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ABSTRACT 

The chemokine receptor CCR7 is widely implicated in breast cancer pathobiology. 

Although recent reports correlated high CCR7 levels with more advanced tumor grade and 

poor prognosis, limited in vivo data is available regarding its specific function in mammary 

gland neoplasia and the underlying mechanisms involved. To address these questions we 

generated a MMTV-PyMT Ccr7
-/-

 bigenic mouse breast cancer model which revealed that 

CCR7 ablation results in a considerable delay in tumor onset as well as significantly reduced 

tumor burden. Importantly, CCR7 was found to exert its function by regulating mammary 

cancer stem-like cells in both murine and human tumors. In vivo experiments showed that 

loss of CCR7 activity either through deletion or pharmacological antagonism significantly 

decreased functional pools of stem-like cells in mouse primary mammary tumors, providing a 

mechanistic explanation for the tumor-promoting role of this chemokine receptor. These data 

characterize the oncogenic properties of CCR7 in mammary epithelial neoplasia and point to 

a new route for therapeutic intervention to target evasive cancer stem cells.  

 

KEYWORDS: Mammary Gland; Breast Cancer; Cancer Stem Cells; Chemokine Receptors; 

CCR7; Transgenic Mouse Model 
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INTRODUCTION 

Despite concerted efforts and significant advances, breast cancer-related mortality is 

still a leading cause of death in women worldwide (1). Clearly novel therapies are urgently 

needed. The “cancer stem cell” theory specifies that a small subset of cells in a heterogeneous 

tumor (termed “cancer stem cells” (CSCs)) possess stem cell-like properties of self-renewal 

and differentiation. CSCs are suggested to sustain and propagate tumors, and are inherently 

therapy-resistant (for the latest reviews see (2) and (3)).   

CSCs may originate from adult stem cells, but can also arise from more committed 

lineage progenitor cells if they acquire stem cell-like features due to genetic or epigenetic 

changes (4). Multiple intrinsic and extrinsic factors are reported to play a role in CSC 

maintenance, regulation and support of stem-like characteristics. Most prominent are the 

Notch (5), Hedgehog (6), Wnt (7) and TGFβ (8) signaling systems. Several cytokines and 

chemokines have been recently suggested as maintaining and promoting the CSC phenotype 

in a number of solid malignancies, including mammary tumors (reviewed in (9)), however, 

definitive in vivo data has been sparse.  

Chemokine receptors and their cognate chemokine ligands have become widely 

accepted as important mediators of cancer growth and progression in many human 

neoplasms, being involved in tissue transformation, invasion, angiogenesis, and resistance to 

chemotherapy (10). Amongst these, the chemokine receptor CCR7 has been implicated in 

metastatic spread of multiple malignancies (11). In breast carcinogenesis it has been 

attributed a number of potential functions, including promotion of cell motility, migration and 

adhesion, regulation of matrix metalloproteinases leading to basement membrane degradation 

(12), and cell survival through inhibition of anoikis (13). Data obtained using cell lines has 

implicated CCR7 in breast cancer spread to the lymph nodes (14), and in human breast cancer 

its role was inferred from retrospective studies on archived tumor tissues (15). High 
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expression levels of CCR7 were also correlated with higher grade and occurrence of 

secondary tumors, and poor prognosis (16, 17).  

Whilst all these studies point to a role for CCR7 in malignancy, a direct function for 

CCR7 in cancer has not yet been established. Furthermore, its role in breast cancer in 

particular is unclear. We show here the development of a novel bigenic mouse model 

combining deletion of CCR7 with the polyoma middle-T transgene, which is under control of 

the mouse mammary tumor virus promoter (MMTV-PyMT), to study tumor development in 

vivo. Using this model we show that CCR7 deletion has a striking preventative effect on 

PyMT-driven mammary tumors, supporting the notion that CCR7 plays a major determining 

role in breast oncogenesis. Moreover, our data reveal that the tumor-promoting effect of 

CCR7 is mediated through stem-like cells in both primary mouse and human breast tumors. 

These results provide new insights into the role of CCR7 in breast cancer stem-like cells and 

have important implications for the development of future therapeutics in breast cancer. 

 

 

 

 

 

 

 



CCR7 promotes breast cancer via stem-like cells 

5 

 

RESULTS 

CCR7 deletion arrests mammary tumourigenesis in the PyMT transgenic breast cancer 

mouse model 

The MMTV-PyMT transgenic breast cancer mouse model has been extensively used 

in recent years to study various aspects of mammary neoplasia. Expression of the PyMT 

protein promotes the rapid epithelial transformation of mammary cells, via the corruption of 

various pathways including those of Src, ras, and PI3 kinase. This model also results in 

spontaneous metastasis and has been found to closely mimic the development of human 

breast cancer (18-20). Representative images are shown in Supplementary Figure 1a, in 

which α-smooth muscle actin (α-SMA) is used to stain myoepithelial cells. 

To directly assess the role of CCR7 in the multistage process of mammary 

tumourigenesis in vivo, we generated bigenic MMTV-PyMT Ccr7
-/-

 knock-out mice (further 

referred to as CCR7 KO+) and traced the development of mammary tumors relative to 

MMTV-PyMT Ccr7
WT

 mice (further referred to as WT+).  

Deletion of CCR7 significantly delayed PyMT-driven primary mammary 

tumourigenesis (representative pictures Figure 1a). Tumor-free survival was significantly 

extended (Figure 1b) and total tumor burden was markedly reduced in CCR7 KO+ mice 

(Figure 1c) when compared to the WT+ animals. The lungs of WT+ and CCR7 KO+ females 

were also examined for metastatic lesions at the time of sacrifice. CCR7 KO+ mice 

developed significantly fewer and smaller metastases than WT+ mice (Figure 1d-f), although, 

the number of metastases varied largely between mice of the same genotype.  

