]][lower.tri(M[[l]])])

dconpsi[[l]]<-t(pvec[[l]])%*%mvec[[l]]

# match up constraints with psis in correct order

c[[l]]<-dconpsi[[l]]

}

}

# now need to adjust AI matrix with second derivatives where relevant

# use matrix O to add extra bits to AI matrix (AI in order sigma2, gammas,

# phi[k] , phi_col, psi[l])

# tp= total number of parameters - O is tpxtp

# second differentials wrt psi_rs and sigma_uv

O<-matrix(0,tp,tp)

evec<-mvec<-list()

E<-M<-list()

l<-(tp-length(psi))

for (s in 1:(t-1))

{ for (r in (s+1):t)

{l<-l+1

evec[[l]]<-matrix(0,t*(t-1)/2,1)

er<-es<-matrix(0,t,1)

er[r,1]<-1

es[s,1]<-1

E[[l]]<-er%*%t(es)

for ( k in (1+qran+1):(1+qran+sigphi))

{q<- k-(1+qran)

mvec[[k]]<-matrix(0,t*(t-1)/2,1)

M[[k]]<-lamt%*%dS[[q]] - dS[[q]]%*%t(lamt)

evec[[l]] <-as.vector(E[[l]][lower.tri(E[[l]])])

mvec[[k]] <-as.vector(M[[k]][lower.tri(M[[k]])])

O[l,k]<- -(t(evec[[l]])%*%mvec[[k]])

O[k,l]<-O[l,k]

}

}

}

#stop (print (mvec))

#

# second differentials wrt psi_rs and lambda_uv

l<-(tp-length(psi))

for (s in 1:(t-1))

{ for (r in (s+1):t)

{l<-l+1

evec[[l]]<-matrix(0,t*(t-1)/2,1)

er<-es<-matrix(0,t,1)

235



er[r,1]<-1

es[s,1]<-1

E[[l]]<-er%*%t(es)

for (k in (1+qran+sigphi+1):(1+qran+totphi))

{q<- k-(1+qran)

mvec[[k]]<-matrix(0,t*(t-1)/2,1)

M[[k]]<-dL[[q]]%*%sigt - sigt%*%t(dL[[q]])

evec[[l]] <-as.vector(E[[l]][lower.tri(E[[l]])])

mvec[[k]] <-as.vector(M[[k]][lower.tri(M[[k]])])

O[l,k]<- -(t(evec[[l]])%*%mvec[[k]])

O[k,l]<-O[l,k]

}

}

}

# second differential wrt sigma_rs and lambda_uv

for (l in (1+qran+1):(1+qran+sigphi))

{ p<-l-(1+qran)

pvec[[l]]<-matrix(0,t*(t-1)/2,1)

for (k in (1+qran+sigphi+1):(1+qran+totphi))

{q<-k - (1+qran)

mvec[[k]]<-matrix(0,t*(t-1)/2,1)

M[[k]]<-dL[[q]]%*%dS[[p]] - dS[[p]]%*%t(dL[[q]])

pvec[[l]] <-as.vector(psimat[lower.tri(psimat)])

mvec[[k]] <-as.vector(M[[k]][lower.tri(M[[k]])])

O[l,k]<- -(t(pvec[[l]])%*%mvec[[k]])

O[k,l]<-O[l,k]

}

}

list(phi=phi,constraint=c,dcons=dcon,dconspsi=dconpsi,psi=psi,Omat=O)

}

#

#end USsymcons

#

##################################################################################

##################################################################################

#

# ar1hgen

##################################################################################

ar1hgen<-function(r,t,phi=c(rep(0.1,(t+1+(t*(t+1)/2)))), psi=NULL)

{

# forms the inverse sigma and derivatives of sigma for

# the MVAR1 model with

# general nonsymmetric Lambda= (t times)and

# Sigma = ar1h heterogeneous ar1 process with constraints)

# r=rows t=times phi = sigma_11 sigma_22, sigma_33, ...sigma_tt,

# phi_ar1, ... lambda_11, lambda_12,..lambda_1t,lambda_21,....

# July2010

#JDF

##################################################################################
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F1<-mydiag(1,1,r-1,r-1)+mydiag(1,-1,r-1,r-1)

E1<- diag(c(0,rep(1,r-2),0))

F1t<-mydiag(1,1,t-1,t-1)+mydiag(1,-1,t-1,t-1)

E1t<- diag(c(0,rep(1,t-2),0))

Ir<-diag(r)

It<-diag(t)

Irt<-diag(r*t)

Jt<-matrix(1,nrow=t,ncol=t)

sigphi<-(t+1)

totphi<-(t+1)+ (t*t)

lamphi<- totphi-sigphi

#Sigma<-matrix(0,t,t)

D12<-matrix(0,t,t)

SigAR1in<-matrix(0,t,t)

ei<-ej<-matrix(0,t,1)

dSin<-dSo<-dD12<-list()

k<-0

for (i in 1:t)

{k<-k+1

ei<-matrix(0,t,1)

ei[i,1]<-1

D12[i,i]<-(phi[k])^(-0.5)

dD12[[k]]<-(ei%*%t(ei))*(-0.5)*(phi[k])^(-1.5)

}

k<-t+1

SigAR1in<- (1-phi[k]^2)^(-1)*(It + phi[k]^2*E1t - phi[k]*F1t)

sti<-D12%*%SigAR1in%*%D12

sigt<-ginv.new(sti)$invx

# Lambda

lamt<-matrix(0,t,t)

dL<-list()

k<-(t+1)

for (i in 1:t)

{ for (j in 1:t)

{k <- k+1

lamt[i,j] <- phi[k]

ei<-ej<-matrix(0,t,1)

ei[i,1]<-1

ej[j,1]<-1

dL[[k]]<-ei%*%t(ej)

}

}

s0<-sti%*%ginv.new(It-(lamt%*%lamt))$invx

s1<-kronecker(Ir,s0)

s2<-kronecker(F1,lamt)

s3<-kronecker(E1,(lamt%*%lamt))

sigi<-s1%*%(Irt-s2+s3)

sig<-ginv.new(sigi)$invx

P1<-s1

P2<-Irt-s2+s3

# diff wrt phi[k]

dP1<-list()

dP2<-list()

for (k in 1:t)

{dSin[[k]]<-dD12[[k]]%*%(SigAR1in%*%D12) + D12%*%SigAR1in%*%dD12[[k]]
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dP1[[k]]<- kronecker(Ir, dSin[[k]]%*%ginv.new(It-(lamt%*%lamt))$invx)

dP2[[k]]<-0*Irt

}

for (k in (t+1):(t+1))

{dSin[[k]]<-D12%*%((1-phi[k]^2)^(-1)*(2*phi[k]*E1t-F1t)+

(2*phi[k]*(1-phi[k]^2)^(-2))*(It + phi[k]^2*E1t-phi[k]*F1t))%*%D12

dP1[[k]]<- kronecker(Ir, dSin[[k]]%*%ginv.new(It-(lamt%*%lamt))$invx)

dP2[[k]]<-0*Irt}

for (k in (1+sigphi):totphi)

{dP1[[k]]<- kronecker(Ir, s0%*%(lamt%*%dL[[k]]+

dL[[k]]%*%lamt)%*%ginv.new(It-(lamt%*%lamt))$invx )

dP2[[k]]<-kronecker(-F1,dL[[k]]) + kronecker(E1,(lamt%*%dL[[k]]+dL[[k]]%*%lamt))

}

dsigi<-list()

dsig<-list()

for (k in 1:totphi)

{dsigi[[k]]<-dP1[[k]]%*%P2 + P1%*%dP2[[k]]

dsig[[k]]<- -sig%*%dsigi[[k]]%*%sig

}

list(sig=sig,sigi=sigi,dsig=dsig,phi=phi,partype=rep(1,length(phi)))

}

#

#end ar1hgen

############################################################

#

# ar1hgen constraints

###############################################

ar1hgencons<-function(r,t,tp,qran,rowmod)

{

phi<-rowmod$phi

psi<-rowmod$psi

# function to get constraints and differentials of constraints

# Sigma & SigmaIn

F1<-mydiag(1,1,r-1,r-1)+mydiag(1,-1,r-1,r-1)

E1<- diag(c(0,rep(1,r-2),0))

F1t<-mydiag(1,1,t-1,t-1)+mydiag(1,-1,t-1,t-1)

E1t<- diag(c(0,rep(1,t-2),0))

Ir<-diag(r)

It<-diag(t)

Irt<-diag(r*t)

Jt<-matrix(1,nrow=t,ncol=t)

sigphi<-(t+1)

totphi<-(t+1)+ t*t

lamphi<- totphi-sigphi

#Sigma<-matrix(0,t,t)

D12<-matrix(0,t,t)

SigAR1in<-matrix(0,t,t)

ei<-ej<-matrix(0,t,1)

dSin<-dSo<-dD12<-dD122<-dSinps<-d2Sin<-list()

k<-0

for (i in 1:t)
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{k<-k+1

ei<-matrix(0,t,1)

ei[i,1]<-1

D12[i,i]<-(phi[k])^(-0.5)

dD12[[k]]<-(ei%*%t(ei))*-0.5*(phi[k])^(-1.5)

dD122[[k]]<- 0.75*(phi[k]^(-2.5))*(ei%*%t(ei))

}

k<-t+1

SigAR1in<- (1-phi[k]^2)^(-1)*(It + phi[k]^2*E1t - phi[k]*F1t)

sti<-D12%*%SigAR1in%*%D12

sigt<-ginv.new(sti)$invx

# Lambda

lamt<-matrix(0,t,t)

dL<-list()

k<-(t+1)

for (i in 1:t)

{ for (j in 1:t)

{k <- k+1

lamt[i,j] <- phi[k]

ei<-ej<-matrix(0,t,1)

ei[i,1]<-1

ej[j,1]<-1

dL[[k]]<-ei%*%t(ej)

}

}

# dSin - wrt sigma_ii

for (k in 1:t)

{dSin[[k]]<-dD12[[k]]%*%(SigAR1in%*%D12) + D12%*%SigAR1in%*%dD12[[k]]

dSAR1v<- (1-phi[t+1]^2)^(-1)*(2*phi[t+1]*E1t-F1t)+

(2*phi[t+1]/(1-phi[t+1]^2)^2)*(It + phi[t+1]^2*E1t-phi[t+1]*F1t)

dSinps[[k]]<-dD12[[k]]%*%dSAR1v%*%D12 + D12%*%dSAR1v%*%dD12[[k]]

d2Sin[[k]]<- dD122[[k]]%*%SigAR1in%*%D12 + D12%*%SigAR1in%*%dD122[[k]]+

2*dD12[[k]]%*%SigAR1in%*%dD12[[k]]

}

# diff Sigma inverse wrt phi

for (k in (t+1):(t+1))

{dSin[[k]]<-D12%*%dSAR1v%*%D12

d2Sin[[k]]<-D12%*%(2*(1-phi[k]^2)^(-1)*E1t +

4*phi[k]*(1-phi[k]^2)^(-2)*(2*phi[k]*E1t-F1t) +

(2*(1-phi[k]^2)^(-2) + 8*phi[k]^2*(1-phi[k]^2)^(-3))*(It+phi[k]^2*E1t-phi[k]*F1t) )%*%D12

