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1. Summary
Quantifying the impact of biochemical compounds on collective cell spreading is

an essential element of drug design, with various applications including develop-

ing treatments for chronic wounds and cancer. Scratch assays are a technically

simple and inexpensive method used to study collective cell spreading; however,

most previous interpretations of scratch assays are qualitative and do not provide

estimates of the cell diffusivity, D, or the cell proliferation rate,l. Estimating D and

l is important for investigating the efficacy of a potential treatment and provides

insight into the mechanism through which the potential treatment acts. While a

few methods for estimating D and l have been proposed, these previous methods

lead to point estimates of D and l, and provide no insight into the uncertainty in

these estimates. Here, we compare various types of information that can be

extracted from images of a scratch assay, and quantify D and l using discrete

computational simulations and approximate Bayesian computation. We show

that it is possible to robustly recover estimates of D and l from synthetic data,

as well as a new set of experimental data. For the first time, our approach also pro-

vides a method to estimate the uncertainty in our estimates of D and l. We

anticipate that our approach can be generalized to deal with more realistic exper-

imental scenarios in which we are interested in estimating D and l, as well as

additional relevant parameters such as the strength of cell-to-cell adhesion or

the strength of cell-to-substrate adhesion.

2. Introduction
Scratch assays, otherwise known as scrape or wound healing assays [1,2], are a

common experimental method used to study collective cell spreading. Cells are

grown to confluence on a culture plate, after which an artificial gap is created in

the monolayer with a fine-tipped instrument [1]. Microscopic images of the cell

front moving into the vacated area are captured over approximately 12–24 h

[3–6]. Scratch assays are often used to evaluate the impact of biochemical com-

pounds on cell migration and proliferation [7–10]. For example, scratch assays

have been used to study wound healing treatments [9,11], compounds that

promote metastasis [7] and chemotherapeutic drugs [8]. Unfortunately, the

majority of these evaluations are qualitative [5,11], or focus on measurements

that do not distinguish between the roles of cell diffusivity and cell proliferation

[7–9,12,13]. Quantitative comparisons between control assays and assays where

a treatment has been applied are critical to providing information about the

efficacy of a treatment. There is therefore considerable interest in the develop-

ment of robust approaches that recover estimates of the cell diffusivity D and

cell proliferation rate l, as these parameters provide important information

about the effectiveness and the mechanism of action of a putative treatment.
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Previous quantitative interpretations of scratch assays

have considered a variety of experimental measurements,

including counting cell numbers to construct detailed cell den-

sity profiles [14–17], estimating the position of the leading

edge of the spreading population [12,18,19] and recording

detailed individual cell trajectories [14,16]. In some cases,

these measurements have been compared with the results of

a mathematical model to produce point estimates of D and l

[20,21]. Presently, it is unclear whether some of these exper-

imental measurements lead to improved estimates of D and l

relative to other experimental measurements, and it remains

unclear whether an optimal experimental measurement from

a scratch assay can be identified. To the best of our knowledge,

pair density information and pair correlation functions [22,23]

have not been previously considered as a means of estimating

D and l from a scratch assay. Unlike previous quantitative

interpretations, the data required to calculate the pair corre-

lation function from a scratch assay is straightforward to

obtain since it can be calculated simply by inspecting images

of the assay at several time points without detailed cell label-

ling techniques or real-time tracking of individual cells.

Calculating the pair correlation function from experimental

images incorporates information about both the counts of

pair distances and the number of cells in the image. This

kind of information can also be easily extracted from discrete,

individual-based random walk simulations incorporating

random cell movement (governed by the cell diffusivity D)

and cell proliferation (governed by the cell proliferation rate l).

Typically, D and l are estimated by minimizing a measure

of the difference between some experimental measure and a

prediction of a mathematical model, giving rise to point esti-

mates of D and l [12,14,19,21]. However, any information

about the uncertainty of the recovered parameters is ignored

by this standard approach. Understanding and quantifying

the uncertainty in our estimates are important since previously

reported estimates of D vary widely [21], and so it is insightful

to employ parameter estimation techniques that provide more

information than traditional approaches. Approximate Baye-

sian computation (ABC) generates a parameter distribution

that contains this information, and hence provides more insight

into the recovered parameters [24–26]. The use of ABC algor-

ithms in spatio-temporal problems is relatively novel and has

not been considered in the context of a scratch assay.

