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Abstract 

Sequencing of water supply projects involves choosing the options to implement at specific stages over a 

planning horizon. In the past, the sequencing of water supply projects was relatively straightforward and 

generally focused on traditional water supply sources (e.g. reservoirs and groundwater sources) and  only 

considered the criteria of water supply security and cost. In recent years, the reliability of traditional water 

supply sources has been compromised as a result of increasing demand and the impact of climatic factors. 

This has placed further strain on water supplies and necessitated the use of a longer planning horizon and 

more criteria for assessment. Furthermore, with the increase in urbanisation and diminishing natural water 

sources, there is an increase in the need to consider recycled water and desalination as additional or 

alternative water supply options. Extended planning horizons result in increased uncertainties associated 

with the future, which requires the development of robust and adaptive solutions to best cope with a variety of 

potential future conditions. However, there has been little work that has utilised alternative water supply 

sources in the process of sequencing while incorporating multiple sustainability objectives and uncertainties.  

This thesis presents different sequencing approaches that are based on multi-objective optimisation, so that 

a number of competing objectives (e.g. cost, greenhouse gas emissions) can be taken into account. 

Furthermore, the optimal mix of water supply options, and when they should be implemented, can be 

identified from among a large number of alternatives (e.g. rainwater tanks, stormwater harvesting schemes, 

desalination etc.). In addition, some of the proposed optimisation approaches take the sensitivity, robustness 

and adaptation of solutions into account, so that the selected water supply options will be as insensitive and 

flexible to future changes (e.g. climate change, new technologies) as possible. The proposed sequencing 

approaches are applied to a case study based on the southern Adelaide water supply system in South 

Australia to demonstrate its utility. 

This thesis is structured as a series of three publications. Two approximate optimal sequencing 

approaches that are able to account for alternative sources of water and multiple sustainability 

objectives are introduced in the first publication. These approaches are developed to assess the impact 

of different objective function weightings and sequencing approaches on the optimal sequences of 

alternative water supply sources for the case study under a range of demand and discount rate 

scenarios. They are also used to assess the impact of different objective function weightings on 

objective function values for the case study. 

The second publication includes an improved sequencing approach, which utilises a multi-objective 

evolutionary algorithm, coupled with a water supply system simulation model, to identify the sequences 
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of alternative water supply sources that represent the optimal trade-offs between the selected objectives 

for various possible future conditions Subsequently, the impacts of uncertain values of input variables 

(e.g. population, per capita demand, climate change) on the objectives and water supply security of the 

system are evaluated using global sensitivity analysis. This provides information on the expected 

variation in objective function values and water supply security under uncertain future conditions, as well 

as the sensitivity of these values to the selected uncertain conditions, enabling the most appropriate 

optimal sequence plan to be selected. 

In the third publication, this sequencing approach is further extended to a more enhanced framework 

which promotes robustness and adaptation. This approach requires continual reassessment and 

updating of the sequence plans at fixed time intervals in order to identify and reduce the risk of failure.  
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Chapter 1 

1 Introduction 

Sequencing of water supply sources involves choosing the options to implement and their timing over a 

defined planning horizon. This allows water supply sources to be introduced when they are needed, and 

reduces redundancy and therefore costs associated with the system. The optimal sequencing of urban 

water supply sources has long been used to identify water supply projects that maintain water supply 

security, but has traditionally focused on the reservoir expansion problem and economic objectives 

(Becker and Yeh, 1974, Butcher et al., 1969, Morin and Esogbue, 1971, Connarty and Dandy, 1996). 

However, as a result of increased climate variability and change, increased water demand due to 

population and urban growth and increased efforts to adopt sustainable water management practices, 

the complexity of this optimal sequencing task has increased significantly, as illustrated in Figure 1.1. 

 

Figure 1.1 Criteria involved in the sequencing of sustainable water supply sources 

Firstly, in order to respond to increased demand, there has been a significant increase in the use of 

alternative, non traditional sources of water, such as desalination, stormwater re-use and rainwater 

tanks in order to increase water supply security in times of drought and in response to potential climate 

change impacts (Kang and Lansey, 2012, Coombes and Lucas, 2006). This has resulted in a significant 

increase in the number of alternative water sources that need to be included in the sequencing process 

and increased the frequency with which water supply systems are upgraded, as many of the alternative 

sources of water have small capacities. This makes it difficult to ascertain which combination of sources 

is best and when certain sources should be developed and brought online, as the number of potential 

solutions is significantly greater than had been considered for conventional systems. 

Secondly, the adoption of sustainability principles also increases the complexity of the sequencing 

problem due to the need to consider a variety of alternative objectives, such as environmental, social 
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and technical objectives, in addition to the traditional focus on economic objectives (Hellstrom et al., 

2000) (Figure 1.1). As a result, there is no longer a single optimal solution, as many of these objectives 

are in competition with each other. This leads to the need to identify solutions that represent the optimal 

trade-offs between these objectives.   

Thirdly, the adoption of sustainability principles requires consideration of extended time frames, such as 

50 to 100 years in the planning of water resources projects (Mitchell et al., 2007) (Figure 1.1). This 

further complicates the sequencing task, as conditions, such as population, climate and technology are 

likely to change substantially over extended timeframes (Tanaka et al., 2006), making it more difficult to 

assess the relative merits of optimal sequencing plans (Beh et al., 2011). While significant progress has 

been made in the development of techniques for quantifying the uncertainty associated with future 

demand and hydrological forecasts (Zhang et al., 2013, Kuczera and Mroczkowski, 1998, Mantovan and 

Todini, 2006, Ajami et al., 2007, Chung et al., 2009), the uncertainty associated with other factors 

affecting the sequencing or urban water supply sources, such as discount rates and climate change, are 

more difficult to assess.  

Previous studies on the sequencing of water supply projects have generally been applied to traditional 

water supply sources, for instance, the expansion of multiple reservoirs (Braga et al., 1985, Dandy and 

Connarty, 1994) and groundwater supplies (Chang et al., 2009), without consideration of alternative 

sources of water. Furthermore, economic costs were the sole criterion for determining the best 

sequence of water supply options. For example, Mulvihill and Dracup (1974) determined the optimal 

blending of several water sources, and the sizing and timing of their expansion by minimising the sum of 

the capital, operational and maintenance costs of a system. Later, Rubinstein and Ortolano (1984) and 

Martin (1987) determined the optimal sequence by minimising the total construction costs required to 

establish a system that could cope with emergencies that threatened the supply of water. However, 

there has been a lack of consideration of other objectives. 

Existing optimal sequencing approaches for water supply sources are generally deterministic, in the 

sense that they require assumptions to be made about future conditions, such as population growth, per 

capita demand and hydrological inputs. While this results in optimal sequence plans if the assumed 

future values are correct, it has been widely acknowledged that this is unlikely to be the case (e.g. 

(Dessai et al., 2013, Gober, 2013). Consequently, there is a need to consider various sources of 

uncertainty in the optimal sequencing of water supply sources. 
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Although there are a variety of methods developed to deal with uncertainty for the determination of 

robust portfolios of future water supply and demand management options (e.g. Kasprzyk et al., 2013b, 

Kasprzyk et al., 2012, Kasprzyk et al., 2009, Matrosov et al., 2013a, Matrosov et al., 2013b, Korteling et 

al., 2013), they have generally not been extended to consider the sequencing or scheduling of water 

supply sources, except for a number of exceptions (Ray et al., 2012; Kang and Lansey, 2014). 

Robustness is generally understood as the ability to withstand external shocks or to be stable under a 

range of uncertainties (Bankes, 2010). However, when the sequencing of water supply sources is 

considered, adaptation (i.e. changing the solutions to be implemented at each decision point in 

response to changes in the assumptions) can be considered as a way of dealing with uncertainty in 

addition to robustness (i.e. selecting solutions that are insensitive to changes in future conditions). This 

has been demonstrated in the areas of water distribution system design (Basupi and Kapelan, 2013) 

and flood management (Woodward et al., 2014). Only Lempert and Groves (2010) considered both 

robustness and adaptation in the context of the sequencing of water supply sources, although they did 

not utilise a formal optimisation approach. 

1.1 Research Objectives 

This research aims to enhance the traditional sequencing approach by incorporating multiple 

sustainability criteria (i.e. economic, environmental and robustness), alternative water supply sources 

(i.e. reservoirs, desalination plant and stormwater) and different sources of uncertainty (i.e. population 

growth, per capita demand, climate change, climate variability, etc.). The specific research objectives 

are given below. 

Objective 1: Development of innovative approaches to the optimal sequencing of urban water supply options 

that cater for multiple objectives and alternative sources of water.  

Objective 2: Development of innovative approaches to the optimal sequencing of urban water supply 

options that enable optimal sequence plans to be identified under deep uncertainty by: 

Objective 2.1: Using a static approach based on global sensitivity analysis. 

Objective 2.2: Using an adaptive approach based on flexibility and robustness. 

Objective 3: To demonstrate and test the utility of the different approaches on a case study based on 

the expansion of the southern Adelaide water supply system 
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1.2 Thesis Overview 

This thesis is organised into five chapters. The main body of this thesis consists of Chapters 2 to 4, 

which correspond to three journal papers (Beh et al., 2014, Beh et al., 2015a, Beh et al., 2015b). 

In Chapter 2, two approximate optimal sequencing approaches, the “Build–up” (BU) and “Build to 

target” (BTT) methods, are developed to identify optimal sequence plans that include alternative urban 

water supply sources and multiple objectives (Objective 1) under a range of demand and discount rate 

scenarios, where the impact of different objective function weightings and sequencing approaches on: 

(i) the optimal sequences of alternative water supply sources, and (ii) the objective function values are 

assessed. The utility of the proposed approach is demonstrated on the case study of southern Adelaide 

water supply system (Objective 3). The results obtained show that the BU method generally results in 

less favourable objective function values, but is more flexible and responsive to future changes 

compared with the BTT method. 

In Chapter 3, a multi-objective approach to the optimal sequencing of environmental and water 

resources activities under deep uncertainty is developed (Objectives 1 and 2.1). The approach consists 

of three main steps, including (i) the determination of a portfolio of diverse optimal sequences, (ii) the 

performance of global sensitivity analysis on each of the members of the portfolio of optimal sequences 

identified in (i) and (iii) the selection of the optimal sequence/ schedule to be implemented. The 

proposed approach is applied to the case study of southern Adelaide water supply system (Objective 3). 

Based on the results obtained, the proposed sequencing approach provides sequences with good 

compromise between average and extreme values of the performance measures, as well as the ability 

to adapt to actual future conditions.  

In Chapter 4, the work in Chapter 3 is further extended to incorporate robustness and adaptation 

(Objectives 1 and 2.2) when identifying the sequences of alternative water supply sources that cater for 

multiple objectives under deep uncertainty. The proposed robust, adaptive, multi-objective optimal 

sequencing approach consists of three steps, including (i) identification of a diverse portfolio of optimal 

water supply augmentation sequence plans over the entire planning period with the aid of scenario-

based multi-objective optimisation, (ii) assessment of the performance of the portfolio of optimal 

sequence plans in terms of robustness and flexibility over the current staging interval and variation of 

the optimisation objectives over the entire planning period and (iii) selection of the water supply 

option(s) to be implemented at the current decision stage based on the trade-offs between the 

performance criteria in (ii). The above steps are repeated at subsequent decision stages (e.g. if the 

staging interval is 10-years, this process will be repeated every 10 years). The enhanced approach is 
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also applied to the same case study in order to demonstrate its utility (Objective 3). The results indicate 

that the approach is successful in adapting to changing conditions, while optimising longer-term 

objectives and satisfying water supply security constraints along the planning horizon, in highly 

uncertain planning environments.  

The linking of each of the papers to the objectives is depicted in Table 1.1. Although the manuscripts 

have been reformatted in accordance with University guidelines, and sections renumbered for inclusion 

within this thesis, the material within this paper is otherwise presented herein as published. Copy of the 

publication “as published” are provided in Appendix. 

Conclusions of the research within this thesis are provided in Chapter 5, which summarises: 1) the 

research contributions, 2) limitations and 3) future directions for further research. 

Table 1.1 Linkage of research objectives and publications 

 Paper 1 Paper 2 Paper 3 

1. To develop innovative approaches to the optimal sequencing of urban 
water supply options that cater for multiple objectives and alternative 
sources of water. 

X X X 

2. To develop innovative approaches to the optimal sequencing of urban 
water supply options that enable the optimal sequence plan to be 
identified under deep uncertainty by: 

   

2.1   Using a static approach based on global sensitivity analysis.  X  

2.2   Using an adaptive approach based on flexibility and robustness.   X 

3. To demonstrate and test the utility of the different approaches on a 
case study based on the expansion of the southern Adelaide water 
supply system. 

X X X 
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Chapter 2 

2 Optimal sequencing of water supply options at the regional scale 
incorporating alternative water supply sources and multiple objectives – Paper 
1 
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Abstract 

In recent years, the sequencing of water supply projects has become increasingly complex, as a result 

of the need to consider alternative water sources and additional objectives. In order to address this 

problem, two sequencing approaches are presented in this paper to assist in identifying the optimal 

sequence of water supply projects. The methods are applied to a case study based on the southern 

Adelaide water supply system, South Australia, over a 40-year planning horizon. Desalination plants, 

rainwater and stormwater sources are considered in addition to existing surface water sources. The 

objectives used include the present value of cost and greenhouse gas (GHG) emissions and optimal 

sequences are obtained for a range of demand and discount rate scenarios. The results demonstrate 

that there are noticeable tradeoffs between costs and GHG emissions when favouring different 

objectives, but that the impacts of uncertain demands and discount rates are potentially more 

significant. 

2.1 Introduction 

Sequencing has long been used to identify water supply projects that maintain water supply security and 

minimise water supply costs (Butcher et al., 1969). For example, Morin et al. (1971) determined the optimum 

sequence for the implementation of potential water supply projects to meet scheduled demand with minimum 

present value of cost and UK Water Industry Research (2002) presented an approach to the minimum-cost 

sequencing of surface and groundwater supply projects. Techniques for sequencing have generally been 

applied to traditional water supply sources, for instance, the expansion of multiple reservoirs (Dandy and 

Connarty, 1994, Braga et al., 1985, Becker and Yeh, 1974) and groundwater supply (Chang et al., 

2009).  However, in recent years, confidence in such traditional water supply sources, such as reservoirs and 

groundwater supplies, has waned as a result of increasing demand and reduced reliability of supply due to 

climate factors (Chartres and Williams, 2006).  

In response, there has been a significant increase in the use of alternative sources of water, such as 

desalination, reclaimed wastewater and harvested stormwater and rainwater, in an attempt to improve water 

supply security in times of drought and in response to potential climate change impacts (Coombes and 

Lucas, 2006). These alternative sources have been found to be efficient in terms of the augmentation of 

water supply systems and in easing pressure on traditional water resources (Eroksuz and Rahman, 2010, 

Voivontas et al., 2003, Zhang et al., 2013).  

However, such non-traditional sources have not been considered as part of sequencing studies to date. 

Consequently, there is a need to develop a sequencing approach that includes non-traditional sources. This 
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is particularly the case as their consideration increases the complexity of the sequencing problem because of 

the larger number of potential water supply options. Furthermore, sequencing must accommodate the 

smaller capacities of localized sources of water, such as rainwater, stormwater and greywater, and may 

therefore have to be conducted more frequently.  

In previous sequencing studies, economic cost was used as the primary criterion for determining the best 

sequence of water supply options. For example, Mulvihill and Dracup (1974) determined the optimal blending 

of several water sources, and the sizing and timing of their expansion by minimising the capital, operational 

and maintenance costs of the system. Later, Rubinstein and Ortolano (1984) and Martin (1987) determined 

the optimal sequence by minimising the total construction costs required to establish a system that could 

cope with emergencies in the supply of water. However, in the last two decades, the need to develop 

sustainable water supply systems has become increasingly important (Gleick, 1998), requiring the 

consideration of multiple objectives, including not just economic, but also environmental, social, technical and 

temporal criteria (Hellstrom et al., 2000).  

In order to address the shortcomings of existing sequencing approaches discussed above, the objectives of 

this paper are (i) to present two sequencing approaches that are able to account for alternative sources of 

water, shorter staging intervals and multiple objectives, (ii)  to demonstrate the utility of the approaches by 

applying them to the case study based on the southern portion of the water supply system for Adelaide, 

South Australia (SA), (iii) to assess the impact of different objective function weightings and sequencing 

approaches on the optimal sequences of alternative water supply sources for the case study under a range 

of demand and discount rate scenarios; and (iv) to assess the impact of different objective function 

weightings and sequencing approaches on objective function values for the case study. 

The remainder of this paper is organized to firstly discuss the two proposed sequencing approaches that 

consider multiple objectives and alternative, non-traditional sources of water (Section 2.2). The case study, 

and the application of the proposed approaches to the case study, are described in Sections 2.3 and 2.4; and 

the results obtained are presented and discussed in Section 2.5. Conclusions and recommendations are 

offered in Section 2.6. 

2.2 Proposed Sequencing Approaches 

The sequencing approaches introduced in this paper involve subdividing the planning horizon T (e.g., 50 

years) into a finite number of staging intervals t (e.g., five years) resulting in a number of decision stages Py 

=1, 2, 3, ..., r (e.g. if T = 50 years and t = 5 years, r =50/5=10, resulting in 10 decision stages, each with a 

duration of 5 years) (Figure 2.1). For each stage, different potential water supply options Sx (x=1, 2, 3, ..., q) 
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are considered, such as reservoirs, stormwater reuse and desalination, along with a set of finite integer 

capacities Cx, ranging from zero to a maximum value, as illustrated in Figure 2.1. 

It should be noted that for each decision stage, water supply Qx, taken from each water supply option, should 

not exceed the selected capacity Cx. Furthermore, the total water supply must satisfy the projected demand 

at each decision stage, which acts as a constraint on the sequencing problem (Figure 2.1).  

The purpose of the sequencing process is to select the combination of sources and capacities at the 

beginning of each staging interval (i.e., at each decision point) so as to optimise one or more objectives Os 

(s=1, 2, 3, ..., p), such as cost, energy usage and reliability, while satisfying the constraints identified (Figure 

2.1).  

 

Figure 2.1 Proposed problem representation 

In order to implement either of the proposed sequencing approaches, three major steps need to be taken. 

The first step is problem formulation, which includes selecting appropriate objectives to be maximised or 

minimised, setting the planning horizon and interval between review periods, defining the demand constraints 

over the planning horizon, and choosing potential water sources and capacities. The next step involves the 

calculation of the yields for each potential water supply option. The third step is the sequencing process, 

during which the best combination of sources to meet the demand is selected. Each of these steps is 

described in detail in the subsequent sections. 

2.2.1 Problem Formulation 

In the problem formulation stage, the objectives, planning horizon, demand and possible water supply 

options need to be selected, as shown in Figure 2.2. 
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Figure 2.2 Steps in problem formulation process 

Determining the objectives. The first issue to be addressed is the selection of the appropriate objective(s) 

Os to be optimised during the development of the sequencing plans. The consideration of objectives other 

than cost minimisation, such as environmental and social objectives, is particularly important when non-

traditional sources of water are being considered. For example, the production of desalinated water requires 

significantly more energy than collecting water from traditional sources, increasing environmental impact; and 

recycling wastewater and stormwater elicits a range of public and government responses in terms of water 

acceptability and public health considerations. 

Which objectives should be considered is case study dependent. There are a number of studies related to 

the sequencing of water supply sources that mainly focus on minimising the economic cost of the water 

supply system (Becker and Yeh, 1974, Knudsen and Rosbjerg, 1977, Martin, 1987, Chung et al., 2009). 

Understanding the potential environmental and social impact of the supply system is a challenge, given the 

variety of parameters (e.g., energy usage) that must be considered, many of which are hard to quantify 

(Yurdusev and O'Connell, 2005). 

Establishing a planning horizon and defining decision points. Next, the planning horizon T needs to be 

established. Determination of an appropriate planning period is crucial for sustainable water supply system 

planning. Mitchell et al. (2007) suggested the use of a 50 to 100 year planning timeframe in order to 

adequately account for the lifespan of water supply infrastructure. At the same time, the staging interval j (i.e., 

the length of time between decision points in the sequencing plan) needs to be selected. This interval should 

reflect a realistic period for the assessment of planning decisions and the design life of the supply options.  
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After the planning horizon and staging interval have been defined, the number of decision stages Py can be 

computed by dividing the planning horizon by the staging interval. Information about the planning horizon, 

staging intervals and decision stages feeds into the sequencing process, as shown in Figure 2.2. 

Defining demand. The demands at the various decision points P have to be defined. They are a function of 

the total population and per capita demand, as well as industrial and commercial demand. As population and 

demand are likely to change over time, they need to be calculated based on future projections. Projected 

demand over the planning period is used as a constraint in the optimal sequencing process (Section 2.2.3), 

as shown in Figure 2.2.  

Selecting water supply sources. Finally, the potential water supply sources need to be defined for each 

staging interval. Potential options include traditional sources, such as groundwater, rivers, lakes and 

reservoirs, and alternative sources, such as stormwater harvesting, rainwater tanks, wastewater reuse and 

desalination.  

In addition, cases where the expected lifespan of a potential supply source is shorter than the planning 

horizon, as might be the case for rainwater tanks, for example, also need to be identified. In such cases, 

parts of the infrastructure for the potential water sources might need to be replaced as part of the sequencing 

process. 

2.2.2 Calculation Of Yield For Potential Water Supply Options 

In order to develop optimal sequence plans, water supply options that optimise the objectives while 

satisfying the demands need to be selected. Consequently, the supply capacities of the available water 

sources need to be known at each decision stage. 

Maximum capacities generally depend on a number of case study specific factors, such as water 

resources availability, including rainfall, river flow and groundwater yield; the storage capacity of 

aquifers for the harvesting of stormwater or extraction of groundwater; and geographical constraints that 

affect the locations of potential reservoirs. Some sources have a fixed yield (e.g., desalination). 

However, this is not the case for other sources, such as reservoirs, stormwater harvesting schemes and 

rainwater tanks, as their yields will vary from year to year as a result of hydrologic variability. In order to 

address this problem, the yield that can be achieved with a certain user-defined exceedance probability 

can be used as the design yield for rainfall dependent sources. 
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Figure 2.3 Process of calculating the yield of rainfall dependent source 

The proposed procedure for calculating the yield for rainfall dependent water supply options is shown in 

Figure 2.3 and described below. Firstly, a rainfall dependent source (e.g., reservoir, rainwater tank) is 

selected. Then, a stochastic rainfall sequence of appropriate length R1 is generated for the duration of P1 in 

order to account for the natural variability in rainfall. This rainfall sequence, together with the projected 

demand, is then used as input to a simulation model of the selected potential water source, in order to obtain 

a time series of yield. The result is averaged in order to obtain an average annual yield for the selected 

source throughout the period P1.  

It should be noted that the yield of each source in the simulation is the maximum of the available capacities 

throughout the period P1. By repeating the process of generating the yield of a rainfall dependent source for 

m stochastic rainfall sequences, a distribution of average annual yields is obtained for the selected source 

(Figure 2.3). Then, an appropriate design reliability level is selected. If the selected reliability level is 95% 

(i.e., there is a 95% probability that the yield is greater than or equal to the demand), the yield at the 95th 

percentile of the distribution is chosen as the design yield C. This process is then repeated for the r decision 
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stages to generate the yields of the selected source for the planning horizon T. The process in Figure 2.3 is 

repeated for all rainfall dependent sources, and the calculated yields are then used as the constraints for the 

corresponding decision variables in the sequencing process (see Section 2.2.3). 

2.2.3 Sequencing Process 

The final component of the proposed approach involves the sequencing of the i potential water supply 

options along the planning horizon T by optimising the selected sustainability objectives Os at all decision 

stages. For the sake of computational efficiency, an optimisation formulation that includes the entire solution 

space is not considered. Instead, two formulations that represent different approximations to the overall 

optimisation problem are proposed, including the ‘build up’ (BU) and ‘build to target’ (BTT) methods (Dandy 

et al., 2002). 

In both methods, optimal sequence plans are developed for all staging intervals at the beginning of the 

planning horizon, based on the best possible projections of factors affecting objective function values (e.g. 

costs, energy usage etc.) and constraints (e.g. demands). In the BU method, plans are optimised in 

chronological order, operating on one decision stage Py after another. Decisions made at previous stages 

remain fixed at subsequent stages, which means that the water supply options and capacities selected in the 

early stages will remain part of the system throughout the rest of the planning horizon. In contrast, in the BTT 

method, the sequence plans are first optimised for the target year (i.e., final decision stage). Then, a series of 

sub-problems is optimised, one for each intermediate decision stage, to identify when each water supply 

option selected in the target year should be implemented, starting with the initial planning stage and working 

forwards in time. It is a feature of BTT, therefore, that since all the water options for the target year are 

identified first, the optimisation at each decision stage must necessarily be constrained by those decisions. 