As these experiments indicated a role for CCR7 in mammary gland function, we next 

examined normal, pre-cancerous and cancer-bearing mouse mammary glands for CCR7 

expression and signaling. CCR7 was shown to be expressed on all mouse mammary epithelial 

cells tested regardless of the tumor stage (Supplementary Figure 1b), and the removal of 
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CCR7 did not affect the expression levels of its ligands CCL19 and CCL21 within the mouse 

fat pad (Supplementary Figure 2a). CCR7 was also found to be functional in PyMT-driven 

mammary tumors, as tumor cells mobilized intracellular calcium, a hallmark of chemokine 

receptor activity, in response to stimulation with CCL21 (Supplementary Figure 2b). These 

data showed that CCR7 was expressed and was functional within normal and transformed 

mammary epithelium.  

Interestingly, despite the large impact of CCR7 on overall mammary tumourigenesis, 

initial PyMT-driven hyperplastic growth in 8 or 11 week old WT+ and CCR7 KO+ mice was 

not affected (Supplementary Figure 3a), with similar tissue architecture in glands from both 

genotypes (Supplementary Figure 3b). This indicated that the CCR7 KO+ mammary glands 

underwent the initial oncogenic transformation leading to epithelial proliferation, but further 

tumourigenic transition was largely blocked by CCR7 deletion. 

CCR7 promotes tumourigenesis by amplifying breast cancer stem-like cells  

In order to investigate the underlying mechanisms responsible for the tumourigenic 

effects seen, we examined the roles of CCR7 in mammary gland development and on stem-

like cells. We found that in non-PyMT wild-type (WT) pubertal mice, the epithelial tree was 

longer with a better developed ductal structure than that in Ccr7
-/- 

(CCR7 KO)
 
mice (Figure 

2a-b), indicating that ablation of CCR7 had a mild inhibitory effect on pubertal growth of the 

mammary gland epithelium. CCR7 was robustly expressed in normal mammary epithelium 

(Figure 2c), making this receptor also potentially relevant to normal mammary development. 

However, development of mammary epithelium in the CCR7 KO mice caught up with that of 

the WT mice by the age of 8 weeks, and at 12 weeks mammary glands from the two 

genotypes were indistinguishable (Figure 2d), demonstrating that CCR7 deletion mainly 

delays early mammary gland development. 
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Because normal development and breast cancer are believed to be linked by common 

regulatory mechanisms, we hypothesized that the observed promotion of PyMT-driven 

tumourigenesis and mammary development was due to CCR7 regulating stem/progenitor cell 

pools in mammary epithelium. Thus we next assayed the stem-like cell content in mice using 

the lineage-negative (Lin
-
)

 
CD24

+
CD29

hi
 cell surface marker profile (4), which was 

previously functionally characterized in the MMTV-PyMT model (21, 22). CCR7 was 

expressed in all cell lineages in both the normal and PyMT-expressing mammary glands 

regardless of CD24 and CD29 status. Notably however, higher levels of CCR7 (>90%) were 

observed in Lin
-
CD24

+
CD29

hi 
normal and cancer mouse mammary stem cell-enriched 

populations (Figure 3a, Supplementary Figure 4a-b). Importantly, CCR7 was also expressed 

on human CD44
+
CD24

-
 putative mammary stem cells (23) from both normal and breast 

tumor tissue (Figure 3b, Supplementary Figure 4c). 

Further analysis demonstrated a significantly lower content of Lin
-
CD24

+
CD29

hi
 cells 

in non-PyMT CCR7 KO mice relative to WT (Figure 3c left panel). In PyMT-expressing 

mice at the stage of early neoplasia, when no morphological differences were found in WT+ 

and CCR7 KO+ glands (Supplementary Figure 3) and the stem/progenitor cell populations 

may therefore best reflect the tumor-initiating cell content, the difference in the stem cell-

enriched population between WT+ and CCR7 KO+ mice was even more pronounced with the 

deletion of CCR7 leading to a 2-fold reduction in stem-like cells (Figure 3c right panel).  

Recently Pece et al have suggested a new and potentially more efficient set of 

markers, in which the Notch ligands
 
Delta-Like Ligand 1 (DLL1) and Delta and Notch-like 

Epidermal growth factor-related Receptor (DNER) are used in combination with CD49f
 
(Lin

-

CD49f
+
DLL1

+
DNER

+
) to delineate putative stem cells in human mammary tumors (24). We 

found that the stem-like cells from both human and mouse mammary glands defined by this 

profile also expressed high levels of CCR7 (Supplementary Figure 4d-e). Moreover, the Lin
-
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CD49f
+
DLL1

+
DNER

+
 cell pools were significantly smaller in both normal and PyMT-

expressing CCR7 KO murine mammary glands (Supplementary Figure 5a-b) providing 

further support for the findings described above.  

It is generally accepted that non-adherent passaged mammosphere cultures are 

enriched in cells with stem-like characteristics, and secondary/tertiary mammosphere-

forming efficiency (MFE) is representative of cells’ potential to exhibit stem cell traits (25-

27). Stem-like activity, as measured by MFE, was then analyzed in the mammary epithelium 

in the presence or absence of CCR7. Primary and secondary sphere formation from normal 

(Figure 3d) or PyMT-expressing (Figure 3e) mammary cells was substantially reduced after 

CCR7 ablation and, importantly, stimulation of WT and WT+ cells with CCR7 ligands 

CCL19 and CCL21 significantly potentiated mammosphere growth (Figure 3d-e).  

