Please use this identifier to cite or link to this item: https://hdl.handle.net/2440/82538
Citations
Scopus Web of Science® Altmetric
?
?
Type: Journal article
Title: Glucokinase links Kruppel-like factor 6 to the regulation of hepatic insulin sensitivity in nonalcoholic fatty liver disease
Author: Bechmann, L.
Gastaldelli, A.
Vetter, D.
Patman, G.
Pascoe, L.
Hannivoort, R.
Lee, U.
Fiel, I.
Munoz, U.
Ciociaro, D.
Lee, Y.
Buzzigoli, E.
Miele, L.
Hui, K.
Bugianesi, E.
Burt, A.
Day, C.
Mari, A.
Agius, L.
Walker, M.
et al.
Citation: Hepatology, 2012; 55(4):1083-1093
Publisher: John Wiley & Sons Inc
Issue Date: 2012
ISSN: 0270-9139
1527-3350
Statement of
Responsibility: 
Lars P. Bechmann, Amalia Gastaldelli, Diana Vetter, Gillian L. Patman, Laura Pascoe, Rebekka A. Hannivoort, Ursula E. Lee, Isabel Fiel, Ursula Muñoz, Demetrio Ciociaro, Young-Min Lee, Emma Buzzigoli, Luca Miele, Kei Y. Hui, Elisabetta Bugianesi, Alastair D. Burt, Christopher P. Day, Andrea Mari, Loranne Agius, Mark Walker, Scott L. Friedman, and Helen L. Reeves
Abstract: The polymorphism, KLF6-IVS1-27A, in the Krüppel-like factor 6 (KLF6) transcription factor gene enhances its splicing into antagonistic isoforms and is associated with delayed histological progression of nonalcoholic fatty liver disease (NAFLD). To explore a potential role for KLF6 in the development of insulin resistance, central to NAFLD pathogenesis, we genotyped KLF6-IVS1-27 in healthy subjects and assayed fasting plasma glucose (FPG) and insulin sensitivities. Furthermore, we quantified messenger RNA (mRNA) expression of KLF6 and glucokinase (GCK), as an important mediator of insulin sensitivity, in human livers and in liver tissues derived from a murine Klf6 knockdown model (DeltaKlf6). Klf6 overexpression studies in a mouse hepatocyte line were utilized to mechanistically link KLF6 with Gck promoter activity. KLF6-IVS1-27Gwt (i.e., less KLF6 splicing) was associated with stepwise increases in FPG and insulin and reduced hepatic insulin sensitivity. KLF6 binds to the liver-specific Gck promoter and activates a GCK promoter-reporter, identifying GCK as a KLF6 direct transcriptional target. Accordingly, in DeltaKlf6 hepatocytes Gck expression was reduced and stable transfection of Klf6 led to up-regulation of Gck. GCK and KLF6 mRNAs correlate directly in human NAFLD tissues and immunohistochemistry studies confirm falling levels of both KLF6 and GCK in fat-laden hepatocytes. In contrast to full-length KLF6, splice variant KLF6-SV1 increases in NAFLD hepatocytes and inversely correlates with glucokinase regulatory protein, which negatively regulates GCK activity. Conclusion: KLF6 regulation of GCK contributes to the development of hepatic insulin resistance. The KLF6-IVS1-27A polymorphism, which generates more KLF6-SV1, combats this, lowering hepatic insulin resistance and blood glucose.
Keywords: Liver
Hepatocytes
Animals
Mice, Inbred C57BL
Mice, Knockout
Humans
Mice
Fatty Liver
Insulin Resistance
Disease Models, Animal
Glucokinase
Blood Glucose
Proto-Oncogene Proteins
RNA, Messenger
Biopsy
Cohort Studies
Genotype
Polymorphism, Genetic
Adult
Middle Aged
Female
Male
Kruppel-Like Transcription Factors
Non-alcoholic Fatty Liver Disease
Kruppel-Like Factor 6
Rights: Copyright © 2011 by the American Association for the Study of Liver Diseases.
DOI: 10.1002/hep.24793
Published version: http://dx.doi.org/10.1002/hep.24793
Appears in Collections:Aurora harvest 4
Medicine publications

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.