An advantage of the BU method is that it is more flexible and responsive to future changes, such as 

reductions in the growth of demand. However, it also generally results in less favourable objective function 

values compared with those obtained using the BTT method for the selected design conditions, which is a 

disadvantage if the assumed design conditions actually occur. 

It is proposed to solve the BU and BTT sequencing problem formulations using mixed integer linear 

programming (LP), as it is computationally efficient (Loucks et al., 1981), and has been used successfully in 

previous water resources expansion studies (e.g., (Hsu et al., 2008) and (Han et al., 2011). In order to 

account for multiple, competing objectives, it is proposed to use the weighted sum method (Rangaiah, 2009), 

as it has been used extensively for this purpose in previous studies (Tolson et al., 2004). The method 
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transforms multiple objectives into an aggregated objective function by multiplying each objective function by 

a weighting factor and summing up all weighted objective functions: 

  

            (2.1) 

where ws is a weighting factor for the sth objective function. It should be noted that the values of the weighting 

factors range from 0 to 1, and that the sum of the weighting factors should equal 1. The values of ws depend 

on the relative importance of each objective in the context of the problem. However, the optimisation problem 

can be solved repeatedly with different combinations of weights in order to obtain different solutions that are 

Pareto optimal (i.e. solutions for which an improvement in one objective results in the deterioration of at least 

one of the other objectives) (Tolson et al., 2004). 

The detailed formulations of the BU and BTT methods are given in the subsequent sections. 

2.2.3.1 BU Method 

The proposed process of optimal sequencing using the BU method is shown in Figure 2.4. Firstly, weighting 

factors ws are selected for each of the sustainability objectives (Figure 2.4). Then, an optimal sequence plan 

is generated by mixed integer LP in order to select a water supply sequence that optimises the sum of the 

standardized values of the objective function given in (2.2). Afterwards, water supply options that are already 

part of the water supply system under investigation need to be identified (e.g. existing water supply sources 

that are in service). Next, the values of the decision variables (i.e., potential water supply sources to be 

included and their capacities) are selected for the first decision stage P1, so that the resulting combination of 

existing and selected potential water supply options optimises the objective function (2.2) while satisfying 

constraints (2.3) to (2.6).  

 

 (2.2) 

subject to  

 

 (2.3) 

 



 
 

19 
 

 

 (2.4) 

 

 (2.5) 

 

 (2.6) 

where  

 

 (2.7) 

 

 (2.8) 

and 

 

 (2.9) 

The objective function Os consists of capital and operating values of each of the selected objectives. 

The capital values K are a function of the integer variable B; and the operating values P are a function 

of supply capacity Q. Decision variable Qxy represents the supply volume for water supply option x at 

decision stage y, and Qxy have to be equal to or less than the yield of the selected water supply option 

at decision stage y, BxyCx  (2.5). Furthermore, for the total supply volume for the selected water supply 

option at decision stage y, Qxy has to be greater than or equal to the demand at decision stage Dy  (2.6). 

Subsequently, the list of existing water supply options is updated with the options selected during this 

decision stage. The process of selecting the most appropriate values of the decision variables and updating 

the list of existing water supply options is repeated for r decision stages (Figure 2.4). Then, the optimised 

objective function values are summed over the q water supply options and r decision stages, and computed 

for the selected sustainability objectives Os to generate optimal sequence plans. 



 
 

20 
 

The BU method involves firstly solving the optimisation problem for the initial decision stage. Then each 

subsequent stage is optimised with the decisions from the previous stages locked in place. 

 

Figure 2.4 Sequencing process by the BU method 

2.2.3.2 BTT Method 

The proposed sequencing process using the BTT method is shown in Figure 2.5. On a similar way to the BU 

method, weighting factors for the sustainability objectives Os are chosen at the first step, followed by the 

identification of the current water supply options (Figure 2.5). Then, a combination of water supply options u 

is selected to meet the demand at the final decision stage r by optimising the objective function (2.10) while 

satisfying constraints (2.11) to (2.14). 

 

(2.10) 
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subject to  

 

 (2.11) 

 

(2.12) 

 

(2.13) 

 

 (2.14) 

where  

 

 (2.15) 

 

 

 (2.16) 

and 

 

 (2.17) 

Next, this set of water supply options u is scheduled to meet demand by optimising the selected sustainability 

objectives starting with the first decision stage by using the BU method (2.2), while satisfying constraints  

(2.3) to (2.6). Similar to the BU method, the list of scheduled water supply options is then updated for each 

decision stage. Subsequently, the total objective function values are computed for the selected sustainability 

objectives, and then the optimal sequence plans are generated (Figure 2.5).  
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Figure 2.5 Sequencing process by the BTT method 

For the BTT method, only the combination of sources u, which were selected to meet the demand in the 

final year, are available for selection when scheduling the water supply options from stage to stage 

using the BU method. So, the optimisation problem is smaller as the run times for the scheduling of 

water supply options will be much shorter. Additionally, the optimal sequence plan is generated for the 

final year, which generally involves less infrastructure duplication during the planning horizon T. 

2.3 Case Study 

In order to illustrate the proposed sequencing methods and assess their utility, they are applied to a case 

study based on the southern portion of the Adelaide water supply headworks system. Adelaide is the capital 

city of South Australia (see Figure 2.6) and has an estimated population of approximately 1.3 million. It is one 

of the driest capital cities in the world (Wittholz et al., 2008), having a Mediterranean climate, with hot dry 

summers and mild wet winters. Recorded annual rainfall ranges from 257mm to 882mm (Maier et al., 2013). 
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The average annual mains water consumption is estimated to be 150 gigalitres (GL), but the demand has 

ranged from 140GL/year to 200GL/year over the last 10 years depending on the prevailing weather patterns 

(Government of South Australia, 2005). 

The southern Adelaide water supply system (WSS) (see Figure 2.6) supplies around 50% of the demand of 

metropolitan Adelaide (Paton et al., 2013). The system consists of three reservoirs – Myponga, Mount Bold 

and Happy Valley. Mount Bold reservoir, with a capacity of 46.2GL, is the largest reservoir in South Australia. 

It receives runoff from a 388km2 catchment and supplementary water from the River Murray via the Murray 

Bridge-Onkaparinga pipeline (Crawley, 1995). The pipeline discharges water from the River Murray directly 

into the Onkaparinga River near the town of Hahndorf, from where it is channelled 10km downstream to 

Mount Bold reservoir. The pipeline can supply up to 514ML per day. 

Mount Bold reservoir is not directly connected to the distribution system, and is considered to be a 

storage reservoir. Controlled releases from the reservoir flow along the Onkaparinga River to Clarendon 

Weir, where the water is diverted to Happy Valley reservoir via the Happy Valley diversion tunnel. 

Happy Valley reservoir also collects water from its own 54km2 catchment, located downstream of Mount 

Bold reservoir, but upstream of Clarendon Weir. Water is captured in Happy Valley reservoir providing 

the capacity of the Happy Valley reservoir diversion tunnel is not exceeded (Crawley, 1995). Water 

directed from Happy Valley reservoir is treated at the Happy Valley water treatment plant before being 

supplied to the Adelaide southern region through a series of pipelines. The filtration plant has a capacity 

of 850 megalitres (ML) per day (SA Water, 2012b). 

Myponga reservoir, with a capacity of 26.8GL, is vital for water storage and water supply to the southern 

Adelaide region, as well as to a number of small towns to the south of the city. There are no inter-

catchment transfers to the reservoir and it is entirely fed by the Myponga River catchment with an area 

of 124 km2, and thus the inflow to the reservoir is wholly dependent on rainfall. The reservoir has an 

average yield of 15GL per year, which is 10% of Adelaide’s water supply (Thomas et al., 1999). Water 

from Myponga reservoir is treated at the Myponga water treatment plant, which has a capacity of 50ML 

per day (SA Water, 2012b). 
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Figure 2.6 The southern Adelaide water supply system. 

The application of the proposed sequencing approaches to the case study based on the southern 

Adelaide water supply system is presented in the following sections. 

2.3.1 Problem Formulation 

Determining the objectives. Increasing awareness of the desirability of reducing the environmental impact 

associated with water resources development has resulted in more studies in which GHG emissions are 

considered.  These are of particular concern for the southern Adelaide system, as a result of a large amount 

of pumping and the consideration of desalination as an alternative source of water. The objectives for the 

case study therefore include economic cost and GHG emissions. The function values of the objectives (i.e., 

cost and GHG emissions) are categorised as capital and operating. Capital objective function values are 

incurred during the construction phase of a project (e.g., materials and outlay), whilst operating objective 

function values are incurred over the life of a project (e.g., maintenance and electricity for pumping). 
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Establishing a planning horizon and defining decision points. A planning horizon of 40 years (from 2010 

to 2050) is used, to correspond with the Water for Good plan, which considers SA’s water supply security to 

2050 (Government of South Australia, 2009b). A staging interval of five years is adopted, as five years is a 

practical period for review from a planning perspective. Therefore, the case study includes eight decision 

stages over the 40 year planning horizon. This time period allows for the review of the plans in light of 

changing exogenous variables, such as rainfall, demand and costs.  

Defining demand. Of particular importance to decisions made at each stage is the estimation of total 

demand D, which is a function of population size, per capita demand and commercial and industrial demand 

(see Figure 2.2). The population for the southern Adelaide region was estimated to be 598,600 in 2010 

(Australia Bureau of Statistics, 2011) and a population growth rate of 0.74% per annum is assumed over the 

40 year planning horizon. The average household size is assumed to be constant at 2.3 people. Average 

daily demand was taken as 494litres (L) per capita in 2010 (Government of South Australia, 2009b). This 

includes water use for industrial, commercial, primary production and public purposes (ICPP). However, as a 

result of planned water reduction measures by the SA government, annual percentage reductions in demand 

corresponding to the values in Table 2.1 are used  based on the Water for Good plan (2009b).  Detailed 

justification of the values adopted in relation to estimating demand over the selected planning horizon is 

provided in the supplementary material. 

Table 2.1 Annual demand and reduction for the southern Adelaide water supply system 

Demand category Annual demand in 
2010 

Annual reduction in 
per capita demand 

Residential I (drinking, bathing and laundry) 40.82GL 0.24% 

Residential II (toilet flushing and garden watering) 27.22GL 0.61% 

Industrial, commercial, primary production and public purposes 
(ICPP) 39.96GL 0.28% 

Selecting water supply sources. For the case study, the existing water supply options (i.e., Happy Valley 

reservoir, Myponga reservoir and the River Murray) are included in the sequencing plan at the beginning of 

the planning horizon. However, a desalination plant, stormwater harvesting schemes and household 

rainwater tanks are considered as potential additional water supply sources at each decision stage during the 

planning horizon. Stormwater and rainwater are not suitable for potable use (Residential I) and are therefore 

assigned to non-potable uses. The proportions of potable and non-potable demands for the southern 

Adelaide WSS are given in Table 2.1. Supply from the reservoirs and the desalination plant are chosen to 

provide Residential I demand. The stormwater harvesting schemes can supply 30% of the ICPP demand as 
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non-potable water; and rainwater tanks are used as the first option for the supply of Residential II demand. 

When the supply from the stormwater harvesting schemes and rainwater is insufficient, potable supply from 

reservoirs and the desalination plant is used to supply the Residential II and ICPP demand.  

A reverse osmosis (RO) desalination plant with an annual capacity of either of 50GL or 100GL is 

considered as a potential water supply option for the case study, with an option of expanding the 50GL 

desalination plant 100GL annual capacity if required at a later stage, which is in line with proposals 

made by the South Australian government to ensure potable water supplies, even in times of drought 

(Government of South Australia, 2009b). The location of the plant is at Port Stanvac (see Figure 2.6). As 

part of the system, desalinated water is pumped through a pipeline to Happy Valley reservoir, where it is 

combined with water from the water treatment plant before entering the existing water supply network 

(SA Water, 2012a). It should be noted that the capacity of the desalination plants is halved for the case 

study because they are designed to supply the whole of metropolitan Adelaide. The southern system 

featured in the case study, therefore, only takes 50% of the supply. 

Within the southern Adelaide demand area, there are ten potential stormwater harvesting schemes that 

could be implemented in the future and are considered in this study: Brownhill- Keswick, Grange Area, 

Port Road, Mile End Drain, Sturt River, Field River, Christie Creek, Onkaparinga River, Pedler Creek 

and Willunga (Wallbridge & Gilbert, 2009) (Figure 2.6). As estimated by Wallbridge & Gilbert (Wallbridge 

& Gilbert, 2009), these schemes have a total annual potential yield of 22GL, subject to rainfall. The 

amount of water that can be harvested from each scheme depends on the runoff from the catchment, 

the injection rate and the discharge rate for the wetlands and aquifers. Due to insufficient good quality 

aquifer storage within the southern Adelaide region, it is proposed that the runoff from Christie Creek 

and Onkaparinga River be diverted to the Pedler Creek scheme’s storage after treatment via wetlands 

(Wallbridge & Gilbert, 2009). Therefore, supply from Christie Creek, Onkaparinga River and Pedler 

Creek are combined for the case study. Similarly, four of the catchments (Grange Area, Port Road, Mile 

End Drain and Willunga) are ungauged, so they are assigned similar characteristics as nearby 

catchments (i.e. the same calibration parameters) and for simplicity have been amalgamated with these 

catchments. Specifically, Grange Area, Port Road and Mile End Drain are combined with Brownhill-

Keswick, while Willunga is combined with Pedler Creek (Figure 2.6). 

Domestic household rainwater tanks are also included in the case study as potential water supply options. 

Four sizes of household rainwater tanks (1kL, 2kL, 5k and 10kL) are considered. It is assumed that, if a 

rainwater tank option is chosen, all houses will be required to install a tank of the specified size by a 

government regulation. 
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2.3.2 Calculation Of Yield For Potential Water Supply Options 

The design yields of the different potential water supply sources, including the three reservoirs, the River 

Murray, the desalination plants, the stormwater harvesting schemes and rainwater tanks of four different 

sizes, are required in order to undertake the optimal sequencing process. It should be noted that although the 

three reservoirs and the River Murray are not considered as part of the sequencing process, as they are 

existing sources, their yields need to be included to ensure that optimal sequence plans that satisfy projected 

demands can be developed. As the yield from the desalination plant is independent of rainfall, the annual 

yields of the desalination plant are known and considered to be 50 and 100 GL, as discussed previously. 

However, the yields of the other potential sources need to be determined using the procedure outlined in 

Section 2.2.2. 

1000 sequences of 40 years of daily stochastic rainfall data were generated for eight rainfall sites within the 

southern Adelaide WSS using the Stochastic Climate Library (SCL) (www.toolkit.net.au/scl). The 

methodology to develop stochastic rainfall time series applied by Paton et al.(2013) is also applied in this 

case study. The 1000, 40 year stochastic rainfall sequences are used as inputs to WaterCress (Water-

Community Resource Evaluation and Simulation System) (WaterSelect, 2011) simulation models of the 

various rainfall dependent sources in order to generate a distribution of their yields. The performance of the 

WaterCress models during calibration and validation was assessed using graphical and analytical 

approaches (Bennett et al., 2013), as detailed in the supplementary material. These approaches include time 

series and scatter plots of actual and predicted values and the Nash Sutcliffe (NS) coefficient. See Bennett et 

al. (Bennett et al., 2013), for a review of approaches for characterising model performance. 

Attention is drawn to the fact that the yields of the rainfall dependent sources are generated simultaneously in 

WaterCress to incorporate the interaction between stormwater harvesting schemes and rainwater tanks, 

because rainwater harvesting affects stormwater runoff from the impervious area of the catchment. The yield 

that corresponds to a probability of exceedance of 90% is determined for each source. WaterCress is used 

as the simulation model because of its ability to simulate a system containing reservoirs, stormwater 

harvesting schemes and rainwater tanks (Clark et al., 2002) and because it was developed specifically for 

South Australian conditions (WaterSelect, 2011).  

The average annual supply from the River Murray to the metropolitan Adelaide water supply system 

was 109GL from 2002 to 2006 (SA Water, 2007), but it is anticipated that by 2020 the salinity of the 

water will make it unsuitable for potable use for 40% of the time (Conservation Council of South 

Australia, 2008). Hence, for the case study, supply from the River Murray is limited to 60% of the current 
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average amount. The total supply is assumed to be evenly distributed between the northern and 

southern Adelaide systems (Crawley, 1995). The River Murray yield is generated using WaterCress with 

1000 sequences of stochastic rainfall data, and the annual supply from the River Murray is determined 

as 24.4GL for the southern system due to the restrictions imposed by the water quality issues 

mentioned above. 

For stormwater harvesting schemes, the yield is dependent on the total impervious and pervious areas 

of catchments, wetland capacity, injection rate and discharge rate for the wetlands and aquifers. Thus, 

these factors are important for the simulation model in order to generate the yields for each scheme.  

For impervious catchments, daily runoff is calculated by multiplying the effective area, which is the total 

connected impervious area, by the runoff depth. For the pervious catchments, rainfall runoff (RRO) models 

are developed for the stormwater harvesting schemes, as detailed in the supplementary material. In order to 

calculate the yield of the household rainwater tanks, the number of dwellings, roof size and the fraction of 

roof connected to rainwater tanks had to be estimated. The number of dwellings considered in the case study 

is based on the estimated population growth and an average occupancy of 2.3 people per dwelling over the 

coming 40 years, as discussed previously. The 30 Year Plan for Greater Adelaide (2010) states that the 

region will move to a sustainable housing density, with a gross density of 25-35 dwellings per hectare of land 

for the metropolitan area. This includes infrastructure and non-residential development, and is categorized as 

medium residential density (Government of South Australia, 2006). According to Wallbridge and Gilbert 

(2009), the roof area for a medium density residential development can be assumed to be 250m2, with 50% 

connected to household rainwater tanks. 

Based on the outcomes of the above analyses, the following yields are generated for the selected rainfall 

dependent water supply options (Table 2.2) for the sequencing process. 
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Table 2.2 Yields for the selected water supply options 

Water supply option Annual Yields (90% reliability) 

Happy Valley/ Mt Bold reservoirs 50.3 GL 

Myponga reservoir 6.4 GL 

River Murray 24.4 GL 

Stormwater harvesting schemes 
Brownhill-Keswick Sturt River Field River Pedler Creek 

6.3 GL 7.0 GL 1.6 GL 5.0 GL 

Household rainwater tanks 
1kL 2kL 5kL 10kL 

9.1 GL 
(35.0 kL/tank) 

11.1 GL 
(42.8 kL/tank) 

12.2 GL 
(46.8 kL/tank) 

12.3 GL 
(47.1 kL/tank) 

2.3.3 Sequencing Process 

As mentioned in Section 2.2.3, the first step in the sequencing process is to assign a weighting factor ws 

to the selected objectives, including (in this instance) economic cost and GHG emissions from the 

construction and operation of the water supply options. Weighting factors of w1 = 1.0 and w2 = 0; w1 = 0 

and w2 = 1.0; and w1 = 0.5 and w2 = 0.5 are used for the case study in order to investigate the impact on 

the optimal sequencing plans and objective function values of considering only the economic objective, 

only the greenhouse gas objective and assigning equal consideration to both objectives.  

Economic costs and GHG emissions are commonly divided into two types: capital and operating. Capital 

values are incurred during the construction phase of a project (e.g., costs of material and outlay); whilst 

operating values are incurred over the life of a project (e.g., electricity for operation, maintenance, and 

upgrades). It is assumed that all initial capital values are incurred at the project start date. Additionally, the 

capital emissions values in the case study are computed using embodied energy (Treloar, 1995) and 

emission factor analysis (Wu et al., 2010b). 

The majority of the operating costs and GHG emissions are due to energy usage associated with pumping, 

especially for the desalination plant. Therefore, there is a cost factor related to the electricity for running the 

pumps, and a different cost factor for GHG emissions related to the generation of electricity. SAWater’s 

estimated average price of electricity for the financial year ending June 2010 is 10c/kWh (SA Water, 2010). 

However, electricity costs are projected to increase in South Australia, and a conservative indicative cost of 

12c/kWh is assumed for the electricity price. The electricity GHG emission factor is assumed to be 

0.81kgCO2-e/kWh. This factor is the full fuel cycle emission factor estimate for electricity purchased by South 

Australian end users (Australian Government, 2011a).  
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Additionally, the design life of different infrastructure components is incorporated into the case study by 

assuming that each component would be replaced at the same capital cost and capital GHG emissions. For 

the purposes of this study, water supply options are assumed to remain in place and to continue to be 

maintained for the rest of the planning horizon once they had been introduced. The design lives of the 

infrastructure used in the case study for the various water supply options is given in Table 2.3. 

Table 2.3 Design lives for the components of various water supply options 

Components of water supply options Design life (years) Source of information 

Water treatment plant 50 (Baruth, 2005) 

Mechanical parts for water treatment plants 7 (Baruth, 2005) 

Pumps  
(Desalination plant & water treatment plant) 

20 (Water Services Association of Australia, 
2002) 

Pumps (Household rainwater tanks) 15 Assumed 

HDPE household rainwater tanks 20 (Polytank Sales and Service, 2011) 

Membranes for RO desalination plant 5 (Lawler et al., 2011) 

During the optimal sequencing process, the supply capacity assigned to each selected water supply 

option is chosen in order to optimise the weighted cost and GHG emissions to generate optimal 

sequence plans, as given in (2.2) for the BU method and (2.10) for the BTT method. The supply 

capacities of the selected water supply options cannot exceed the yields (see Table 2.2) as illustrated in  

(2.5) for the BU method and (2.12) for the BTT method. It should be noted that the full capacity of each 

water supply options is not necessarily used and the supply taken could vary from stage to stage based 

on demand and supply from the mixture of selected supply options. Additionally, the total supply from all 

selected water supply options is to meet the total demand at each decision stage, as given in (2.6) for 

the BU method and (2.13) for the BTT method.  

The capital and indicative operating costs and GHG emissions of the potential water supply sources are 

given in Table 2.4. In calculating these values, it is assumed that all capital values are incurred at the project 

start date. Additionally, the capital emissions values are computed using embodied energy (Treloar, 1995) 

and emission factor analysis (Wu et al., 2010b). However, the majority of the operating costs and GHG 

emissions are due to energy usage associated with pumping, especially for the desalination plant and the 

River Murray. Additionally, operating cost and GHG emissions are a function of total supply from selected 

water sources, and the corresponding unit operating objective function values.  The estimated values of unit 
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operating costs and GHG emissions based on the yields for 90% reliability are given in Table 2.4.  Details of 

the cost and GHG emission calculations are given in the supplementary material. 

It should be noted that the costs associated with the measures that are assumed to result in demand 

reduction over time (e.g. adoption of low-flow showerheads, installation of dual-flush toilets etc.) are not 

included in the analysis as they are the same for all potential sequence plans and therefore do not have 

an impact on the selection of the optimal sequences. 

Table 2.4 Capital and operating cost and GHG emissions for the various water supply options 

Water supply options Yield  Capital cost 
($) 

Unit 
operating 

 cost ($/kL) 

Capital GHG 
emissions  
(kgCO2-e) 

Unit GHG 
emissions 

 (kgCO2-e/kL) 

Happy Valley reservoir 50.3 GL/year - 0.03 - 0.24 

Myponga reservoir 6.4 GL/year - 0.23 - 0.22 

River Murray 24.4 GL/year - 0.44 - 2.93 

50GL desalination plant 25.0 GL/year 1,347,000,000 1.00 228,538,259 5.41 

100GL desalination plant 50.0 GL/year 1,830,000,000 1.00 237,103,259 5.43 

50GL desalination 
expansion 25.0 GL/year 483,000,000 1.00 8,565,000 5.41 

Stormwater harvesting 
schemes :      

Brownhill & Keswick Creek 6.3 GL/year 160,025,000 1.23 7,248,734 2.04 

Sturt River 7.0 GL/year 194,193,000 1.23 7,350,767 2.06 

Field River 1.6 GL/year 35,689,000 1.23 3,576,467 6.05 

Pedler Creek 5.0 GL/year 110,682,000 1.23 5,643,330 1.60 

Household rainwater tanks:      

1kL 35.0 kL/tank/year 2,181 0.78 718 1.22 

2kL 42.8 kL/tank/year 2,464 0.68 1,251 1.22 

5kL 46.8 kL/tank/year 3,024 0.64 2,897 1.22 

10kL 47.1 kL/tank/year 3,560 0.63 4,635 1.22 

Discounting of future operating costs and GHG emissions is taken into account with an appropriate 

present value analysis and discount rate for a particular system. The present value (PV) of future capital 

costs and GHG emissions can be evaluated using the following discounting equation (Dandy et al., 

2007): 
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(2.18) 

where, F are the future costs or GHG emissions incurred; t is the future time period, and i is the discount 

rate used. The present value of constant annual operating costs can be expressed as: 

 

 

(2.19) 

where, A is the periodic total annual operating costs or GHG emissions of a project; n is the number of 

time periods; and i is the discount rate used. In this study, an economic discount rate of 6% is used, as 

discount rates around 6-8% are commonly used for capital works (Wu et al., 2010a). In contrast, a 

discount rate of 1.4% is used for GHG emissions, as this has been suggested as appropriate for 

stabilizing GHG concentrations in the atmosphere within a desired range (Wu et al., 2010b). 