This CCR7 stimulatory function was seen exclusively on mammosphere growth, as 

stimulation with CCL19 and CCL21 had no detectable effect on the proliferation of bulk 

mammary tumor cells in adherent cultures, a condition that supports a more differentiated 

phenotype (Supplementary Figure 5c). The addition of CCR7 ligands to sphere cultures 

derived from CCR7 KO+ mammary cells also had no effect on MFE (Supplementary Figure 

5d), demonstrating a CCR7 receptor-mediated mechanism. The specificity of CCR7 was 

further shown by testing a panel of ligands for other tumor-associated chemokine receptors 

CCR6 (16), CXCR3 (28) and CXCR5 (29). No effects were observed on MFE 

(Supplementary Figure 5e).  

In order to extend these findings to human breast cancer we next examined the 

activity of CCR7 in human primary tumor cells from resected breast cancer tissue. The 

addition of CCL19 and CCL21 resulted in an increase in primary and secondary MFE of 

human breast cancer cells by 2- to 3-fold (Figure 3f), consistent with results obtained in the 

mouse model. 
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To specifically link the deletion of CCR7 to depleted tumor-initiating cells, a limiting 

dilution transplantation approach was used (24) to estimate tumor-initiating cell frequency. 

Secondary mammosphere-derived cells from WT+ and CCR7 KO+ mice with early neoplasia 

were used in this assay to address the potential of cells in mammosphere cultures to exhibit 

stem cell traits of self-renewal and tumor initiation in vivo, in the context of CCR7-

dependency. Cells were injected into contralateral inguinal fat pads of non-PyMT WT 

recipients. Analysis of grafted fat pads after 6 weeks showed that WT+ sphere cells produced 

much more robust growth at all dilutions (Figure 4a and Supplementary Figure 6). Most 

importantly, the frequency of stem-like cells capable of tumor initiation within WT+ sphere 

culture (1/189) was over 3-fold higher than in CCR7 KO+ (1/913) (Figure 4b), providing 

strong evidence for the critical role of CCR7 in the regulation and maintenance of stem-like 

cells and tumor-initiating cells in the mammary gland.  

CCR7 is required for the propagation of mammary tumors 

In order to obtain in vivo evidence for the role of CCR7 in tumor propagation, we 

took advantage of the PyMT mouse model which allows tumor formation upon 

transplantation (20). Expression of the PyMT oncogene results in multifocal tumors and 

hence can generate diverse CSC pools due to various underlying mutations in different foci 

within the same gland at the late stages of tumourigenesis. Therefore we reasoned that if 

taken at the early stage of pre-neoplastic tumor development, the population of CSCs should 

be more homogeneous. Consequently, small 1mm
3 

fragments of pre-neoplastic mammary 

tissue from 8 week old PyMT transgenic WT+ and CCR7 KO+ mice were simultaneously 

transplanted into contralateral inguinal mammary fat pads of non-PyMT WT recipients. 

Representative histological sections from both WT+ and CCR7 KO+ 8 week old mice, 

corresponding to donor tissue, are shown in Figure 5a, confirming that the glands used for 

transplantation were at the equivalent stage of tumourigenesis. 
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Analysis of tumourigenic outgrowth from transplanted tissue showed that the deletion 

of CCR7 almost completely blocked secondary tumor development. Only 1 out of 6 

transplants from the CCR7 KO+ donors was able to give rise to a neoplastic lesion whereas 5 

out of 6 fragments from the WT+ donors produced secondary outgrowths in WT recipients 

(Figure 5b-c), demonstrating a key role of CCR7 in tumor propagation.  

Pharmacological antagonism of CCR7 in vivo depletes the stem-like cell population and 

inhibits mammary tumourigenesis 

A CCR7 antagonist, CCL19(8-83) (30), was employed to explore the potential of 

targeting CCR7 for CSC-directed therapeutic intervention. Initially, the ability of CCL19(8-83) 

to block the stimulatory activity of CCR7 ligands on mammosphere-forming capacity was 

tested ex vivo and found to specifically abrogate the effect of CCL21 (Figure 6a) and CCL19 

(data not shown) on mammosphere growth providing a rationale for in vivo studies. 

 The effect of CCR7 blockade by CCL19(8-83) on tumor initiation was then examined 

in the context of the PyMT transgenic mouse model. CCL19(8-83) was injected for 8 

consecutive weeks into inguinal mammary glands of animals from the age of 4 weeks old. 

Glands were then excised and examined for the extent of tumourigenesis and stem-like cell 

content and function. Macroscopic analysis demonstrated that CCL19(8-83)-injected glands 

had smaller lesions than their control counterparts (representative image Figure 6b). The total 

weight of fat pads was not statistically different; however, the cellularity (total cell count and 

cells per mg of tissue) was significantly reduced by the antagonist (Figure 6c, Supplementary 

Figure 7a-b).  

Treatment with CCL19(8-83) also resulted in a significant decrease in the proportion of 

stem-like cells (Lin
-
CD24

+
CD29

hi
 Figure 6d left panel, and Lin

-
CD49f

+
DLL1

+
DNER

+
 

Supplementary Figure 7c) and the function of stem and early progenitor cells (Figure 6d right 
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panel), without affecting the level of CCR7 receptor expression (Supplementary Figure 7d). 

Both FVB and C57B/l6 (not shown) PyMT transgenic mice were tested, with similar results. 