As far as we are aware, the application of ABC techniques

to interpret scratch assays using random walk computer simu-

lations has not been attempted previously. Therefore, in this

work we focus on a relatively straightforward experimental

system by working with 3T3 fibroblast cells, which are widely

assumed to undergo migration and proliferation without

significant cell-to-cell or cell-to-substrate adhesion effects

[14,16,17]. This simplification allows us to focus on the

estimation of two parameters, D and l. Of course, if the tech-

nique described in this work were to be applied to other cell

types where other mechanisms (such as cell-to-cell adhesion,

cell-to-substrate adhesion or other mechanical effects) were pre-

sent, a more detailed random walk framework with additional

parameters would be required. For example, Khain et al. [27]

describe such an extension whereby individual motility

events in the random walk simulation are affected by adhesion,

and this is incorporated into the computer simulations through

the use of an additional parameter. Other extensions are

also possible, such as the incorporation of mechanical forces

[28–30]. While this work does not incorporate these additional

details, we anticipate that the general framework presented

here for the simpler random walk simulations with just two

parameters could be extended to deal with these further details

in future applications.

Here, we interpret new experimental images from a scratch

assay using discrete random walk simulations, pair correlation

functions and ABC. In §3, we describe the experimental pro-

cedure, present a random walk simulation framework that

approximates the behaviour of cells in a scratch assay [31]

and describe the process of comparing the simulation predic-

tions with experimental data. We note that the random walk

model is applied by performing repeated stochastic compu-

tational simulations, and henceforth we refer to our random

walk model as a computational simulation. In §4, we present

the results from an ABC algorithm applied to synthetically

generated data, and compare our ability to estimate D and l

using various pieces of information from the images of the syn-

thetic scratch assay. We show that combining estimates of the

pair correlation function and the number of cells in the image

allows us to robustly estimate D and l. Applying the same

technique to new experimental data, we recover estimates of

D and l that are well defined and consistent with previous

point estimates [17]; however, we also present information

about the uncertainty in our parameter estimates that has not

been presented previously. In §5, we discuss our results and

suggest directions for future study.

3. Material and methods
3.1. Experimental method
The details of the experimental method have been presented

previously [32]. Briefly, murine fibroblast 3T3 cells [33] were

grown in T175 cm2 tissue culture flasks. One microlitre of cell

suspension was carefully inserted into the well of a tissue cul-

ture plate to ensure that cells were approximately evenly

distributed. The tissue culture plate was placed in a humidified

incubator at 378C and 5% CO2 until the population became

confluent. A scratch was made in the population using a

P1000 pipette tip (Lab Advantage, Australia). Images of the

spreading population were recorded using a Leica AF6000

automated microscope every 5 min for 24 h.

3.2. Computational simulation
We consider a discrete random walk incorporating motility

and proliferation mechanisms on a two-dimensional square

lattice with lattice spacing D, where each lattice site may be

occupied by, at most, one agent [31,34]. At time t, the lattice

contains N(t) agents, which have the ability to move and

proliferate, with probability Pm [ [0,1] and Pp [ [0,1],

respectively, during each timestep of fixed duration t. Invok-

ing the standard assumption that Pm and Pp are constant, the

parameters in the computational simulation are related to D
and l by [31]

D ¼ PmD
2

4t
and l ¼

Pp

t
: (3:1)

Using these relationships, we can treat the parameters

in the simulation, Pm and Pp, as interchangeable with D
and l, respectively.
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During each timestep, N(t) agents are selected with repla-

cement, at random, one at a time [35], and given a chance to

move [31]. Once selected, an agent at (x,y) randomly chooses

and attempts to move to either (x+D,y) or (x,y+D). Poten-

tial motility events are successful provided that the target site

is vacant; otherwise, the event is aborted. After N(t) motile

events have been attempted, an additional N(t) agents are

selected with replacement, at random, one at a time and are

given the opportunity to proliferate. A proliferative agent at

(x,y) attempts to place a daughter agent at (x+D,y) or

(x,y+D). Attempted proliferation events can only be success-

ful if the target site is unoccupied; otherwise, the event is

aborted. We note that our random walk simulation is an

idealization in which it is always theoretically possible that

an agent in the simulations could occasionally proliferate

twice in quick succession, and we note that this is not biologi-

cally relevant. However, for parameter values relevant to our

biological system (and many others), this feature is expected

to have minimal impact. To see this, we note that the average

time between motility events for an isolated agent is t/Pm,

whereas the average time between proliferation events for

an isolated agent is t/Pp. Therefore, for our simulations to

be biologically realistic, we expect the quantity t/Pm to be

in the order of 10–20 min [27], but the quantity t/Pp to be

in the order of approximately 24–48 h [19]. We will make

a comment on these details in §4.2 when we interpret

our results.