2.4 Analyses Conducted  

As mentioned in Section 2.3, for each of the two sequencing methods considered (i.e., BU and BTT), 

three optimal sequence plans are developed, each with different weightings of the cost and GHG 

emission reduction objectives (i.e., w1 = 1.0 and w2 = 0; w1 = 0.5 and w2 = 0.5; and w1 = 0 and w2 = 1.0) 

(see Section 2.3.3). In addition, a number of scenarios are conducted in order to assess the sensitivity 

of the objective function values (i.e., costs and GHG emissions) and solutions (i.e., optimal sequence 

plans) to uncertain conditions and to assess the differences in objective function values and solutions 

obtained using the BU and BTT sequencing approaches under these conditions. The uncertain 

conditions considered in the scenario analysis include the available supply from the River Murray and 

population growth, both of which will have a major impact on supply or demand, as well as discount 

rate. The three factors investigated can have a significant impact on the resulting optimal sequencing 

plans. 

The annual supply from the River Murray is restricted to 24.4GL by considering the water quality for the 

base case scenario (see Section 2.3.2). Supply is, however, likely to be greater than this, especially in 

summer when the river supplies 90% of Adelaide’s demand (Government of South Australia, 2009b). 

Thus, the annual River Murray supply is increased to comply with the current 5-year rolling license for 

Adelaide, of which half is allocated to the southern Adelaide WSS), with the yield at 90th percentile of 
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51.3GL/year in one of the scenarios investigated in order to assess the impact of these supply changes 

on the schedules of the water supply options implemented in the optimal sequence plans (see Table 

2.5). 

Table 2.5 Details of scenario analysis conducted 

Scenario River Murray 
yield (GL/year) 

Population 
growth rate (per 

annum) 

Economic 
discount rate 
(per annum) 

GHG emission 
discount rate 
(per annum) 

Base case (S1) 24.4 0.74% 6% 1.4% 

Increased River Murray supply (S2) 51.3 0.74% 6% 1.4% 

Low population growth (S3) 24.4 -0.68% 6% 1.4% 

High population growth (S4) 24.4 1.58% 6% 1.4% 

Low discount rates (S5) 24.4 0.74% 4% 0% 

High discount rates (S6) 24.4 0.74% 8% 3% 

As mentioned in Section 2.3.1, there are 72 different population projections for Adelaide, which are 

based on a number of assumptions of fertility, mortality, net interstate migration and net overseas 

migration (Australia Bureau of Statistics, 2008). The annual linear population growth rate that 

corresponds to the 50th percentile of these projections (i.e. 0.74%) is used as the base case, as stated 

in Section 2.3.1. In addition, low (-0.68%) and high (1.58%) annual linear population growth scenarios 

are considered (Table 2.5), which correspond to the 5th and 95th percentile of the 72 population 

projections, respectively (Australia Bureau of Statistics, 2008). The projected annual demands used at 

each decision stage in the sequencing process for the base case, low population and high population 

scenarios are given in Table 2.6. 

The selection of appropriate discount rates is critical because they have a major impact on the present 

value of future economic costs and GHG emissions. However, there is no clear consensus in relation to 

which discount rate should be used and a wide range of values has been suggested in the literature. In 

relation to economic discount rates, values of 2% to 4% were recommended by Simpson (2008) for the 

assessment of water supply systems. However, this is lower than the rate of 6% to 8% commonly used 

for capital works projects (Wu et al., 2010b).  As mentioned in Section 2.3.1, an economic discount rate 

of 6% is used as the base case. In addition, economic discount rates of 4% and 8% are considered in 

the scenario analysis (Table 2.5). In relation to GHG emission discount rates, suggestions range from 

0%, as in the Intergovernmental Panel on Climate Change’s Second Assessment Report (Fearnside, 

2002), to using the same discount rate as for money (Van Kooten et al., 1997). As mentioned in Section 
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2.3.1, a GHG emission discount rate of 1.4% is used as the base case. In addition, GHG emission 

discount rates of 0% and 3% are considered in the scenario analysis. Overall, high (8% economic 

discount rate, 3% GHG emission discount rate) and low (4% economic discount rate, 0% GHG emission 

discount rate) discount rate scenarios are considered in addition to the base case discount rates (6% 

economic discount rate, 1.4% GHG emission discount rate) (Table 2.5). 

In summary, low and high population scenarios, as well as low and high discount rate scenarios, are 

considered in addition to the base case (Table 2.5). For each of these six scenarios, optimal sequence 

plans are obtained using the BU and BTT methods, each with three sets of objective function weightings 

(i.e., w1 = 1.0 and w2 = 0; w1 = 0.5 and w2 = 0.5; and w1 = 0 and w2 = 1.0). Consequently, 36 optimal 

sequence plans are developed in total. 

Table 2.6 Projected annual demands at each decision stage for three scenarios considered in the analyses 

Decision 
stage 

Demands for base case 
scenario (GL) 

Demands for low population 
scenario (GL) 

Demands for high population 
scenario (GL) 

Residential 
I 

Residential 
II ICPP Residential 

I 
Residential 

II ICPP Residential 
I 

Residential 
II ICPP 

2010 70.42 12.26 27.36 67.69 11.78 26.30 73.28 12.75 28.48 

2015 71.98 12.51 27.45 66.59 11.57 25.40 77.63 13.49 29.61 

2020 73.47 12.75 27.48 65.49 11.37 24.49 81.84 14.21 30.61 

2025 74.90 12.98 27.44 64.40 11.16 23.60 85.91 14.89 31.48 

2030 76.27 13.20 27.35 63.32 10.96 22.71 89.84 15.55 32.22 

2035 77.57 13.41 27.19 62.24 10.76 21.82 93.64 16.19 32.83 

2040 78.81 13.60 26.98 61.17 10.56 20.94 97.29 16.79 33.31 

2045 79.98 13.78 26.70 60.11 10.36 20.07 100.81 17.37 33.66 

2.5 Results and Discussion 

The optimal sequence plans for the different scenarios, optimisation methods and objective function 

weightings considered are given in Table 2.7 and the corresponding values of the optimal costs and 

GHG emissions are shown in Table 2.8. In Table 2.7, a’1’ means that the project is implemented in first 

decision stage (i.e., 2010) and a ‘2’ means implemented in 2015 and so forth. It should be noted that 

results for the low- and high- discount rate scenarios are not given in Table 2.7, as in this case, the 

optimal schedules are not affected by discount rates, only their costs and GHG emissions so the 

scenarios have the same sequences as the base case. The impacts of different objectives and 
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sequencing approaches on the optimal sequences of alternative water supply sequences and on 

objective function values are discussed in Sections 2.5.1 and 2.5.2, respectively. 
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Table 2.8 Optimal value of costs and GHG emissions for the sequence plans 

 
BU method BTT method 

PV of cost 
($ million) 

PV of GHG 
emissions 
(MtCO2-e) 

PV of cost 
($ million) 

PV of GHG 
emissions 
(MtCO2-e) 

Base case scenario (S1)     

Sequence plans for w1=1; w2=0 5,644 18.60 5,636 18.24 

Sequence plans for w1=0; w2=1 6,176 12.88 6,561 12.89 

Sequence plans for w1=0.5; w2=0.5 6,025 13.33 5,812 16.64 

Increased River Murray supply scenario (S2) 

Sequence plans for w1=1; w2=0 2,960 15.28 2,959 15.03 

Sequence plans for w1=0; w2=1 3,541 14.44 3,636 13.59 

Sequence plans for w1=0.5; w2=0.5 3,399 14.50 3,383 14.50 

Low population growth scenario (S3)     

Sequence plans for w1=1; w2=0 3,746 10.20 3,717 10.03 

Sequence plans for w1=0; w2=1 4,204 8.83 4,198 8.80 

Sequence plans for w1=0.5; w2=0.5 3,827 9.25 3,858 9.17 

High population growth scenario (S4)    

Sequence plans for w1=1; w2=0 7,800 23.84 7,597 25.66 

Sequence plans for w1=0; w2=1 8,133 21.96 8,448 20.85 

Sequence plans for w1=0.5; w2=0.5 8,103 21.96 8,048 25.62 

Low discount rate scenario (S5)     

Sequence plans for w1=1; w2=0 6,983 24.41 6,959 24.00 

Sequence plans for w1=0; w2=1 7,627 17.00 8,055 16.81 

Sequence plans for w1=0.5; w2=0.5 7,536 17.47 7,099 21.75 

High discount rate scenario (S6)     

Sequence plans for w1=1; w2=0 4,759 14.76 4,761 14.45 

Sequence plans for w1=0; w2=1 5,185 10.15 5,421 10.36 

Sequence plans for w1=0.5; w2=0.5 4,998 10.56 4,955 13.29 
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2.5.1 Impact of Different Objective Function Weightings and Sequencing Approaches On Optimal 

Sequences of Alternative Water Supply Sources 

The results in Table 2.7 indicate that the objective function weightings do not have a significant impact on 

the optimal sequences of the alternative water supply sources. In general, stormwater and rainwater 

sources are used in preference to desalination when the additional demand is relatively small, as is the 

case in the River Murray Supply (S2) and Low Population Growth (S3) scenarios. In the case of scenario 

S2, this is because a larger amount of water is available at the beginning of the planning horizon, as there is 

restriction on the availability of the supply from the River Murray, as is the case for the other scenarios. 

Consequently, the additional demand that needs to be supplied by the alternative water supply sources over 

the planning horizon is relatively small, as is the additional capacity required at the first time step. In the 

case of scenario S3, overall demand is low because there is a negative population growth rate, so that the 

highest demand occurs at the beginning of the planning horizon.  However, as the availability of the existing 

supply from the River Murray is restricted in this scenario, there is a need to provide additional capacity at 

the first decision stage. As a result of the relatively small requirement for additional demand, the optimal 

sequence plans for the above scenarios only include stormwater and rainwater sources. For scenario S3, all 

additional sources are included at the first time step to cover for the large initial shortfall.  As discussed 

above, there is no need to include additional sources at subsequent decision points, as demand is 

decreasing. For scenario S2, the additional supply options are added at various stages of the planning 

horizon, as the initial shortfall is smaller, as discussed above, and demand increases over the planning 

horizon as a result of population growth, necessitating the addition of alternative water sources throughout 

the planning horizon. 

When additional demand is relatively high, as is the case for the Base Case (S1) and High Population 

Growth (S4) scenarios, desalinated water is included in the optimal sequencing plans (Table 2.7). This is 

partly because the capacity of the stormwater and rainwater sources is insufficient to meet demand and 

partly because the effective unit costs and GHG emissions of desalinated water are significantly lower for 

demands that are close to the desalination plant’s capacity, due to the plant’s high capital costs and GHG 

emissions. These high capital costs and GHG emissions, coupled with the high initial demand shortfall 

resulting from the reduced supply from the River Murray, are primarily responsible for the fact that the 

desalination plants are implemented in the early stages of the planning horizon. 
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While the sequence plans obtained for different objective function weightings follow the general trends 

outlined above, there are some differences. For example, when optimising for cost (i.e. w1=1; w2=0), 

stormwater harvesting schemes are generally selected first, as they have a lower NPV of cost over the 

planning horizon than rain- and desalinated- water sources (Table 2.7).  However, when optimising for GHG 

emissions (i.e. w1=0; w2=1), rainwater tanks are the preferred choice, followed by the stormwater harvesting 

schemes. The results in Table 2.7 also show that the use of desalinated water is less attractive from a GHG 

emission perspective than from a cost-perspective, as evidenced by the fact that the desalination plants are 

generally implemented earlier in the planning horizon when optimising for cost than when optimising for 

GHG emissions. Interestingly, if the available supply exceeds demand after the addition of rainwater and 

stormwater sources at a particular decision point, this additional supply is used to substitute for the existing 

supply from the River Murray.  This is because the GHG emissions per unit supply from the River Murray 

are higher than those for the rainwater and stormwater sources due to the need to pump water from the 

River Murray to the Onkaparinga River via the Murray-Onkaparinga pipeline and on to other storage 

reservoirs (Figure 2.6). 

The results in Table 2.7 show that there is little difference between the solutions obtained using the BU and 

BTT methods. This is primarily caused by the fact that in most cases, a significant amount of additional 

supply is required at the first decision stage for three of the four scenarios, as discussed previously. 

However, in general, when the BTT method is used, fewer, larger supply options are chosen, as expected, 

as the available options are selected so as to satisfy the demand at the end of the planning horizon and 

then distributed along the planning horizon in an optimal manner. In other words, when the BTT method is 

used, the demand that needs to be satisfied at the end of the planning horizon is considered at the first 

decision stage. However, this is not the case when the BU method is used, as only the demand 

requirements at the next decision stage are considered. The most notable example of this is when 

optimising for cost and both cost and GHG emissions for scenario S4, where a single 100GL desalination 

plant is selected at decision stage 1 when the BTT method is used, while the same total volume of 

desalinated water is added by using a 50GL desalination plant at stage 1 and a 50GL expansion of this 

plant at stages 3 or 5 when the BU method is used. 
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2.5.2 Impact of Different Objective Function Weightings and Sequencing Approaches On 

Objective Function Values 

The results in Table 2.8 indicate that although the objective function weightings do not have a large impact 

on optimal water source allocation sequences, they can have a significant impact on the costs and GHG 

emissions of the optimal solutions. When the BU method is used, the differences in optimal costs obtained 

with different objective function weightings range from 4.1% for scenario S4 to 16.4% for scenario S2. When 

the BTT method is used, the corresponding values are 10% and 18.6%. Optimal GHG emissions range 

from 5% to 44% when the BU method is used and from 10.6% to 41.6% when the BTT method is used for 

scenario S2 and S1, respectively. 

Typical tradeoff curves between cost and GHG emissions for solutions with different objective function 

weightings obtained using the two different sequencing approaches are given in Figure 2.7 for scenario S1. 

The dollar costs associated with reducing 1 tonne of GHG emissions when moving between solutions on 

the tradeoff curves are also shown to provide additional insight into the nature and potential practical 

implications of the tradeoffs. As can be seen, the cost of reducing 1 tonne of GHG emissions in order to 

move from the least cost solution to the solution that gives equal weighting to the cost and GHG emission 

reduction objectives is $72.3 when the BU method is used. This cost increases to $335.6 per tonne of CO2-

e when moving from the solutions with equal weighting of the two objectives to the solution that minimises 

GHG emissions. The corresponding values for the BTT method are $110 and $119.7 per tonne of CO2-e. 

Based on these costs, it is unlikely that the lower GHG emission solutions would be implemented in 

practice, given that the current carbon price is Australia is $23 per tonne (Australian Government, 2011b). 

While the objective function weightings and optimisation method used can have a substantial impact on 

costs and GHG emissions, as discussed above, the impacts of the demand and discount rate scenarios can 

be much more significant (Table 2.8).  The maximum difference in cost for the different demand scenarios is 

63.5% when the BU method is used and 65% when the BTT method is used. The corresponding values for 

GHG emissions are 63% and 65.7%. This difference is primarily caused by the need for additional water 

supply sources with different capacities as a result of differing demands in the various scenarios, as 

discussed previously. For example, for scenario S3, the addition of three stormwater harvesting schemes 

and rainwater tanks of a given size are sufficient to satisfy demand. In contrast, for scenario S4, 100 GL of 
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desalinated water is typically required in addition to the stormwater harvesting schemes and rainwater 

tanks. 

 

Figure 2.7 Carbon cost mapping of the optimal sequence plans of base case scenario generated using BU and BTT 

method 

The maximum difference in cost for the different discount rate scenarios (i.e., S5 and S6) is 37.6% when the 

BU method is used and 65% when the BTT method is used. The corresponding values for GHG emissions 

are 58.4% and 56.8%. These differences in costs and GHG emissions are due to the differing effects of 

discount rates on capital and operating costs and GHG emissions. For low discount rates, use of the BU 

method results in higher total objective function values (see Table 2.8) because of the duplication of water 

supply options in later decision stages (see Table 2.7), which receive less discounting. In contrast, when the 

discount rate is high, the BU method produces sequence plans with lower costs and GHG emissions 

compared with those obtained using the BTT method, because the costs, especially the capital costs, are 

discounted at 8% and the GHG emissions are discounted at 3%. For these reasons, the capital costs or 

GHG emissions associated with frequent duplication or the expansion of water supply options does not 
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impact significantly on the total objective function values of the sequence plans generated using the BU 

method. 

As expected, the BTT method usually results in better values for the objective function that is being 

optimised (Table 2.8). The biggest difference in the costs obtained using the BU and BTT methods when 

optimising for this objective is around 2.7% and occurs for scenario S4, whereas the biggest saving in GHG 

emissions when optimising for this objective is around 6.3% and occurs for scenario S2. However, these 

modest savings come at the expense of adaptability. For example, if the BTT method were used to obtain 

the optimal sequence for scenario S4 when optimising for cost or an equal weighting of cost and GHG 

emissions, a 100GL desalination plant would be built at the first decision stage. However, if the actual 

demand is less than the predicted demand (e.g. scenario S1 or S3 actually occurred), there would be a 

large amount of excess capacity and associated capital costs and GHG emissions. In contrast, if the BU 

method were used in this situation, only a 50GL desalination plant would be built at the beginning of the 

planning horizon, with a 50GL expansion scheduled at a later date. However, at the time of the scheduled 

expansion, it would be known that the actual demand is less than the projected demand and the expansion 

would not be implemented. 

The magnitude of the discount rate also has an effect on the relative merits of the two sequencing 

approaches. Based on the results for the case study (Table 2.8), it is better to choose the water supply 

options that meet the demand for the next decision stage, and then expand or duplicate these as required if 

the discount rate is high, thus favouring the BU method. In contrast, if the discount rate is low, it is better to 

deploy the water supply options with larger capacities initially, as is the case when the BTT method is used.  

2.5.3 Implications for Decision Making 

The purpose of the proposed approaches is to identify the sequence plans that provide the optimal trade-

offs between objectives under a set of assumed conditions. As all identified sequence plans are Pareto 

optimal, other techniques, such as multi-criteria decision-analysis, are required in order to choose between 

solutions, as the ranking of Pareto optimal solutions requires value judgements on the relative importance of 

the different objectives.  As discussed previously, from a cost perspective, stormwater harvesting is 

preferred to rainwater tanks, while the reverse applies if reduction in GHG emissions is the primary 

objective. In addition, desalination is more desirable from a cost, rather than from a GHG emission 
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perspective. However, whether cost or GHG emission reduction is more important is based on a value 

judgement.  

Whether solutions obtained using the BU or BTT methods are preferable depends on the degree of 

confidence in the assumed design conditions. If the design conditions are known with relative certainty, 

implementation of the solutions obtained using the BTT would be preferable, as they result in better 

objective function values for the assumed conditions. However, the solutions obtained using the BU method 

are likely to be preferable if future conditions are uncertain, as this allows for more flexibility over the 

planning horizon. If there is considerable uncertainty in the objective function values, multi-criteria decision-

analysis approaches that cater to this uncertainty can be used in order to rank sequence plans on the 

Pareto front (e.g. see Hyde and Maier, 2006). 

2.6 Conclusions and Recommendations 

The two sequencing approaches – the BU and BTT methods – evaluated in this paper incorporate multiple 

objectives into the sequencing of water supply projects at the regional scale. The approaches consider various 

water supply options, such as traditional surface water resources and desalination, as well as stormwater and 

rainwater harvesting. The approaches are tested using a case study based on the southern Adelaide WSS over 

a planning horizon of 40 years, with sequence plans optimised for cost and GHG emissions under a range of 

demand and discount rate scenarios. The resulting sequence plans include a mixture of stormwater harvesting 

schemes, rainwater tanks and desalinated water, depending on the scenario. The selection of stormwater 

harvesting schemes is preferred from a cost minimisation perspective, whereas rainwater tanks and the 

stormwater harvesting schemes are best from a GHG minimisation perspective. While these sources of water 

are sufficient for the lower demand scenarios (S2 and S3), the addition of 50 or 100 GL of desalinated water is 

required for the higher demand scenarios (S1 and S4). 

When the BU method is used, each decision stage is optimised in sequential order. Consequently, the BU 

method is flexible and responsive to future changes, such as demand reduction. However, it generally results in 

less favourable objective function values compared with those obtained using the BTT method for the selected 

design conditions, assuming that these design conditions actually occur. When using the BTT method, the 

optimal combination of water supply options is identified for the final decision stage. Thereafter, selected water 

supply options are scheduled at each decision stage, starting with the initial planning stage and working forwards 
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in time. The BTT method therefore poses a simpler optimisation problem at each decision stage since the 

available water supply options are restricted.  It generally also results in more favourable objective function 

values compared with the BU method for the selected design conditions. However, it is less able to adapt to 

changed conditions during the planning horizon. 

The results for the case study based on the southern Adelaide WSS show that optimal sequence plans obtained 

using the BTT method include the implementation of water supply options with large capacities (i.e., 50GL 

desalination and 10kL rainwater tanks) first, leaving fewer expansion choices later. In contrast, the sequence 

plans obtained using the BU method include only those supply options required to satisfy demands for the next 

staging interval. Thus, if the actual demands are higher than the initial demand projections over the planning 

horizon, sequence plans generated using both the BU and BTT method may not be practicable, however, the 

BTT method is likely to result in sequences with lower costs and GHG emissions than the BU method, which 

tends to use smaller component sizes during the earlier stages of the planning horizon, with more expansion of 

components in the later planning stages.  

However, should the actual demands over the planning horizon be less than the initial demand projections, the 

BTT method would be unlikely to perform as well as the BU method. The use of large capacity water sources in 

the initial stages which would not be needed if actual demands are lower than the projected demands would 

result in higher costs and greenhouse gas emissions. In contrast, when the BU method is used, only the water 

supply options (i.e. stormwater harvesting schemes and 2kL rainwater tanks) that are required to satisfy the 

demands for the next staging interval are implemented. Consequently, the water supply options selected at the 

early decision stages will only be slightly oversized, and later expansion options would not need to be 

implemented, resulting in lower costs and GHG emissions overall. 

Additionally, for low to moderate discount rates (i.e., 4-6% for economic; 0% for GHG emissions), the BTT 

method produced sequence plans with better objective function values (i.e., lower cost and GHG emissions) by 

initially selecting the water supply options with larger capacity. Conversely, the BU method is efficient in 

generating sequence plans with lower objective function values for higher discount rates (i.e., >8% for economic; 

>1.4% for GHG emissions) by selecting the water supply options that meet the demands for the next decision 

stage, and then expanding or duplicating these as required.  
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The results also showed that significant tradeoffs exist between the NPV of costs and GHG emissions for the 

optimal sequence plans obtained using different objective function weightings.  However, the extent of this 

tradeoff is affected significantly by the demand and discount rate scenarios. The Base Case solution obtained 

using the BU method for equal objective function weighting appears to provide a good compromise solution, with 

an expected total present value of cost of $6,025 million and present value of GHG emissions of 13.33MtCO2-e 

(with an economic discount rate of 6% and GHG emissions discount rate of 1.4%).  As part of this solution, 

household rainwater tanks and various stormwater harvesting schemes will be required by 2015 and a 50GL 

desalination plant by 2020.  However, even though use of the BU method affords some flexibility, as discussed 

above, in light of the significant impact of uncertainties surrounding demand and discount rates, the explicit 

consideration of this uncertainty as part of the optimal sequencing process (Beh et al., 2011, Dorini et al., 2011) 

should be considered in future studies. 

While the proposed methods are able to produce optimal sequences of water supply options at the regional 

scale incorporating alternative water supply sources and multiple objectives, they have a number of 

limitations that should be addressed in future work, as outlined below. 