To determine if treatment with CCL19(8-83) has an inhibitory effect on established 

and/or advanced later stage tumors, 1mm
3 

size fragments of MMTV-PyMT WT+ tumors 

from 16 week old mice, corresponding to the invasive ductal carcinoma stage of human 

breast cancer (Supplementary Figure 1a), were transplanted into inguinal glands of WT 

recipients followed by 8 weekly injections of CCL19(8-83) or vehicle control (Figure 6e left 

panel). Whilst no significant differences were seen between CCL19(8-83)- or vehicle-treated 

tumors in size or cellularity (Supplementary Figure 7e) as was observed in primary tumors, 

the proportions of stem-like cells determined by both conventional (Lin
-
CD24

+
CD29

hi 
Figure 

6e center panel) or novel (Lin
-
CD49f

+
DLL1

+
DNER

+ 
Supplementary Figure 7f) marker sets, 

as well as mammosphere growth (Figure 6e right panel), were significantly reduced in 

antagonist-treated glands, demonstrating that the CCR7 axis can be blocked in vivo to target 

stem-like cells in mammary tumors.  
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DISCUSSION 

 The contribution of CSCs to tumor initiation is a major issue in tumor biology yet one 

of the least understood processes (3). We show here that ablating CCR7 using a bigenic 

MMTV-PyMT Ccr7
-/- 

model significantly depleted the breast cancer stem cell-enriched pool. 

Using the surface marker profiles CD24
+
CD29

hi 
(4) and CD49f

+
DLL1

+
DNER

+ 
(24) we 

showed that the underlying mechanism involves a decrease in the ability of stem-like cells 

and early progenitor cells to self-renew and initiate neoplasia. Significantly, exogenously 

targeting CCR7 with a peptide antagonist led to a decrease in tumourigenesis. 

CCR7 has been extensively studied for its role in adaptive immunity and secondary 

lymphoid organogenesis, and CCR7-null mice display disrupted architecture of the thymus 

and lymph node, as well as a reduced ability to mount a primary immune response (31). The 

role of CCR7 in mediating anti-tumor immunity is also slowly emerging (32). In this context, 

the fact that abrogation of CCR7 severely affected mammary tumourigenesis provides 

definitive evidence of CCR7 as a pro-tumourigenic driver. Furthermore, numerous 

transplantation approaches used in this study underscore an immune system-independent role 

of this chemokine receptor in maintaining stem-like cell pools in breast cancer.  

Interestingly, hyperplastic outgrowth, widely believed to be a precursor of mammary 

tumors (20), was found in 100% of WT and CCR7 KO PyMT-carrying glands examined. 

However, the majority of CCR7 KO+ glands were unable to sustain this initial proliferative 

burst of tumor cells and progress to the next stage in tumor development. Therefore, the delay 

in mammary tumourigenesis appears to be due to CCR7 maintaining specialized hierarchical 

sub-populations of cancer stem and progenitor-like cells that are thought to be crucial for 

tumor initiation and advanced tumourigenesis (2).  

The fact that both CCL19 and CCL21 stimulated mammosphere growth from both 

human and mouse tumor cells strongly suggests that CCR7 plays a global role in sustaining 
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properties of stemness in mammary epithelium. The specificity of CCR7 in this process was 

validated through testing a panel of chemokine receptor ligands, where only CCL19 and 

CCL21 showed an ability to significantly increase mammosphere-forming efficiency.  

Stimulation of CXCR4, the chemokine receptor that is consistently found to be 

upregulated together with CCR7 in a number of cancers (17), did potentiate sphere formation 

but to a lesser extent (Supplementary Figure 5e). Recently, Clarke and colleagues 

demonstrated that stimulation of CXCR4 also increased MFE preferentially in malignant 

breast cancer cell lines compared to normal breast cell lines (26). It is interesting to speculate 

that as CCR7 is less important for homeostasis than CXCR4, as has been inferred from 

animal models (33), CCR7 may represent a more attractive target for future CSC-targeting 

therapies.  

As stimulation of CCR7 had no effect on proliferation of the bulk population of cells 

when seeded into adherent culture, compared to a highly significant effect in non-adherent 

culture, it is likely that CCR7 predominantly mediates specific cellular properties of 

stemness. Moreover, we have previously reported that CCR7 activation on breast cancer cells 

inhibits anoikis (13), a characteristic of breast and other CSCs (25, 34). Therefore, it is 

plausible that CCR7 supports CSC survival without attachment to the extracellular matrix, a 

hypothesis which may form the basis for future studies.  

 CCR7 appeared to play a quantitative rather than a qualitative role in normal 

mammary stem cells compared to cancer stem cells. Upon deletion of CCR7 we saw a mild 

effect on the normal mammary gland. In contrast, a major effect was seen in mammary 

tumourigenesis. Interestingly, whilst the morphological effect on normal mammary gland 

development was not extensive, CCR7 deletion discreetly affected normal mammary gland 

stem-like cells. Therefore, it is plausible that CCR7 has a role in regulating the properties of 

stemness within the mammary epithelial cell population, an effect which appears more 
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prominent during cancer progression. As highlighted in a recent study by Cheresh and 

colleagues (35), dysregulation of normal stem cells may contribute to breast cancer 

progression and stemness, and CCR7 may emerge as a novel mediator of this transition.  

 Translation of our findings from the mouse model to human disease is of particular 

significance considering that there is currently no clear consensus on the markers that define 

functional mammary stem cells in both mice and humans. Thus we show here that CCR7 not 

only plays a role in mouse mammary tissue, but is also expressed, is functional, and is highly 

responsive in the stem-like populations within human breast cancer tissue. Intriguingly, 

circulating tumor cells, an indicator of metastatic spread and poor outcome in breast and 

other cancers, have been recently equated to CSCs (36). In the last decade numerous studies 

also suggested a role for CCR7 in malignant dissemination of mammary tumors to distant 

sites (13, 15, 17). Taken together, these results suggest a novel causative link between CCR7 

activity on stem-like populations and metastatic breast cancer.  