}

# psimat

# now for constraints

dcons<-matrix(0,t,t)

psimat<-matrix(0,t,t)

cons<-matrix(0,t,t)

dcon<-list()

dconpsi<-list()

c<-list()

l<-0
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# allocate psi[k] across top half of psimat not diagonals then make symmetric

for (i in 1:(t-1))

{ for (j in (i+1):t)

{ l<-l+1

psimat[i,j]<-psi[l]

}

}

# now create full matrices

psimatf<-psimat+t(psimat)-diag(diag(psimat))

psimat<-psimatf

# diff C wrt phi[[k]]

# sigma_rs

pvec<-mvec<-list()

M<-list()

for (k in 1:sigphi)

{ pvec[[k]]<-matrix(0,t*(t-1)/2,1)

mvec[[k]]<-matrix(0,t*(t-1)/2,1)

M[[k]] <- dSin[[k]]%*%lamt - t(lamt)%*%dSin[[k]]

pvec[[k]]<-as.vector(psimat[lower.tri(psimat)])

mvec[[k]]<-as.vector(M[[k]][lower.tri(M[[k]])])

dcon[[k]] <-(t(pvec[[k]])%*%mvec[[k]])

}

# phi

k<-t+1

pvec[[k]]<-matrix(0,t*(t-1)/2,1)

mvec[[k]]<-matrix(0,t*(t-1)/2,1)

M[[k]] <- dSin[[k]]%*%lamt - t(lamt)%*%dSin[[k]]

pvec[[k]]<-as.vector(psimat[lower.tri(psimat)])

mvec[[k]]<-as.vector(M[[k]][lower.tri(M[[k]])])

dcon[[k]] <-(t(pvec[[k]])%*%mvec[[k]])

# lambda_rs

for (k in (sigphi+1):totphi)

{ pvec[[k]]<-matrix(0,t*(t-1)/2,1)

mvec[[k]]<-matrix(0,t*(t-1)/2,1)

M[[k]] <- sti%*%dL[[k]] - t(dL[[k]])%*%sti

pvec[[k]]<-as.vector(psimat[lower.tri(psimat)])

mvec[[k]]<-as.vector(M[[k]][lower.tri(M[[k]])])

dcon[[k]] <-(t(pvec[[k]])%*%mvec[[k]])

}

#diff C wrt psi[[l]] - gives the constraints c

P<-list()

l<-0

for (s in 1:(t-1))

{for (r in (s+1):t)

{l<-l+1

pvec[[l]]<-mvec[[l]]<-matrix(0,t*(t-1)/2,1)

er<-es<-matrix(0,t,1)

er[r,1]<-1

es[s,1]<-1

P[[l]]<-er%*%t(es)

M[[l]]<-sti%*%lamt - t(lamt)%*%sti
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pvec[[l]]<-as.vector(P[[l]][lower.tri(P[[l]])])

mvec[[l]]<-as.vector(M[[l]][lower.tri(M[[l]])])

dconpsi[[l]]<-t(pvec[[l]])%*%mvec[[l]]

# match up constarints with psis in correct order

c[[l]]<-dconpsi[[l]]

}

}

# second derivatives of C

# now need to adjust AI matrix with second derivatives where relevant

# use matrix O to add extra bits to AI matrix (AI in order sigma2, gammas,

# phi[k] , phi_col, psi[l])

# tp= total number of parameters - O is tpxtp

O<-matrix(0,tp,tp)

evec<-mvec<-list()

E<-M<-list()

# second differential wrt sigma_rr^2

for (k in (1+qran+1):(1+qran+t))

{q<-k-(1+qran)

pvec[[k]]<-mvec[[k]]<-matrix(0,t*(t-1)/2,1)

M[[k]]<-d2Sin[[q]]%*%lamt - t(lamt)%*%d2Sin[[q]]

pvec[[k]] <-as.vector(psimat[lower.tri(psimat)])

mvec[[k]] <-as.vector(M[[k]][lower.tri(M[[k]])])

O[k,k]<- -(t(pvec[[k]])%*%mvec[[k]])

}

# second differential wrt phi^2

k <-1+qran+t+1

q<-k - (1+qran)

pvec[[k]]<-mvec[[k]]<-matrix(0,t*(t-1)/2,1)

M[[k]]<-d2Sin[[q]]%*%lamt - t(lamt)%*%d2Sin[[q]]

pvec[[k]] <-as.vector(psimat[lower.tri(psimat)])

mvec[[k]] <-as.vector(M[[k]][lower.tri(M[[k]])])

O[k,k]<- -(t(pvec[[k]])%*%mvec[[k]])

# second differential wrt sigma_rr and lambda_uv

for (l in (1+qran+1):(1+qran+t))

{p<-l-(1+qran)

pvec[[l]]<-matrix(0,t*(t-1)/2,1)

for (k in (1+qran+sigphi+1):(1+qran+totphi))

{ q<-k -(1+qran)

mvec[[k]]<-matrix(0,t*(t-1)/2,1)

M[[k]]<-dSin[[p]]%*%dL[[q]] - t(dL[[q]])%*%dSin[[p]]

pvec[[l]] <-as.vector(psimat[lower.tri(psimat)])

mvec[[k]] <-as.vector(M[[k]][lower.tri(M[[k]])])

O[l,k]<- -(t(pvec[[l]])%*%mvec[[k]])

O[k,l]<-O[l,k]

}

}

# second differential wrt phi and lambda_uv

l<-1+ qran+t+1

p<-l-(1+qran)

pvec[[l]]<-matrix(0,t*(t-1)/2,1)
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for (k in (1+qran+sigphi+1):(1+qran+totphi))

{q<-k-(1+qran)

mvec[[k]]<-matrix(0,t*(t-1)/2,1)

M[[k]]<-dSin[[p]]%*%dL[[q]] - t(dL[[q]])%*%dSin[[p]]

pvec[[l]] <-as.vector(psimat[lower.tri(psimat)])

mvec[[k]] <-as.vector(M[[k]][lower.tri(M[[k]])])

O[l,k]<- -(t(pvec[[l]])%*%mvec[[k]])

O[k,l]<-O[l,k]

}

# second differential wrt phi and sigma_rr

l<-1+ qran+t+1

pvec[[l]]<-matrix(0,t*(t-1)/2,1)

for (k in (1+qran+1):(1+qran+t))

{q<-k-(1+qran)

mvec[[k]]<-matrix(0,t*(t-1)/2,1)

M[[k]]<-dSinps[[q]]%*%lamt - t(lamt)%*%dSinps[[q]]

pvec[[l]] <-as.vector(psimat[lower.tri(psimat)])

mvec[[k]] <-as.vector(M[[k]][lower.tri(M[[k]])])

O[l,k]<- -(t(pvec[[l]])%*%mvec[[k]])

O[k,l]<-O[l,k]

}

# second differentials wrt psi_rs and sigma_uu

# phi[[l]] and phi[[k]]

evec<-mvec<-list()

E<-M<-list()

l<-(tp-length(psi))

for (s in 1:(t-1))

{ for (r in (s+1):t)

{l<-l+1

evec[[l]]<-matrix(0,t*(t-1)/2,1)

er<-es<-matrix(0,t,1)

er[r,1]<-1

es[s,1]<-1

E[[l]]<-er%*%t(es)

for (k in (1+qran+1):(1+qran+t))

{q<-k-(1+qran)

mvec[[k]]<-matrix(0,t*(t-1)/2,1)

M[[k]]<-dSin[[q]]%*%lamt - t(lamt)%*%dSin[[q]]

evec[[l]] <-as.vector(E[[l]][lower.tri(E[[l]])])

mvec[[k]] <-as.vector(M[[k]][lower.tri(M[[k]])])

O[l,k]<- -(t(evec[[l]])%*%mvec[[k]])

O[k,l]<-O[l,k]

}

}

}

# second differentials wrt psi_rs and lambda_uv

l<-(tp-length(psi))

for (s in 1:(t-1))

{ for (r in (s+1):t)
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{l<-l+1

evec[[l]]<-matrix(0,t*(t-1)/2,1)

er<-es<-matrix(0,t,1)

er[r,1]<-1

es[s,1]<-1

E[[l]]<-er%*%t(es)

for (k in (1+qran+sigphi+1):(1+qran+totphi))

{ q<-k - (1+qran)

mvec[[k]]<-matrix(0,t*(t-1)/2,1)

M[[k]]<-sti%*%dL[[q]] - t(dL[[q]])%*%sti

evec[[l]] <-as.vector(E[[l]][lower.tri(E[[l]])])

mvec[[k]] <-as.vector(M[[k]][lower.tri(M[[k]])])

O[l,k]<- -(t(evec[[l]])%*%mvec[[k]])

O[k,l]<-O[l,k]

}

}

}

# second differentials wrt psi_rs and phi

# phi[[l]] and phi[[t+1]]

evec<-mvec<-list()

E<-M<-list()

l<-(tp-length(psi))

for (s in 1:(t-1))

{ for (r in (s+1):t)

{l<-l+1

evec[[l]]<-matrix(0,t*(t-1)/2,1)

er<-es<-matrix(0,t,1)

er[r,1]<-1

es[s,1]<-1

E[[l]]<-er%*%t(es)

k<-1+qran+t+1

q<-k - (1+qran)

mvec[[k]]<-matrix(0,t*(t-1)/2,1)

M[[k]]<-dSin[[q]]%*%lamt - t(lamt)%*%dSin[[q]]

evec[[l]] <-as.vector(E[[l]][lower.tri(E[[l]])])

mvec[[k]] <-as.vector(M[[k]][lower.tri(M[[k]])])

O[l,k]<- -(t(evec[[l]])%*%mvec[[k]])

O[k,l]<-O[l,k]

}

}

#print (O)

list(phi=phi,constraint=c,dcons=dcon,dconspsi=dconpsi,psi=psi,Omat=O)

}

#

end ar1hgencons

##################################################################################

#

# ar1hsym

##################################################################################

ar1hsym<-function(r,t,phi=c(rep(0.1,(t+1+(t*(t+1)/2)))), psi=NULL)

{

# forms the inverse sig and derivatives of sigma for the MVAR1 model with

#symmetric Lambda= (t times)and

# Sigma = ar1h heterogeneous ar1 process with constraints)
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# r=rows t=times phi = sigma_11 sigma_22, sigma_33, ...sigma_tt,

# phi_ar1, ... lambda_11, lambda_12,..lambda_1t,lambda_22,....

# July2010

#JDF

##################################################################################

F1<-mydiag(1,1,r-1,r-1)+mydiag(1,-1,r-1,r-1)

E1<- diag(c(0,rep(1,r-2),0))

F1t<-mydiag(1,1,t-1,t-1)+mydiag(1,-1,t-1,t-1)

E1t<- diag(c(0,rep(1,t-2),0))

Ir<-diag(r)

It<-diag(t)

Irt<-diag(r*t)

Jt<-matrix(1,nrow=t,ncol=t)

sigphi<-(t+1)

totphi<-(t+1)+ t*(t+1)/2

lamphi<- totphi-sigphi

#Sigma<-matrix(0,t,t)