 As single-objective optimisation LP is used in this study, the weighting method has to be used to 

cater for multiple objectives, requiring individual optimisation runs to be repeated with different 

combinations of weightings in order to obtain various solutions on the Pareto front.  In addition, due 

to the discrete nature of different combinations of objective function weightings, these approaches 

may fail to identify optimal solutions in non-convex regions of the Pareto front. This limitation can be 

overcome by using multi-objective optimisation algorithms, such as multi-objective evolutionary 

algorithms (e.g. Kasprzyk et al., 2013a), in future studies. 

 When the BU and BTT approaches are used, simplified formulations of the optimisation problem 

are used, which are computationally efficient, but may fail to identify the globally optimal sequence 

plan. This shortcoming can be overcome by re-formulating the optimisation problem so that the 

whole solution space is explored. This can be achieved by linking an evolutionary algorithm with a 

simulation model of the potential water supply sequences, although this would reduce 

computational efficiency significantly. 
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 The calculated reliability of the overall system is only an approximation, as it is based on the 

individual reliabilities of the various sources, which ignores potential interactions between sources. 

This limitation could be addressed by adopting a combined simulation – optimisation approach. 

 Reliability is considered as a constraint to be satisfied at each decision stage.  However, there 

might be advantages in including reliability as an objective, as this enables trade-offs between 

reliability and other objectives to be explored explicitly.  In addition, the use of other risk-based 

system performance measures that not only take account of the probability of failure (i.e. demand 

exceeding supply), but also the consequences of system failure  (e.g. Hall et al., 2012, Yazdani et 

al., 2011), are of consideration. 

 Only supply expansion options are currently considered.  It would be beneficial to also include 

demand management options as decision variables in future studies. 
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2.8 Supplementary Material 

2.8.1 Calculation of Yield For Potential Water Supply Options 

For stormwater harvesting schemes, the yield is dependent on the total impervious and pervious areas of 

catchments, wetland capacity, injection rate and discharge rate for the wetlands and aquifers. Thus, these 

factors are important for the simulation model in order to generate the yields for each scheme.  

For impervious catchments, runoff volume is calculated by multiplying the effective area, which is the total 

connected impervious area, by the runoff depth. The effective areas of roofs and pavements (Table 2.9) are 

based on the data given in Wallbridge and Gilbert (2009). The daily runoff depth is determined by: 

      

(2.20)  

where RO is the daily runoff (RO ≥ 0); R is the daily rainfall; IL is the initial loss; and OF is the ongoing 

fraction of runoff. Initial losses of 1mm for roof runoff and 2mm for pavement runoff are assumed, while 

ongoing fractions of 0.9 and 0.85 are assumed for roofs and pavements, respectively (Wallbridge and 

Gilbert, 2009).  

Table 2.9 Effective impervious area properties for the stormwater catchments 

Stormwater catchment Effective roof area (km2) Effective pavement area (km2) 

Brownhill-Keswick 16.95 16.84 

Sturt Creek 9.59 11.51 

Field River 4.62 4.46 

Christie Creek 3.47 3.82 

Onkaparinga River 4.41 4.85 

Pedler Creek 1.77 3.01 

For pervious catchments, the rainfall runoff model embedded in WaterCress (Clark et al., 2002) required 

calibration and validation in order to accurately simulate runoff. Thus, rainfall runoff models for the 

stormwater harvesting schemes are developed for the six catchments given in Table 2.10, which range in 

area from 37.8km2 to 128.4km2. For the case study, the WC1 rainfall runoff model is selected to determine 

runoff from pervious catchments following its successful use by Wallbridge and Gilbert (2009) for this 
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purpose. For further details of the WC1 model, the reader is referred to the WaterCress user manual, 

available from www.waterselect.com.au.  

Table 2.10 Catchment  area, periods of calibration and validation and Nash Sutcliffe coefficient for models of pervious 

catchments for the stormwater harvesting schemes 

Stormwater 
Catchment 

Catchment 
Area (km2) 

Calibration 
Period 

Validation 
Period 

Nash-Sutcliffe coefficient (NS) 

Calibration Validation 
Brownhill-
Keswick Creek 67.9 26/01/1996 – 

24/01/2008 
25/01/2008 – 

25/01/2012 0.86 0.83 

Sturt Creek 128.4 01/02/2008 – 
03/02/2011 

04/02/2011 – 
02/02/2012 0.81 0.74 

Field River 55.3 16/04/2010 – 
16/06/2011 

17/06/2011 – 
02/02/2012 0.80 0.53 

Christie Creek 37.8 01/02/2001 – 
28/01/2009 

29/01/2009 – 
01/02/2012 0.81 0.55 

Onkaparinga 
River 112.9 01/01/2007 – 

03/01/2010 
04/01/2010 – 

01/01/2012 0.97 0.84 

Pedler Creek 106.2 01/08/2000 – 
28/07/2008 

29/07/2008 – 
01/08/2011 0.91 0.91 

It should be noted that the WC1 model requires rainfall and evaporation inputs to calculate runoff. Daily 

rainfall data and monthly evaporation data from five rainfall stations were obtained from the Patched Point 

Dataset (PPD) (Jeffrey et al., 2001), while flow data from six gauging stations, which are used for model 

calibration and validation, are sourced from the South Australian Government Department of Environment, 

Water and Natural Resources’ Surface Water Archive (https://www.waterconnect.sa.gov.au/SWA). 

Approximately 60-70% of available data are used for calibration, while the remaining data are used for 

validation, as given in Table 2.10. The rainfall runoff models are calibrated using a genetic algorithm (GA). 

Initial GA parameter trials examined populations of 100 to 400, generations of 100 to 400 and values of 0.6-

0.9 for the probability of crossover, with final GA parameter selection being 400 for population, 350 for 

maximum number of generations, 0.7 for probability of crossover and 0.1 for the probability of mutation. 

Time series and scatter plots of actual and predicted values are used to provide a visual assessment of the 

performance of the developed models. In addition, the Nash Sutcliffe (NS) coefficient is used as an 

analytical performance measure, as it is commonly used for this purpose and indicates how well the model 

explains the variance in the observations relative to that of the mean (Bennett et al., 2013). The natural 

logarithmic-transformed weekly flow is used to calculate the NS coefficient as the objective function for 
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calibration due to the extremely positively-skewed nature of the stormwater schemes’ runoff. The calibration 

is repeated from 10 different random starting positions in the parameter space to ensure near-globally 

optimal parameter values are obtained.  

It is necessary to determine whether the RRO models produce results within the range of accuracy required 

for the case study. The catchment parameterizations are judged adequate if the value of NS for the 

validation set is greater than 0.5, which is the case for all catchments (Table 2.10). 

Hydrological conditions (e.g., rainfall and evaporation) are needed as inputs to the simulation model used to 

estimate the yield of the selected water supply system at each decision stage. For the case study, the 

variability of rainfall is taken into account. Thus, Stochastic Climate Library (SCL) (www.toolkit.net.au/scl) is 

used to generate 1000 sets of stochastic rainfall series because it has the ability to generate rainfall at a 

number of temporal and spatial scales and has been applied successfully in a number of studies 

(Srikanthan, 2005a). A multi-site daily rainfall model is used for this case study because the available 

rainfall data are daily and because rainfall records are sourced from different stations.  

2.8.2 Costs 

Costs for water supplied by the reservoirs are determined from the costs of the associated water treatment 

plant (WTP) facilities. As both the Myponga and the Happy Valley WTPs are existing facilities in the 

southern Adelaide water supply system (WSS), the capital costs of these plants are not included. However, 

reservoir operating costs are included, including the costs of power and chemicals used in water treatment 

and the cost of labour for the operation of the WTPs. Like the reservoirs, the River Murray is a current water 

supply source in the southern Adelaide WSS. Therefore, only operating costs are calculated for this source. 

The operating costs for the River Murray relate only to electricity usage associated with powering the pumps 

to transfer water from the River Murray to the Onkaparinga River. It should be noted that although the 

reservoirs and the River Murray are not included in the development of the optimal sequence plans, as they 

are existing water supply sources, their operational costs are included in order to enable the total costs of 

meeting the required demand to be calculated. The estimated unit operating costs for the reservoirs and 

River Murray are given in Table 2.11. 

The capital cost of a desalination plant with an annual capacity of 100GL is $1.83billion, whereas the cost 

for a 50GL plant is $1.347billion (Government of South Australia, 2009a). For this case study, the 
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desalination plant’s operating costs are considered to be for electricity and ongoing costs, such as 

maintenance. The energy required to treat 50GL of water per year is estimated to be 250GWh, and the 

energy required for the delivery pipeline of the 50GL plant is 35GWh (Government of South Australia, 

2009a, SA Water, 2009). Assuming that energy and other ongoing resource inputs for the 100GL plant are 

twice those for the 50GL plant, a total of 570GWh of electricity is required annually for the 100GL plant 

(Government of South Australia, 2009a). The calculated unit capital and operating costs for the desalination 

plants of different capacities are given in Table 2.11. 

For the stormwater harvesting schemes, the capital cost of each scheme is obtained from the Urban 

Stormwater Report (Wallbridge & Gilbert, 2009). However, these capital costs do not include land 

acquisition and distribution costs. Distribution costs and operating costs for this case study are therefore 

estimated from three aquifer storage and recovery (ASR) schemes in Adelaide for which distribution costs 

are available. The estimated operating cost for each stormwater harvesting scheme incorporated the cost of 

labour, operation and maintenance of mechanical, electronic and control equipment, replacement, electricity 

consumption, landscaping, wetland plant maintenance, UV treatment, monitoring and licensing fees. The 

calculated unit capital and operating costs for the different stormwater harvesting schemes are given in 

Table 2.11. 

The calculated unit capital and operating costs for the rainwater tanks of different sizes are provided in 

Table 2.11. For household rainwater tanks, the capital costs include the purchase cost of the tank and 

pump, as well as costs associated with tank delivery and installation and plumbing the tank into the 

household water system. There are also some operating costs associated with the energy required for 

pumping and maintenance. Estimation of the operating cost is based on (i) $0.05/kL for ongoing operating 

and maintenance; (ii) $20 per year of additional maintenance (Tam et al., 2010).  
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Table 2.11 Capital and operating cost for the various water supply options 

Water supply options Capital cost ($) Unit operating cost ($/kL) 

Happy Valley reservoir - 0.03 

Myponga reservoir - 0.23 

River Murray - 0.44 

50GL desalination plant 1,347,000,000 1.00 

100GL desalination plant 1,830,000,000 1.00 

50GL desalination expansion 483,000,000 1.00 

Stormwater harvesting schemes :   

Brownhill & Keswick Creek 160,025,000 1.23 

Sturt River 194,193,000 1.23 

Field River 35,689,000 1.23 

Pedler Creek 110,682,000 1.23 

Household rainwater tanks:   

1kL 2,181 0.78 

2kL 2,464 0.68 

5kL 3,024 0.64 

10kL 3,560 0.63 

2.8.3 GHG Emissions 

The capital values of GHG emissions for the existing water sources (i.e., reservoirs and the River Murray) in 

the southern Adelaide WSS are not included. However, the operational GHG emissions of the reservoirs 

and River Murray are included in order to enable the total GHG emissions of meeting the required demand 

to be calculated. The operating GHG emissions for the Happy Valley and Myponga WTPs are estimated 

from the total GHG emissions from the Adelaide metropolitan water treatment plants and networks in 2010, 

which amounted to 25,813 tonnes (SA Water, 2011). There are six water treatment plants in the 

metropolitan area, so the GHG emissions associated with their operation are estimated according to their 

capacities. The estimated unit operating GHG emissions for the reservoirs and River Murray are given in 

Table 2.12. 

The capital GHG emissions for the desalination plant can be attributed to (i) the construction materials for 

the main plant, delivery pipeline and power facilities onsite; (ii) the electricity and diesel required for 
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construction; and (iii) vegetation clearance. As it is assumed that the plant is designed to be able to 

increase its capacity from 50 to 100GL/year, there would be minimal additional construction energy required 

to accommodate this expansion (Government of South Australia, 2009a). Therefore, an indicative 10% of 

capital GHG emissions is added for the 100GL plant to account for any additional buildings or processing 

equipment (Table 2.12).  

The desalination plant operating GHG emissions are based on GHG emissions associated with the 

electricity required for treatment and the delivery pipeline, chemicals, membranes and diesel. These are 

converted to GHG emissions using the electricity GHG emission factor of 0.81kgCO2-e/kWh, while GHG 

emissions for chemicals, membranes and diesel for the 50GL plant are 260,000 tonnes (Government of 

South Australia, 2009a), which are doubled for the 100GL plant. The estimated capital and unit operating 

GHG emissions for the desalination plants of different capacities are given in Table 2.12. 

Table 2.12 Capital and operating GHG emissions for the various water supply options 

Water supply options 
Capital GHG emissions  

(kgCO2-e) 
Unit GHG emissions 

 (kgCO2-e/kL) 

Happy Valley reservoir - 0.24 

Myponga reservoir - 0.22 

River Murray - 2.93 

50GL desalination plant 228,538,259 5.41 

100GL desalination plant 237,103,259 5.43 

50GL desalination expansion 8,565,000 5.41 

Stormwater harvesting schemes :   

Brownhill & Keswick Creek 7,248,734 2.04 

Sturt River 7,350,767 2.06 

Field River 3,576,467 6.05 

Pedler Creek 5,643,330 1.60 

Household rainwater tanks:   

1kL 718 1.22 

2kL 1,251 1.22 

5kL 2,897 1.22 

10kL 4,635 1.22 
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The capital GHG emissions for the stormwater harvesting schemes are estimated based on the embodied 

energy from the amount of concrete and energy required to construct the wetlands and aquifer storage and 

recovery wells (Treloar, 2000). For the case study, it is assumed that the water is gravity fed into the 

aquifers and hence the operating GHG emissions consisted of only the pump power associated with the 

extraction of the water from the aquifers to supply the demand. The static head for the ASR wells depends 

on the type of aquifer and the available storage head of the aquifer, thus a static head of 150m (Spies and 

Dandy, 2012) is assumed for the case study. The calculated capital and unit operating GHG emissions for 

the different stormwater harvesting schemes are given in Table 2.12, along with the calculated capital and 

unit operating GHG emissions for rainwater tanks of different sizes. 

The majority of GHG emissions associated with rainwater tanks result from the energy used in their 

construction. The capital GHG emissions for different sizes of HDPE rainwater tanks are estimated using 

the mass of the tanks (30kg for 1kL tank, 54kg for 2kL tank, 125kg for 5kL tank and 200kg for 10kL tank) 

(AAA Poly Tanks, 2011). The embodied energy of HDPE is 103MJ/kg and a GHG conversion factor of 

0.98kgCO2-e/GJ can be assumed (Centre for Building Performance Research, 2007). Recent monitoring of 

rainwater tanks suggests that energy consumption is 1.5 kWh per kL of rainwater used, given the most 

common pump and rain switch system (Retamal et al., 2009). For households using rainwater for toilet 

flushing, laundry and outdoor use, a range of 0.9 to 2.3 kWh per kL is considered (Retamal et al., 2009). 

Therefore, energy consumption of 1.5kWh per kL of rainwater reuse is used in the case study in order to 

estimate operating GHG emissions.  
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Chapter 3 

3 Scenario Driven Optimal Sequencing under Deep Uncertainty – Paper 2 
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Abstract 

The optimal sequencing / scheduling of activities is vital in many areas of environmental and water 

resources planning and management. In order to account for deep uncertainty surrounding future 

conditions, a new optimal scheduling approach is introduced in this paper, which consists of three stages.  

Firstly, a portfolio of diverse sequences that are optimal under a range of plausible future conditions is 

generated. Next, global sensitivity analysis is used to assess the robustness of these sequences and to 

determine the relative contribution of future uncertain variables to this robustness. Finally, an optimal 

sequence is selected for implementation. The approach is applied to the optimal sequencing of additional 

potential water supply sources, such as desalinated-, storm- and rain-water, for the southern Adelaide water 

supply system, over a 40 year planning horizon at 10-year intervals.  The results indicate that the proposed 

approach is useful in identifying optimal sequences under deep uncertainty. 

3.1 Introduction 

The sequencing, staging or scheduling of activities (referred to as sequencing for the remainder of this 

paper) is important in many environmental and water resources application areas. Examples include the 

sequencing of urban water supply augmentation sources and infrastructure (Kang and Lansey, 2014, Beh et 

al., 2014, Mortazavi-Naeini et al., 2014, Ray et al., 2012), the scheduling of pumps and rehabilitation 

activities in water distribution systems (Kleiner et al., 1998, Savić et al., 2011, Zheng and Zecchin, 2014, 

Dandy and Engelhardt, 2001), the scheduling of wastewater discharges (Murillo et al., 2011), the scheduling 

of mining production activities (Badiozamani and Askari-Nasab, 2014), the scheduling of forest 

management activities (Sharples et al., 2009, Zhang and Barten, 2009, Simon and Etienne, 2010), the 

scheduling of irrigation water (Merot and Bergez, 2010, Ge et al., 2013), the scheduling of crop 

management activities (Lautenbach et al., 2013, Ripoche et al., 2011), the scheduling of environmental 

flows in rivers (Szemis et al., 2012, Szemis et al., 2013) and determining the optimal schedule of 

investments of conservation funding  (Wilson et al., 2006, Bode et al., 2008). 

In order to make best use of available resources and to achieve the best possible outcomes, the use of 

formal optimisation techniques is highly desirable in order to identify these sequences.  However, a potential 

problem with the use of formal optimisation methods is that solutions are only truly optimal if the 

assumptions under which the optimisation was performed hold. This is unlikely to be the case for real 
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systems (Gober, 2013, Dessai et al., 2013), therefore necessitating the consideration of uncertainties as 

part of optimisation approaches (Maier et al., 2014). The uncertainties underpinning optimisation 

approaches generally fall into two categories: those resulting from a lack of information and those resulting 

from uncertainties about the future (which is referred to as deep uncertainty) (Walker et al., 2013). The latter 

type of uncertainty can also be thought of as global uncertainty, which results in significantly different trends 

in solutions, whereas the former type of uncertainty can be thought of as local uncertainty, which represents 

the imperfect knowledge surrounding a particular pathway resulting from global uncertainties (Mejia-Giraldo 

and McCalley, 2014). 

Local uncertainty, or a lack of information, can generally be represented by probability distributions and 

there are well-established methods for dealing with this type of uncertainty within optimisation frameworks 

for optimal sequencing (e.g. Bode et al., 2008, Wilson et al., 2006, Srinivasa Prasad et al., 2013). In 

contrast, optimisation methods for dealing with optimal sequencing under global / deep uncertainty are 

much less developed. This is despite the fact that it has been recognised that most important strategic 

planning problems are characterised by deep uncertainty (Walker et al., 2013). In general, two of the most 

promising approaches to dealing with deep uncertainty include the development of robust solutions, which 

are designed to perform well under a wide range of future conditions, and the development of flexible 

solutions, which are designed to enable adaptation to changing future conditions (Walker et al., 2013). In 

the context of optimal sequencing, Woodward et al. (2014) and Basupi and Kapelan (2013) developed 

flexible approaches to the optimal sequencing of flood risk management and water distribution system 

design, respectively.  However, in each case only a relatively limited range of reasonably well-known future 

conditions was considered (represented by probability distributions), rather than alternative scenarios, as is 

generally the case when dealing with deep uncertainty. As pointed out by Mahmoud et al. (2009), 

probabilistic predictions explicitly weight the likelihood of different outcomes, whereas scenarios are 

designed to represent a set of alternative plausible future states of the world. In addition, the approaches of 

Woodward et al. (2014) and Basupi and Kapelan (2013) were tailored to specific application areas. 

Housh et al. (2013), Kang and Lansey (2014) and Ray et al. (2012) developed optimal sequencing 

approaches for water supply system management, water supply infrastructure and water sources, 

respectively, that consider performance under a wide range of future conditions with the aid of scenarios.  

However, all of these approaches are tailored to specific application areas. In addition, the methods 
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proposed by Housh et al. (2013) and Ray et al. (2012) are based on traditional optimisation methods (i.e. 

stochastic and linear programming, respectively, in this case), which have a number of potential 

disadvantages compared with evolutionary optimisation approaches (see Maier et al., 2014). These include 

not being able to be linked with simulation models, thereby potentially ignoring important non-linear 

interactions and making the algorithms more difficult to apply, and not being truly multi-objective in the 

sense of being able to evolve fronts of Pareto-optimal solutions (Pareto, 1896) in a single optimisation run, 

which is becoming increasingly important when tackling real-life problems (Maier et al., 2014). Although 

Kang and Lansey (2014) use a genetic algorithm as their optimisation engine and indicate that their 

approach could be extended to include multiple objectives, this was not undertaken in their paper. 

In order to address the shortcomings outlined above, the objectives of this paper are (i) to introduce an 

approach to the optimal sequencing of environmental and water resources activities that (a) is generic, (b) 

caters to a wide range of possible future conditions and (c) caters to multiple objectives; and (ii) to illustrate 

the approach on an optimal urban water resources augmentation case study, which is based on the 

southern water supply system of Adelaide, South Australia. 

The remainder of this paper is organised as follows. In Section 3.2, the proposed optimal sequencing 

approach under deep uncertainty is introduced, while details of the case study and of the application of the 

proposed approach to the case study are given in Section 3.3. The results are presented in Section 3.4, 

before a summary and conclusions are given in Section 3.5. 

3.2 Proposed Approach 

As illustrated in Figure 3.1, the proposed approach to the optimal sequencing of environmental and water 

resources activities under deep uncertainty consists of three main steps, namely (i) the identification of a 

portfolio of diverse optimal sequences; (ii) the performance of global sensitivity analysis on each of the 

members of the portfolio of optimal sequences identified in (i); and (iii) the selection of the optimal sequence 

to be implemented.  Details of each of these steps are given in the following subsections. It should be noted 

that the proposed approach assumes that the optimisation problem to be solved has already been 

formulated (e.g. identification of objectives, constraints and decision variables, planning horizon and interval 

etc.).  As with all optimisation problems, problem formulation is vital and care needs to be taken to ensure 
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the concerns of decision makers and other stakeholders are represented in the problem formulation (see 

Maier et al., 2014). 

3.2.1 Determination of Portfolio of Diverse Optimal Sequences 

In line with robust decision-making approaches (Lempert and Collins, 2007, Matrosov et al., 2013a), the 

purpose of the first step in the proposed approach is to identify a portfolio of diverse solutions that are likely 

to perform differently under various future conditions. This is also in keeping with the philosophy 

underpinning scenario analysis, in which scenarios “provide a dynamic view of the future by exploring 

various trajectories of change that lead to a broadening range of plausible alternative futures” (Mahmoud et 

al., 2009), enabling “…a creative and flexible approach to preparing for an uncertain future” (Mahmoud et 

al., 2009).  As shown in Figure 3.1, in order to achieve this, three steps are proposed in the context of 

developing optimal sequences under deep uncertainty. The first of these involves the identification of the 

uncertain variables (UV1, UV2,...,UVx) that are likely to result in unknown futures of interest (Step 1.1, Figure 

3.1), as well as their plausible ranges over the selected planning horizon (e.g. UVx,min,UVx,max). For example, 

these variables could include population, land use, precipitation, temperature, evapotranspiration, water 

availability etc., depending on the environmental / water resources problem under consideration. 
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Figure 3.1 Schematic of proposed scenario driven optimal sequencing of environmental and water resource activities 

under deep uncertainty 
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Next, a set of plausible future scenarios (S1, S2, ...,Sy), which consist of different combinations of values of 

the selected uncertain variables, as well as their temporal variation over the selected planning horizon, 

should  be selected (Step 1.2, Figure 3.1).  The purpose of the scenarios is not to predict the future, but to 

enable exploration of a relatively small number of different plausible futures that are generally not equally 

likely (Mahmoud et al., 2009).  Most scenario development involves people from different disciplines and 

organisations (Mahmoud et al., 2009) and can be achieved using a range of formal (Leenhardt et al., 2012, 

Mahmoud et al., 2009) or informal approaches  (Kasprzyk et al., 2012, Paton et al., 2013, Paton et al., 

2014a, Paton et al., 2014b). 

The final step involves the generation of Pareto-optimal sequences for each of the scenarios and the 

extraction of the portfolio of diverse solutions (P1, P2 to PZ) (Step 1.3, Figure 3.1), which is similar to the 

approach used by Kasprzyk et al. (2013b) for problems that do not involve sequencing. The philosophy 

underpinning this step is to identify potential future pathways that are optimal with respect to the stated 

objectives under the conditions represented by the different scenarios (i.e. plausible futures). It should be 

noted that when dealing with multiple, competing objectives, there is no single optimal solution, but a 

collection of solutions that are all optimal, known as the Pareto front (Pareto, 1896). This is because for 

solutions on this front, improvements in one objective can only be achieved at the expense of degradation in 

at least one of the other objectives, requiring additional preference information to enable one of these 

solutions to be selected (Cohon and Marks, 1975).  Consequently, the purpose of the proposed approach is 

not to identify a single optimal solution, but to sift through the large number of potential solutions in order to 

identify the solutions that provide the best possible trade-offs between objectives under a number of 

different future scenarios and therefore warrant further consideration by decision-makers. 