We choose the geometry of our simulation to mimic the

scratch assay presented in figure 1a,b. The average cell diameter

is approximately 25 mm [17], givingD ¼ 25 mm. The simulation

domain (an X by Y lattice, presented in figure 1c) corres-

ponds with the size of the experimental images. The image in

figure 1a is approximately 900 mm wide and 675 mm high,

corresponding to X ¼ 36 and Y ¼ 27. We apply symme-

try (zero flux) boundary conditions along the boundaries at

x ¼ 0, x ¼ XD, y ¼ 0 and y ¼ YD. To initiate the computational

simulation, we place N(0) agents, at random, ensuring that no

two agents occupy the same site, in the region for y � Y0D.

We estimate N(0) by counting the number of cells present at

t ¼ 0 in the experimental images. We note that N(t) depends

on time t, but we refer to this quantity as N from this point

for notational convenience.

3.3. Pair correlation functions
There is a significant amount of information available in an

experimental image of a scratch assay. For example, cell den-

sity profiles [14,17], individual cell trajectories [14] and the

position of the leading edge of the spreading cell front

[12,19] have all been estimated from experimental images,

and used to provide point estimates of D and l. Here, we

consider estimating the pair correlation function [22] as an

experimental measurement, henceforth referred to as a sum-

mary statistic. Summary statistics are lower-dimensional

summaries of data that provide tractable comparisons

between sets of data [24]. Since summary statistics merely

summarize a dataset, it is important to examine whether a

particular summary statistic is sufficient; that is, a statistic

that contains all information about the parameters available

from the experiment.

To calculate the pair correlation function, we consider a

dataset corresponding to a square lattice of dimensions X
by Y, where each lattice site can be occupied by, at most,

one agent. Each lattice site has an index (x,y), where 1 �
x � X, 1 � y � Y. All occupied lattice sites at time t, (xj,yj),

are uniquely indexed by j ¼ 1, . . . , N. The number of occu-

pied lattice pairs for each pair distance i ¼ 1, . . . , Y 2 1 is

then given by

c(i) ¼
XN

k¼1

XN

m¼kþ1

1jyk�ymj¼i, i ¼ 1, . . . , Y� 1, (3:2)

where 1a is the indicator function, which is equal to one if a is

true and is equal to zero otherwise. We have oriented our lat-

tice such that the x direction is parallel to the direction of the

initial scratch and the y direction is perpendicular to the

direction of the initial scratch. Previous analysis [22] indicates

that there is more information in the y direction for this kind

of scratch assay, and so we focus on counting the pairs of

agents in the y direction from this point onward.

Binder & Simpson [22] demonstrated that it was possi-

ble to normalize equation (3.2) to produce a pair correlation

function which accounted for volume exclusion and crowd-

ing effects, and here we use the same approach. Binder &

Simpson’s [22] normalization term describes the expected

number of pairs of occupied lattice sites, for each pair dis-

tance i, in a randomly distributed population without any

spatial correlation. The normalization term is given by

ĉ(i) ¼ X2(Y� i)r�r, for i ¼ 1, . . . , Y� 1, (3:3)

where r ¼ N/(XY), �r ¼ (N � 1)=(XY� 1) and N is the

number of occupied lattice sites. Therefore, the pair corre-

lation function is given by

q(i) ¼ c(i)
ĉ(i)

: (3:4)

We note that q(i) is a non-dimensional measure of the abun-

dance of pairs of objects relative to a uniformly distributed

population, whereas c(i) is a dimensional measure of the

number of pairs. Intuitively, we expect that measurements

relating to pair density information could provide important

information about the rates of cell motility and cell prolifer-

ation since proliferation events produce pairs separated by

a short distance, whereas motility events act to increase the

distance between cell pairs. However, without any quantitat-

ive comparisons, it is unclear whether there is any advantage

in using q(i) or c(i) to recover estimates of D and l.