D12<-matrix(0,t,t)

SigAR1in<-matrix(0,t,t)

ei<-ej<-matrix(0,t,1)

dSin<-dSo<-dD12<-list()

k<-0

for (i in 1:t)

{k<-k+1

ei<-matrix(0,t,1)

ei[i,1]<-1

D12[i,i]<-(phi[k])^(-0.5)

dD12[[k]]<-(ei%*%t(ei))*(-0.5)*(phi[k])^(-1.5)

}

k<-t+1

SigAR1in<- (1-phi[k]^2)^(-1)*(It + phi[k]^2*E1t - phi[k]*F1t)

sti<-D12%*%SigAR1in%*%D12

sigt<-ginv.new(sti)$invx

# Lambda

lam<-lamt<-matrix(0,t,t)

dL<-dLo<-list()

k<-(sigphi)

for (i in 1:t)

{ for (j in i:t)

{k <- k+1

lam[i,j] <- phi[k]

ei<-ej<-matrix(0,t,1)

ei[i,1]<-1

ej[j,1]<-1

dLo[[k]]<-ei%*%t(ej)

dL[[k]]<-dLo[[k]] + t(dLo[[k]]) - diag(diag(dLo[[k]]))

}

}

lamt<-lam+t(lam)-diag(diag(lam))

s0<-sti%*%ginv.new(It-(lamt%*%lamt))$invx

s1<-kronecker(Ir,s0)

s2<-kronecker(F1,lamt)

s3<-kronecker(E1,(lamt%*%lamt))

sigi<-s1%*%(Irt-s2+s3)
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sig<-ginv.new(sigi)$invx

P1<-s1

P2<-Irt-s2+s3

# diff wrt phi[k]

dP1<-list()

dP2<-list()

for (k in 1:t)

{dSin[[k]]<-dD12[[k]]%*%(SigAR1in%*%D12) + D12%*%SigAR1in%*%dD12[[k]]

dP1[[k]]<- kronecker(Ir, dSin[[k]]%*%ginv.new(It-(lamt%*%lamt))$invx)

dP2[[k]]<-0*Irt

}

for (k in (t+1):(t+1))

{dSin[[k]]<-D12%*%((1-phi[k]^2)^(-1)*(2*phi[k]*E1t-F1t)+

(2*phi[k]*(1-phi[k]^2)^(-2))*(It + phi[k]^2*E1t-phi[k]*F1t))%*%D12

dP1[[k]]<- kronecker(Ir, dSin[[k]]%*%ginv.new(It-(lamt%*%lamt))$invx)

dP2[[k]]<-0*Irt}

for (k in (1+sigphi):totphi)

{dP1[[k]]<- kronecker(Ir, s0%*%(lamt%*%dL[[k]]+

dL[[k]]%*%lamt)%*%ginv.new(It-(lamt%*%lamt))$invx )

dP2[[k]]<-kronecker(-F1,dL[[k]]) + kronecker(E1,(lamt%*%dL[[k]]+dL[[k]]%*%lamt))

}

dsigi<-list()

dsig<-list()

for (k in 1:totphi)

{dsigi[[k]]<-dP1[[k]]%*%P2 + P1%*%dP2[[k]]

dsig[[k]]<- -sig%*%dsigi[[k]]%*%sig

}

list(sig=sig,sigi=sigi,dsig=dsig,phi=phi,partype=rep(1,length(phi)))

}

#

# end ar1hsym

#

############################################################

#

# ar1hsym constraints

###############################################

ar1hsymcons<-function(r,t,tp,qran,rowmod)

{

phi<-rowmod$phi

psi<-rowmod$psi

# function to get constraints and differentials of constraints

# Sigma & SigmaIn

F1<-mydiag(1,1,r-1,r-1)+mydiag(1,-1,r-1,r-1)

E1<- diag(c(0,rep(1,r-2),0))

F1t<-mydiag(1,1,t-1,t-1)+mydiag(1,-1,t-1,t-1)

E1t<- diag(c(0,rep(1,t-2),0))

Ir<-diag(r)

It<-diag(t)

Irt<-diag(r*t)

Jt<-matrix(1,nrow=t,ncol=t)

sigphi<-(t+1)
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totphi<-(t+1)+ t*(t+1)/2

lamphi<- totphi-sigphi

#Sigma<-matrix(0,t,t)

D12<-matrix(0,t,t)

SigAR1in<-matrix(0,t,t)

ei<-ej<-matrix(0,t,1)

dSin<-dSo<-dD12<-dD122<-dSinps<-d2Sin<-list()

k<-0

for (i in 1:t)

{k<-k+1

ei<-matrix(0,t,1)

ei[i,1]<-1

D12[i,i]<-(phi[k])^(-0.5)

dD12[[k]]<-(ei%*%t(ei))*-0.5*(phi[k])^(-1.5)

dD122[[k]]<- 0.75*(phi[k]^(-2.5))*(ei%*%t(ei))

}

k<-t+1

SigAR1in<- (1-phi[k]^2)^(-1)*(It + phi[k]^2*E1t - phi[k]*F1t)

sti<-D12%*%SigAR1in%*%D12

sigt<-ginv.new(sti)$invx

# Lambda

# Lambda

lam<-lamt<-matrix(0,t,t)

dL<-dLo<-list()

k<-(sigphi)

for (i in 1:t)

{ for (j in i:t)

{k <- k+1

lam[i,j] <- phi[k]

ei<-ej<-matrix(0,t,1)

ei[i,1]<-1

ej[j,1]<-1

dLo[[k]]<-ei%*%t(ej)

dL[[k]]<-dLo[[k]] + t(dLo[[k]]) - diag(diag(dLo[[k]]))

}

}

lamt<-lam + t(lam)-diag(diag(lam))

# dSin - wrt sigma_ii

for (k in 1:t)

{dSin[[k]]<-dD12[[k]]%*%(SigAR1in%*%D12) + D12%*%SigAR1in%*%dD12[[k]]

dSAR1v<- (1-phi[t+1]^2)^(-1)*(2*phi[t+1]*E1t-F1t)+

(2*phi[t+1]/(1-phi[t+1]^2)^2)*(It + phi[t+1]^2*E1t-phi[t+1]*F1t)

dSinps[[k]]<-dD12[[k]]%*%dSAR1v%*%D12 + D12%*%dSAR1v%*%dD12[[k]]

d2Sin[[k]]<- dD122[[k]]%*%SigAR1in%*%D12 + D12%*%SigAR1in%*%dD122[[k]]+

2*dD12[[k]]%*%SigAR1in%*%dD12[[k]]

}

# diff Sigma inverse wrt phi

for (k in (t+1):(t+1))

{dSin[[k]]<-D12%*%dSAR1v%*%D12

d2Sin[[k]]<-D12%*%(2*(1-phi[k]^2)^(-1)*E1t +

4*phi[k]*(1-phi[k]^2)^(-2)*(2*phi[k]*E1t-F1t) +

(2*(1-phi[k]^2)^(-2) + 8*phi[k]^2*(1-phi[k]^2)^(-3))*

(It+phi[k]^2*E1t-phi[k]*F1t) )%*%D12

}
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# psimat

# now for constraints

dcons<-matrix(0,t,t)

psimat<-matrix(0,t,t)

cons<-matrix(0,t,t)

dcon<-list()

dconpsi<-list()

c<-list()

l<-0

# allocate psi[k] across top half of psimat not diagonals then make symmetric

for (i in 1:(t-1))

{ for (j in (i+1):t)

{ l<-l+1

psimat[i,j]<-psi[l]

}

}

# now create full matrices

psimatf<-psimat+t(psimat)-diag(diag(psimat))

psimat<-psimatf

# diff C wrt phi[[k]]

# sigma_rs

pvec<-mvec<-list()

M<-list()

for (k in 1:sigphi)

{ pvec[[k]]<-matrix(0,t*(t-1)/2,1)

mvec[[k]]<-matrix(0,t*(t-1)/2,1)

M[[k]] <- dSin[[k]]%*%lamt - t(lamt)%*%dSin[[k]]

pvec[[k]]<-as.vector(psimat[lower.tri(psimat)])

mvec[[k]]<-as.vector(M[[k]][lower.tri(M[[k]])])

dcon[[k]] <-(t(pvec[[k]])%*%mvec[[k]])

}

# phi

k<-t+1

pvec[[k]]<-matrix(0,t*(t-1)/2,1)

mvec[[k]]<-matrix(0,t*(t-1)/2,1)

M[[k]] <- dSin[[k]]%*%lamt - t(lamt)%*%dSin[[k]]

pvec[[k]]<-as.vector(psimat[lower.tri(psimat)])

mvec[[k]]<-as.vector(M[[k]][lower.tri(M[[k]])])

dcon[[k]] <-(t(pvec[[k]])%*%mvec[[k]])

# lambda_rs

for (k in (sigphi+1):totphi)

{ pvec[[k]]<-matrix(0,t*(t-1)/2,1)

mvec[[k]]<-matrix(0,t*(t-1)/2,1)

M[[k]] <- sti%*%dL[[k]] - t(dL[[k]])%*%sti

pvec[[k]]<-as.vector(psimat[lower.tri(psimat)])

mvec[[k]]<-as.vector(M[[k]][lower.tri(M[[k]])])

dcon[[k]] <-(t(pvec[[k]])%*%mvec[[k]])

}

247



#diff C wrt psi[[l]] - gives the constraints c

P<-list()

l<-0

for (s in 1:(t-1))

{for (r in (s+1):t)

{l<-l+1

pvec[[l]]<-mvec[[l]]<-matrix(0,t*(t-1)/2,1)

er<-es<-matrix(0,t,1)

er[r,1]<-1

es[s,1]<-1

P[[l]]<-er%*%t(es)

M[[l]]<-sti%*%lamt - t(lamt)%*%sti

pvec[[l]]<-as.vector(P[[l]][lower.tri(P[[l]])])

mvec[[l]]<-as.vector(M[[l]][lower.tri(M[[l]])])

dconpsi[[l]]<-t(pvec[[l]])%*%mvec[[l]]

# match up constarints with psis in correct order

c[[l]]<-dconpsi[[l]]

}

}

# second derivatives of C

# now need to adjust AI matrix with second derivatives where relevant

# use matrix O to add extra bits to AI matrix (AI in order sigma2, gammas,

# phi[k] , phi_col, psi[l])

# tp= total number of parameters - O is tpxtp

O<-matrix(0,tp,tp)

evec<-mvec<-list()

E<-M<-list()

# second differential wrt sigma_rr^2

for (k in (1+qran+1):(1+qran+t))

{q<-k-(1+qran)

pvec[[k]]<-mvec[[k]]<-matrix(0,t*(t-1)/2,1)

M[[k]]<-d2Sin[[q]]%*%lamt - t(lamt)%*%d2Sin[[q]]

pvec[[k]] <-as.vector(psimat[lower.tri(psimat)])

mvec[[k]] <-as.vector(M[[k]][lower.tri(M[[k]])])

O[k,k]<- -(t(pvec[[k]])%*%mvec[[k]])