Although a variety of approaches can be used to generate the front of (near) Pareto-optimal solutions, the 

use of multi-objective evolutionary algorithms (MOEAs), such as NSGAII (Deb et al., 2002) or BORG (Reed 

et al., 2013), is recommended, as they can identify the front of (near) Pareto optimal solutions in a single 

optimisation run and can be linked with existing simulation models. However, the most appropriate 

approach is likely to be application and case study dependent.  When deciding which solutions on the y 

Pareto fronts to include in the portfolio of diverse sequences (P1, P2 to PZ) to be subjected to the sensitivity 

analysis step, the aim is to obtain diversity in both the decision and objective function spaces. Depending on 

the characteristics of the problem considered (e.g. number of objectives, number of scenarios, number of 
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diverse solutions), there might be some benefit in using formal approaches, such as visual analytics (see 

e.g. Kollat and Reed, 2007, Reed and Kollat, 2013) or scenario discovery (e.g. Lempert and Groves, 2010, 

Kasprzyk et al., 2013b), to assist with this process.  

3.2.2 Global Sensitivity Analysis 

Global sensitivity analysis can be conducted using a number of methods, such as Sobol’ (Sobol', 1990) or 

Fast (Saltelli and Bolado, 1998), among others.  The purpose of the global sensitivity analysis step of the 

proposed approach (Step 2.1, Figure 3.1) is: (i) to assess how well each of the members of the diverse 

portfolio of optimal sequences (i.e. the sequences that provide the optimal trade-offs between the objectives 

under different plausible future conditions) selected in Step 1 (P1, P2 to PZ) performs under the full range of 

selected uncertain future conditions (UV1, min to UV1, max; UV2, min to UV2, max; …; UVx, min to UVx, max) in 

accordance with a number of user defined performance measures (M1, M2, … ,My) (Step 2.2(a), Figure 3.1); 

and (ii) to identify the relative contribution of the different uncertain variables (UV1, UV2, … ,UVx) to the 

variation in the performance of the different optimal sequences (P1, P2to PZ) (Step 2.2(b), Figure 3.1).  The 

former provides an indication of the insensitivity (and hence robustness) of each of the selected optimal 

sequences to different plausible futures, enabling the impact of deep uncertainty on the performance of 

different optimal sequences to be explored and assessed. The latter provides an indication of the degree to 

which the variation in performance under different combinations of future conditions is within the control of 

the authority in charge of the system under consideration.  For example, in the context of urban water 

supply augmentation, if the largest cause of the variation in future performance is climate change, the water 

authority in charge would have little control over this and might need to be more conservative in the 

selection of the most appropriate optimal sequence (e.g. select a sequence that performs well under a wider 

range of future conditions).  In contrast, if the major cause of variation in performance is per capita demand, 

which can, to some extent be influenced by the water authority, a less conservative optimal sequence could 

be selected.  It also gives an idea of where the water authority should focus its efforts if it wishes to reduce 

future uncertainty. 

The selected performance measures (M1, M2, …,My) would generally include, but not necessarily be 

restricted to, the optimisation objectives.  For example, if the problem to be optimised includes one or more 

constraints that signify acceptable system performance (e.g. supply meeting demand in the case of urban 
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water supply augmentation), additional performance measures could relate to the satisfaction of these 

constraints under the uncertain future conditions considered (e.g. in the case of urban water supply 

augmentation, such measures could include reliability, resilience and vulnerability, as recommended by 

Yazdani et al. (2011), or the risk of water shortages, as suggested by Hall et al. (2012). 

In order to account for variability in system states (rather than trends over time) (see Mortazavi et al., 2012), 

the global sensitivity analyses might need to be repeated a number of times for each of the optimal 

sequences considered. For example, in the case of urban water supply augmentation, available water 

supply from rainfall dependent sources would vary from year to year based on natural rainfall variability.  In 

this case, the global sensitivity analysis should be repeated for different stochastically generated rainfall 

time series and the variation in system performance (Step 2.2(a), Figure 3.1) and sensitivity indices (Step 

2.2(b), Figure 3.1) would be averaged over the sensitivity analyses for each of the stochastic series. 

3.2.3 Selection of Optimal Sequence 

The previous steps identify sequences that provide optimal trade-offs between objectives under different 

plausible future pathways, as well as the sensitivity of these solutions to possible changes in future 

conditions.  However, as all of these solutions are optimal with respect to different objectives and scenarios, 

user preferences have to be used to determine which sequence to adopt. Consequently, as stated 

previously, the proposed approach does not suggest which solution should be adopted, but provides 

decision-makers with the best set of solutions that warrant further consideration.  Factors that should be 

considered in this decision-making process include: 

 Trade-offs between the absolute (e.g. average) values of the performance measures and their 

variability (Step 2.2(a), Figure 3.1) (see Cui and Kuczera, 2010). 

 The relative contribution of the uncertain variables to variability in performance (Step 2.2(b), Figure 

3.1) and how easily this can be managed. 

 The degree to which various constraint violations resulting from uncertain future conditions can be 

managed. 

 The degree of adaptability associated with different optimal sequences. As decisions associated 

with optimal sequences are not implemented at the same time, there is scope to make changes to 

the optimal sequence in light of updated information. Consequently, optimal sequences for which 
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decisions at the earliest stages of the planning horizon are the same afford greater adaptability than 

sequences for which optimal decisions at the earliest stages are different.  However, it should be 

noted that adaptive pathways (see Haasnoot et al., 2014) are not formally considered in the 

proposed approach. 

Depending on the complexity of the problem, this decision-making process can be undertaken informally or 

using more formal approaches, such as multi-criteria decision analysis (see Hyde and Maier, 2006, 

Korteling et al., 2013). 

3.3 Case Study 

3.3.1  Introduction 

In order to illustrate and test the utility of the proposed approach, it is applied to an urban water supply 

augmentation case study based on the southern region of the Adelaide water supply system in 2010. While 

deep uncertainty has been considered in urban water resources planning previously (e.g. Sahin et al., 2014, 

Matrosov et al., 2013b, Lempert and Groves, 2010, Maier et al., 2013, Matrosov et al., 2013a, Sahin et al., 

Korteling et al., 2013, Paton et al., 2014a, Kang and Lansey, 2013), only some studies have considered the 

use of formal optimisation approaches (e.g. Kasprzyk et al., 2009, Kasprzyk et al., 2013b, Kasprzyk et al., 

2012, Wang and Huang, 2014, Zeff et al., 2014, Paton et al., 2014b) and only Ray et al. (2012) have 

considered the optimal sequencing of water supply augmentation options. 

Adelaide is the capital city of South Australia (see Figure 3.2) and has an estimated population of approximately 

1.3 million.   It is one of the driest capital cities in the world (Wittholz et al., 2008), having a Mediterranean climate, 

with hot dry summers and mild wet winters. The recorded annual rainfall ranges from 257mm to 882mm (Maier 

et al., 2013). Average annual mains water consumption was estimated to be 163 gigalitres (GL) in 2008 

(Government of South Australia, 2009b), but the demand varies by +/- 12% depending on the prevailing weather 

patterns (Government of South Australia, 2005). 

The southern Adelaide water supply system (WSS) (see Figure 3.2) supplies around 50% of the demand of 

metropolitan Adelaide. In 2010, the system was supplied with water from three reservoirs – Myponga, Mount 

Bold and Happy Valley. Mount Bold and Myponga reservoirs receive water from local catchments, and Mount 

Bold also receives water pumped from the River Murray via the Murray Bridge to Onkaparinga pipeline. The 
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amount of water supplied to Adelaide from the River Murray is based on a licence to supply a maximum of 650 

GL over a 5-year rolling period. Of this, half is assumed to be allocated to the southern Adelaide WSS. The 

Happy Valley reservoir is a service reservoir, which stores water transferred from Mount Bold reservoir prior to 

treatment at the Happy Valley water treatment plant. 

In order to cater to projected demand increases and the impacts of climate change, there are plans to augment 

Adelaide’s future water supply (Paton et al., 2013, Beh et al., 2014, Paton et al., 2014b). Potential water supply 

augmentation sources include a desalination plant at Port Stanvac, various stormwater harvesting schemes, and 

household rainwater tanks, as detailed in Beh et al. (2014) and Paton et al. (2014b). Consequently, the 

optimisation problem to be solved involves the sequencing of the potential supply augmentation options over a 

given planning horizon (see Beh et al., 2014).  This problem is used here for illustration purposes of the proposed 

approach, as it has been studied previously in relation to the identification of optimal water supply augmentation 

options (Paton et al., 2013, Paton et al., 2014b), as well as the optimal sequencing of these options without the 

consideration of uncertainty (Beh et al., 2014). A description of this problem, as well as how the proposed 

approach was applied to it, is given in the following sections. However, as this problem has been studied 

previously, details that are presented in other papers are only summarised here for the sake of brevity. 



 
 

69 
 

 

Figure 3.2 Map of the Southern Adelaide water supply system (WSS) and potential augmentation 

options in 2010. 

3.3.2 Problem formulation 

3.3.2.1 Objectives and constraints 

The objectives to be optimised include the minimisation of the present value (PV) of cost and the present 

value of GHG emissions. Both objectives consist of two components, including capital and operating values. 

As these objectives are generally in competition with each other (see Wu et al., 2010a, 2010b, 2013), there 

will not be a single optimal solution, but fronts of Pareto-optimal solutions, as discussed in Section 3.2.1. 

The discount rates used for the calculation of the PV of cost and GHG emissions are considered to be 
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uncertain variables (see Section 3.3.3.1). The primary constraint is that supply capacity is greater than or 

equal to demand at all times. 

3.3.2.2 Decision Variables 

The existing water supply options (i.e. the three reservoirs and supply from the River Murray) are included 

in the sequence plan at the beginning of the planning horizon. However, the desalination plant, stormwater 

harvesting schemes and household rainwater tanks are considered as potential additional water supply 

sources at each decision stage. It should be noted that the nominal capacity of the desalination plant is 

halved for the case study because it is designed to supply the whole of metropolitan Adelaide. The southern 

system featured in the case study, therefore, only takes 50% of the supply. 

A 40- year planning horizon and a ten year staging interval are adopted. A staging interval of ten years allows for 

periodic review of the plans due to changing exogenous variables, such as rainfall, demand and energy costs. 

Ten years is also a practical period, as it allows time for planning, design, approval and construction of projects. 

Therefore, the case study includes five decision stages over the 40 year planning horizon.  A complete sequence 

plan consists of the selected options at each decision stage, in addition to the existing water supply system.  

Details of the current and potential future water supply sources, including their estimated yields and capital 

and operating costs and GHG emissions, are summarised in Table 3.1 (see Beh et al., 2014). It should be 

noted that while the yields of the rainfall independent sources are known, the yields of the rainfall dependent 

sources are estimates obtained by simulating each source individually under a range of hydrological 

conditions and projected demands, as outlined by Beh et al. (2014). Similarly, whereas the capital costs and 

GHG emissions are fixed, their corresponding operational values vary over time. Consequently, the unit 

values in Table 3.1 are estimates.  However, during the optimisation process, time-varying values of yields, 

operational costs and operational GHG emissions are obtained with the aid of a simulation model, as 

discussed in Section 3.3.2.3.  

Although a minimum estimated reliability of 90% is used for the rainfall dependent sources, actual system 

reliability is higher than this as supply capacity actually exceeds system demand most of the time. 

Furthermore the reliability of the desalination plant is determined by mechanical and electrical breakdown 

and is much higher than 90%. 
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Table 3.1 Estimated yields, capital and unit operating costs and GHG emissions for the potential water supply options 
(see Beh et al., 2014) 

Water supply options Estimated yields 
(90% reliability) Capital cost ($) Unit operating 

cost ($/kL) 

Capital GHG 
emissions* 
(kgCO2-e) 

Unit GHG 
emissions* 

(kgCO2-e/kL) 

River Murray 51.3 GL/year - 0.49 - 3.33 

Reservoirs:      

Happy Valley  50.3 GL/year - 0.08 - 0.32 

Myponga  6.4 GL/year - 0.23 - 0.22 

Stormwater harvesting 
schemes :      

Brownhill & Keswick 
Creek 6.3 GL/year 160,025,000 1.23 7,249,000 2.04 

Sturt River 7.0 GL/year 194,193,000 1.23 7,351,000 2.06 

Field River 1.6 GL/year 35,689,000 1.23 3,576,000 6.05 

Pedler Creek 5.0 GL/year 110,682,000 1.23 5,643,000 1.60 

Household rainwater 
tanks:      

1kL 35.0 kL/tank/year 2,181/tank 0.78 718/tank 1.22 

2kL 42.8 kL/tank/year 2,464/tank 0.68 1,251/tank 1.22 

5kL 46.8 kL/tank/year 3,024/tank 0.64 2,897/tank 1.22 

10kL 47.1 kL/tank/year 3,560/tank 0.63 4,635/tank 1.22 

 Actual yields     

50GL desalination plant 25.0 GL/year 1,347,000,000 1.00 228,538,000 5.41 

50GL desalination 
expansion 25.0 GL/year 483,000,000 1.00 8,565,000 5.41 

* Note that the GHG emissions given in this table are gross emissions. These may be partially or fully offset by the purchase of 
green energy or carbon offsets. 

It should also be noted that not all of the water supply options in Table 3.1 are independent of each other.  

In particular: (i) Once one of the desalination options has been selected, it cannot be selected again.  In 

addition, expansion to full capacity is only possible once the 50GL desalination plant has been selected; (ii) 

One or more of the stormwater harvesting schemes can be selected at any decision point. However, each 

scheme can only be selected once; and (iii) Rainwater tanks of a particular capacity can be implemented at 
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any decision point. However, the option to use rainwater tanks as a source can only be selected once. In 

addition, it is assumed that once a particular rainwater tank capacity option has been selected, this is 

implemented across all dwellings as a result of government regulation.  

3.3.2.3 Checking of constraints and calculation of objectives 

The checking of constraints involves determining whether the simulated capacity of the water supply system 

corresponding to a selected sequence plan is greater than or equal to the estimated demand at each 

decision stage and whether the generated combinations of options satisfy the feasibility criteria associated 

with the desalination plant (e.g. ensuring that the 50GL/year expansion only occurs after the implementation 

of the original 50GL/year plant). Calculation of the objectives involves determining the present value of 

capital and operational costs and GHG emissions for the water supply system corresponding to the selected 

sequence plan. Consequently, the development of a water supply system model for the selected sequences 

is required. In this study, WaterCress (Water - Community Resource Evaluation and Simulation System) is 

used for this purpose. 

WaterCress is a water balance model that enables simulation of the real life layout as an assembly of 

components of a water supply system. Each component has an associated database that contains all 

variables (e.g. demand, rainfall, evaporation) necessary to enable quantities of water to be estimated and 

tracked through a specified water supply system (Clark et al., 2002).  WaterCress is chosen for this case 

study because it (i) can incorporate multiple rainfall time series, (ii) can model multiple catchment-reservoir 

relationships, (iii) can incorporate less conventional water supply sources (e.g. desalination and recycled 

water), (iv) is freely available, (v) was developed specifically for South Australian conditions and (vi) has 

been used successfully for the case study system in previous studies (Beh et al., 2014, Paton et al., 2014b). 

As the supply from the stormwater and rainwater sources is not potable, different sources have to be 

mapped to different end-uses in the model (e.g. Paton et al., 2014a).  Specifically, potable supply is used for 

indoor residential use and the potable portion of the demand for industrial, commercial, primary production 

and public purposes (ICPP), rainwater is used for residential outdoor use and toilet flushing, and stormwater 

is used for the non-potable portion of the demand for ICPP. However, when the supply from stormwater 

harvesting and/ or rainwater is insufficient to meet the designated demands, it is supplemented by potable 

supply from reservoirs and/or the desalination plant. 
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Total demand is a function of population size, per capita demand and commercial and industrial demand. 

Population is considered as one of the uncertain variables, as detailed in Section 3.3.3.1. Average 

household size is assumed to be constant at 2.3 people over the planning horizon.  This is because the 

average household size for SA is projected to decline from 2.6 (in 2006) to between 2.0 and 2.2 people per 

household by 2026 (Trewin, 2004). Per capita demands are held constant over the planning horizon at 

491L/p/day based on 2010 values (Beh et al., 2014). 

Hydrological inputs are based on continuous time series of rainfall and evaporation from 1910 to 2010, 

obtained for eight rainfall stations within the southern Adelaide WSS (Figure 3.2). However, these were 

adjusted for climate change and are thus considered as uncertain variables (see Section 3.3.3.1).  Further 

details of the WaterCress model are given in Beh et al. (2014) and Paton et al. (2014b). 

3.3.3 Determination of Portfolio of Diverse Optimal Sequences 

3.3.3.1 Definition of uncertain variables and ranges 

As mentioned previously, three uncertain variables are considered, namely population, climate change 

(affecting rainfall and evaporation) and discount rate (for both cost and GHG emissions).  Population and 

climate change are used as uncertain variables as they have been found to have the biggest impact on the 

water supply security constraint (i.e. that supply has to be greater than or equal to demand) for the case 

study system (Paton et al., 2013) and the discount rates are used as they are likely to have a significant 

impact on objective function values. Details of the uncertain variables are given in Table 3.2 and discussed 

below.  As is generally the case in sensitivity analysis, all values within the ranges of the uncertain variables 

are considered equally likely (i.e. equivalent to assuming a uniform distribution for each). 

 

 

 

 

 



 
 

74 
 

Table 3.2 Uncertain variables and corresponding options  

Uncertain variables Options 

   Population 

Extremely high 
Very high 

High 
Moderate (see Figure 3.3) 

Low 
Very low 

Extremely low 

Climate change impact 

 GCMs SRES 
Most severe CSIRO: CSIRO Mk3.5 A1B 
Very severe NCAR: NCAR CCSM3 A1T 

Severe CCR: MIROC-H A1F1 
Moderate LASG/IAP - FGOALS - G1.0 B2 

Less severe MRI - CGCM 2.3.2 A1B 
Mild CCR: MIROC-M A2 

Least severe CCCMA:CGCM3.1 (T63) B1 
 Cost GHG emissions 

Discount rate 
(for cost and GHG 
emissions) 

High 8% 3% 
Moderate 6% 1.4% 

Low 4% 0% 

Population 

The population for the southern Adelaide region is estimated to be 600,240 in 2010 (Australia Bureau of 

Statistics, 2011) and seven series of annual population projections to 2050 are used as uncertain variables 

(see Figure 3.3). These projections are based on various assumptions of fertility, mortality, net interstate 

migration and net overseas migration (Australia Bureau of Statistics, 2013). 
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Figure 3.3 Uncertain time series of population growth consideredfor the southern Adelaide WSS to 2050 (Australia 

Bureau of Statistics, 2013). 

Climate change 

Future climate change will have an impact on the yield of rainfall dependent water supply sources (e.g. 

reservoirs, stormwater harvesting, rainwater tanks) and is considered via uncertainty in both SRES 

scenarios, representing potential carbon futures, and Global Circulation Models (GCMs), representing 

modelling uncertainty (see Table 3.2). As suggested by Paton et al. (2013) for the same case study area, 

the six SRES scenarios of A1FI, A1T, A2, B1 and B2 are used, as they cover the full range of potential 

future development pathways defined by the Intergovernmental Panel on Climate Change (IPCC) 

(Intergovernmental Panel on Climate Change, 2007). The seven GCMs considered include CCSM3, 

CGCM3.1, CSIRO-MK3.5, FGOALS-g1.0, MIROC3.2 (hires), MIROC3.2 (medres), and MRI-CGCM2.3.2 

and are selected by applying CSIRO’s Climate Future Framework (CFF) (Paton et al., 2013). Based on the 

outputs of different combinations of SRES scenarios and GCMs, the climate change impacted rainfall and 

evaporation data are obtained by multiplying the 40 year series of historical daily rainfall and evaporation 

data by the climate change factors obtained from OzClim (http://www.csiro.au/ozclim/). These climate 

change factors are available at five-year intervals, so the percentage change factors are updated every five 

years from 2010 to 2050, as was done by Paton et al. (2013) for the case study area. The use of this 
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constant scaling approach for the modelling of climate change effects was justified by Fowler et al. (2003) 

and Paton et al. (2014a). 

Economic and GHG emission discount rate  

The three economic discount rates used are: 4% per year (low), 6% per year (medium) and 8% per year 

(high), as a discount rate of 6% is commonly used by the local water authority and the Government of South 

Australia (2007) recommends that a +/-2% shift in the discount rate should be used in economic discount 

rate sensitivity analysis. In relation to GHG emission discount rates, suggestions include 0% per year, as in 

the Intergovernmental Panel on Climate Change’s Second Assessment Report (Fearnside, 2002), 1.4% per 

year, which is considered appropriate for stabilizing GHG concentrations in the atmosphere within a desired 

range (Wu et al., 2010b) and values similar to those used for economic benefits and costs (Van Kooten et 

al., 1997). Consequently, GHG emission discount rate options of 0% per year (low), 1.4% per year 

(medium) and 3% per year (high) are used in the sensitivity analysis. 

3.3.3.2 Definition of scenarios 

Pareto fronts of (near) optimal sequence plans are developed for seven different scenarios (see Table 3.3). 

As pointed out by Mahmoud et al. (2009), the objective of scenario development is the identification of a 

small number of scenarios with plausible values of the uncertain variables that can potentially be 

significantly different in each scenario, resulting in alternative, though not equally likely, future states of the 

world.  In the context of this case study, the purpose of the scenarios is to assess the impact of uncertainty 

on the ability of the optimal water supply augmentation sequences to satisfy the water supply security 

constraint (i.e. that supply is greater than or equal to demand), and the corresponding variation in objective 

function values. To this end, the different scenarios include combinations of the factors affecting water 

supply security (i.e. population growth and climate change impact) that result in the best possible future 

conditions with extremely low projected population growth and the least severe future climate change 

impact (Scenario 1) and the worst possible future conditions with extremely high projected population 

growth and severe climate change impact (Scenario 7).  In this way, the solutions in the optimal portfolios of 

sequence plans obtained for the different scenarios will be able to meet the required water supply security 

constraint under a wide range of future conditions.  It should be noted that a moderate discount rate is used 
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for all scenarios, as the discount rate does not have a direct impact on future water supply security and 

hence the ability to meet the desired constraint under various plausible future conditions. 

Table 3.3 Values of uncertain variables for the seven scenarios considered 

Scenario Population growth Discount rate Climate change impact 

1 Extremely low Moderate Least severe 
2 Very low Moderate Mild 
3 Low Moderate Less severe 
4 Moderate Moderate Moderate 
5 High Moderate Severe 
6 Very high Moderate Very severe 
7 Extremely high Moderate Most severe 

3.3.3.3 Development of Pareto fronts of diverse optimal sequences 

The optimisation problem is formulated using nine decision variables, as summarised in Table 3.4. As the 

capacities of most of the water supply options are fixed (i.e. desalination, stormwater harvesting schemes), 

the decision variables correspond to the decision stage at which a particular option is implemented, ranging 

from 0 (the option is not implemented over the planning horizon) to 5 (the option is implemented at decision 

stage 5) (decision variables 1-4 and 6-9, Table 3.4). However, in addition to a decision variable for timing, 

rainwater tanks also have a decision variable corresponding to the capacity of the tanks (decision variable 

5, Table 3.4), ranging from 1 to 10kL. It should be noted that the number of rainwater tanks implemented 

depends on the time of implementation, as the number of households changes over time. 

