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Journal Club

Editor’s Note: These short, critical reviews of recent papers in the Journal, written exclusively by graduate students or postdoctoral
fellows, are intended to summarize the important findings of the paper and provide additional insight and commentary. For more
information on the format and purpose of the Journal Club, please see http://www.jneurosci.org/misc/ifa_features.shtml.

The Role of �-Amyloid in Alzheimer’s Disease-Related
Neurodegeneration
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Review of Wirth et al.

It is currently estimated that over 35 mil-
lion people worldwide have dementia,
and with demographic trends of an aging
global population this figure is expected
to triple by 2050 (Prince and Jackson,
2009). As the leading cause of dementia,
Alzheimer’s disease (AD) is the source of
much emotional and financial strain.
Although there has been considerable
research aimed at developing disease-
modifying therapies that target different
features of AD pathology, debate contin-
ues over which pathological features are
central to disease progression.

A key pathological feature of AD is the
formation of neuritic plaques composed
of extracellular deposits of �-amyloid
(A�) peptides. The temporal profile of
pathological features together with ge-
netic risk factors for AD have led to the
hypothesis that accumulation of A� oli-
gomers during early, preclinical stages of
the disease initiates a cascade of events re-
sulting in synaptic dysfunction, neural
loss and atrophy within temporoparietal
and hippocampal regions, and this neuro-
degeneration, in turn, causes cognitive
decline (Jack et al., 2010). If this hypothe-
sis is correct, biomarkers designed to
detect A� accumulation in preclinical

populations may have an important role
in the early diagnosis of AD (Sperling et
al., 2011).

One method for detecting A� deposits
is positron emission tomography (PET)
imaging of plaques labeled with amyloid-
binding radiotracers such as [ 11C] Pitts-
burgh compound B (PiB) (Klunk et al.,
2004). Retention of PiB provides a good
measure of fibrillar (insoluble) A� load,
but the relationship between PiB reten-
tion and AD-related neurodegeneration
and cognitive decline, and therefore its
usefulness in identifying individuals with
an increased risk of developing AD, is
poorly understood.

In a recent article published in The
Journal of Neuroscience, Wirth et al.
(2013) investigated the relationship be-
tween A� deposits and AD-related neuro-
degeneration, as well as the association of
these pathological features with cognitive
functioning in cognitively normal older
individuals. An age-adjusted, multimodal
approach was used to quantify neural
integrity and neurodegeneration in brain
regions normally affected by AD. This in-
cluded a functional measure of glucose
metabolism (an index of synaptic activ-
ity), as assessed by [ 18F] fluorodeoxyglu-
cose (FDG) PET, as well as structural
measures of cortical thickness and hip-
pocampal volume using magnetic reso-
nance imaging (MRI). Using PiB PET to
assess A� plaque load, Wirth and col-
leagues (2013) found no evidence of an
association between PiB retention and
neurodegeneration in cognitively normal

older subjects. Additionally, neurodegen-
eration, but not PiB retention, was associ-
ated with poorer performance on tests of
memory and executive function. These
findings suggest that neurodegeneration
occurs within AD-affected brain regions
independent of A� accumulation, and
this neurodegeneration contributes more
to cognitive performance than insoluble
A� in cognitively normal older individuals.
Although A� accumulation was a poor
predictor of cognitive performance in older
individuals, the relationship between neu-
rodegeneration within AD-affected brain
regions and cognitive performance was
stronger in individuals with high PiB reten-
tion, suggesting the negative impact of re-
duced neural integrity on cognitive function
was enhanced in individuals with high A�
plaque load.

The strong association between cogni-
tive performance and neurodegeneration,
but not A� deposits, is consistent with the
A� cascade model of AD pathogenesis,
which suggests that neural injury and neu-
rodegeneration occurring downstream of
A� accumulation correlate better with the
severity of clinical symptoms than biomark-
ers of insoluble A�, which reach a plateau at
an earlier stage during disease progression
(Jack et al., 2010). Also consistent with this
model is the finding that older individuals
with both A� deposits and neurodegenera-
tion within AD-affected brain regions per-
formed worse on cognitive tests of memory
and executive function than those without
A� deposits. However, Wirth et al. (2013)
observed neurodegeneration within AD-
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affected brain regions in A�-negative, as
well as A�-positive, older individuals, mak-
ing it unlikely that A� initiated neurode-
generation in these cases. This finding is
consistent with a recent population-based,
cross-sectional study by Jack et al. (2012),
which classified approximately one quarter
of their sample of cognitively normal older
individuals as having abnormal neurode-
generative biomarkers (assessed using FDG
PET and hippocampal volume) without the
presence of A� accumulation. It was sug-
gested that A�-independent neurodegen-
eration in this group of subjects may have
resulted from pathological processes associ-
ated with the preclinical stages of non-AD
causes of dementia, such as vascular demen-
tia or dementia with Lewy bodies. Similar
factors may have led to neurodegeneration
in the study by Wirth et al. (2013). There-
fore, longitudinal assessments will be
required to determine the validity of
their multimodality neurodegenerative
biomarker for detecting preclinical AD
pathology.

The development of neurodegenera-
tion independent of A� deposition in
older individuals may point to other fac-
tors as being important during the pre-
clinical stages of AD. For instance, in
addition to A� plaque formation, AD is
characterized by neurofibrillary tangles
formed by intracellular deposits of hyper-
phosphorylated tau protein filaments.
Indeed, there is evidence from autopsy
studies that subcortical tauopathy may
precede A� plaque formation (Braak and
Del Tredici, 2011), prompting a revised
version of the A� cascade model of AD
pathogenesis to include tau and A� accu-
mulation as initially separate pathological
processes arising independent of one an-
other (Jack et al., 2013). However, another
view is that tau hyperphosphorylation is
stimulated by soluble A� (De Felice et al.,
2008).

Importantly, although PiB PET can
provide a good indication of the fibrillar
forms of A� that make up neuritic
plaques, it is unable to detect the soluble,
oligomeric forms of A�. There is a wealth

of data demonstrating the neurotoxic and
synaptotoxic properties of soluble A� oli-
gomers, suggesting that this form may be
more relevant to neurodegeneration and
the development of cognitive decline in
AD (Walsh and Selkoe, 2007). However,
unlike for fibrillar A�, well validated bio-
markers for the in vivo detection of oligo-
meric A� species in humans is currently
lacking. Although advances are being made
toward developing approaches for the mea-
surement of A� oligomers in CSF (Fuku-
moto et al., 2010; Santos et al., 2012), more
research is required to determine the role of
these oligomeric species during the preclin-
ical stages of AD progression.

A detailed understanding of the path-
ological processes underlying AD is criti-
cally important for the development of
more effective early intervention. Wirth et
al. (2013) found that although the rela-
tionships between A� deposits, neurode-
generation, and cognitive performance in
older individuals were partially consistent
with current theories regarding the cen-
tral role of A� in AD progression, the
presence of AD-related neurodegenera-
tion in the absence of A� plaques in some
individuals suggests that other features of
AD pathology may also be important dur-
ing the preclinical stages of the disease.
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