}

# second differential wrt phi^2

k <-1+qran+t+1

q<-k - (1+qran)

pvec[[k]]<-mvec[[k]]<-matrix(0,t*(t-1)/2,1)

M[[k]]<-d2Sin[[q]]%*%lamt - t(lamt)%*%d2Sin[[q]]

pvec[[k]] <-as.vector(psimat[lower.tri(psimat)])

mvec[[k]] <-as.vector(M[[k]][lower.tri(M[[k]])])

O[k,k]<- -(t(pvec[[k]])%*%mvec[[k]])

# second differential wrt sigma_rr and lambda_uv

for (l in (1+qran+1):(1+qran+t))

{p<-l-(1+qran)

pvec[[l]]<-matrix(0,t*(t-1)/2,1)

for (k in (1+qran+sigphi+1):(1+qran+totphi))

{ q<-k -(1+qran)

mvec[[k]]<-matrix(0,t*(t-1)/2,1)
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M[[k]]<-dSin[[p]]%*%dL[[q]] - t(dL[[q]])%*%dSin[[p]]

pvec[[l]] <-as.vector(psimat[lower.tri(psimat)])

mvec[[k]] <-as.vector(M[[k]][lower.tri(M[[k]])])

O[l,k]<- -(t(pvec[[l]])%*%mvec[[k]])

O[k,l]<-O[l,k]

}

}

# second differential wrt phi and lambda_uv

l<-1+ qran+t+1

p<-l-(1+qran)

pvec[[l]]<-matrix(0,t*(t-1)/2,1)

for (k in (1+qran+sigphi+1):(1+qran+totphi))

{q<-k-(1+qran)

mvec[[k]]<-matrix(0,t*(t-1)/2,1)

M[[k]]<-dSin[[p]]%*%dL[[q]] - t(dL[[q]])%*%dSin[[p]]

pvec[[l]] <-as.vector(psimat[lower.tri(psimat)])

mvec[[k]] <-as.vector(M[[k]][lower.tri(M[[k]])])

O[l,k]<- -(t(pvec[[l]])%*%mvec[[k]])

O[k,l]<-O[l,k]

}

# second differential wrt phi and sigma_rr

l<-1+ qran+t+1

pvec[[l]]<-matrix(0,t*(t-1)/2,1)

for (k in (1+qran+1):(1+qran+t))

{q<-k-(1+qran)

mvec[[k]]<-matrix(0,t*(t-1)/2,1)

M[[k]]<-dSinps[[q]]%*%lamt - t(lamt)%*%dSinps[[q]]

pvec[[l]] <-as.vector(psimat[lower.tri(psimat)])

mvec[[k]] <-as.vector(M[[k]][lower.tri(M[[k]])])

O[l,k]<- -(t(pvec[[l]])%*%mvec[[k]])

O[k,l]<-O[l,k]

}

# second differentials wrt psi_rs and sigma_uu

# phi[[l]] and phi[[k]]

evec<-mvec<-list()

E<-M<-list()

l<-(tp-length(psi))

for (s in 1:(t-1))

{ for (r in (s+1):t)

{l<-l+1

evec[[l]]<-matrix(0,t*(t-1)/2,1)

er<-es<-matrix(0,t,1)

er[r,1]<-1

es[s,1]<-1

E[[l]]<-er%*%t(es)

for (k in (1+qran+1):(1+qran+t))

{q<-k-(1+qran)

mvec[[k]]<-matrix(0,t*(t-1)/2,1)

M[[k]]<-dSin[[q]]%*%lamt - t(lamt)%*%dSin[[q]]

evec[[l]] <-as.vector(E[[l]][lower.tri(E[[l]])])

mvec[[k]] <-as.vector(M[[k]][lower.tri(M[[k]])])
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O[l,k]<- -(t(evec[[l]])%*%mvec[[k]])

O[k,l]<-O[l,k]

}

}

}

# second differentials wrt psi_rs and lambda_uv

l<-(tp-length(psi))

for (s in 1:(t-1))

{ for (r in (s+1):t)

{l<-l+1

evec[[l]]<-matrix(0,t*(t-1)/2,1)

er<-es<-matrix(0,t,1)

er[r,1]<-1

es[s,1]<-1

E[[l]]<-er%*%t(es)

for (k in (1+qran+sigphi+1):(1+qran+totphi))

{ q<-k - (1+qran)

mvec[[k]]<-matrix(0,t*(t-1)/2,1)

M[[k]]<-sti%*%dL[[q]] - t(dL[[q]])%*%sti

evec[[l]] <-as.vector(E[[l]][lower.tri(E[[l]])])

mvec[[k]] <-as.vector(M[[k]][lower.tri(M[[k]])])

O[l,k]<- -(t(evec[[l]])%*%mvec[[k]])

O[k,l]<-O[l,k]

}

}

}

# second differentials wrt psi_rs and phi

# phi[[l]] and phi[[t+1]]

evec<-mvec<-list()

E<-M<-list()

l<-(tp-length(psi))

for (s in 1:(t-1))

{ for (r in (s+1):t)

{l<-l+1

evec[[l]]<-matrix(0,t*(t-1)/2,1)

er<-es<-matrix(0,t,1)

er[r,1]<-1

es[s,1]<-1

E[[l]]<-er%*%t(es)

k<-1+qran+t+1

q<-k - (1+qran)

mvec[[k]]<-matrix(0,t*(t-1)/2,1)

M[[k]]<-dSin[[q]]%*%lamt - t(lamt)%*%dSin[[q]]

evec[[l]] <-as.vector(E[[l]][lower.tri(E[[l]])])

mvec[[k]] <-as.vector(M[[k]][lower.tri(M[[k]])])

O[l,k]<- -(t(evec[[l]])%*%mvec[[k]])

O[k,l]<-O[l,k]

}

}

#print (O)

list(phi=phi,constraint=c,dcons=dcon,dconspsi=dconpsi,psi=psi,Omat=O)

}
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#

#end ar1hsymcons

#

##################################################################################

#

# anteband

#################################################################################

anteband<-function(r,t,phi=NULL, psi=NULL)

{

# forms the inverse sig and derivatives of sigma for the MVAR1 model

# with banded tri diagonal NONSYMMETRIC Lambda (t times)and

# Sigma = ante1 with constraints)

# r=rows t=times

# phi = ds = 1/sigma_11 1/sigma_22, 1/sigma_33, ...1/sigma_tt,

# cs = c_1,c_2,...c_t-1 (antedependence parameters)

# lambdas = lambda_11 lambda_12 lambda_21 lambda_22 lambda_23

# lambda_32 lambda_33 .... lambda_rr

# Apr2011

#JDF

##################################################################################

F1<-mydiag(1,1,r-1,r-1)+mydiag(1,-1,r-1,r-1)

E1<- diag(c(0,rep(1,r-2),0))

Ir<-diag(r)

It<-diag(t)

Irt<-diag(r*t)

Jt<-matrix(1,nrow=t,ncol=t)

sigphi<-2*t-1

lamphi<-3*t-2

totphi<- lamphi+sigphi

Sigma<-matrix(0,t,t)

D<-matrix(0,t,t)

ei<-ej<-matrix(0,t,1)

dS<-dSo<-dD<-list()

k<-0

# di's in Sigma

for (i in 1:t)

{k<-k+1

ei<-matrix(0,t,1)

ei[i,1]<-1

D[i,i]<-phi[k]

dD[[k]]<-ei%*%t(ei)

}

k<-t

# ci's in Sigma

C<-matrix(0,t,t)

dC<-list()

for (i in 1:(t-1))

{k<-k+1

ei<-ei1<-matrix(0,t,1)

ei[i,1]<-1

ei1[i+1,1]<- 1

C[i+1,i]<- -phi[k]

C[i,i]<-1
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C[t,t]<-1

dC[[k]]<- -ei1%*%t(ei)

}

sti<-matrix(0,t,t)

sti<-t(C)%*%D%*%C

#sigt<-ginv.new(sti)$invx

# Lambda

lam<-lamt<-matrix(0,t,t)

dL<-dLo<-list()

lam[1,1]<-phi[sigphi+1]

lam[1,2]<-phi[sigphi+2]

e1<-e2<-matrix(0,t,1)

e1[1,1]<-1

e2[2,1]<-1

dL[[sigphi+1]]<-e1%*%t(e1)

dL[[sigphi+2]]<-e1%*%t(e2)

k<-(sigphi+2)

for (i in 2:(t-1))

{ for (j in (i-1):(i+1))

{k <- k+1

lam[i,j] <- phi[k]

ei<-ej<-matrix(0,t,1)

ei[i,1]<-1

ej[j,1]<-1

dL[[k]]<-ei%*%t(ej)

}

}

et<-et1<-matrix(0,t,1)

et[t,1]<-1

et1[t-1,1]<-1

lam[t,t-1]<-phi[totphi-1]

lam[t,t]<-phi[totphi]

dL[[totphi-1]]<-et%*%t(et1)

dL[[totphi]]<-et%*%t(et)

s0<-sti%*%ginv.new(It-(lamt%*%lamt))$invx

s1<-kronecker(Ir,s0)

s2<-kronecker(F1,lamt)

s3<-kronecker(E1,(lamt%*%lamt))

sigi<-s1%*%(Irt-s2+s3)

sig<-ginv.new(sigi)$invx

P1<-s1

P2<-Irt-s2+s3

# diff wrt phi[k]

dP1<-list()

dP2<-list()

dSin<-list()

for (k in 1:t)

{dSin[[k]]<-t(C)%*%dD[[k]]%*%C

dP1[[k]]<- kronecker(Ir, dSin[[k]]%*%ginv.new(It-(lamt%*%lamt))$invx)

dP2[[k]]<-0*Irt
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}

for (k in (t+1):(2*t-1))

{dSin[[k]]<-t(dC[[k]])%*%D%*%C + t(C)%*%D%*%dC[[k]]

dP1[[k]]<- kronecker(Ir, dSin[[k]]%*%ginv.new(It-(lamt%*%lamt))$invx)

dP2[[k]]<-0*Irt

}

for (k in (1+sigphi):totphi)

{dP1[[k]]<- kronecker(Ir, s0%*%(lamt%*%dL[[k]]+

dL[[k]]%*%lamt)%*%ginv.new(It-(lamt%*%lamt))$invx )

dP2[[k]]<-kronecker(-F1,dL[[k]]) + kronecker(E1,(lamt%*%dL[[k]]+dL[[k]]%*%lamt))

}

dsigi<-list()

dsig<-list()

for (k in 1:totphi)

{dsigi[[k]]<-dP1[[k]]%*%P2 + P1%*%dP2[[k]]

dsig[[k]]<- -sig%*%dsigi[[k]]%*%sig

}

list(sig=sig,sigi=sigi,dsig=dsig,phi=phi,partype=rep(1,length(phi)))

}

#

# end anteband

############################################################

#

# anteband constraints

##############################################

antebandcons<-function(r,t,tp,qran,rowmod)

{

phi<-rowmod$phi

psi<-rowmod$psi

sigphi<-2*t-1

lamphi<-3*t-2

totphi<- lamphi+sigphi

# function to get constraints and differentials of constraints

# Sigma

Sigma<-matrix(0,t,t)