To compare our experimental data with the predictions

from our computational simulation, we map the positions

of cells in the experimental images onto the same lattice

used in the simulation (electronic supplementary material).

We then calculate the pair correlation function q(i), for both

the experimental images and the images produced by the

computational simulation, using the method outlined by

Binder & Simpson [22]. Values of q(i) greater than unity indi-

cate that the distribution of cells or agents is such that we are

more likely to find a pair of cells or agents separated by a dis-

tance i than in a spatially uniform distribution. Similarly,

values of q(i) less than unity indicate that the distribution

of cells or agents is such that we are less likely to find a

pair of cells or agents separated by a distance i than in a

spatially uniform distribution. If we find that q(i) is approxi-

mately unity for all pair distances, the domain is populated

uniformly at random [22]. Calculating q(i) requires infor-

mation about the counts of pair distances c(i), and the

number of cells or agents N. To calculate the pair correlation
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function, we normalize the pair distance counts by the

density, which depends on N. Therefore, we expect some

information regarding N will be lost when considering

the pair correlation function only as a summary statistic.

However, since the pair correlation function has been used

previously to analyse in vitro cell biology assays [22,23],

it is relevant for us to examine whether there is sufficient

information in the pair correlation function to robustly

recover estimates of D and l using an ABC framework. For

completeness, in §4.1, we also examine and compare results

generated by considering other potential summary statistics

to ensure that we use the most appropriate information in

our parameter estimation.

The process of mapping cells from a continuous image

onto a lattice can involve some discretization error, which

we investigated in detail recently [23]. This previous study

explored the impact of using differently sized lattices to dis-

cretize similar experimental images, and we computed the

pair correlation function for variously sized lattices, and this

showed that the pair correlation function was insensitive to

the size of the lattice provided that the lattice spacing was

at least as small as the average cell diameter [23].

3.4. Approximate Bayesian computation
ABC is a useful method for computing posterior distributions

of unknown model parameters in situations where the likeli-

hood function is intractable [36]. ABC algorithms consider

parameter values that generate model predictions that

attempt to match observed experimental data [24–26,36,37].

To approximate the posterior distribution f(ujb), we consider

a prior distribution, p(u), and a simulation that provides a

summary statistic based on a parameter set, u. We note that

b represents the experimental data and define S(b) as the cor-

responding summary statistic. Making minimal assumptions,

we consider a uniform prior, Pm [ [0,1], Pp [ [0,1], to gener-

ate parameter values and corresponding simulations. Given

that the time scale of cell proliferation is typically much

larger than the time scale of cell motility, Pp=Pm � 1 [31],

we anticipate that a significant region of the parameter

space will not produce realizations that match the experi-

mental data. To reduce the computation time, we therefore

implement the ABC Markov chain Monte Carlo algorithm

(ABC-MCMC) [24,36], an ABC algorithm that evolves

based on previously successful parameter values (electronic

supplementary material).

4. Results
4.1. Synthetic data
To examine the robustness of our method and the validity

of using the pair correlation function as a summary statistic,

we first attempt to recover parameter values from data

generated synthetically. We choose a biologically relevant

parameter set (Pm, Pp) ¼ (0.25, 2 � 10 2 3), which with D ¼

25 mm and t¼ 1/24 h corresponds to (D, l)¼ (937.5 mm2 h21,

4.8 � 10 2 2 h21). We perform a single realization of the

simulation with these parameters and calculate the relevant

summary statistics at time t ¼ 4, 8, 12 h. The average distance

between the summary statistic for the synthetic data and the

simulation prediction at t ¼ 4, 8, 12 h is calculated and com-

pared to either accept or reject potential parameter values to

estimate the posterior distribution (electronic supplementary

material). The evolution of the computational simulation

is presented in figure 2a–d. We apply the ABC-MCMC

algorithm (electronic supplementary material) and present

the resulting posterior distribution for the pair correlation

function q(i), in figure 2e. If the pair correlation function were

a close-to-sufficient summary statistic, we would observe a

well-defined posterior distribution centred at (Pm, Pp) ¼

(0.25, 2 � 1023), with a narrow spread about the mean in the

distributions of Pm and Pp. Instead, we observe that the pos-

terior distribution is centred at (Pm, Pp) � (0.22, 6.7 � 1023),

with significant spread. These observations suggest that

additional information ought to be incorporated into our

ABC algorithm. We note that identically prepared simulations

using the same values ofD and t, but different values of Pm and

Pp, can occasionally produce similar or indistinguishable sum-

mary statistics. This is due to the fact that our random walk

computer simulations are stochastic. For this reason, we feel

it is more appropriate to interpret our experimental results

using a probabilistic ABC approach, leading to a distribution

of D and l, rather than using a more traditional approach

and arriving at point estimates of D and l.