In order to seek proof-of-principle on the utility of pharmacologically targeting CCR7 

we tested the receptor antagonist CCL19(8-83) (30). We found that pharmacological inhibition 

of CCR7 through direct mammary fat pad injection of CCL19(8-83) afforded a significant 

reduction in early stage primary mammary tumourigenesis. Since the relative contribution of 

the malignant lesions to the weight of the whole mammary fat pad was very small at this 

early stage the reduction in total weight between antagonist and vehicle treated glands was 

not statistically significant. However the cellularity, a characteristic that directly reflects the 

extent of epithelial malignant outgrowth and is used in clinical pathology to evaluate the 

response to chemotherapy in breast cancer, was strongly impacted by treatment with the 

CCR7 antagonist.  

More importantly, directly targeting CCR7 using the antagonist significantly depleted 

the stem-like cell pools in both early and late stage mammary neoplasia as was shown using 
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the transplantation approach. These findings strongly suggest that the CCR7 receptor axis is a 

potential point of intervention in stem cell-targeting therapies and provide a rationale for the 

use of antagonists of this pathway as adjuvants to conventional cytotoxic drugs unable to 

eliminate quiescent cancer stem cells (2).  

In conclusion, the characterization of CCR7 in primary breast tumourigenesis in vitro 

and in vivo, and in mouse and human tissue, strongly suggests a role for this molecule in 

breast cancer development and progression. These insights raise the possibility of 

pharmacologically targeting CCR7 for the development of new therapies in breast cancer.  
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MATERIALS and METHODS 

Mice 

Mice were maintained in pathogen-free conditions in the University of Adelaide’s 

Laboratory Animal Services facility. Ccr7
-/- 

mice were purchased from Jackson Laboratory. 

FVB MMTV-PyMT (+) mice were backcrossed for 14 generations to C57Bl/6 background, 

and C57Bl/6 background was confirmed by microsatellite analysis. PyMT-carrying males 

were then crossed with Ccr7
-/-

 females, and the offspring were interbred to produce MMTV-

PyMT Ccr7
WT

 and MMTV-PyMT Ccr7
-/-

 mice. The University of Adelaide institutional 

animal ethics committee approved all experimentation. For the assessment of CCR7 

expression and CCL19(8-83) function both C57Bl/6 and FVB backgrounds were tested to 

eliminate any strain bias. For experiments involving knock-out mice, only C57Bl/6 mice 

were tested. Nomenclature used for genotypes is as follows: Ccr7
WT

 = WT, Ccr7
-/- 

= CCR7 

KO, MMTV-PyMT Ccr7
WT 

= WT+, MMTV-PyMT Ccr7
-/- 

= CCR7 KO+.  

Human Mammary Tissue 

Ethical approval was granted by the Royal Adelaide Hospital Ethics Committee and 

all patients gave written, informed consent prior to surgery. Pathology reports for tumors 

used are available upon request. Normal breast tissue samples were obtained from the Queen 

Elizabeth Hospital, Adelaide.  

Whole Mount Staining 

Mammary glands were fixed in Carnoy’s and were stained overnight in Carmine 

Alum before dehydration and mounting. Image “stitching” and analysis was performed using 

Image J. 

Histology 

Lungs of MMTV-PyMT WT+ or CCR7 KO+ mice were perfused and dissected, then 

embedded and frozen in OCT and serially sectioned at 9μm. Formalin-fixed paraffin-
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embedded (FFPE) mammary glands/tumors were sectioned at 5μm. All slides were stained 

using haemotoxylin and eosin (H&E), dehydrated and mounted. Slides were scanned using 

the NanoZoomer Digital Pathology (NDP) System (Hamamatsu Photonics) and lung sections 

were manually quantitated using the NDP Virtual Slide Viewer software for number of 

metastases and area at the largest point.   

Immunofluorescent Microscopy 

Antigen retrieval of FFPE mouse mammary sections was performed by boiling slides 

in 0.1 M sodium citrate buffer (pH 6.0). Slides were stained with rabbit anti-CCR7 

(Epitomics) overnight at 4°C, and primary antibody was detected with Alexa Fluor 488-

conjugated goat anti-rabbit (Invitrogen) for 30 minutes. Slides were counterstained with 

DAPI, mounted, and analyzed using the Leica TCS SP5 Confocal Microscope System. 

Processing Mouse Mammary Tissue to Single Cell Suspension 

Mouse mammary glands/tumors were dissected, with removal of the lymph node if 

possible. Tissue was manually dissociated and then digested in 10% 

collagenase/hyaluronidase (Stem Cell Technologies) for 3-4 hours with gentle tilting. Single 

cells were extracted as previously described (37) and filtered through a 70μm nylon mesh. In 

order to remove contaminating infiltrating cells of hematopoietic origin, Biotin Binder 

Dynabeads (Invitrogen) in combination with a biotinylated anti-mouse lineage antibody panel 

(BioLegend), were used as suggested by the manufacturer.  

Processing Human Mammary Tissue to Single Cell Suspension 

Surgical specimens were minced and digested in 10% collagenase/hyaluronidase 

(Stem Cell Technologies) in DMEM supplemented with 20mM HEPES, penicillin-

streptomycin, and 0.25μg/ml fungazone. Organoids were then extensively washed with 

DMEM and red blood cells were lysed by isotonic lysis buffer (150mM NH4Cl in 17mM 

Tris-HCl, pH 7.2). Single cell suspensions were obtained by digesting organoids with 0.25% 
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trypsin for 10 minutes at room temperature, with subsequent filtration through a 70μm nylon 

mesh. 