D<-matrix(0,t,t)

ei<-ej<-matrix(0,t,1)

dS<-dSo<-dD<-dC<-list()

k<-0

# di's in Sigma

for (i in 1:t)

{k<-k+1

ei<-matrix(0,t,1)

ei[i,1]<-1

D[i,i]<-phi[k]

dD[[k]]<-ei%*%t(ei)

}

k<-t

# ci's in Sigma

C<-matrix(0,t,t)

dC<-list()

for (i in 1:(t-1))

{k<-k+1
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ei<-ei1<-matrix(0,t,1)

ei[i,1]<-1

ei1[i+1,1]<- 1

C[i+1,i]<- -phi[k]

C[i,i]<-1

C[t,t]<-1

dC[[k]]<- -ei1%*%t(ei)

}

sti<-matrix(0,t,t)

sti<-t(C)%*%D%*%C

sigt<-ginv.new(sti)$invx

# allocate lambdas across matrix (symmetric) tridiagonal

# Lambda

# Lambda

lam<-lamt<-matrix(0,t,t)

dL<-dLo<-list()

lam[1,1]<-phi[sigphi+1]

lam[1,2]<-phi[sigphi+2]

e1<-e2<-matrix(0,t,1)

e1[1,1]<-1

e2[2,1]<-1

dL[[sigphi+1]]<-e1%*%t(e1)

dL[[sigphi+2]]<-e1%*%t(e2)

k<-(sigphi+2)

for (i in 2:(t-1))

{ for (j in (i-1):(i+1))

{k <- k+1

lam[i,j] <- phi[k]

ei<-ej<-matrix(0,t,1)

ei[i,1]<-1

ej[j,1]<-1

dL[[k]]<-ei%*%t(ej)

}

}

et<-et1<-matrix(0,t,1)

et[t,1]<-1

et1[t-1,1]<-1

lam[t,t-1]<-phi[totphi-1]

lam[t,t]<-phi[totphi]

dL[[totphi-1]]<-et%*%t(et1)

dL[[totphi]]<-et%*%t(et)

# now for constraints

dcons<-matrix(0,t,t)

psimat<-matrix(0,t,t)

cons<-matrix(0,t,t)

dcon<-list()
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dconpsi<-list()

c<-list()

l<-0

# allocate psi[k] across top half of psimat (then make as a symmetric matrix)

for (i in 1:(t-1))

{ for (j in (i+1):t)

{ l<-l+1

psimat[i,j]<-psi[l]

# cons[i,j]<-sum(lamt[i,1:t]*sigt[1:t,j]) - sum(sigt[i,1:t]*lamt[j,1:t])

# c[[l]]<- cons[i,j]

}

}

# now create full matrices

psimatf<-psimat+t(psimat)-diag(diag(psimat))

psimat<-psimatf

#cons<-consf

# now differentiate the constraints wrt phi[k] - from Sigma

# di's

pvec<-mvec<-dSin<-list()

M<-list()

for (k in 1:t)

{ dSin[[k]]<-t(C)%*%dD[[k]]%*%C

pvec[[k]]<-matrix(0,t*(t-1)/2,1)

mvec[[k]]<-matrix(0,t*(t-1)/2,1)

M[[k]] <- dSin[[k]]%*%lamt - t(lamt)%*%dSin[[k]]

pvec[[k]]<-as.vector(psimat[lower.tri(psimat)])

mvec[[k]]<-as.vector(M[[k]][lower.tri(M[[k]])])

dcon[[k]] <-(t(pvec[[k]])%*%mvec[[k]])

}

# ci's

for (k in (t+1):(2*t-1))

{ dSin[[k]]<-t(dC[[k]])%*%D%*%C + t(C)%*%D%*%dC[[k]]

pvec[[k]]<-matrix(0,t*(t-1)/2,1)

mvec[[k]]<-matrix(0,t*(t-1)/2,1)

M[[k]] <- dSin[[k]]%*%lamt - t(lamt)%*%dSin[[k]]

pvec[[k]]<-as.vector(psimat[lower.tri(psimat)])

mvec[[k]]<-as.vector(M[[k]][lower.tri(M[[k]])])

dcon[[k]] <-(t(pvec[[k]])%*%mvec[[k]])

}

# now differentiate C wrt phi[k] - from Lambda - lambda_ij

for (k in (sigphi+1):totphi)

{

pvec[[k]]<-matrix(0,t*(t-1)/2,1)

mvec[[k]]<-matrix(0,t*(t-1)/2,1)

M[[k]] <- sti%*%dL[[k]] - t(dL[[k]])%*%sti

pvec[[k]]<-as.vector(psimat[lower.tri(psimat)])

mvec[[k]]<-as.vector(M[[k]][lower.tri(M[[k]])])

dcon[[k]] <-(t(pvec[[k]])%*%mvec[[k]])

}

# diff C wrt psi[[l]]

P<-list()

l<-0
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for (s in 1:(t-1))

{for (r in (s+1):t)

{l<-l+1

pvec[[l]]<-mvec[[l]]<-matrix(0,t*(t-1)/2,1)

er<-es<-matrix(0,t,1)

er[r,1]<-1

es[s,1]<-1

P[[l]]<-er%*%t(es)

M[[l]]<-sti%*%lamt - t(lamt)%*%sti

pvec[[l]]<-as.vector(P[[l]][lower.tri(P[[l]])])

mvec[[l]]<-as.vector(M[[l]][lower.tri(M[[l]])])

dconpsi[[l]]<-t(pvec[[l]])%*%mvec[[l]]

# match up constraints with psis in correct order

c[[l]]<-dconpsi[[l]]

}

}

# now need to adjust AI matrix with second derivatives where relevant

# use matrix O to add extra bits to AI matrix (AI in order sigma2,

# gammas, phi[k] , phi_col, psi[l])

# tp= total number of parameters - O is tpxtp

# second differentials wrt psi_rs and di

O<-matrix(0,tp,tp)

evec<-mvec<-list()

E<-M<-list()

l<-(tp-length(psi))

for (s in 1:(t-1))

{ for (r in (s+1):t)

{l<-l+1

evec[[l]]<-matrix(0,t*(t-1)/2,1)

er<-es<-matrix(0,t,1)

er[r,1]<-1

es[s,1]<-1

E[[l]]<-er%*%t(es)

for ( k in (1+qran+1):(1+qran+t))

{q<- k-(1+qran)

mvec[[k]]<-matrix(0,t*(t-1)/2,1)

M[[k]]<-dSin[[q]]%*%lamt - t(lamt)%*%dSin[[q]]

evec[[l]] <-as.vector(E[[l]][lower.tri(E[[l]])])

mvec[[k]] <-as.vector(M[[k]][lower.tri(M[[k]])])

O[l,k]<- -(t(evec[[l]])%*%mvec[[k]])

O[k,l]<-O[l,k]

}

}

}

# second differentials wrt psi_rs and ci

O<-matrix(0,tp,tp)

evec<-mvec<-list()

E<-M<-list()

l<-(tp-length(psi))

for (s in 1:(t-1))

{ for (r in (s+1):t)
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{l<-l+1

evec[[l]]<-matrix(0,t*(t-1)/2,1)

er<-es<-matrix(0,t,1)

er[r,1]<-1

es[s,1]<-1

E[[l]]<-er%*%t(es)

for ( k in (1+qran+t+1):(1+qran+2*t-1))

{q<- k-(1+qran)

mvec[[k]]<-matrix(0,t*(t-1)/2,1)

M[[k]]<-dSin[[q]]%*%lamt - t(lamt)%*%dSin[[q]]

evec[[l]] <-as.vector(E[[l]][lower.tri(E[[l]])])

mvec[[k]] <-as.vector(M[[k]][lower.tri(M[[k]])])

O[l,k]<- -(t(evec[[l]])%*%mvec[[k]])

O[k,l]<-O[l,k]

}

}

}

#stop (print (mvec))

#

# second differentials wrt psi_rs and lambda_uv

l<-(tp-length(psi))

for (s in 1:(t-1))

{ for (r in (s+1):t)

{l<-l+1

evec[[l]]<-matrix(0,t*(t-1)/2,1)

er<-es<-matrix(0,t,1)

er[r,1]<-1

es[s,1]<-1

E[[l]]<-er%*%t(es)

for (k in (1+qran+sigphi+1):(1+qran+totphi))

{q<- k-(1+qran)

mvec[[k]]<-matrix(0,t*(t-1)/2,1)

M[[k]]<-sti%*%dL[[q]] - t(dL[[q]])%*%sti

evec[[l]] <-as.vector(E[[l]][lower.tri(E[[l]])])

mvec[[k]] <-as.vector(M[[k]][lower.tri(M[[k]])])

O[l,k]<- -(t(evec[[l]])%*%mvec[[k]])

O[k,l]<-O[l,k]

}

}

}

# second differential wrt di and lambda_uv

for (l in (1+qran+1):(1+qran+t))

{ p<-l-(1+qran)

pvec[[l]]<-matrix(0,t*(t-1)/2,1)

for (k in (1+qran+sigphi+1):(1+qran+totphi))

{q<-k - (1+qran)

mvec[[k]]<-matrix(0,t*(t-1)/2,1)

M[[k]]<-dSin[[p]]%*%dL[[q]] - t(dL[[q]])%*%dSin[[p]]

pvec[[l]] <-as.vector(psimat[lower.tri(psimat)])

mvec[[k]] <-as.vector(M[[k]][lower.tri(M[[k]])])
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O[l,k]<- -(t(pvec[[l]])%*%mvec[[k]])

O[k,l]<-O[l,k]

}

}

# second differential wrt ci and lambda_uv

for (l in (1+qran+t+1):(1+qran+2*t-1))

{ p<-l-(1+qran)

pvec[[l]]<-matrix(0,t*(t-1)/2,1)

for (k in (1+qran+sigphi+1):(1+qran+totphi))

{q<-k - (1+qran)

mvec[[k]]<-matrix(0,t*(t-1)/2,1)

M[[k]]<-dSin[[p]]%*%dL[[q]] - t(dL[[q]])%*%dSin[[p]]

pvec[[l]] <-as.vector(psimat[lower.tri(psimat)])

mvec[[k]] <-as.vector(M[[k]][lower.tri(M[[k]])])

O[l,k]<- -(t(pvec[[l]])%*%mvec[[k]])

O[k,l]<-O[l,k]

}

}

# second differential wrt ci and di

for (l in (1+qran+1):(1+qran+t))

{ p<-l-(1+qran)

pvec[[l]]<-matrix(0,t*(t-1)/2,1)

for (k in (1+qran+t+1):(1+qran+2*t-1))

{q<-k - (1+qran)

mvec[[k]]<-matrix(0,t*(t-1)/2,1)

M[[k]]<-(t(dC[[q]])%*%dD[[p]]%*%C +

t(C)%*%dD[[p]]%*%dC[[q]])%*%lamt-t(lamt)%*%(t(dC[[q]])%*%dD[[p]]%*%C +

t(C)%*%dD[[p]]%*%dC[[q]])

pvec[[l]] <-as.vector(psimat[lower.tri(psimat)])

mvec[[k]] <-as.vector(M[[k]][lower.tri(M[[k]])])