As part of the optimisation process, populations of sequence plans are generated. These are then fed into 

the WaterCress simulation model in order to obtain estimates of supply, demand and operating costs and 

GHG emissions for the resulting water supply systems over the planning horizon.  Next, the feasibility of the 

generated sequence plans is checked. This involves checking whether the simulated capacity of the 

selected system is greater than or equal to estimated demand at each decision stage and whether the 

generated combinations of options satisfy the feasibility criteria associated with the desalination plant (e.g. 

ensuring that the 50GL/year expansion occurs after the implementation of the original 50GL/year plant – 

see Section 3.3.2). 
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Table 3.4 Decision variables 

Decision 
variable Descriptions Lower limit Upper limit 

1 50GL desalination plant implementation stage 0 5 
2 100GL desalination plant implementation stage 0 5 
3 50GL desalination plant expansion implementation stage 0 5 
4 Household rainwater tank implementation stage 0 5 
5 Household rainwater tank size (kL) 1 10 

6 Brownhill & Keswick Creek stormwater harvesting scheme 
implementation stage 0 5 

7 Sturt River stormwater harvesting scheme implementation stage 0 5 
8 Field River stormwater harvesting scheme implementation stage 0 5 
9 Pedler Creek stormwater harvesting scheme implementation stage 0 5 

In order to develop the next generation of sequences, the Water System Multiobjective Genetic Algorithm 

(WSMGA) (Wu et al., 2010b) is used, which is based on the widely used multiobjective genetic algorithm 

NSGA-II (Deb et al., 2002). WSMGA uses the same operators as NSGA II, but is also able to cater to 

integer decision variables, which suits the formulation presented in Table 3.4. WSMGA has been used 

successfully in a number of multi-objective optimisation studies of water distributions systems considering 

cost and GHG emissions as objectives (Wu et al., 2010a, Wu et al., 2010b, Wu et al., 2013). 

3.3.4 Global Sensitivity Analysis 

Sobol’s method (Sobol, 1993) is used for the global sensitivity analysis, as it takes interactions between the 

uncertain variables into account, enables the direct contribution of each uncertain variable to be estimated 

via sensitivity indices and has been used successfully in a number of other environmental modelling 

applications (Nossent et al., 2011). Sobol’s method is a variance-based method, in which the total variance 

of the model output, D(y), is decomposed into component variances from individual variables and their 

interactions 

 

(3.1) 
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Where Di = the variance due to the ith variable xi; Dij = the variance from the interaction between xi and xj; 

Dijk= the variance from the interaction between xi, xj, xk; and m = the total number of variables (Sobol, 1993).  

Sobol’s method is implemented using SimLab (Tarantola, 2005).  In total, 192 samples are generated using 

Sobol’s sampling method, resulting in 81 unique combinations of the uncertain variables.  This is considered 

sufficient, as the size of the total search space is only 147 (i.e. 7x7x3).   

The first order indices are used for assessing how the uncertain variables impact the output variables, as 

suggested by Saltelli et al. (2005) and Neumann (2012). The first order index is computed using 

First-order index,   

(3.2) 

where Di= the variance due to the ith uncertain variables ; D = the total variance of the model output. 

In addition to the objectives (i.e. PV of cost and GHG emissions), reliability, which is a measure of how frequently 

supply capacity equals or exceeds demand, and vulnerability, which is a measure of demand shortfall, should 

demand exceed supply (Hashimoto et al., 1982b), are used as performance measures. For ease of 

interpretation, vulnerability is expressed as the percentage shortfall of supply.  Both reliability and vulnerability are 

calculated on an annual basis, as follows: 

   

 (3.3) 

where, Ts is the number of years that supply meets demand, and T is the length of the planning horizon 

(years). 

 

  (3.4) 

where, St  is the volume of annual supply shortfall for year t, and At is the total annual demand for year t. 

In order to account for natural hydrologic variability, 20 replicates of 40 years of daily stochastic rainfall data 

are generated for each of the eight rainfall stations considered (see Figure 3.2) using the Stochastic Climate 
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Library (SCL) (www.toolkit.net.au/scl). The SCL is used because it has the ability to generate rainfall at a 

number of temporal and spatial scales and has been applied successfully in a number of other studies 

(Srikanthan, 2005b). A multi-site daily rainfall model is used for this case study because the available 

rainfall data are daily and because rainfall records are sourced from different stations. Further details of the 

generation of the stochastic rainfall time series are given in Paton et al. (2013) and Beh et al. (2014).  

Climate variability is not taken into account for the monthly evaporation data due to limitations in SCL in 

relation to generating multi-site daily climate sequences and due to the fact that evaporation is less variable 

than rainfall. Consequently, as was done by Paton et al. (2013) for the same case study area, the historical 

evaporation data, adjusted for climate change impacts, are used. 

The sensitivity analyses are repeated 20 times (i.e. the 20 sequences of 40 years of daily stochastic rainfall 

sequences are used as inputs to the simulation models of the various rainfall dependent sources in order to 

calculate total annual supply). Therefore, the results of the sensitivity analyses (i.e. variation in performance 

and sensitivity indices) are presented as averages over the sensitivity analyses with the 20 different 

stochastic rainfall series, as average values are common statistical metrics used for the direct comparison 

of model outputs (Bennett et al., 2013). 

3.3.5 Selection of Optimal Sequence Plan 

An informal process is used for selecting the optimal sequence plan, which includes consideration of: 

 Trade-offs between the average values of the performance measures (i.e. PV of cost and GHG 

emissions, reliability and vulnerability) and their variation (including extreme values). 

 The relative contribution of the uncertain variables (i.e. population, climate change, discount rate) to 

the variability in the performance measures and how easily they can be managed. 

 The fact that the maximum vulnerability (i.e. supply shortfall) should be less than 27%, as this 

corresponds to the projected savings under Adelaide’s highest level of temporary water restrictions 

i.e. level 5 restrictions (Chong et al., 2009). In other words, shortfalls greater than this will not be 

able to be avoided via temporary demand management measures that are within the control of the 

water authority. 

 The degree of adaptability associated with different optimal sequences.   
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However, it should be noted that more formal approaches to multi-criteria decision-making could also be 

used (e.g. Hyde and Maier, 2006). 

3.4 Results and discussion 

3.4.1 Determination of Portfolio of Diverse Optimal Sequences 

The Pareto fronts of the optimal sequences for the seven plausible future scenarios considered are shown 

in Figure 3.4 and the selected portfolio of diverse optimal sequence plans is shown in Table 3.5.. The 

optimal sequences considered as potential solutions (i.e. those included in Table 3.5 are selected because 

they include diversity in the actual solutions, as well as trade-offs between the objectives. A discussion of 

the differences between the solutions in Table 3.5 is given below. 

 

Figure 3.4 Tradeoff between PV of GHG emissions and PV of cost for the seven selected scenarios 

Overall, it can be seen that the differences in objective function values between scenarios are significantly 

greater than those within scenarios. This is particularly the case for the GHG minimisation objective, where 

the range of PV of GHG emissions for a Pareto front developed for a particular scenario is relatively small 

compared with the jump in values of PV of GHG emissions between Pareto fronts. These jumps are caused 

by the discrete nature of the decision space and the inclusion of additional sources (e.g. the need to add the 

50 GL desalination plant expansion in order to satisfy the water supply security constraint when moving 
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from Scenario 2 to Scenario 3) or the inclusion of sources earlier on in the planning horizon (e.g. the need 

to add the 50 GL desalination plant expansion at decision stage 3, rather than decision stage 5, in order to 

satisfy the water supply security constraint when moving from Scenario 4 to Scenario 5). 

It can also be seen that the objective function values for scenarios 1 and 2, 3 and 4 and 6 and 7 are quite 

close together, suggesting that the differences in conditions were insufficient to cause significant differences 

in optimal sequence plans. The PVs of costs range from ~$2.0 to ~$2.45 billion for the best case scenario to 

~$2.7 to ~$2.9 billion for the worst case scenario. The PVs of GHG emissions range from ~12.5 to ~12.8 

MtCO2-e for the best case scenario to ~19.0 to ~19.15 MtCO2-e for the worst case scenario. 

As far as optimal supply augmentation is concerned, all optimal sequences include a 50GL desalination 

plant at stage 2. However, while all optimal sequences for scenarios 1 and 2 include the installation of 1kL 

rainwater tanks at 2050, this supply source is not featured in the optimal sequences for the other, more 

extreme scenarios, which include the addition of further desalinated supplies. Scenarios 3 and 4 include a 

50GL desalination plant expansion at 2050, while this is moved forward to 2030 for scenarios 5 to 7 and an 

additional 50GL desalination plant is included in scenarios 6 and 7. All but one optimal sequence contain 

some stormwater harvesting, but the actual schemes and their timing vary considerably, primarily 

accounting for the trade-offs between PVs of cost and GHG emissions, as discussed below.  
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In relation to the trade-offs between the two objectives, it can be seen from Table 3.5 that the use of 

stormwater harvesting is more attractive from a GHG emission perspective than from a cost-perspective, as 

evidenced by the fact that the stormwater harvesting schemes are generally implemented earlier in the 

planning horizon when optimising for GHG emissions than when optimising for cost. For example, some of 

the stormwater schemes are implemented at the first decision stage although the existing water supply 

sources are sufficient to meet demand. This is because the GHG emissions per unit volume from the 

stormwater sources are lower than supply from the River Murray due to the need to pump River Murray 

water to the Onkaparinga River via the Murray-Onkaparinga pipeline and then to transfer it to other storage 

reservoirs (see Figure 3.2). Consequently, even though there is sufficient capacity to meet demand during 

the early stages of the planning horizon from existing and already selected sources, there is some benefit in 

terms of GHG emission reduction in implementing stormwater harvesting schemes and replacing some of 

the non-potable supply from the River Murray with that obtained from the stormwater harvesting schemes.  

In contrast, for sequence plans with lower PV of cost, stormwater harvesting schemes are implemented 

later in the planning horizon because the supply from the existing sources, such as Happy Valley reservoir, 

Myponga reservoir and the River Murray, and the 50GL desalination plant (implemented at the second 

stage), offer lower unit operating costs (Table 3.1). 

3.4.2  Global Sensitivity Analysis  

3.4.2.1 Sensitivity of performance of optimal sequence plans to uncertain variables 

The box-and-whiskers plots in Figure 3.5 show the variation of the average values (over the 20 stochastic 

rainfall sequences) of the PV of cost, the PV of GHG emissions and system reliability and vulnerability over 

the combinations of uncertain variables considered as part of the sensitivity analysis for the 30 selected 

sequences. As can be seen, there is a slight increase in the variation in the PVs of cost and GHG emissions 

for solutions with higher average values, suggesting reduced robustness. However, these solutions are 

significantly more robust (less variable) with respect to reliability and especially vulnerability. This is 

because solutions with higher average PVs of cost and GHG emissions are optimal for more extreme 

scenarios and are therefore able to meet the required demand under a wider range of plausible future 

conditions. Consequently, the most significant trade-offs exist between increased PVs of cost and GHG 

emissions (both in terms of average values and variation) and water supply security, as measured by the 
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average values of and variation in reliability and vulnerability.  Specifically, there is a noticeable increase in 

reliability and a significant reduction in vulnerability (average and variability) from solution 18 onward, which 

is due to the earlier sequencing of the 50 GL desalination plant expansion. However, the vulnerability 

(average and variability) of sequence 17 is also noticeably lower than that of sequences 1 to 16, which is 

due to the implementation of a number of stormwater schemes earlier in the planning horizon in order to 

reduce the PV of GHG emissions. 

 

Figure 3.5 Variation in average performance values (over the 20 stochastic rainfall sequences) of the selected optimal 

sequence plans over the combinations of uncertain conditions considered as part of the sensitivity analysis. It should 

be noted that vulnerability is not zero for optimal sequences developed for the most extreme scenario due to effects of 

climate variability. 

3.4.2.2 Relative influence of uncertain variables on performance of optimal sequence plans 

The plots of the ranges of the Sobol sensitivity indices for the selected optimal sequences (Table 3.5) are 

given Figure 3.6. As can be seen, the PVs of cost and GHG emissions are primarily affected by changes in 

discount rate, with a small impact due to changes in population growth and climate change. This is not 

surprising, as discount rates have a direct impact on the PVs of cost and GHG emissions. However, capital 

costs are fixed for a particular plan over the combinations of uncertain conditions considered as part of the 
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sensitivity analysis. Consequently, the only changes in the PVs of costs and GHG emissions due to 

changes in population growth and climate change are because of changes in operational costs. However, 

changes in operational costs are constrained by the capacity of the various water supply sources. If demand 

equals the maximum capacity of a selected system, then changes in population growth or climate will not 

have any impact on the PVs of cost and GHG emissions, as operational costs and GHG emissions are 

already at their maximum, whereas system reliability will be reduced and system vulnerability will be 

increased. In cases where there is a slight excess capacity in the system, there is some scope to increase 

system yield, thereby increasing operational costs and GHG emissions. This capacity is greater for systems 

with higher-cost optimal sequences, as discussed earlier, resulting in a slight variation in the sensitivity 

indices over the selected sequence plans. 

 

Figure 3.6 Ranges of Sobol’s first order sensitivity indices for cost, GHG emissions, reliability and vulnerability over the 

combinations of uncertain conditions for the selected optimal sequence plans 

In contrast to the PVs of cost and GHG emissions, reliability and vulnerability are sensitive to changes in 

population growth and climate change, but not discount rate (Figure 3.6). This is as expected, as reliability 

and vulnerability are a function of supply and demand, which are not affected by discount rate, but rather 

the size of the population (i.e. demand) and climate (i.e. rainfall and evaporation). However, there is a large 



 
 

87 
 

variation in the sensitivity indices for the different optimal sequences.  This is primarily a function of supply 

availability from the stormwater harvesting schemes, given that the timing of the implementation of the 

50GL desalination plant and its expansion are common to most optimal sequences and that many of the 

major supply sources, including the River Murray, which is subject to a licensing agreement (see Beh et al., 

2014), and the desalination plant, are climate independent for the purposes of this study. Consequently, 

changes in climate only have a significant impact on supply availability from the reservoirs, the stormwater 

harvesting schemes and the rainwater tanks.  

3.4.3  Selection of Optimal Sequence Plan 

A major consideration in the selection of the optimal sequence plan is the fact that maximum vulnerability 

should not exceed 27%, as this is the largest shortfall that can be managed through the most severe 

temporary water restrictions, as discussed in Section 3.3.5. Consequently, sequence plans 1 to 16 are 

excluded from further consideration, as their maximum vulnerabilities exceed 27% and could therefore 

result in actual water shortages.  It should be noted that although population growth is beyond the control of 

the water authority, it is a surrogate for demand and the fact that vulnerability is sensitive to population 

(Figure 3.6) suggests that demand management would be effective in managing demand shortfalls. 

Of the optimal sequences for which maximum vulnerability is less than 27% (i.e. 17 to 30), the major trade-

offs occur between sequence 17 and the remaining sequences. Sequence 17 just satisfies the maximum 

vulnerability criterion with a maximum vulnerability of 24% and has slightly lower reliability than the other 

sequences, but the PVs of cost and GHG emissions are considerably lower. This is because in sequence 

17, the 50GL desalination plant expansion does not occur until 2050, whereas it occurs at 2030 in 

sequences 18 to 30. 

Given that the maximum shortfall can be managed via demand restrictions for sequence 17 and that its PVs 

of cost and GHG emissions are significantly lower than for sequences 18 to 30, it is suggested that this 

sequence should be selected for implementation. In making this decision, it should be noted that the 

maximum shortfall is much less than 24% under the majority of plausible future conditions, as indicated by 

the variation in the box-and-whiskers plot for sequence 17 in Figure 3.5, indicating that level 5 restrictions 

would only be required under a few extreme cases.  In addition, sequence 17 has greater adaptability than 

sequences 18 to 30.  As the desalination plants represent the largest capital investment (in terms of cost 
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and GHG emissions) and all optimal sequences include a 50GL desalination plant at decision 2020, it is 

desirable to delay the 50GL expansion of the desalination plant as much as possible in order to be able to 

respond to actual conditions as time progresses, while ensuring adequate water supply security.  

Consequently, sequence 17 is preferred, as it does not require the 50GL desalination plant expansion until 

2050, compared with 2030 for sequences 18 to 30.  For example, if the desalination plant expansion was 

built in 2030 and subsequent population growth and/or climate change impacts were favourable, there 

would be a large amount of excess water supply capacity for sequences 18 to 30, with associated 

unnecessary capital costs and GHG emissions. In contrast, this would not be the case for sequence 17, as 

there would be greater capacity to respond to actual conditions. 

3.5 Summary and conclusions 

In this paper, a scenario driven approach to the optimal sequencing of environmental and water resources 

activities under deep uncertainty is introduced. As part of the approach, a diverse portfolio of optimal 

sequence plans is generated by obtaining optimal sequences under a range of plausible future scenarios 

and selecting optimal sequences that are diverse in terms of solutions and trade-offs between objectives. 

Next, global sensitivity analysis is performed on the selected sequences to assess the variation 

(robustness) of system performance under a wide range of plausible future conditions and to determine the 

relative contribution of the uncertain variables to the variation in system performance.  The above steps 

identify a small subset of sequence plans that provide the optimal trade-offs between objectives for a range 

of future scenarios, as well as information on the robustness of these solutions, from which decision-makers 

can select their preferred solution using formal or informal multi-criteria decision-analysis methods.   

For illustration purposes, the above approach is applied to the urban water supply augmentation 

sequencing for a case study based on the southern Adelaide water supply system in 2010 that has been 

studied previously in a deterministic setting (Beh et al., 2014). The augmentation options considered include 

various desalination, rainwater and stormwater harvesting alternatives. The planning horizon considered is 

40 years, with a staging interval of 10 years, resulting in 5 decision stages. The objectives considered 

include cost and GHG emissions and optimal augmentation sequences are developed for seven scenarios 

consisting of different future population, climate change and discount rate values. From the Pareto fronts 

obtained for these scenarios, 30 sequences are selected to form the portfolio of diverse solutions. 
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Sobol’ is used as the global sensitivity analysis method and reliability and vulnerability are used as 

performance measures in addition to the objectives.  Based on the results of the sensitivity analysis, and 

consideration of other relevant criteria, such as adaptability and the ability to meet demand shortfalls with 

the aid of temporary water restrictions, an optimal sequence is selected that provides a good compromise 

between average and extreme values of the performance measures, as well as the ability to adapt to actual 

future conditions. The selected optimal sequence plan (Sequence Plan 17) includes implementation of the 

Pedler and Brownhill & Keswick Creek stormwater harvesting schemes in 2010, the construction of a 50GL 

desalination plant in 2020, the implementation of the Sturt River stormwater harvesting scheme in 2040 and 

a 50GL expansion of the desalination plant in 2050. 

As part of the case study, informal approaches are used for the identification of appropriate scenarios and 

the selection of the final optimal sequence. However, the development of more formal approaches for 

achieving this, such as scenario discovery (e.g. Lempert and Groves, 2010, Kasprzyk et al., 2013b) and 

multi-criteria decision analysis (Korteling et al., 2013, Hyde and Maier, 2006), could be investigated in future 

research, especially for more complex problems.  In addition, even though adaptability is considered post-

optimisation, it is not included as part of the formal optimal sequencing process in this study. This should be 

undertaken in future research.  In addition, there is also scope to consider how the formulation of the 

optimisation problem might change over time (Maier et al., 2014). Finally, as part of the proposed approach, 

robustness is not considered explicitly as an objective during the optimisation process and future research 

could focus on the development of approaches that are sufficiently computationally efficient to enable 

robustness measures to be considered as objectives in the optimisation process (Maier et al., 2014). 
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Chapter 4 

4 Adaptive, Multi-Objective Optimal Sequencing Approach for Urban Water Supply 
Augmentation under Deep Uncertainty – Paper 3 
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Abstract 

Optimal long-term sequencing and scheduling play an important role in many water resources problems. 

The optimal sequencing of urban water supply augmentation options is one example of this.  In this paper, 

an adaptive, multi-objective optimal sequencing approach for urban water supply augmentation under deep 

uncertainty is introduced. As part of the approach, optimal long-term sequence plans are updated at regular 

intervals and trade-offs between the robustness and flexibility of the solutions that have to be fixed at the 

current time and objectives over the entire planning horizon are considered when selecting the most 

appropriate course of action. The approach is demonstrated for the sequencing of urban water supply 

augmentation options for the southern Adelaide water supply system for two assumed future realities. The 

results demonstrate the utility of the proposed approach, as it is able to identify optimal sequences that 

perform better than those obtained using static approaches. 

4.1 Introduction 

Formal optimization methods for sequencing or scheduling play an important role in long-term management 

and planning for a number of water resources problems, such as the sequencing of urban water supply 

augmentation options (Ray et al., 2012, Kang and Lansey, 2014, Beh et al., 2014, Mortazavi-Naeini et al., 

2014), the sequencing of urban water supply infrastructure (Kang and Lansey, 2014), scheduling the 

replacement of urban water supply mains (Dandy and Engelhardt, 2001, Dandy and Engelhardt, 2006), 

investment scheduling for irrigated agricultural expansion planning (Allam and Marks, 1984), management 

of water supply systems (Housh et al., 2013) and the scheduling of environmental flows in rivers (Szemis et 

al., 2012, Szemis et al., 2013). The focus of this paper is on urban water supply augmentation, for which the 

optimal sequencing of supply sources has long been used to identify systems that maintain water supply 

security and minimize water supply costs (Morin and Esogbue, 1971, Becker and Yeh, 1974, Butcher et al., 

1969, Atkinson, 2002). As part of the optimal sequencing process, the best combination of supply 

augmentation options that is able to satisfy projected demands over a long-term planning period (e.g. 30-50 

years) is identified. The optimal sequencing of these options over the planning period is also determined, in 

recognition of the fact that demands are likely to change over time. Consequently, decisions in relation to 

which augmentation options should be implemented are made at a number of decision points over the 
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planning horizon, which are generally spaced at regular time intervals (e.g. 10 years), resulting in a number 

of staging intervals over the planning horizon. 

In the past, optimal sequencing approaches have considered traditional sources of water, such as 

reservoirs and groundwater, and have attempted to minimise cost objectives (Chang et al., 2009, Connarty 

and Dandy, 1996).  More recently, multiple objectives (e.g. Beh et al., 2012, Beh et al., 2014, Mortazavi-

Naeini et al., 2014) and alternative sources of water, such as desalinated water, stormwater, rainwater and 

reclaimed wastewater (e.g. Beh et al., 2012, Ray et al., 2012, Downs et al., 2000, Beh et al., 2014) have 

been considered.  However, while uncertainties about future conditions, such as population growth, per 

capita demand and hydrological inputs, have been considered in the determination of optimal portfolios of 

future urban water supply and demand management options (e.g Kasprzyk et al., 2009, Kasprzyk et al., 

2012, Kasprzyk et al., 2013b, Zeff et al., 2014, Paton et al., 2014a, Kang and Lansey, 2013), they have 

generally not been considered in the optimal sequencing of these options.  In other words, while these 

uncertainties have been considered in determining which sources are best suited to satisfying demand at 

some time in the future, they have not been considered in relation to the timing of the implementation of 

these sources over the planning horizon, which is a much more complex problem. Only Ray et al. (2012) 

have developed a formal optimisation approach for the sequencing of long-term urban water supply 

augmentation options under deep uncertainty, which is uncertainty associated with multiple possible futures 

for which relative probabilities are unknown (e.g. climate change, population growth (Lempert, 2003).  

However, it should be noted that the approaches of Housh et al. (2013) and Kang and Lansey (2014) could 

also be used for this purpose, even though they were developed for the optimal sequencing of urban water 

supply infrastructure and water supply system management options, respectively. 

A potential disadvantage of the approaches of Ray et al. (2012) and Housh et al. (2013) is that they are 

based on what are generally referred to as traditional optimization methods (i.e. linear and stochastic 

programming, respectively, in this case), which have a number of shortcomings compared with evolutionary 

optimization approaches (see Maier et al., 2014, Mortazavi-Naeini et al., 2014). Some of these 

shortcomings include not being able to be linked with simulation models of the urban water supply system 

under consideration, thereby potentially ignoring important non-linear interactions (Matrosov et al., 2013b), 

and not being truly multi-objective. Although Kang and Lansey (2014) use a genetic algorithm as their 
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optimization engine and indicate that their approach could be extended to include multiple objectives, this 

was not done in their paper.  

The approaches presented in Ray et al. (2012), Housh et al. (2013) and Kang and Lansey (2014) do not 

include formal mechanisms for updating optimal sequences over time when new information about current 

and plausible future conditions becomes available. Consequently, these approaches can be considered to 

deal with deep uncertainty by way of “static robustness”, which aims to reduce vulnerability under the 

largest range of plausible future conditions (Walker et al., 2013). However, given that optimal urban water 

supply augmentation sequence plans are generally developed over periods of 30-50 years, with 

augmentation options added incrementally over time (e.g. at 5- or 10-year intervals), there is likely to be 

significant benefit in developing an optimal sequencing approach that deals with deep uncertainty by way of 

“dynamic robustness”, which considers adaptation over time as conditions change (Walker et al., 2013).  It 

should be noted that although any of the above sequencing approaches could be applied using a sliding 

temporal window, and Kang and Lansey (2014) include an explicit flexibility criterion in their optimisation 

process and mentioned that their approach should be re-applied periodically, these adaptive mechanisms 

have not been formalized and their utility has not been demonstrated. The lack of the explicit application of 

an adaptive approach could at least in part be due to the difficulty of being able to test the adaptive 

mechanisms of such sequencing approaches, as adaptation needs to respond to changes in future 

conditions, which have not yet occurred and are therefore unknown. Consequently, there would be value in 

developing an experimental approach for testing the potential benefits of formal adaptive optimization 

approaches compared with currently used static approaches. 