We now attempt to refine our estimates of Pm and Pp by

examining the posterior distributions obtained by consider-

ing the number of cells N, and the pre-normalized counts

of the pair distances c(i), as summary statistics in figure 2f
and g, respectively. Intuitively, we expect that N may provide

some information about Pp but less information about Pm.

Indeed, the posterior distribution in figure 2f suggests that

all values in the range Pm [ [0,1] are potentially acceptable

and there is little correlation between Pm and Pp. The
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Figure 1. (a) Typical experimental image obtained from a scratch assay performed using 3T3 fibroblast cells. (b) Identification of the position of the cells. Scale bar
corresponds to 250 mm. (c) Position of cells mapped to a square lattice, where the lattice size is equal to the cell diameter, D ¼ 25 mm. (d ) Pair correlation
function q(i), obtained from experimental images at time t ¼ 4 h (red), t ¼ 8 h (green), t ¼ 12 h (blue). Arrow indicates direction of increasing time. See §3.3
and the electronic supplementary material for details about the calculation and interpretation of q(i).
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counts of pair distances correspond to the pre-normalized

pair correlation functions. Since information regarding Pm

and Pp may be lost in the normalization that converts c(i)
into q(i), we anticipate that c(i) could be a more relevant sum-

mary statistic than q(i). We observe in figure 2g that c(i) is

indeed an excellent summary statistic as the calculated

posterior distribution is centred on (Pm, Pp) � (0.25, 2 � 1023).

The final summary statistic we consider is the average of q(i)
and N, K ¼ {d[q(i)] þ d[N]/2}, where d[L] is a measure of the

difference between two datasets using an arbitrary summary

statistic L (electronic supplementary material). Therefore, the

summary statistic K includes information about the number

of cells or agents lost due to the formulation of the pair corre-

lation function, q(i). We present the posterior distribution

calculated using K in figure 2h and we find that the distribution

is similarly centred on (Pm, Pp) � (0.25, 2 � 1023). Owing to the

explicit inclusion of N in the summary statistic, we observe a

reduction in the spread of the posterior distribution in the Pp

direction, compared to figure 2g, while maintaining a similar

spread in the Pm direction. While in theory we could continue

to incorporate additional information in our summary statistic

to obtain a further refined posterior distribution, there is an

important computational trade-off between the more compli-

cated summary statistic and the improvement in the posterior

distribution [38].

As both the c(i) and K summary statistics lead to reasonable

posterior distributions, we now compare them by repeating the

ABC-MCMC algorithm on 10 sets of identically prepared

simulation data (that is, simulation data generated using the

same parameter values, initial and boundary conditions) and

investigate the average of the 10 resulting posterior distri-

butions, shown in figure 3. We observe that the distribution

in figure 3a using K as the summary statistic has a significantly

smaller spread than in figure 3b, which used c(i) as the sum-

mary statistic. To quantitatively compare the posterior

distributions, we calculate the Kullback–Leibler divergence

[39], which is a measure of the information gained from

moving from the prior to the posterior distribution, and is

defined as

DKL(f jp) ¼
X

j

f(ujjb) ln
f(ujjb)

p(uj)

� �
, (4:1)

where the index j accounts for all possible discretized par-

ameter pairs. A larger DKL( fjp) value implies that more

information is obtained when moving from the prior to the

posterior distribution [39]. We discretize our posterior distri-

bution onto a lattice with 102 equally spaced values of Pm in

the interval Pm [ [0,1] and 104 equally spaced values of Pp

in the interval Pp [ [0,1], and count the number of successful

observations for each parameter combination, and use this

information to calculate DKL( fjp). We find that DKL( fjp) is

higher for the posterior distribution calculated using K rather

than c(i): DKL( fjp) ¼ 7.98 and DKL( fjp) ¼ 7.61, respectively.

For perspective, the DKL( fjp) values for q(i) and N were 6.32

and 6.93, respectively. Therefore, a difference in DKL( fjp)

of approximately 0.3 is relevant. Guided by this informa-

tion, we will interpret our experimental data using K as the

summary statistic.