O[l,k]<- -(t(pvec[[l]])%*%mvec[[k]])

O[k,l]<-O[l,k]

}

}

list(phi=phi,constraint=c,dcons=dcon,dconspsi=dconpsi,psi=psi,Omat=O)

}

#

# end antebandcons

#

##################################################################################

#

# USI

##################################################################################

USI<-function(r,t,phi=c(rep(0.1,(t*(t+1)/2+t^2))))

{

# forms the inverse sig and derivatives of sigma for the MVAR1 model with

# general Sigma = US (symmetric) with Lambda = diag(lambda)

# r=rows t=times phi = sigma_11 sigma_12, sigma_13, ...sigma_1t, sigma_22, sigma_23,

... lambda

# same as separable case USxar1

# Mar2010

#JDF

##################################################################################

F1<-mydiag(1,1,r-1,r-1)+mydiag(1,-1,r-1,r-1)
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E1<- diag(c(0,rep(1,r-2),0))

Ir<-diag(r)

It<-diag(t)

Irt<-diag(r*t)

Jt<-matrix(1,nrow=t,ncol=t)

sigphi<-t*(t+1)/2

Sigma<-matrix(0,t,t)

ei<-ej<-matrix(0,t,1)

dS<-dSo<-list()

k<-0

for (i in 1:t)

{for (j in i:t)

{k<-k+1

Sigma[i,j]<- phi[k]

ei<-ej<-matrix(0,t,1)

ei[i,1]<-1

ej[j,1]<-1

dSo[[k]]<-ei%*%t(ej)

dS[[k]]<- dSo[[k]] + t(dSo[[k]]) - diag(diag(dSo[[k]]))

}

}

sigt<-Sigma+t(Sigma)-diag(diag(Sigma))

lamt<-phi[sigphi+1]*It

sti<-ginv.new(sigt)$invx

s0<-sti%*%ginv.new(It-(lamt%*%lamt))$invx

s1<-kronecker(Ir,s0)

s2<-kronecker(F1,lamt)

s3<-kronecker(E1,(lamt%*%lamt))

sigi<-s1%*%(Irt-s2+s3)

sig<-ginv.new(sigi)$invx

P1<-s1

P2<-Irt-s2+s3

# diff wrt phi[k]

dP1<-list()

dP2<-list()

for (k in 1:sigphi)

{dP1[[k]]<- kronecker(Ir, -sti%*%(dS[[k]])%*%s0)

dP2[[k]]<-0*Irt

}

for (k in (sigphi+1):(sigphi+1))

{dP1[[k]]<- kronecker(Ir, s0%*%(2*lamt)%*%ginv.new(It-(lamt%*%lamt))$invx )

dP2[[k]]<-kronecker(-F1,It) + kronecker(E1,(2*lamt))

}

dsigi<-list()

dsig<-list()

for (k in 1:(sigphi+1))

{dsigi[[k]]<-dP1[[k]]%*%P2 + P1%*%dP2[[k]]

dsig[[k]]<- -sig%*%dsigi[[k]]%*%sig

}

list(sig=sig,sigi=sigi,dsig=dsig,phi=phi,partype=rep(1,length(phi)))

}

#

# end USI

#########################################################################
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E R Code for implementing 2dMVAR MCAR models

in Chapter 9

##################################################################################

#

# MCARUSgen

##################################################################################

MCARUSgen<-function(r,c,t,phi=c(rep(0.1,(t*(t+1)/2+2*t^2))), psi=NULL)

{

# forms the inverse sig and derivatives of sigma for the 2dMCAR model

# with general Lambda_r= US, Lambda_c=US (t times)and Sigma = US covariance matrix

# (symmetric)

# with constraints Lambda_rSigma, Lambda_cSigma, Lambda_rLambda_cSigma all symmetric)

# r=rows c=cols t=times

# phi = sigma_11 sigma_12, ...sigma_1t, sigma_22,

#, ... lambda_r11, lambda_r12,...lambda_r1t,lambda_r21, lambda_r22,... lambda_r2t,...

#, ... lambda_c11, lambda_c12,...lambda_c1t,lambda_c21, lambda_c22,... lambda_c2t,...

# psi = psi_r psi_c psi_rc?????

# Sept 2011

#JDF

##################################################################################

F1r<-mydiag(1,1,r-1,r-1)+mydiag(1,-1,r-1,r-1)

F1c<-mydiag(1,1,c-1,c-1)+mydiag(1,-1,c-1,c-1)

E1r<- diag(c(0,rep(1,r-2),0))

E1c<- diag(c(0,rep(1,c-2),0))

Ir<-diag(r)

Ic<-diag(c)

It<-diag(t)

Irt<-diag(r*t)

Irct<-diag(r*c*t)

Dc <- matrix(0, nrow=c, ncol=c)

Dc[1,2] <-1

Dc[c,c-1]<-1

Dr <- matrix(0, nrow=r, ncol=r)

Dr[1,2] <-1

Dr[r,r-1]<-1

Jt<-matrix(1,nrow=t,ncol=t)

sigphi<-t*(t+1)/2

lamrphi<-t*t

lamcphi<-t*t

totphi<-sigphi+lamrphi+lamcphi

#Sigma

Sigma<-matrix(0,t,t)

ei<-ej<-matrix(0,t,1)

dS<-dSo<-list()

k<-0

for (i in 1:t)

{for (j in i:t)

{k<-k+1

Sigma[i,j]<- phi[k]

ei<-ej<-matrix(0,t,1)

ei[i,1]<-1

ej[j,1]<-1
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dSo[[k]]<-ei%*%t(ej)

dS[[k]]<- dSo[[k]] + t(dSo[[k]]) - diag(diag(dSo[[k]]))

}

}

sigt<-Sigma+t(Sigma)-diag(diag(Sigma))

# Lambda_r

lamrt<-matrix(0,t,t)

dLr<-list()

k<-(sigphi)

for (i in 1:t)

{ for (j in 1:t)

{k <- k+1

lamrt[i,j] <- phi[k]

ei<-ej<-matrix(0,t,1)

ei[i,1]<-1

ej[j,1]<-1

dLr[[k]]<-ei%*%t(ej)

}

}

# Lambda_c

lamct<-matrix(0,t,t)

dLc<-list()

k<-(sigphi+lamrphi)

for (i in 1:t)

{ for (j in 1:t)

{k <- k+1

lamct[i,j] <- phi[k]

ei<-ej<-matrix(0,t,1)

ei[i,1]<-1

ej[j,1]<-1

dLc[[k]]<-ei%*%t(ej)

}

}

sti<-ginv.new(sigt)$invx

lamrc<- lamrt%*%lamct

s0r<-ginv.new(It-(lamrt%*%lamrt))$invx

s0c<-ginv.new(It-(lamct%*%lamct))$invx

s1r<-ginv.new(It+(lamrt%*%lamrt))$invx

s1c<-ginv.new(It+(lamct%*%lamct))$invx

gam3in<- sti%*%s0r%*%s0c

M11 <- kronecker(Ir, gam3in)

M12 <- Irt + kronecker(E1r,(lamrt%*%lamrt))

M1<- M11%*%M12

k1<-kronecker(Ir,lamct%*%lamct)

k2<-Irct + kronecker(E1c,k1)

gamin <- (kronecker(Ic, M1))%*%k2

C1<- kronecker((F1r-Dr), (lamrt%*%s1r)) + kronecker(Dr, lamrt)

C2<- (kronecker(Ir, lamct))%*%(Irt-C1)

C3<- C2%*%(kronecker(Ir, s1c))

BigLam<-kronecker(Ic, C1) + kronecker((F1c -Dc),C3) + kronecker(Dc, C2)

# full inverse covariance matrix

Rinv <-gamin%*%(Irct - BigLam)

sig<-ginv.new(Rinv)$invx

#

#Rinv = R1R2
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R1<-gamin

R2<-(Irct-BigLam)

# diff wrt phi[k]

dR1<-list()

dR2<-list()

dM1<-dM11<-dM12<-dC1<-dC2<-dC3<-list()

for (k in 1:sigphi)

{dM1[[k]]<- kronecker(Ir, (-sti%*%(dS[[k]])%*%gam3in))%*%M12

dR1[[k]]<- kronecker(Ic, dM1[[k]])%*%k2

dR2[[k]]<-0*Irct

}

# der wrt lamr

for (k in (1+sigphi):(sigphi+lamrphi))

{dM11[[k]]<-kronecker(Ir, (sti%*%s0r%*%(lamrt%*%dLr[[k]]+

dLr[[k]]%*%lamrt)%*%s0r%*%s0c))

dM12[[k]]<-kronecker(E1r,(lamrt%*%dLr[[k]] + dLr[[k]]%*%lamrt))

dM1[[k]]<-dM11[[k]]%*%M12 + M11%*%dM12[[k]]

dR1[[k]]<-kronecker(Ic, dM1[[k]])%*%k2

dC1[[k]]<-kronecker((F1r-Dr), (dLr[[k]]%*%s1r - lamrt%*%s1r%*%(lamrt%*%dLr[[k]]+

dLr[[k]]%*%lamrt)%*%s1r))

+ kronecker(Dr, dLr[[k]])

dC2[[k]]<- kronecker(-Ir,lamct)%*%dC1[[k]]

dC3[[k]]<-dC2[[k]]%*%(kronecker(Ir,s1c))

dR2[[k]]<-kronecker(-Ic,dC1[[k]]) -kronecker((F1c-Dc), dC3[[k]]) -

kronecker(Dc, dC2[[k]])

}

# der wrt lamc

for (k in (1+sigphi+lamrphi):totphi)

{dM11[[k]]<-kronecker(Ir, (sti%*%s0r%*%(s0c%*%(lamct%*%dLc[[k]]+

dLc[[k]]%*%lamct)%*%s0c)))

dM1[[k]]<-dM11[[k]]%*%M12

dR1[[k]]<-kronecker(Ic, dM1[[k]])%*%k2 +

(kronecker(Ic,M1)%*%kronecker(E1c,(kronecker(Ir,(lamct%*%dLc[[k]]+

dLc[[k]]%*%lamct)))))

dC2[[k]]<- kronecker(Ir,dLc[[k]])%*%(Irt-C1)

dC3[[k]]<-dC2[[k]]%*%(kronecker(Ir,s1c)) +

C2%*%(kronecker(Ir, (-s1c%*%(lamct%*%dLc[[k]]+dLc[[k]]%*%lamct)%*%s1c)))

dR2[[k]]<- -kronecker((F1c-Dc), dC3[[k]]) - kronecker(Dc, dC2[[k]])

}

dsigi<-list()

dsig<-list()

for (k in 1:totphi)

{dsigi[[k]]<-dR1[[k]]%*%R2 + R1%*%dR2[[k]]

dsig[[k]]<- -sig%*%dsigi[[k]]%*%sig

}

list(sig=sig,sigi=Rinv,dsig=dsig,phi=phi,partype=rep(1,length(phi)))

}

#

# end MCARUSgen

############################################################

#

# constraints and derivatives of constraints
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###############################################

MCARdconsgen<-function(t,tp,qran,rowmod)