Flow Cytometry  

Cells were fixed in 4% paraformaldehyde and immunostained for 45 minutes on ice in 

PBS/0.5%BSA. Antibodies used were: Alexa Fluor 647-conjugated anti-mouse CCR7, PE-

conjugated anti-mouse/anti-human CD24, FITC/PECy5-conjugated anti-human CD49f, 

FITC-conjugated anti-human CD44 (all from BD), FITC-conjugated anti-mouse CD29, PE-

conjugated anti-mouse/anti-human DLL1 (all from BioLegend), and biotinylated anti-

mouse/anti-human DNER (R&D). Samples containing biotinylated antibodies were 

resuspended in PerCP/Cy5.5 or Alexa Fluor 488-conjugated streptavidin (1/1000 dilution) in 

PBS/0.5% BSA for 30 minutes on ice. Fluorescence-minus-one (FMO) samples or 

conjugated isotypes were used as negative controls. Flow cytometry was carried out using 

FACSCanto equipment (BD). Data analysis was performed using FlowJo software (Tree Star 

Inc.).  

Mammosphere Assay 

Cells were seeded in mammosphere medium (1:1 mixture of DMEM and Ham’s F12 

medium (Gibco) supplemented with 1xB27 (Invitrogen), 20ng/ml EGF, 20ng/ml bFGF, 

4μg/ml heparin (Sigma-Aldrich), penicillin-streptomycin, and 0.25μg/ml fungazone) at 

4x10
4
cells/ml to an ultra-low attachment tray (Corning). Where indicated, CCL21, CCL19 

and CCL19(8-83) were added at concentrations of 10ng/ml, 200ng/ml and 100ng/ml 

respectively. Media was replenished every second day. After 7-10 days, mammospheres were 

counted and passaged.  

Limiting Dilution Assay 

Mammosphere colonies derived from 8 week old pre-neoplastic MMTV-PyMT WT+ 

and CCR7 KO+ mice were dissociated using trypsin and triturated through a 19G needle. 
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Following filtration, cells were injected in 20% Matrigel (BD):80% DMEM into the fourth 

inguinal mammary glands of anaesthetized WT recipient mice (8 weeks old) at limiting 

dilutions as previously described (24). Mice were sacrificed after 6 weeks and glands whole-

mounted. TIC-frequency and statistical calculations were performed using L-Calc software 

(Stem Cell Technologies).  

Tissue Transplants 

Mammary gland fragments of 1mm
3
 size from donor MMTV-PyMT mice were 

transplanted into contralateral sides of anaesthetized congenic non-PyMT WT recipient mice 

(8 weeks old) within the fourth inguinal mammary glands. Mice were monitored for adverse 

reactions to surgery and subsequent tumor growth.  

In vivo Treatment with CCR7 Antagonist 

Mice were injected under anesthetic into an inguinal mammary fat pad, with 1μg 

CCL19(8-83) truncated ligand in 50μl saline vehicle, as indicated. As a control, mice were 

injected in the contralateral inguinal mammary fat pad with vehicle alone as previously 

reported (38, 39).  

Statistical Analysis 

Unless otherwise indicated, analyses were carried out using GraphPad Prism and data 

is shown as mean ± SEM. Significant statistical difference was estimated using student’s t-

tests, or chi-square tests for distribution analysis. Tumor-free survival curves were graphed 

using the Kaplan-Meier method and distributions were compared by the log-rank statistic 

(Mantel-Cox test). All measurements were done in triplicate. P-values were used to denote 

statistical significance. Levels of significance were *p≤0.05, **p≤0.01, and ***p≤0.001. 
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FIGURE LEGENDS 

Figure 1: CCR7 deletion arrests mammary tumourigenesis in the PyMT transgenic 

breast cancer mouse model 

(a-c) CCR7 ablation delays tumor onset and reduces tumor burden in the MMTV-PyMT-

driven mouse model of breast cancer. (a) Representative images of MMTV-PyMT Ccr7
WT

 

(WT+) and MMTV-PyMT Ccr7
-/-

 (CCR7 KO+) mice at 22 weeks old, showing grossly 

visible tumors (demarcated by red arrows and dotted lines). (b) Kaplan-Meier analysis of 

tumor-free survival for WT+ (n=18) and CCR7 KO+ (n=17) mice. (c) Number of tumors in 

WT+ and CCR7 KO+ mice at the time of sacrifice. (d-f) CCR7 KO+ mice developed less 

lung metastases than their WT+ counterparts. (d) Total cumulative area of lung metastatic 

lesions in WT+ (n=8) and CCR7 KO+ (n=8) mice. (e) Distribution data of lung metastases in 

WT+ and CCR7 KO+
 
mice. (f) Representative images of H&E stained lung sections from 

WT+ (left) and CCR7 KO+ (right) mice with metastatic lesions (black arrowheads). Red 

arrowhead indicates inset magnified image.  

Figure 2: The effect of CCR7 on normal mammary development 

(a-b) Development of the mammary ductal tree was evaluated in Ccr7
WT

 (WT) and Ccr7
-/-

 

(CCR7 KO) C57Bl/6 mice at 6 weeks of age. (a) Representative whole mount images of 

mammary glands, with apparent reduction in the size of ductal trees in CCR7 KO (right, n=6) 

compared to WT (left, n=7). LN= lymph node. (b) Quantitation of the length of the main 

epithelial duct (left), total number of mammary epithelial terminal structures (center), and 

branch points within mammary epithelium determined by quantifying branch points per mm 

along three individual ducts (right). (c) CCR7 expression (magenta) in normal mouse 

mammary terminal end buds of pubertal mice. Nuclei are counterstained with DAPI (gray). 

(d) Representative whole mount images of mammary glands taken from adult WT (left, n=6) 
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and CCR7 KO (right, n=6) mice at 12 weeks of age with no apparent differences in the size 

and architecture of the mammary tree.  