4.2. Experimental data
We obtained experimental data from a scratch assay, calculated

q(i) and c(i), and counted N, at t ¼ 4, 8, 12 h. The position of the

cells in the experiments was mapped to a square lattice with

D ¼ 25 mm (electronic supplementary material). Figure 4a–i
illustrates the process of mapping the cell positions to the

lattice. We applied the ABC-MCMC algorithm (electronic sup-

plementary material) to the experimental data using K as a

summary statistic and the average distance between the sum-

mary statistic for the experimental data and the simulation

prediction at t ¼ 4, 8, 12 h to either reject or accept potential
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4 h, (c) t ¼ 8 h and (d ) t ¼ 12 h. (e – h) Calculated posterior distribution obtained from a summary statistic generated with (Pm, Pp) ¼ (0.25, 2 � 1023) using (e) the
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parameter values in the estimation of the posterior distribution,

given in figure 4j. We observe that the resulting bivariate pos-

terior distribution is well defined and contains a relatively

narrow spread in both the D andldirections. To provide further

insight, we estimate the corresponding univariate distributions

of D and l, presented in figure 4k–l, by averaging the posterior

distribution in each of the l and D directions, respectively. Since

the univariate posterior distributions do not appear to be signifi-

cantly skewed, we choose to report the mean of the univariate

posterior distributions as our estimate of D and l. To provide

quantitative insight into the uncertainty in our estimates, we

calculate the 90% credible interval by finding the interval, sym-

metric about the mode, containing approximately 90% of the

total area under the univariate distribution. The mean and

90% credible intervals are D � 1350(675–1800) mm2 h21

and l � 2.5 � 1022(1.7 � 1022–3.1 � 1022) h–1. We note that

our estimates of D and l are consistent (within a factor of two)

with previously reported point estimates [17]. However,

unlike previous point estimates of D and l, our approach pro-

vides a well-defined quantitative estimate of the uncertainty

present in the parameter recovery. Furthermore, our approach

does not require overly complicated and time-consuming

experimental procedures such as tracking individual cells

[14,16], constructing cell density profiles [14] or perform-

ing multiple sets of assays in which proliferation is artificially

suppressed [17].

For our parameter estimates (D � 1350 mm2 h21 and l �
2.5 � 1022 h21) with D ¼ 25 mm and t ¼ 1/24 h, equation

(3.1) gives Pm ¼ 0.36 and Pp ¼ 0.00104. Therefore, the average

time between motility events for an isolated agent t/Pm is

approximately 7 min, whereas the average time between pro-

liferation events for an isolated agent t/Pp is approximately

40 h. These quantities are biologically realistic since the time

scale of cell motility is much shorter than the time scale of

cell proliferation, and these quantities are consistent with pre-

vious estimates of the time scale of cell motility [27] and

previous estimates of the time scale of cell proliferation [19].

While it is possible to impose additional conditions on our

computational simulations, such as explicitly ensuring that

no two proliferation events ever occur in rapid succession,

we have avoided introducing such details to ensure that

our computational simulations are consistent with previously

reported algorithms [31].

5. Discussion and conclusion
Scratch assays are a technically simple and inexpensive

method used to observe spreading cell fronts [1], which can

be thought of as a simple representation of wound healing,

malignant spreading or certain developmental processes.

The impact of biochemical compounds on cell diffusivity

and cell proliferation, vital to cancer and wound healing

research, can, in principle, be measured using a scratch

assay [7–10]. However, the majority of previous studies

have reported qualitative data [5,11], which cannot separately

identify D and l or the impact of the potential treatment on D
and l [7–9,12]. While mathematical models have been used to

obtain separate point estimates of D and l [14,15,19,20], these

previous studies have neglected to consider the uncertainty

present in the parameter recovery process.