Given that existing multi-objective approaches to the optimal sequencing of water supply augmentation 

options are deterministic (e.g. Mortazavi-Naeini et al., 2014) and that existing optimal sequencing 

approaches that do consider uncertain future conditions are not multi-objective and do not include any 

formal mechanisms for adaptation, there is a need to develop a multi-objective, adaptive optimization 

approach for the sequencing of urban water supply augmentation options. However, as pointed out by 

Kwakkel et al. (2014), the use of dynamic adaptive plans, rather than static plans, represents an emerging 

planning paradigm for dealing with deep uncertainty. As such, implementation of this paradigm represents a 

major challenge, especially in terms of the development of computational methods that support the 

development of such plans, including consideration of transient scenarios (Kwakkel et al., 2014). This is 
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particularly the case for the urban water supply augmentation problem, as infrastructure decisions are 

difficult to reverse and have long lifespans, making it difficult to develop dynamic, adaptive pathways. In 

addition, because of long lead times and large investments associated with urban water supply 

infrastructure, there is a need to ensure that water supply security is not compromised in periods between 

the implementation of augmentation options. 

It follows that an adaptive approach to the optimal sequencing of urban water supply augmentation options 

is not simply a matter of re-applying an optimal static approach over a sliding window (see Szemis et al., 

2014), but requires careful design so that it enables the identification of: (i) augmentation sequences that 

are both optimal for the long term, yet sufficiently flexible to be able to be adapted with minimal loss of 

optimality and (ii) augmentation options that are robust to changing conditions in periods between the 

implementation of augmentation options. In other words, such an approach should account for (i) dynamic 

robustness over the entire planning horizon, (ii) static robustness during those periods of the planning 

horizon when no changes can be made to the system, and (iii) pathways that are sufficiently flexible to cater 

to adaptation at minimal loss of optimality. 

Consequently, the objectives of this paper are (i) to develop an formal optimal sequencing approach for 

urban water supply augmentation that is multi-objective and adaptive and (ii) to demonstrate the application 

of the approach to a case study based on the southern Adelaide water supply system in South Australia, 

including the development of an experimental approach that enables the potential benefits of adaptive 

approaches to be compared with currently used static approaches. The remainder of this paper is organized 

as follows. The proposed optimal sequencing approach is introduced in Section 4.2 and its application to 

the case study is described in Section 4.3. Results and discussion are presented in Section 4.4, followed by 

a summary and conclusions in Section 4.5. 

4.2 Proposed Adaptive, Multi-objective Optimal Sequencing Approach 

The philosophy underpinning the proposed approach is to add consideration of deep uncertainty to the 

traditionally used approach to obtaining optimal urban water supply augmentation sequences, which is 

based on the optimization of a set of objectives subject to the satisfaction of water supply security 

constraint(s). An approach based on this philosophy enables decision-makers to explore the impact of the 

consideration of deep uncertainty on optimal sequences of water supply augmentation options by identifying 
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dynamic adaptive pathways, rather than a single optimal solution, which is in alignment with approaches 

based on adaptive dynamic planning (Haasnoot et al., 2013, Haasnoot et al., 2014, Kwakkel et al., 2014). 

This philosophy is also in keeping with that used in scenario-based decision-making, in which scenarios 

“provide a dynamic view of the future by exploring various trajectories of change that lead to a broadening 

range of plausible alternative futures” (Mahmoud et al., 2009), enabling “…a creative and flexible approach 

to preparing for an uncertain future” (Mahmoud et al., 2009).  This is in contrast to flexible optimal 

sequencing approaches that have been developed for water distribution system design (Basupi and 

Kapelan, 2013) and flood management (Woodward et al., 2014), in which uncertain future conditions are 

represented by probability distributions, thereby explicitly weighting the likelihood of different outcomes, 

rather than representing a set of alternative future states of the world (Mahmoud et al., 2009). 

Consequently, the proposed approach is more likely to be able to cater to deep uncertainty.  However, it is 

acknowledged that the proposed approach also has a number of limitations, such as a potential loss of 

mathematical optimality, as discussed in Section 4.2.5. 

In line with the underpinning philosophy outlined above, the proposed optimal sequencing approach for 

urban water supply augmentation under deep uncertainty consists of three steps (see Figure 4.1), namely: 

(i) identification of a diverse portfolio of optimal water supply augmentation sequence plans over the entire 

planning period with the aid of scenario-based multi-objective optimisation in order to identify solutions that 

are optimal under a range of plausible future conditions (catering to dynamic robustness over the entire 

planning horizon); (ii) assessment of the performance of the portfolio of optimal sequence plans in terms of 

robustness and flexibility over the current staging interval and variation of the optimisation objectives over 

the entire planning period (catering to static robustness during those periods of the planning horizon when 

no changes can be made to the system and to consideration of adaptation at a minimal loss of optimality); 

and (iii) selection of the water supply augmentation option(s) to be implemented at the current decision 

stage based on the trade-offs between the performance criteria in (ii). The above steps are repeated at 

subsequent decision stages (e.g. if the staging interval is 10-years, this process is repeated every 10 years) 

(Figure 4.1).  Details of each of these steps are given in the following sections. It should be noted that the 

proposed approach could be easily adapted to other long-term water resources sequencing or scheduling 

applications. 
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4.2.1 Identification of Diverse Portfolio of Optimal Water Supply Augmentation Sequence Plans 

When identifying a set of optimal solutions under deep uncertainty, it is critical to identify a portfolio of 

potential solutions that are able to respond to different future conditions (Korteling et al., 2013). In order to 

achieve this, it is proposed to use a formal multi-objective optimization approach to develop independent 

optimal sequence plans over the entire planning horizon (e.g. 50 years) for a number of scenarios 

representing different combinations of uncertain variables affecting future conditions. As shown in Figure 

4.1 (Step 1a), the first step in the process involves the formulation of the optimization problem, including 

selection of the objectives to be optimized (e.g. minimize cost, minimize greenhouse gas emissions) (Os(s=1 

to p)), selection of the planning horizon (i.e. the period over which optimal sequence plans are to be 

developed) (T), selection of the staging interval (i.e. the  interval at which the addition of potential water 

supply augmentation options is considered) (t), selection of the water supply augmentation options (i.e. the 

decision variables) (Wk(k=1 to n)) and definition of the constraint(s) (i.e. that some measure of supply is greater 

than or equal to some measure of demand, in addition to any constraints on the decision variables). The 

number of decision stages, y, can be calculated as y=(T+t)/t). It should be noted that it is suggested to only 

consider discrete water supply augmentation options, as this is what would generally be considered in 

practice. 
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Next, the uncertain variables need to be selected (UV1, UV2, … ,UVx).  As the optimization problem 

addressed here is the optimization of the selected objectives subject to supply being greater than or equal 

to demand, the critical uncertainties are in relation to the satisfaction of this constraint, and are therefore 

likely to be variables that affect supply and demand (e.g. rainfall, temperature, evaporation, population).  As 

shown in Figure 4.1 (Step 1b), the ranges of the uncertain variables need to be defined for each of the 

decision stages y at the current time period i (UV1,y,i, UV2,y,i, … ,UVx,y,i), followed by the selection of 

scenarios that consist of different combinations and values of the uncertain variables (S1,i; S2,i; …Sc,i) 

(Figure 4.1 (Step 1c)).  It should be noted that the ranges of the uncertain variables, as well as the selection 

of the scenarios, should reflect current best knowledge in relation to the plausible changes of these 

variables over the planning horizon. 

The use of scenario analysis is considered most appropriate for determining the portfolio of diverse 

solutions, as it enables alternative plausible future dynamic pathways to be developed in line with the 

philosophy that underpins the proposed approach, as outlined earlier. It should be noted that the different 

scenarios are not designed to predict the future, but to enable exploration of a relatively small number of 

different plausible futures that are generally not equally likely (Mahmoud et al., 2009). For this reason, 

scenario analysis has been adopted widely as a means of assessing the impact of deep uncertainty in water 

resources planning (Kasprzyk et al., 2012, Kasprzyk et al., 2013b, Matrosov et al., 2013a, Matrosov et al., 

2013b). Most scenario development involves people from different disciplines and organizations (Mahmoud 

et al., 2009) and can be achieved using informal (see e.g. Kasprzyk et al., 2012, Lany et al., 2013) or more 

formal (see e.g. Lempert and Groves, 2010, Matrosov et al., 2013b) approaches.  

Once the problem has been formulated and the uncertain variables and scenarios defined, the portfolios of 

Pareto-optimal sequences over the entire planning horizon (i.e. from i = a to i = a+T) can be obtained.  As 

shown in Figure 4.1 (Step 1d), as part of the optimization process, the benefit associated with the capital 

(CAP) and operating (OP) values are maximized over the p objectives, y decision stages and n water 

supply options subject to the supply provided by the selected water supply options at a particular decision 

stage (Qky) being greater than or equal to the demand at that decision stage (Dy), as suggested by Beh et 

al. (2014). 
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For the optimisation engine, it is recommended to use multi-objective evolutionary algorithms (MOEAs). 

This is because they have proven to be flexible and powerful tools for solving complex water resources 

problems (Nicklow et al., 2010) and are able to identify solutions that represent multi-objective trade-offs in 

a single optimization run, without the need to provide relative weights for the various objectives. 

Additionally, EAs have been found to perform well in a number of urban water resources applications 

(Mortazavi et al., 2012, Cui and Kuczera, 2003, di Pierro et al., 2009). EAs can also be linked directly with 

simulation models of the water supply system under consideration, enabling interactions between different 

water sources to be taken into account, which is an important consideration (Matrosov et al., 2013b).  

Further details of the advantages of EAs are given in Maier et al. (2014). 

As part of the optimization process, separate deterministic optimal sequence plans are generated over the 

entire planning horizon for each scenario (Figure 4.1 (Step 1d)), as was undertaken by Housh et al. (2013) 

and Kang and Lansey (2014). The objective function values of each sequence at each decision point are 

calculated with the aid of a simulation model of the resulting water supply system, which includes any 

existing, as well as the proposed, water supply sources. The simulation model is also used to check that 

supply is greater than or equal to demand throughout the planning horizon. Each staging interval of each 

sequence is simulated separately in order to cater to the potential incorporation of additional water supply 

options at each of the decision points. At the end of the optimization process, an approximation to the 

Pareto front (Pareto, 1896) of sequence plans for the scenario under consideration is obtained, which 

represents the best feasible trade-offs between the selected objectives. The solutions on the Pareto fronts 

for the different scenarios constitute the desired diverse portfolio of optimal water supply augmentation 

sequence plans (Figure 4.1 (Step 1d)). 

4.2.2 Assessment of Performance of Portfolio of Optimal Sequence Plans 

Even though it is important that optimal sequence plans are obtained over the entire planning horizon, 

decisions in relation to which options are actually implemented are only made for the current staging 

interval. For example, although optimal sequence plans might be developed for 40 years, if the staging 

interval is 10 years, only the first set of decisions of the 40 year plan is fixed now, while the rest of the plan 

can be adapted before the next set of decisions about which water supply augmentation option(s) to 

implement has to be made in 10 years’ time. Consequently, the members of the portfolio of optimal 
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sequence plans are grouped prior to performance assessment so that members of each group have the 

same augmentation option(s) at the current decision stage , , …, , ), where is the uth 

group of sequence plans that have the same augmentation options at the current decision stage, and G is 

the number of groups of optimal sequence plans with unique water supply augmentation options at the 

current decision stage (Figure 4.1 (Step 2)), which are determined by inspection of all optimal sequence 

plans.  In this way, it is recognized that only decisions about which options to implement at the current 

decision stage need to be made at this time.  However, optimality over the entire planning horizon is taken 

into account by only considering options at the current decision stage that are part of optimal sequence 

plans for the entire planning horizon. This concept of identifying optimal solutions over the planning horizon 

for different scenarios and focussing on the implementation of options at the first decision stage is similar to 

that followed by Housh et al. (2013) and Kang and Lansey (2014).  

Although the optimal sequence plans that are part of a particular group have the same solution at the 

current decision stage, they have different solutions at subsequent decision stages, as they are drawn from 

different parts of the Pareto front (i.e. they represent different trade-offs between objectives) or from 

different Pareto fronts (i.e. they are optimal for different scenarios) and therefore represent different 

plausible future dynamic pathways that need to be assessed and explored.  In order to achieve this, the 

performance of each of these pathways is assessed in terms of (i) the implications for water supply security 

until further changes can be made to the system (see Figure 4.1 (Step 2a – Robustness)), (ii) the 

implications on the ability to provide optimal solutions for different scenarios (see Figure 4.1 (Step 2a – 

Flexibility)), and (iii) the potential implications on objective function values (see Figure 4.1 (Step 2b)), as 

discussed in subsequent sections. 

4.2.2.1 Assessment of robustness and flexibility over current staging interval 

Robustness. The system that is fixed now will be exposed to uncertain conditions over the current staging 

interval (e.g. over the next 10 years). Consequently, although all current-stage augmentation options satisfy 

the constraint that supply is greater than or equal to demand for the scenario for which this option is optimal, 

to the degree to which water supply security of each of the unique current-stage solutions is adequate under 

all different scenarios until further changes can be made to the system needs to be assessed. This is 

achieved by assessing the static robustness of the different unique water supply augmentation options at 
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the current decision stage (i.e. of the optimal sequence plans that form part of each of the groups, 

for all scenarios (S1,i; S2,i; …Sc,i) over the current staging interval (i.e. before there 

is an opportunity to make further changes to the system) (Figure 4.1 (Step 2a)). 

In order to measure robustness, a number of different metrics can be used (Hashimoto et al., 1982a, 

Matrosov et al., 2013a, Matrosov et al., 2013b, Kasprzyk et al., 2013b, Korteling et al., 2013), all of which 

reflect some measure of insensitivity to future conditions and the ability to perform satisfactorily over a 

broad range of future conditions.  As part of the proposed approach, the measure of  Robustness used by 

Paton et al. (2014a, 2014b) is used: 

 

(4.1) 

where, Ruc is the number of scenarios for which group of the optimal sequence plans is considered to 

exhibit acceptable performance over the current staging interval and c is the total number of uncertain 

scenarios. A desirable property of this measure of robustness is that it considers each scenario as an 

independent plausible future and provides information on the fraction of scenarios for which a particular 

solution performs at an acceptable level from a water supply security perspective. Which performance 

levels are considered acceptable are case study dependent, but could include potential water supply 

security measures such as reliability, resilience and vulnerability, as recommended by Yazdani et al. (2011), 

or the risk of water shortages, as suggested by Hall et al. (2012).  It should be noted that, as the solutions at 

the current staging interval are identical for each of the groups of optimal sequence plans , , …, ), 

robustness only has to be calculated once for each group. 

Flexibility. Given the adaptive nature of the proposed approach, the flexibility that the supply augmentation 

options that are fixed at the current decision stage provide in terms of being able to be part of optimal long-

term sequence plans in the face of uncertain future conditions is also important. As stated in Mejia-Giraldo 

and McCalley (2014), a “solution is flexible when it can be adapted cost-effectively to any of the conditions 

characterizing the identified scenarios.”  From this perspective, a solution is more flexible if it is optimal for a 

larger number of scenarios and less flexible if is optimal for a smaller number of scenarios. Consequently, 

Flexibility is defined as the fraction of the scenarios for which group solutions at the current decision 

stage are optimal as follows: 
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(4.2) 

where, Cpu is the number of scenarios for which a particular set of augmentation options(s),  is selected 

over the current staging interval, and c is the total number of uncertain scenarios. Therefore, a flexibility of 1 

indicates that the solution that is fixed at the current decision stage is part of optimal sequence plans for 

every scenario and can therefore be part of optimal solutions under the full range of plausible future 

conditions considered. In contrast, a flexibility of 1/c indicates that the solution that is fixed at the current 

decision stage is only optimal for one of the c future scenarios. If this solution is implemented and the single 

scenario for which this solution is optimal does not occur, any changes to the sequence plan over the 

planning horizon will result in a loss of optimality, as another plan will be optimal. It should be noted that 

flexibility is calculated for each group of optimal sequence plans , , … ,…, )  (see Figure 4.1 

(Step 2a)). 

4.2.2.2 Assessment of variation in objectives for the selected scenarios over the entire planning 

horizon 

In addition to the assessment of robustness and flexibility of  (i = 1, 2, …,G), it is important to consider the 

central tendency and spread of the objective function values of all of the different optimal sequence plans 

that are part of a group over all scenarios.  In order to achieve this, it is proposed to use the median and 

range of the objective functions (O1, O2, …,Op) over the entire planning horizon.  It should be noted that the 

median and range are suggested as measures of central tendency and variation, rather than alternative 

measures, such as the expected value and standard deviation, as the scenarios represent different 

plausible futures, rather than events of a certain probability. In order to obtain the required values of median 

and range, the objective functions are calculated for each member of a particular group of optimal sequence 

plans over all scenarios. These calculations are repeated for each group of optimal sequence plans (i = 

1, 2, …,G) so that values of the median and range are obtained for each objective for each of the groups 

(see Figure 4.1 (Step 2b)). 
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4.2.3 Selection of Water Supply Augmentation Options to be Implemented 

Finally, the most appropriate group of optimal sequence plans, and hence the water supply augmentation 

option(s) to be implemented at the current decision stage, needs to be selected.  When dealing with 

multiple, competing objectives, there is generally no single optimal solution, but a collection of solutions that 

are all optimal (Pareto, 1896). This is because for these solutions, improvements in one objective can only 

be achieved at the expense of degradation in at least one of the other objectives, requiring additional 

preference information to enable one of these solutions to be selected (Cohon and Marks, 1975). 

Consequently, the solution to be implemented has to be selected based on user preferences of the trade-

offs between the median and range of the objectives over the entire planning horizon (e.g. 50 years) and 

robustness and flexibility over the current staging interval (e.g. the next 10 years until further changes can 

be made to the system). It is suggested to use value path plots (Geoffrion et al., 1972) for this purpose, as 

they are a well-known method for visualising the trade-offs between performance measures (see Figure 4.1 

(Step 3)).   

It should be noted that the purpose of the proposed approach is not to suggest a single best solution, but to 

provide the best possible information on solutions that represent alternative future pathways to decision-

makers. This is in line with other approaches that follow a similar philosophy as that underpinning the 

proposed approach (e.g. Kasprzyk et al., 2013b, Kwakkel et al., 2014). As mentioned above, selection of 

the option to be implemented is based on user preferences and should involve input from affected 

stakeholders. If the number of objectives (p) and the number of groups of optimal sequence plans with the 

same augmentation options at the current decision stage (G) is relatively small, this could be done 

informally.  However, when the product of p and G is large, the use of more advanced visual analytics (see 

e.g. Kollat and Reed, 2007, Reed and Kollat, 2013), which is limited to about 6 or 7 options, or more formal 

decision-making processes, such as multi-criteria decision analysis (e.g. Hyde and Maier, 2006, Korteling et 

al., 2013) or scenario discovery (e.g. Kasprzyk et al., 2012, Lempert, 2013) approaches, for example, could 

be used. However, as mentioned above, the focus of this paper is not on the process for selecting the best 

option, but on the provision of information to decision-makers. 
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4.2.4 Adaptive Process 

As part of the adaptive process, the general steps outlined in Sections 4.2.1 to 4.2.3 are repeated at each 

decision stage (i.e. every t years (e.g. every 10 years)) (see Figure 4.1– outer loop). However, there are 

some differences between decision stages, as illustrated in Figure 4.1 and summarized below. 

1. As decision points are generally separated by some time (e.g. 10 years), the understanding of the 

trajectories of the various uncertain variables (e.g. population growth, climate futures) is likely to 

have changed from one decision point to the next.  Consequently, the scenarios to be considered in 

the identification of the portfolio of optimal sequence plans (i.e. S1,i; S2,i; …Sc,i) are also likely to be 

different, as they should be developed based on best available knowledge at the time (see Section 

4.2.1). 

2. While the duration of the planning horizon (e.g. 50 years) remains unchanged, the actual start and 

end times of the planning horizon over which optimal sequence plans are developed with the aid of 

multi-objective evolutionary algorithms will be different (i.e. there will be different start and end 

points) (Figure 4.1). 

4.2.5 Advantages and Limitations of Proposed Approach 

Optimality versus practicality. As mentioned previously, the philosophy underpinning the proposed 

approach is to enable decision-makers to explore the impact of deep uncertainty on urban water supply 

augmentation sequences that are optimal with respect to the objectives and subject to meeting water supply 

security constraints, thereby presenting decision-makers with plausible future pathways. Consequently, the 

assessment of the impact of uncertainty on the water supply security constraint via the robustness measure 

and the assessment of the adaptability of selected solutions to different conditions via the flexibility measure 

are not included as additional objectives of the optimization problem, but are considered post-optimization.  

This is in line with other similar approaches to assessing water supply security under deep uncertainty that 

have not considered the sequencing of options (e.g. Kasprzyk et al., 2013b). 

Apart from the philosophical reasons for not including robustness and flexibility as objectives stated above, 

there are also practical reasons, as the consideration of robustness and flexibility as objectives would 

increase the computational effort associated with the optimization considerably. This is because the 

calculation of robustness and flexibility for each solution at each iteration of the EA requires the results of 



 
 

109 
 

the optimization runs for all scenarios. This would increase computational effort significantly, especially 

since the run-times associated with the integrated model of the water resources system can be quite long. 

Furthermore, repeated model runs with different stochastically generated hydrological inputs are required in 

order to obtain a rigorous assessment of water supply security (see Mortazavi et al., 2012), thereby 

increasing run-times even further. 

Despite the advantages outlined above, consideration of robustness and flexibility post-optimization, rather 

than as objectives in the optimization problem, can also be considered a limitation, as this could result in 

solutions with reduced robustness and flexibility, since these measures are not optimized. In other words, 

the proposed approach identifies the relative robustness and flexibility of solutions that are optimized for the 

objectives, but does not necessarily identify solutions that are optimally robust and flexible. However, for the 

urban water supply augmentation problem and robustness measure considered here, the solution for the 

worst case scenario will, by definition, always have a robustness of 1 (i.e. the largest possible, and hence 

optimal, value). Nevertheless, identification of the best possible trade-offs between robustness and the 

other performance measures are not guaranteed.  In relation to flexibility, an alternative measure, such as 

regret costs (see Kang and Lansey, 2014), could have been used and included more formally in the 

optimization process, thereby improving the mathematical optimality of the solutions. However, such an 

approach would be geared towards identifying a single optimal solution, rather than presenting decision-

makers with alternative pathways. 

The approach of presenting decision-makers with different future pathways by obtaining separate optimal 

solutions for each scenario could also result in a loss of mathematical optimality, as a solution that is 

optimal for a particular scenario might not be optimal if all scenarios are considered simultaneously, as was 

done by Kang and Lansey (2014).  However, it should be noted that the flexibility criterion introduced in this 

paper provides an indication as to whether or not this is the case. For example, if the flexibility criterion is 

equal to 1, then there is no loss of optimality, as a particular solution is optimal across all scenarios. In 

contrast, if the flexibility is less than 1, there will be some loss of optimality. However, the magnitude of this 

loss cannot be quantified in terms of objective function values using this criterion. It should also be noted 

that as Kang and Lansey (2014) used a compromise cost function to obtain an optimal solution across all 

scenarios, rather than presenting alternative pathways to decision-makers, there is likely to be a trade-off 

between achieving mathematical optimality and presenting options to decision-makers. 
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Another factor that could result in a loss of mathematical optimality is the fact that the proposed approach 

uses discrete values of the water supply augmentation options. However, from a practical perspective, 

urban water supply augmentation options are generally discrete in nature (e.g. whether to implement a 

particular augmentation option or not or what capacity a particular augmentation option should be), so this is 

unlikely to present any problems from a practical perspective. 

Single objective versus multi objective. As mentioned previously, compared with other approaches to 

solving similar problems (Kang and Lansey, 2014, Housh et al., 2013, Ray et al., 2012), the proposed 

approach is multi-objective, which is an advantage, given that most practical problems have more than one 

objective. Although Kang and Lansey (2014) used an EA as their optimization engine, thereby enabling their 

approach to be expanded to be multi-objective, this extension has not yet been reported or tested in the 

literature. 