Figure 3: CCR7 activity amplifies stem-like cells in both mouse and human mammary 

glands 

(a-c) Normal mammary glands and mammary tumors were analyzed by flow cytometry for 

stem-like cell content. (a) Proportion of cells positive for CCR7 in Lin
-
 stem cell-enriched 

populations in normal mouse mammary epithelium (left) and PyMT-expressing glands 

(right), as denoted by surface marker expression CD24
+
CD29

hi
. Shaded histograms= 

fluorescence-minus-one negative gates. (b) Proportion of cells positive for CCR7 in putative 

stem-like cell populations in normal human mammary epithelium (left) and breast cancer 

(right), as denoted by surface marker expression CD44
+
CD24

-
. (c) CCR7 deletion decreases 

the proportion of mouse Lin
- 

stem cell-enriched populations in normal (left) and PyMT-

expressing (right) mammary glands as indicated. (d-f) The effect of CCR7 deletion/activation 

on primary and secondary mammosphere formation was assessed. Shown are mammosphere-

forming efficiencies of cells derived from normal mouse mammary glands (d), PyMT-

expressing mouse mammary glands (e), and human patient-derived breast tumors (f). WT 

mouse cells and primary human cells were stimulated with CCL21 and CCL19 as indicated. 

(a-f) Mouse data are representative of at least 3 independent experiments, n=6-10 mice per 

group. Human results are representative of 2 normal and 4 independent tumor samples.  

Figure 4: CCR7 increases in vivo tumor-initiating capacity of sphere cells  

(a) Representative images of intact and respective whole-mounted contralateral mammary 

glands engrafted with 2500 WT+ or CCR7 KO+ sphere-derived cells. Black arrowheads 

indicate areas of outgrowth from engrafted cells. LN= lymph node. (b) Results of limiting 

dilution assay indicating frequency of tumor-initiating cells (TIC) in WT+ and CCR7 KO+ 
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sphere cultures. Fractions indicate the number of fat pads with lesion(s) per total number of 

recipient fat pads.  

Figure 5: CCR7 is required for the propagation of mammary tumors 

(a) Representative H&E stained sections of pre-neoplastic mice at the WT+ and CCR7 KO+ 

donor age of 8 weeks. Bottom: Magnified images of boxed area. (b) Representative whole-

mount images of WT
 
recipient glands after transplantation of pre-neoplastic mammary tissue 

from WT+ (top) and CCR7 KO+ (bottom) donor mice at 8 weeks of age. Black arrowheads 

indicate areas of outgrowth from donor tissue. Fractions indicate the number of fat pads with 

lesion(s) per total number of recipient fat pads. LN= lymph node. (c) Cumulative area of 

transplant outgrowth in recipient mammary glands. n=6 mice per group.  

Figure 6: Pharmacological antagonism of CCR7 in vivo depletes the stem-like cell 

population and inhibits mammary tumourigenesis 

(a) MFE of Lin
-
 mammary cells from WT+ mice (n=9), untreated or treated with CCL21 

and/or the CCR7 antagonist CCL19(8-83). (b-d) Treatment of mice with CCL19(8-83) reduces 

tumourigenesis in MMTV-PyMT WT+ mice. (b) Representative image of intact mammary 

glands treated with vehicle or CCL19(8-83) as indicated. (c) Cellularity of contralateral vehicle- 

or CCL19(8-83)- treated glands. (d) Proportions of Lin
-
CD24

+
CD29

hi
 cells (left) and MFE 

(right) of cells from vehicle- or CCL19(8-83)- treated glands. (e) Treatment of mice with 

CCL19(8-83) reduces the stem cell-enriched population in a transplant model. Experimental 

strategy (left), proportion of Lin
-
CD24

+
CD29

hi
 cells (center) and MFE (right) of cells from 

transplanted tumors with or without CCL19(8-83) treatment. (b-e) Data are representative of 2 

independent experiments, n=4-6 mice per experiment. 
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SUPPORTING INFORMATION 

Supplementary Experimental Procedures 

Immunohistochemistry (IHC) 

Immunohistochemical analysis was performed using standard procedures. Briefly, 

antigen retrieval of FFPE mouse mammary sections was carried out by boiling slides in 0.1M 

sodium citrate buffer (pH 6.0) under pressure. Slides were immersed in 3% hydrogen 

peroxide in PBS for 20 minutes with gentle agitation to inhibit endogenous peroxidase 

activity and blocked for 30 minutes in 10% normal serum in PBS to prevent non-specific 

antibody binding. Slides were then incubated overnight at 4°C with mouse anti-α-smooth 

muscle actin (α-SMA, Dako). Specific antibody binding was detected using the EnVision 

Dual Link System (Vector Labs) followed by incubation with diaminobenzidine (DAB) 

substrate (Dako). Sections were counterstained with haemotoxylin, dehydrated and mounted. 

Calcium (Ca
+
) Signaling Analysis 

Intracellular calcium mobilization assay was performed on cells isolated from tumors 

dissected from C57Bl/6 MMTV-PyMT mice at 20 weeks of age as described (1). Ligands 

added were CCL21 (100ng/ml) and lysophosphatidic acid (LPA) (50ng/ml). 