The work presented here addresses two common limit-

ations of previous interpretations of scratch assays. First, our

method provides quantitative estimates of D and l by compar-

ing images from a scratch assay with predictions from a lattice-

based computational simulation of cell migration and prolifer-

ation. Second, to compare the experimental images with the

simulation we implement an ABC-MCMC algorithm with an

appropriate summary statistic to approximate the posterior

distribution of D and l. The posterior distribution contains

vital information about the uncertainty and variability of

the recovered parameters, information that is not present in

previous interpretations of scratch assays. Using an ABC

technique that quantifies this uncertainty will be useful for

investigating the efficacy of putative drug treatments, which

could be relevant for studying both wound healing [10] and

cancer [8]. For example, a traditional approach of estimating

D and l could be used to provide point estimates of D and l

under control conditions, and compare these to separate

point estimates of D and l for an experiment in which the
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details about the parameters, see figure 2.
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drug has been applied. Alternatively, our approach could be

used to produce a distribution of D and l under control con-

ditions and compare these distributions to those obtained by

analysing a set of equivalent experiments where the drug was

applied. Comparing distributions of D andlprovides additional

information that is not possible when comparing point esti-

mates. For example, it allows us to assess our confidence in

stating that one treatment is better than another. Furthermore,

it will assist us in determining an appropriate number of

experimental comparisons to ensure reliable assessment.

Our approach for estimating D and l from a scratch assay

provides more comprehensive information than a traditional

method, which typically produces point estimates of D and l

only. However, one of the limitations of our approach is that

it relies upon obtaining highly resolved images of the scratch

assay such that the location of each cell in the image can be

determined, and we acknowledge that this could be non-tri-

vial in some situations. Although we have achieved this

here using non-labelled cells, another approach might be to

use some kind of nuclear stain to help identify the location

of individual cells in the population [17].

To investigate the validity of applying ABC to spatio-

temporal experiments such as scratch assays, we initially

attempted to recover estimates of Pm and Pp from synthetic

data generated using our computational simulation with pre-

specified values of Pm and Pp. By comparing different summary

statistics, we found that using a weighted average of the pair cor-

relation function q(i) and the number of cells or agents present N
provided a simple yet insightful summary statistic. After con-

firming the validity of our approach using synthetic data, we

applied the same approach to a new experimental dataset.

Our posterior distribution of D and l allowed us to estimate

(D, l) � (1350 mm2 h21, 2.5 � 1022 h21), which was consistent

with previously reported estimates [17]. However, unlike pre-

vious point estimates, we also obtained information about the

uncertainty present in the parameter recovery. The posterior dis-

tribution allowed us to estimate credible intervals for both D¼
(67521800) mm2 h21 and l ¼ (1.7 � 102223.1 � 1022) h–1

very simply using a single experimental dataset.

Our approach of interpreting scratch assays using ABC

together with a combination of the pair correlation function

and the number of cells present in the experimental images

can be extended in several ways. For example, in this work

we have only considered experimental data where cell-to-cell

adhesion is negligible [33]. However, many cell types, such

as glioma [27] and melanoma cells [40], exhibit significant

cell-to-cell adhesion. An extension of the computational simu-

lation framework presented here, such as the one presented by

Khain et al. [27], could be employed to analyse scratch assays

conducted with adhesive cells. Khain’s random walk model

includes an additional dimensionless parameter, q̂ [ [0, 1],

describing the strength of cell-to-cell adhesion, and it would

be interesting to investigate whether there is sufficient infor-

mation present in images from a scratch assay using adhesive

cells to robustly recover estimates of Khain’s three model par-

ameters, D, l and q̂. Furthermore, other types of mathematical

model could be considered, with more detailed descriptions

of cell migration and proliferation [30], other more detailed

mechanisms of cell-to-cell interaction [41,42] or different

types of mechanical interactions [28]. However, since the

application of ABC techniques to interpret scratch assay data

has not been previously attempted, this study focused on a

relatively straightforward experimental system that could be

interpreted with a model relying on just two parameters. Of

course, further extensions are possible and these include

applying three-dimensional random walk simulations to

describe three-dimensional assays [43–45]. Alternatively, we

could investigate the influence of the assumption of memory-

less proliferation, particularly for applications where a large

proliferation rate is relevant. Another possible extension of

our present study is to explore the limitations of using a lat-

tice-based random walk model. This could be achieved by

repeating the ABC analysis using a lattice-free random walk

[46,47], and comparing the estimates of D and l in the lattice-

based and lattice-free frameworks. While this comparison is,

in principle, possible to carry out, we note that ABC techni-

ques rely on repeated simulations of the random walk, and

that lattice-free models of collective cell behaviour with

crowding effects are significantly more computationally

demanding than lattice-based models. Therefore, we leave

the extension of applying ABC techniques to a lattice-free

model for future analysis.
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