{

phi<-rowmod$phi

psi<-rowmod$psi

sigphi<-t*(t+1)/2

lamrphi<-t*t

lamcphi<-t*t

totphi<-sigphi+lamrphi+lamcphi

# function to get constraints and differentials of constraints

#Sigma

Sigma<-matrix(0,t,t)

ei<-ej<-matrix(0,t,1)

dS<-dSo<-list()

k<-0

for (i in 1:t)

{for (j in i:t)

{k<-k+1

Sigma[i,j]<- phi[k]

ei<-ej<-matrix(0,t,1)

ei[i,1]<-1

ej[j,1]<-1

dSo[[k]]<-ei%*%t(ej)

dS[[k]]<- dSo[[k]] + t(dSo[[k]]) - diag(diag(dSo[[k]]))

}

}

sigt<-Sigma+t(Sigma)-diag(diag(Sigma))

# Lambda_r

lamrt<-matrix(0,t,t)

dLr<-list()

k<-(sigphi)

for (i in 1:t)

{ for (j in 1:t)

{k <- k+1

lamrt[i,j] <- phi[k]

ei<-ej<-matrix(0,t,1)

ei[i,1]<-1

ej[j,1]<-1

dLr[[k]]<-ei%*%t(ej)

}

}

# Lambda_c

lamct<-matrix(0,t,t)

dLc<-list()

k<-(sigphi+lamrphi)

for (i in 1:t)

{ for (j in 1:t)

{k <- k+1

lamct[i,j] <- phi[k]

ei<-ej<-matrix(0,t,1)

ei[i,1]<-1

ej[j,1]<-1

dLc[[k]]<-ei%*%t(ej)

}

}
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sti<-ginv.new(sigt)$invx

lamrc<- lamrt%*%lamct

#stop(print (lamrc))

# now for constraints

dconsr<-matrix(0,t,t)

dconsc<-matrix(0,t,t)

dconsrc<-matrix(0,t,t)

psimatr<-matrix(0,t,t)

psimatc<-matrix(0,t,t)

psimatrc<-matrix(0,t,t)

dcon<-dconr<-dconc<-dconrc<-list()

dconpsir<-dconpsic<-dconpsirc<-list()

c<-cr<-cc<-crc<-list()

l<-0

# allocate psi[k] across top half of psimatr (then make as a symmetric matrix)

for (i in 1:(t-1))

{ for (j in (i+1):t)

{ l<-l+1

psimatr[i,j]<-psi[l]

}

}

# now create full matrices

psimatrf<-psimatr+t(psimatr)-diag(diag(psimatr))

psimatr<-psimatrf

# allocate psi[k] across top half of psimatc (then make as a symmetric matrix)

l<-(t*(t-1)/2)

for (i in 1:(t-1))

{ for (j in (i+1):t)

{ l<-l+1

psimatc[i,j]<-psi[l]

}

}

# now create full matrices

psimatcf<-psimatc+t(psimatc)-diag(diag(psimatc))

psimatc<-psimatcf

# allocate psi[k] across top half of psimatrc (then make as a symmetric matrix)

l<-2*(t*(t-1)/2)

for (i in 1:(t-1))

{ for (j in (i+1):t)

{ l<-l+1

psimatrc[i,j]<-psi[l]

}

}

# now create full matrices

psimatrcf<-psimatrc+t(psimatrc)-diag(diag(psimatrc))

psimatrc<-psimatrcf

# up to here

# now differentiate the constraints wrt phi[k] - from Sigma - sigma_rs

# dC=dCr+dCc+dCrc

pvecr<-mvecr<-pvecc<-mvecc<-pvecrc<-mvecrc<-list()

Mr<-Mc<-Mrc<-list()
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for (k in 1:sigphi)

{

pvecr[[k]]<-matrix(0,t*(t+1)/2,1)

mvecr[[k]]<-matrix(0,t*(t+1)/2,1)

Mr[[k]] <- lamrt%*%dS[[k]] - dS[[k]]%*%t(lamrt)

pvecr[[k]]<-as.vector(psimatr[lower.tri(psimatr)])

mvecr[[k]]<-as.vector(Mr[[k]][lower.tri(Mr[[k]])])

dconr[[k]] <-(t(pvecr[[k]])%*%mvecr[[k]])

pvecc[[k]]<-matrix(0,t*(t+1)/2,1)

mvecc[[k]]<-matrix(0,t*(t+1)/2,1)

Mc[[k]] <- lamct%*%dS[[k]] - dS[[k]]%*%t(lamct)

pvecc[[k]]<-as.vector(psimatc[lower.tri(psimatc)])

mvecc[[k]]<-as.vector(Mc[[k]][lower.tri(Mc[[k]])])

dconc[[k]] <-(t(pvecc[[k]])%*%mvecc[[k]])

pvecrc[[k]]<-matrix(0,t*(t+1)/2,1)

mvecrc[[k]]<-matrix(0,t*(t+1)/2,1)

Mrc[[k]] <- lamrt%*%lamct%*%dS[[k]] - dS[[k]]%*%t(lamct)%*%t(lamrt)

pvecrc[[k]]<-as.vector(psimatrc[lower.tri(psimatrc)])

mvecrc[[k]]<-as.vector(Mrc[[k]][lower.tri(Mrc[[k]])])

dconrc[[k]] <-(t(pvecrc[[k]])%*%mvecrc[[k]])

dcon[[k]]<-dconc[[k]]+dconr[[k]]+dconrc[[k]]

}

# now differentiate C wrt phi[k] - from Lambdar - lambdar_ij

# note dCc wrt lambdar = 0

for (k in (sigphi+1):(sigphi+lamrphi))

{

pvecr[[k]]<-matrix(0,t*(t+1)/2,1)

mvecr[[k]]<-matrix(0,t*(t+1)/2,1)

Mr[[k]] <- dLr[[k]]%*%sigt - sigt%*%t(dLr[[k]])

pvecr[[k]]<-as.vector(psimatr[lower.tri(psimatr)])

mvecr[[k]]<-as.vector(Mr[[k]][lower.tri(Mr[[k]])])

dconr[[k]] <-(t(pvecr[[k]])%*%mvecr[[k]])

pvecrc[[k]]<-matrix(0,t*(t+1)/2,1)

mvecrc[[k]]<-matrix(0,t*(t+1)/2,1)

Mrc[[k]] <- dLr[[k]]%*%lamct%*%sigt - sigt%*%t(lamct)%*%t(dLr[[k]])

pvecrc[[k]]<-as.vector(psimatrc[lower.tri(psimatrc)])

mvecrc[[k]]<-as.vector(Mrc[[k]][lower.tri(Mrc[[k]])])

dconrc[[k]] <-(t(pvecrc[[k]])%*%mvecrc[[k]])

dcon[[k]]<-dconr[[k]]+dconrc[[k]]

}

# now differentiate C wrt phi[k] - from Lambdac - lambdar_ij

# note dCr wrt lambdac = 0

for (k in (sigphi+lamrphi+1):totphi)

{

pvecc[[k]]<-matrix(0,t*(t+1)/2,1)

mvecc[[k]]<-matrix(0,t*(t+1)/2,1)

Mc[[k]] <- dLc[[k]]%*%sigt - sigt%*%t(dLc[[k]])

pvecc[[k]]<-as.vector(psimatc[lower.tri(psimatc)])
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mvecc[[k]]<-as.vector(Mc[[k]][lower.tri(Mc[[k]])])

dconc[[k]] <-(t(pvecc[[k]])%*%mvecc[[k]])

pvecrc[[k]]<-matrix(0,t*(t+1)/2,1)

mvecrc[[k]]<-matrix(0,t*(t+1)/2,1)

Mrc[[k]] <- lamrt%*%dLc[[k]]%*%sigt - sigt%*%t(dLc[[k]])%*%t(lamrt)

pvecrc[[k]]<-as.vector(psimatrc[lower.tri(psimatrc)])

mvecrc[[k]]<-as.vector(Mrc[[k]][lower.tri(Mrc[[k]])])

dconrc[[k]] <-(t(pvecrc[[k]])%*%mvecrc[[k]])

dcon[[k]]<-dconc[[k]]+dconrc[[k]]

}

# diff wrt psir

Pr<-list()

l<-0

for (s in 1:(t-1))

{for (r in (s+1):t)

{l<-l+1

pvecr[[l]]<-mvecr[[l]]<-matrix(0,t*(t-1)/2,1)

er<-es<-matrix(0,t,1)

er[r,1]<-1

es[s,1]<-1

Pr[[l]]<-er%*%t(es)

Mr[[l]]<-lamrt%*%sigt - sigt%*%t(lamrt)

pvecr[[l]]<-as.vector(Pr[[l]][lower.tri(Pr[[l]])])

mvecr[[l]]<-as.vector(Mr[[l]][lower.tri(Mr[[l]])])

dconpsir[[l]]<-t(pvecr[[l]])%*%mvecr[[l]]

# match up constraints with psis in correct order

cr[[l]]<-dconpsir[[l]]

}

}

# diff wrt psic

Pc<-list()

l<-0

for (s in 1:(t-1))

{for (r in (s+1):t)

{l<-l+1

pvecc[[l]]<-mvecc[[l]]<-matrix(0,t*(t-1)/2,1)

er<-es<-matrix(0,t,1)

er[r,1]<-1

es[s,1]<-1

Pc[[l]]<-er%*%t(es)

Mc[[l]]<-lamct%*%sigt - sigt%*%t(lamct)

pvecc[[l]]<-as.vector(Pc[[l]][lower.tri(Pc[[l]])])

mvecc[[l]]<-as.vector(Mc[[l]][lower.tri(Mc[[l]])])

dconpsic[[l]]<-t(pvecc[[l]])%*%mvecc[[l]]

# match up constraints with psis in correct order

cc[[l]]<-dconpsic[[l]]

}

}

# diff wrt psirc

Prc<-list()

l<-0
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for (s in 1:(t-1))

{for (r in (s+1):t)

{l<-l+1

pvecrc[[l]]<-mvecrc[[l]]<-matrix(0,t*(t-1)/2,1)

er<-es<-matrix(0,t,1)

er[r,1]<-1

es[s,1]<-1

Prc[[l]]<-er%*%t(es)

Mrc[[l]]<-lamrt%*%lamct%*%sigt - sigt%*%t(lamct)%*%t(lamrt)

pvecrc[[l]]<-as.vector(Prc[[l]][lower.tri(Prc[[l]])])

mvecrc[[l]]<-as.vector(Mrc[[l]][lower.tri(Mrc[[l]])])

dconpsirc[[l]]<-t(pvecrc[[l]])%*%mvecrc[[l]]

# match up constraints with psis in correct order

crc[[l]]<-dconpsirc[[l]]

}

}

# now need to adjust AI matrix with second derivatives where relevant

# use matrix O to add extra bits to AI matrix

#(AI in order sigma2, gammas, phir[k], phic[k], phi_col, psir[l], psic[l],psirc[l])

# tp= total number of parameters - O is tpxtp

lpsir<-(t*(t-1)/2)

lpsic<-(t*(t-1)/2)

lpsirc<-(t*(t-1)/2)

# second differentials of constraints wrt psir_rs and sigma_uv

O<-matrix(0,tp,tp)

evec<-mvec<-list()