Enzyme-Linked Immunosorbent Assay (ELISA) 

Wells were coated in CCL21 and CCL19 capture antibody (R&D) and receptors 

blocked using PBS/3%BSA for 1 hour at 37°C. After determining WT and CCR7 KO 

mammary gland weight, fat pad samples were homogenized in PBS buffer (10% glycerol, 1x 

protease inhibitor) and aliquotted to coated wells for 90 minutes at 37°C. Detection antibody 

(R&D) was added for 1 hour then streptavidin-HRP added for 30 minutes.  
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Proliferation Assay 

Isolated lineage-negative mouse mammary cells were plated in adherent culture 

(DMEM:F12/10% FCS, supplemented with 20ng/ml EGF, 5μg/ml insulin, 0.5μg/ml 

hydrocortisone, penicillin-streptomycin, and 0.25μg/ml fungazone) in 96-well plates and the 

following day were serum-starved for 4 hours. The cell proliferation assay was carried out 24 

hours later using the XTT Cell Proliferation Kit (ATCC) according to manufacturer’s 

instructions, using 100ng/ml CCL19 and CCL21. FCS was used at a concentration of 5%.  
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SUPPLEMENTARY FIGURES 

Supplementary Figure 1 (Related to Figure 1)  

(a) Serial sections of mouse mammary tissue from normal mice and at different tumourigenic 

stages stained with haemotoxylin and eosin (H&E) and for α-smooth muscle actin (α-SMA) 

as indicated. (b) Mammary cells were gated to exclude debris, dead cells and doublets (top) 

and proportions of CCR7-positive cells in mammary epithelial cell preparations from 

corresponding stages in (a) were analyzed by flow cytometry(bottom). Shaded histograms= 

fluorescence-minus-one negative gate. wo= weeks old. 

Supplementary Figure 2 (Related to Figure 1)  

(a) Expression of CCR7 ligands (CCL21 and CCL19) in WT and CCR7 KO mammary fat 

pads with excised inguinal lymph nodes was assessed by ELISA. n=6 glands per genotype. 

(b) Calcium mobilization analysis of PyMT-expressing WT+ mouse mammary cells in 

response to lysophosphatidic acid (LPA) (positive control) and the CCR7 ligand, CCL21. 

Arrowheads indicate a point of stimulus addition. 

Supplementary Figure 3  

Ablation of CCR7 has no effect on early mammary tumourigenesis in MMTV-PyMT mice. 

(a) Top: Representative images of inguinal mammary glands of WT+ (left) and CCR7 KO+ 

(right) mice harvested at 8 and 11 weeks of age as indicated. Arrowheads indicate areas of 

epithelial hyperplasia. LN= lymph node. Bottom: Quantitation of area of hyperplasia in WT+ 

and CCR7 KO+ at 8 weeks old. n=6 glands per genotype. (b) Serial sections of mouse 

mammary tissue from WT+ and CCR7 KO+ mice at 8 weeks old stained with haemotoxylin 

and eosin (H&E) and for α-smooth muscle actin (α-SMA) as indicated. 
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Supplementary Figure 4 (Related to Figure 3)  

All cells were pre-gated to exclude debris, dead cells and doublets. (a-b) Flow cytometry 

gating strategy for delineating the stem cell-enriched population (CD24
+
CD29

hi
) and non-

stem cell populations (CD24
+
CD29

lo 
cells and stromal cells) and proportion of CCR7 positive 

cells within these populations, in normal mice (a) and from MMTV-PyMT mice (b). (c) Flow 

cytometry gating strategy for delineating the stem cell-enriched population (CD44
+
CD24

-
) 

and non-stem cell population (CD44
-
CD24

+
) in human mammary epithelium, and proportion 

of CCR7 positive cells within these populations as indicated. (d-e) Flow cytometry gating 

strategy for delineating mouse (d) and human (e) stem cell-enriched populations based on 

alternative CD49f
+
DLL1

+
DNER

+
 surface marker expression, together with representative 

plots demonstrating proportion of CCR7 positive cells within these populations. “FMO” and 

shaded histograms= fluorescence minus one negative gates. 

Supplementary Figure 5 (Related to Figure 3)  

(a-b) CCR7 deletion decreases proportion of the stem cell-enriched population in normal (a) 

and PyMT-expressing mice (b) designated by a putative marker profile of Lin
-

CD49f
+
DLL1

+
DNER

+
. Data are representative of at least three independent experiments, n=6 

mice per genotype. (c) CCR7 stimulation does not have any effect on proliferation of WT+ 

mammary cells in adherent culture. Shown are results of XTT proliferation assay with and 

without addition of CCR7 ligands. FCS was used as a positive control. (d) The stimulatory 

effect of CCL19 and CCL21 on MFE of MMTV-PyMT cells is dependent on CCR7. The 

primary MFE of CCR7 KO+
 
(n=4 mice) mouse mammary cells was not affected by the 

addition of these chemokines. (e) Effect of stimulation of primary WT+ (n=6 mice) 

mammosphere culture with chemokine ligands for receptors CCR6, CXCR3, CXCR4 and 

CXCR5 respectively. 
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Supplementary Figure 6 (Related to Figure 4)  

Representative images of WT recipient glands engrafted with WT+ or CCR7 KO+ 

mammosphere-derived cells as indicated. Shown are contralateral glands in which both WT+ 

and CCR7 KO+ cells produced outgrowths (black arrowheads), to demonstrate differences in 

size between lesions. At the lowest dilution, only WT+ cells produced any outgrowth. LN= 

lymph node.  

Supplementary Figure 7 (Related to Figure 6)   

 (a) Total mammary epithelial cell count in MMTV-PyMT mice following injection with 

vehicle or CCL19(8-83) antagonist for 8 weeks in contralateral inguinal mammary fat pads. (b) 

Weight of mammary glands. (c) Comparison of stem cell-enriched population in MMTV-

PyMT glands delineated by alternative marker set Lin
-
CD49f

+
DLL1

+
DNER

+
. (d) Treatment 

of mammary glands with vehicle control (left) or CCL19(8-83) (right) does not alter CCR7 

expression levels in the Lin
-
CD24

+
CD29

hi 
 population. Shaded histograms = fluorescence 

minus one negative gates. (e) Treatment with CCL19(8-83) does not change cellularity of 

transplanted tumor tissue despite affecting the stem cell-like pool. (f) Comparison of the stem 

cell-enriched population in transplanted glands treated with CCL19(8-83) or vehicle, as 

delineated by alternative marker set Lin
-
CD49f

+
DLL1

+
DNER

+
.  


