E<-M<-list()

l<-(tp-(lpsir +lpsic +lpsirc))

for (s in 1:(t-1))

{ for (r in (s+1):t)

{l<-l+1

evec[[l]]<-matrix(0,t*(t-1)/2,1)

er<-es<-matrix(0,t,1)

er[r,1]<-1

es[s,1]<-1

E[[l]]<-er%*%t(es)

for ( k in (1+qran+1):(1+qran+sigphi))

{q<- k-(1+qran)

mvec[[k]]<-matrix(0,t*(t-1)/2,1)

M[[k]]<-lamrt%*%dS[[q]] - dS[[q]]%*%t(lamrt)

evec[[l]] <-as.vector(E[[l]][lower.tri(E[[l]])])

mvec[[k]] <-as.vector(M[[k]][lower.tri(M[[k]])])

O[l,k]<- -(t(evec[[l]])%*%mvec[[k]])

O[k,l]<-O[l,k]

}

}

}

# second differentials of constraints wrt psic_rs and sigma_uv

l<-(tp-(lpsic+lpsirc))

for (s in 1:(t-1))

{ for (r in (s+1):t)
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{l<-l+1

evec[[l]]<-matrix(0,t*(t-1)/2,1)

er<-es<-matrix(0,t,1)

er[r,1]<-1

es[s,1]<-1

E[[l]]<-er%*%t(es)

for ( k in (1+qran+1):(1+qran+sigphi))

{q<- k-(1+qran)

mvec[[k]]<-matrix(0,t*(t-1)/2,1)

M[[k]]<-lamct%*%dS[[q]] - dS[[q]]%*%t(lamct)

evec[[l]] <-as.vector(E[[l]][lower.tri(E[[l]])])

mvec[[k]] <-as.vector(M[[k]][lower.tri(M[[k]])])

O[l,k]<- -(t(evec[[l]])%*%mvec[[k]])

O[k,l]<-O[l,k]

}

}

}

# second differentials of constraints wrt psirc_rs and sigma_uv

l<-(tp-(lpsirc))

for (s in 1:(t-1))

{ for (r in (s+1):t)

{l<-l+1

evec[[l]]<-matrix(0,t*(t-1)/2,1)

er<-es<-matrix(0,t,1)

er[r,1]<-1

es[s,1]<-1

E[[l]]<-er%*%t(es)

for ( k in (1+qran+1):(1+qran+sigphi))

{q<- k-(1+qran)

mvec[[k]]<-matrix(0,t*(t-1)/2,1)

M[[k]]<-lamrt%*%lamct%*%dS[[q]] - dS[[q]]%*%t(lamct)%*%t(lamrt)

evec[[l]] <-as.vector(E[[l]][lower.tri(E[[l]])])

mvec[[k]] <-as.vector(M[[k]][lower.tri(M[[k]])])

O[l,k]<- -(t(evec[[l]])%*%mvec[[k]])

O[k,l]<-O[l,k]

}

}

}

#stop (print (mvec))

#

# second differentials wrt psir_rs and lambdar_uv

l<-(tp-(lpsir + lpsic+lpsirc))

for (s in 1:(t-1))

{ for (r in (s+1):t)

{l<-l+1

evec[[l]]<-matrix(0,t*(t-1)/2,1)

er<-es<-matrix(0,t,1)

er[r,1]<-1
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es[s,1]<-1

E[[l]]<-er%*%t(es)

for (k in (1+qran+sigphi+1):(1+qran+sigphi+lamrphi))

{q<- k-(1+qran)

mvec[[k]]<-matrix(0,t*(t-1)/2,1)

M[[k]]<-dLr[[q]]%*%sigt - sigt%*%t(dLr[[q]])

evec[[l]] <-as.vector(E[[l]][lower.tri(E[[l]])])

mvec[[k]] <-as.vector(M[[k]][lower.tri(M[[k]])])

O[l,k]<- -(t(evec[[l]])%*%mvec[[k]])

O[k,l]<-O[l,k]

}

}

}

# second differentials wrt psic_rs and lambdac_uv

l<-(tp-(lpsic+lpsirc))

for (s in 1:(t-1))

{ for (r in (s+1):t)

{l<-l+1

evec[[l]]<-matrix(0,t*(t-1)/2,1)

er<-es<-matrix(0,t,1)

er[r,1]<-1

es[s,1]<-1

E[[l]]<-er%*%t(es)

for (k in (1+qran+sigphi+lamrphi+1):(1+qran+totphi))

{q<- k-(1+qran)

mvec[[k]]<-matrix(0,t*(t-1)/2,1)

M[[k]]<-dLc[[q]]%*%sigt - sigt%*%t(dLc[[q]])

evec[[l]] <-as.vector(E[[l]][lower.tri(E[[l]])])

mvec[[k]] <-as.vector(M[[k]][lower.tri(M[[k]])])

O[l,k]<- -(t(evec[[l]])%*%mvec[[k]])

O[k,l]<-O[l,k]

}

}

}

# second differentials wrt psirc_rs and lambdar_uv

l<-(tp-(lpsirc))

for (s in 1:(t-1))

{ for (r in (s+1):t)

{l<-l+1

evec[[l]]<-matrix(0,t*(t-1)/2,1)

er<-es<-matrix(0,t,1)

er[r,1]<-1

es[s,1]<-1

E[[l]]<-er%*%t(es)

for (k in (1+qran+sigphi+1):(1+qran+sigphi+lamrphi))

{q<- k-(1+qran)

mvec[[k]]<-matrix(0,t*(t-1)/2,1)

M[[k]]<-dLr[[q]]%*%lamct%*%sigt - sigt%*%t(lamct)%*%t(dLr[[q]])

evec[[l]] <-as.vector(E[[l]][lower.tri(E[[l]])])

mvec[[k]] <-as.vector(M[[k]][lower.tri(M[[k]])])

O[l,k]<- -(t(evec[[l]])%*%mvec[[k]])

O[k,l]<-O[l,k]

}

}
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}

# second differentials wrt psirc_rs and lambdac_uv

l<-(tp-(lpsirc))

for (s in 1:(t-1))

{ for (r in (s+1):t)

{l<-l+1

evec[[l]]<-matrix(0,t*(t-1)/2,1)

er<-es<-matrix(0,t,1)

er[r,1]<-1

es[s,1]<-1

E[[l]]<-er%*%t(es)

for (k in (1+qran+sigphi+lamrphi+1):(1+qran+totphi))

{q<- k-(1+qran)

mvec[[k]]<-matrix(0,t*(t-1)/2,1)

M[[k]]<-lamrt%*%dLc[[q]]%*%sigt - sigt%*%t(dLc[[q]])%*%t(lamrt)

evec[[l]] <-as.vector(E[[l]][lower.tri(E[[l]])])

mvec[[k]] <-as.vector(M[[k]][lower.tri(M[[k]])])

O[l,k]<- -(t(evec[[l]])%*%mvec[[k]])

O[k,l]<-O[l,k]

}

}

}

# second differential wrt sigma_rs and lambdar_uv

Mr<-Mc<-Mrc<-list()

for (l in (1+qran+1):(1+qran+sigphi))

{ p<-l-(1+qran)

pvecr[[l]]<-matrix(0,t*(t-1)/2,1)

pvecrc[[l]]<-matrix(0,t*(t-1)/2,1)

for (k in (1+qran+sigphi+1):(1+qran+sigphi+lamrphi))

{q<-k - (1+qran)

mvecr[[k]]<-matrix(0,t*(t-1)/2,1)

Mr[[k]]<-dLr[[q]]%*%dS[[p]] - dS[[p]]%*%t(dLr[[q]])

pvecr[[l]] <-as.vector(psimatr[lower.tri(psimatr)])

mvecr[[k]] <-as.vector(Mr[[k]][lower.tri(Mr[[k]])])

mvecrc[[k]]<-matrix(0,t*(t-1)/2,1)

Mrc[[k]]<-dLr[[q]]%*%lamct%*%dS[[p]] - dS[[p]]%*%t(lamct)%*%t(dLr[[q]])

pvecrc[[l]] <-as.vector(psimatrc[lower.tri(psimatrc)])

mvecrc[[k]] <-as.vector(Mrc[[k]][lower.tri(Mrc[[k]])])

#check all of this?

O[l,k]<- -(t(pvecr[[l]])%*%mvecr[[k]])-(t(pvecrc[[l]])%*%mvecrc[[k]])

O[k,l]<-O[l,k]

}

}

# second differential wrt sigma_rs and lambdac_uv

for (l in (1+qran+1):(1+qran+sigphi))

{ p<-l-(1+qran)

pvecc[[l]]<-matrix(0,t*(t-1)/2,1)

pvecrc[[l]]<-matrix(0,t*(t-1)/2,1)

for (k in (1+qran+sigphi+lamrphi+1):(1+qran+totphi))

{q<-k - (1+qran)

mvecc[[k]]<-matrix(0,t*(t-1)/2,1)

Mc[[k]]<-dLc[[q]]%*%dS[[p]] - dS[[p]]%*%t(dLc[[q]])

pvecc[[l]] <-as.vector(psimatc[lower.tri(psimatc)])
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mvecc[[k]] <-as.vector(Mc[[k]][lower.tri(Mc[[k]])])

mvecrc[[k]]<-matrix(0,t*(t-1)/2,1)

Mrc[[k]]<-lamrt%*%dLc[[q]]%*%dS[[p]] - dS[[p]]%*%t(dLc[[q]])%*%t(lamrt)

pvecrc[[l]] <-as.vector(psimatrc[lower.tri(psimatrc)])

mvecrc[[k]] <-as.vector(Mrc[[k]][lower.tri(Mrc[[k]])])

O[l,k]<- -(t(pvecc[[l]])%*%mvecc[[k]]) -(t(pvecrc[[l]])%*%mvecrc[[k]])

O[k,l]<-O[l,k]

}

}

# second differential wrt lambdar_rs and lambdac_uv

for (l in (1+qran+sigphi+1):(1+qran+sigphi+lamrphi))

{ p<-l-(1+qran)

pvecrc[[l]]<-matrix(0,t*(t-1)/2,1)

for (k in (1+qran+sigphi+lamrphi+1):(1+qran+totphi))

{q<-k - (1+qran)

mvec[[k]]<-matrix(0,t*(t-1)/2,1)

M[[k]]<-dLr[[p]]%*%dLc[[q]]%*%sigt - sigt%*%t(dLc[[q]])%*%t(dLr[[p]])

pvecrc[[l]] <-as.vector(psimatrc[lower.tri(psimatrc)])

mvec[[k]] <-as.vector(M[[k]][lower.tri(M[[k]])])

O[l,k]<- -(t(pvecrc[[l]])%*%mvec[[k]])

O[k,l]<-O[l,k]

}

}

# need to joing all elements of lists cr cc crc into list c

c<-list(cr,cc,crc)

#check all done

list(phi=phi,constraint=c,dcons=dcon,

#dconspsir=dconpsir, dconspsic=dconpsic,dconspsirc=dconpsirc,

psi=psi,Omat=O)

}

#

#end MCARdconsgen

#

#################################################################################
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