However, the proposed approach also presents a number of challenges due to its multi-objective nature. 

Firstly, there could be multiple sequence plans with the same solution at the current staging interval that are 

on the Pareto front for a particular scenario. In this case, only the presence or absence of this solution on 

Pareto fronts for different scenarios is taken into account in the calculation of flexibility (4.2), not the number 

of optimal sequence plans with this solution, and hence potential losses in trade-off information are not 

considered in the proposed flexibility criterion. Secondly, as the number of scenarios for which particular 

sequence plans are optimal varies, some sequence plans that are Pareto optimal for a particular scenario 

might be completely dominated in terms of the median and range of the objective function values once the 

solution has been evaluated over all scenarios, for some of which a solution might not be Pareto optimal.  

However, this is not a problem from a practical perspective, as such solutions can be discarded as part of 

the final evaluation process. 

4.3 Case Study 

4.3.1 Background 

In order to illustrate and test the utility of the proposed approach, it is applied to a case study based on the 

southern region of the Adelaide water supply system (WSS) in 2010. Adelaide is the capital city of South 

Australia (SA) (see Figure 4.2) and has a population of approximately 1.3 million. It is one of the driest capital 

cities in the world (Wittholz et al., 2008), having a Mediterranean climate, with hot dry summers and mild wet 
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winters. Recorded annual rainfall ranges from 257mm to 882mm (Maier et al., 2013). Average annual mains 

water consumption was estimated to be 163 gigalitres (GL) in 2008 (Government of South Australia, 2009b). 

This case study is selected as it has been used as a benchmark in previous water resources studies.  Paton et 

al. (2013) assessed the impact of climate change on the water supply security of this system and concluded that 

supply augmentation was needed. Paton et al. (2014a) assessed the utility of a small number of water supply 

augmentation options in terms of PV of cost and water supply security and Paton et al. (2014b) used a multi-

objective optimization approach to explore the trade-offs between PV of cost, PV of greenhouse gas emissions 

and water supply security for different supply augmentation options and operating policies. However, the 

sequencing of water supply augmentation options was not considered in any of these studies. The optimal 

sequencing problem for this system was addressed by Beh et al. (2014), but they used an approximate problem 

formulation in conjunction with a linear programming method, did not use a truly multi-objective approach and did 

not consider the impact of uncertainty (i.e. the optimal sequencing problem was considered to be deterministic). 

The southern Adelaide WSS (see Figure 4.2) supplies around 50% of the demand of metropolitan Adelaide. In 

2010, the system was supplied by three reservoirs – Myponga, Mount Bold and Happy Valley. Mount Bold and 

Myponga reservoirs receive water from local catchments, and Mount Bold also receives water pumped from the 

River Murray via the Murray Bridge to Onkaparinga pipeline. The amount of water supplied from the River 

Murray is based on a 5-year rolling license for Adelaide, which is fixed at 650GL. Of this, half is assumed to be 

allocated to the southern Adelaide WSS. The Happy Valley reservoir is a service reservoir that stores water 

transferred from Mount Bold reservoir prior to treatment at the Happy Valley water treatment plant.  

As highlighted by Paton et al. (2013), supply augmentation is required for the southern Adelaide WSS to meet 

future demands in the face of increased water demand and climate change impacts. In this study, the potential 

augmentation options identified by the SA government are considered, including a desalination plant at Port 

Stanvac, various stormwater harvesting schemes, and household rainwater tanks (Figure 4.2) (Government of 

South Australia, 2009b). It should be noted that long-term demand management options have already been 

applied extensively in the case study system and are therefore not considered.  However, supply shortfalls that 

can be accommodated by temporary water restrictions are included as part of the acceptability criterion for the 

robustness calculations (see Section 4.3.3.2). Augmentation of existing sources is also excluded as options, as 

there is limited potential for additional supply from these sources. 
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Figure 4.2 Map of the Southern Adelaide water supply system (WSS). 

4.3.2 Overall Experimental Approach 

In line with the objectives stated in Section 4.1, the overall purpose of the experimental approach is to 

demonstrate the application of the proposed approach to the Adelaide case study and to test the utility of 

the adaptive features of the proposed approach by comparing its performance with that of an equivalent 

static approach. A summary of the overall experimental approach is given in Figure 4.3. Part A in Figure 4.3 

corresponds to the application of the proposed approach to the Adelaide case study and is aligned with the 

general approach introduced in Section 4.2 (Figure 4.1). Part B in Figure 4.3 corresponds to the 

assessment of the utility of the adaptive features of the proposed approach by comparison with an 

equivalent static approach. 
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As it is only possible to evaluate the true utility of the adaptive nature of the proposed approach over the 

actual duration of the planning horizon (e.g. over the next 40 years), the proposed experimental approach is 

based on assumed known future conditions (or simulated realities) and the simulation of what would 

actually happen over the adopted planning horizon under these conditions (Figure 4.3, Part A). In other 

words, steps 1 to 3 of the proposed approach (Figure 4.1 and Figure 4.3, Part A) are implemented at 2010 

to determine which supply augmentation option(s) to implement at this time. Next, it is assumed that 10 

years have passed and that it is known what the actual values of the uncertain variables at this time are and 

that the corresponding updated estimates of the ranges of the uncertain variables and scenarios are known.  

Steps 1 to 3 of the proposed approach are then repeated to determine which supply augmentation option(s) 

to implement at the simulated current time (i.e. 2020). This whole process is then repeated for 2030, 2040 

and 2050 for a particular reality in accordance with the adaptive nature of the proposed approach (Figure 

4.1 and Figure 4.3, Part A).  

In order to demonstrate that the proposed adaptive approach results in different augmentation options 

under different sets of actual future conditions, the entire process in Part A. of Figure 4.3 is repeated for a 

different set of assumed known future conditions. These two sets of assumed known future conditions are 

referred to as Reality 1 and Reality 2.  In other words, two sets of independent results are presented for two 

alternative simulated realities for the sake of comparison of how different augmentation options can be 

obtained by using the adaptive approach based on different changes in actual future conditions.  It should 

be noted that the realities are different from the scenarios.  Whereas the realities represent actual known 

future conditions (i.e. what has actually happened), which are assumed for the purposes of the 

computational experiments for testing the utility of the adaptive features of the proposed approach 

presented in this paper (Part B, Figure 4.3), the scenarios represent plausible future conditions at the time 

of decision making and are an integral part of the proposed approach (Part A, Figure 4.3). 

In order to assess the utility of the adaptive nature of the proposed approach, the augmentation options 

obtained using the proposed adaptive approach are compared with an equivalent static approach (e.g. 

Mortazavi-Naeini et al., 2014), as all current approaches to the optimal sequencing of urban water supply 

augmentation options are not adaptive, as discussed in Section 4.1 (Figure 4.3, Part B).  Consequently, the 

static approach provides a benchmark of current best practice in literature against which to assess the 



 
 

115 
 

adaptive features of the proposed approach. The static approach is implemented for each of the plausible 

scenarios to provide a comprehensive basis of comparison.  

The comparison of the adaptive and static approaches is conducted over the two independent realities. As 

the purpose is to assess how well the sequence plans obtained using the proposed adaptive approach and 

the benchmark static approach perform under the two realities, and not which approach performs best for a 

given reality, the performance metrics for a particular sequence are averaged over the two realities. This 

enables the performance of a selected sequence to be assessed in the face of the occurrence of two 

different actual future conditions, which are unknown at the time of decision-making. 

Details of the implementation of the above approach for the case study based on the southern Adelaide 

WSS are given in the subsequent sections, with Part A of Figure 4.3 corresponding to Section 4.3.3 and 

Part B to Section 4.3.4. 

4.3.3 Identification of Optimal Sequence Plans 

The details for steps 1 to 3 of the proposed approach (Figure 4.1) for the Adelaide case study are summarized in 

Part A. of Figure 4.3 and described below. As mentioned above, this process is repeated for each of the two 

independent realities for the sake of assessing the utility of the adaptive features of the proposed approach. 

4.3.3.1 Identification of diverse portfolio of optimal supply augmentation sequence plans.  

Problem Formulation (Figure 4.3, Part A, Section 1a). A 40 year planning horizon and a ten year staging 

interval are adopted. Therefore, there are five decision stages over the 40 year planning horizon (i.e., 2010, 

2020, …, 2050). However, as these years correspond to the first year of the 40 year planning horizon, a total time 

period of 80 years is considered (i.e. 2010-2050, 2020-2060, …, 2050-2090). 

The selected objectives include the minimization of the present value (PV) of economic cost and the PV of 

greenhouse gas (GHG) emissions. GHG emissions are considered as an objective in addition to the most 

commonly used objective of cost minimization due to an increased awareness of the need to reduce the carbon 

footprint associated with water supply systems (Wu et al., 2010b, Paton et al., 2014b, Wu et al., 2010a). GHG 

emissions are of particular concern for the southern Adelaide system because water is pumped significant 

distances from the River Murray and because desalination is considered as an alternative source of water (see 
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Paton et al., 2013, Paton et al., 2014b, Paton et al., 2014a, Beh et al., 2014). Note that gross GHG emissions are 

used in this study. These may be fully or partially offset by the purchase of green power or other carbon offsets. 

Both the PV of cost and the PV of GHG emissions consist of two components, namely capital and operating 

values. Capital costs and GHG emissions are incurred at the construction phase of a project (e.g. materials and 

outlay), whilst operating values are incurred over the life of a project (e.g. electricity for pumping and 

maintenance). A discount rate of 6% is used for the calculation of the PV of cost, as suggested by Wu et al. 

(2010a).  In contrast, a discount rate of 1.4% is used for the calculation of the PV of GHG emissions, as this has 

been suggested as being appropriate for stabilizing GHG concentrations in the atmosphere within a desired 

range (Wu et al., 2010b). The capital emissions values are computed using embodied energy (Treloar, 1995) 

and emission factor analysis (Wu et al., 2010a).  Further details are provided in Beh at al. (2014) and Paton et al. 

(2013, 2014b, 2014a). 

The existing water supply options (i.e. the three reservoirs and supply from the River Murray) are included 

in all sequence plans at the beginning of the planning horizon. However, the desalination plant, stormwater 

harvesting schemes and household rainwater tanks are considered as potential additional water supply 

sources at each decision point.  

The production capacity of the Port Stanvac desalination plant is either 50 or 100 GL per annum, with the option 

of a 50GL per annum expansion of the 50GL per annum plant. Thus, either a 50GL or a 100GL desalination 

plant can be selected at any of the decision stages, but not both, and the selected desalination plant cannot be 

down-sized at later stages. It should be noted that the desalination plant can supply the entire metropolitan 

Adelaide region, so it is assumed that 50% of its capacity can supply the southern Adelaide WSS. Once one of 

the desalination options has been selected, it cannot be selected again. However, if the 50GL desalination plant 

is selected, expansion to full capacity is allowed at one of the subsequent decision points. 

The stormwater harvesting schemes considered include Brownhill and Keswick Creek, Sturt River, Field 

River and Pedler Creek (Figure 4.2). The potential supply from these schemes is generally different from 

year to year as a result of hydrologic variability, but their estimated annual yields range from 1.6 to 7.0 

GL/year (Beh et al., 2014). One or more of the schemes can be selected at any of the decision stages. 

However, each scheme can only be selected once. The amount of water supplied by each scheme during 
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each decision stage is calculated using a simulation model and is a function of rainfall and the interaction 

with the other selected sources.  

Ten potential rainwater tank capacities are considered, ranging from 1 to 10kL. The potential supply from 

these tanks is generally different from year to year as a result of hydrologic variability, but their estimated 

annual yields range from 35 to 47.1 kL/tank/year (Beh et al., 2014). It is assumed that rainwater tanks with a 

particular capacity can be implemented at any of the decision stages. However, the option to use rainwater 

tanks as a source can only be selected once during the planning horizon. In addition, it is assumed that 

once a particular rainwater tank capacity option has been selected, this is implemented across all dwellings 

as a result of government regulation.  

As the quality of the stormwater and rainwater is generally not of drinking standard, these sources are assigned 

to non-potable uses, whereas supply from the reservoirs and the desalination plant is chosen to provide 

household indoor use. Further details of the mapping of sources to end-uses and how this was represented in 

the simulation model are given in Beh et al. (2014) and Paton et al. (2014b, 2014a) 

The decision variables corresponding to the sequencing of the above augmentation options used during the 

optimization are summarised in Table 4.1. The estimated yield, capital and unit operating costs and GHG 

emissions of each water supply options are also given in Table 4.1 (see Beh et al., 2014). However, these 

are only estimates and the actual values supplied by each source are calculated with the aid of a simulation 

model for a particular scenario at a particular decision stage based on the interaction of the different potable 

and non-potable demands and the selected mix of supply sources. As the capacities of most of the water 

supply options are fixed (i.e. desalination, stormwater harvesting schemes), the discrete decision variables 

correspond to the decision stage at which a particular option is implemented, ranging from 0 (i.e. the option 

is not implemented over the planning horizon) to 5 (i.e. the option is implemented at decision stage 5) 

(decision variables 1-4 and 6-9, Table 4.1).  However, in addition to a decision variable for timing, rainwater 

tanks also have an integer decision variable corresponding to rainwater tank capacity (decision variable 5, 

Table 4.1), ranging from 1 to 10kL. It should be noted that the number of rainwater tanks implemented 

depends on the time of implementation, as the number of households changes with time due to changes in 

population.   
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Definition of uncertain variables and scenarios (Figure 4.3, Part A, Section 1b,c). Population, rainfall 

and temperature are considered as the uncertain variables (UV1,i; UV2,i; UV3,i) as they have a direct impact 

on supply and demand. As mentioned in Section 4.3.2, in order to illustrate the benefit of the adaptive 

nature of the proposed approach, it is applied to two realities, each consisting of different known trajectories 

of the uncertain variables up to 2050. Reality One has a milder and Reality Two a more severe impact on 

water supply security in terms of total demand and climate change conditions (see Table 4.2). The changes 

in population growth and climate change impact used in the two realities are based on estimates from the 

Government of South Australia (2009b) and Australian Bureau of Statistics (2013) to ensure they are 

plausible. 

Table 4.2 Details of the two realities (assumed known future conditions) considered (cumulative changes relative to 

2010) 

2020 2030 2040 2050 
Reality 1 
Population growth 7% 13% 18% 22% 
Climate change impact: 
1. Changes in temperature (°C) 0.25 0.55 0.70 1.00 
2. Changes in rainfall -0.5% -1.5% -4.0% -6.0% 

Reality 2 
Population growth 7% 18% 20% 29% 
Climate change impact: 
1. Changes in temperature (°C) 0.25 0.60 1.00 1.25 
2. Changes in rainfall -0.5% -3.0% -6.0% -9.0% 

For each reality, seven scenarios (S1,i; S2,i; …S7,i) consisting of different population growth and climate 

change impacts are used to represent a small number of plausible, but different, future pathways. Scenario 

1 represents the best set of plausible future conditions in terms of water supply security with extremely low 

projected population growth and the least severe future climate change impact. In contrast, Scenario 7 

represents the worst set of plausible future conditions with respect to water supply security, with extremely 

high projected population growth and severe climate change impact. These extremes are considered to 

ensure the generation of Pareto-optimal solutions that can cater to a wide range of plausible future 

conditions. Details of the ranges of the uncertain variables for each of the seven scenarios for each of the 
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two realities, representing assumed best knowledge at the time of interest, are given in Table 4.3. As can be 

seen, the ranges of the uncertain variables for the different scenarios change over time, thereby 

representing transient scenarios, as advocated by Haasnoot et al. (2013) and Kwakkel et al. (2014). 

The seven population scenarios for each reality are based on an initial population of 600,240 for the 

southern Adelaide region in 2010 (Australia Bureau of Statistics, 2011). For each reality, the seven time 

series of population projections are based on 40 year annual population projections accounting for various 

assumptions of fertility, mortality, net interstate migration and net overseas migration (Australia Bureau of 

Statistics, 2013). 

The seven rainfall and temperature scenarios for each reality are based on different combinations of SRES 

scenarios (A1FI, A1T, A2, B1, B2) and Global Circulation Models (GCMs) (CCSM3, CGCM3.1, CSIRO-

MK3.5, FGOALS-g1.0, MIROC3.2 (hires), MIROC3.2 (medres), and MRI-CGCM2.3.2), as suggested by 

Paton et al. (2013) for the case study area. Based on the outputs of different combinations of SRES 

scenarios and GCMs, the climate change impacted daily rainfall and evaporation data are obtained by 

multiplying the 40 year historical rainfall and evaporation data used in the simulation model by the 

appropriate climate change factor obtained from OzClim (http://www.csiro.au/ozclim/), as was undertaken 

by Paton et al. (2013) for the case study area. 

As discussed in Section 4.2.1, in practice, the scenarios would be developed with the aid of stakeholders 

with different backgrounds and from different organizations.  However, in this case, the above scenarios are 

assumed for the sake of illustration of the proposed approach. However, the scenarios are selected 

carefully to represent a range of plausible and very different future conditions. In addition, the different 

scenarios are not necessarily equally likely, as some represent combinations of extreme conditions, while 

others do not. 
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Determination of portfolio of optimal sequences (Figure 4.3, Part A, Section 1d). WaterCress 

(Water - Community Resource Evaluation and Simulation System) is used as the simulation model for 

calculating the objective functions and checking demand constraints. WaterCress is a water balance 

model that enables simulation of a real life layout of a water supply system as an assembly of its 

components. Each component has an associated database which contains all variables (e.g. demand, 

rainfall, evaporation) necessary to enable quantities of water to be estimated and tracked through a 

specified water supply system (Clark et al., 2002). WaterCress is chosen for this case study because it 

(i) can incorporate multiple rainfall time series, (ii) can model multiple catchment-reservoir relationships, 

and (iii) can incorporate less conventional water supply sources (e.g. desalination and recycled water). 

Furthermore, the model is freely available and was developed specifically for South Australian 

conditions. Further details of the WaterCress model developed for the case study WSS are given in Beh 

et al. (2014) and Paton et al. (Paton et al., 2014b). 

Total demand is calculated as a function of population size, per capita demand and commercial and 

industrial demand. Population is considered as one of the uncertain variables, as detailed above. 

Average household size is assumed to be constant at 2.3 people and per capita demand is held 

constant at 491 L/p/day over the planning horizon (see Beh et al., 2014), as variability in population has 

been shown to have by far the greatest impact on water supply security for this system (Paton et al., 

2013). 

For each of the two realities, the multi-objective optimization process is repeated for each scenario at 

each of the five decision points. The Water System Multiobjective Genetic Algorithm (WSMGA) (Wu et 

al., 2010b) is used as the optimisation engine, as it is based on the widely used multiobjective genetic 

algorithm NSGA-II (Deb et al., 2002), is able to cater to integer decision variables and has been used 

successfully in a number of multi-objective optimisation studies of water systems (Wu et al., 2010a, Wu 

et al., 2010b, Wu et al., 2013, Paton et al., 2014a). In order to obtain the best possible values of the 

parameters controlling GA searching behaviour, a number of preliminary trials are conducted. The 

optimal values are found to be a population size of 150, a probability of cross-over of 0.9 and a 

probability of mutation of 0.1. Hypervolume convergence is used as the termination criterion, as this is 

one of the most popular measures for capturing the diversity, as well as the convergence, of solutions in 

multi-objective optimization problems (Zitzler, 1999, Reed et al., 2013). 
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4.3.3.2 Assessment of performance of portfolio of optimal sequence plans.  

For a particular reality and decision stage, all solutions on the Pareto fronts for the seven scenarios are 

analysed and grouped so that each group contains the same augmentation option(s) at the current 

staging interval (see Section 4.2.2) and all solutions in each of these groups are assessed in terms of 

robustness, flexibility and variation of the median and range of the PV of cost and PV of GHG emissions 

over all scenarios, as detailed below. 

Assessment of robustness and flexibility (Figure 4.3, Part A, Section 2a). Robustness is calculated 

in accordance with Equation(4.1 (see Section 4.2.2). In Equation(4.1, the performance of the water 

supply system is considered acceptable when reliability (4.3) is greater than 95% and the maximum 

vulnerability (4.4) is less than or equal to 27% of demand. This latter figure is equal to the projected 

savings under Adelaide’s highest Level 5 water restrictions (Chong et al., 2009). 

As suggested by Beh et al. (2014) and Paton et al. (2014a, 2014b) hydrologic variability is accounted for 

by using 20 replicates of daily stochastic rainfall for each rainfall station. These stochastic rainfall series 

are generated for each scenario using the Stochastic Climate Library (SCL) (www.toolkit.net.au/scl). 

Further details of the generation of the stochastic rainfall time series are given in Paton et al. (2013) and 

Beh et al. (2014). Consequently, the reliability and vulnerability values used in the robustness 

calculations are the average values obtained for the 20 stochastic rainfall sequences for the next 

staging interval as follows. 

 

(4.3) 

 

where, Ts is the number of years for which supply meets demand, Ti is the length of the selected 

staging interval (years), and m is the number of stochastic sequences.  

 

(4.4) 
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where, Dy is the volume of annual supply shortfall, as obtained from the WaterCress model, and Sy is 

the total annual demand, as obtained from the WaterCress model. 

Assessment of variation in objectives (Figure 4.3, Part A, Section 2b). The median and range of the 

PV of cost and the PV of GHG emissions are obtained by calculating the PV of cost and PV of GHG 

emissions for all Pareto optimal solutions for all scenarios and calculating the required statistics for all 

solutions belonging to a particular group (i.e. with the same solution at the current staging interval). This 

is achieved with the aid of the WaterCress model. 

4.3.3.3 Selection of water supply augmentation options to be implemented (Figure 4.3, Part A, 

Section 3).  

The water supply augmentation option(s) to be implemented at a particular decision stage are selected 

based on informal consideration of the trade-offs between the performance metrics (i.e. robustness, 

flexibility, median and range of PV of cost and median and range of PV of GHG emissions), as 

illustrated in value path plots. It should be noted that all indices of the performance metrics are scaled 

from zero to one, where one is the best and zero the worst value.   

It should be noted that in practice, more formal decision-making processes are likely to be used, 

including stakeholder input and a clear articulation of the relative importance of the criteria, potentially 

using some of the methods mentioned in Section 4.2.3. However, this is not been undertaken here, as 

the main purpose is to illustrate the information obtained by applying the proposed approach and the 

selection of options has been made by weighing up the trade-offs between the assessment criteria. 

4.3.3.4 Application to different decision stages under different realities (known future 

conditions). 

As shown in Figure 4.3, steps 1 to 3 outlined in Section 4.3.3.1 to 4.3.3.3 are implemented for 5 decision 

stages starting at 2010, 2020, 2030, 2040 and 2050, using the different scenarios outlined in Table 4.3.  

The entire process is also repeated for the two independent realities, as explained earlier (see Table 4.2 

and Table 4.3) for the purpose of being able to simulate the performance of the proposed approach 

under different actual conditions and enabling the assessment of the utility of the adaptive features of 

the proposed approach. 
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4.3.4 Evaluation of Adaptive Optimal Sequence Plans (Figure 4.4, Part B) 

As mentioned in Section 4.3.2, in order to assess the utility and potential benefits of the proposed 

adaptive approach, the actual performance of the optimal adaptive sequences obtained for the two 

realities is compared with that of static optimal sequences obtained for the different scenarios at the 

beginning of the planning horizon in terms of optimization objectives and actual water supply security 

(i.e. reliability and vulnerability). It should be noted that for each of the optimal sequence plans, the NPV 

of cost and GHG emissions are calculated for the entire planning horizon (as there is a single plan), 

while reliability and vulnerability are calculated for each staging interval, as they change over the 

planning horizon as different augmentation options come online. In accordance with the overall 

approach outlined in Section 4.3.2, the overall performance of the sequences obtained using the 

proposed adaptive and the benchmark static approaches is compared by averaging the performance 

measures over the two realities. 

4.4 Results and discussion 

The results are presented in two sections, including an illustration of the development of the adaptive 

optimal sequence plans for a single time step (Part A of Figure 4.3 - Section 4.4.1) and the evaluation of 

the utility of the adaptive features of the proposed approach (Part B of Figure 4.3 – Section 4.4.2). 

4.4.1 Development of Adaptive Optimal Sequence Plans 

In this section, the results for each of the three major steps of the proposed approach (i.e. Steps 1, 2 

and 3 in Figure 4.1 and 3A) are presented for the first decision stage (i.e. 2010) for illustration purposes 

(Section. 4.4.1.1 to 4.4.1.3). The optimal sequences obtained by simulating application of the proposed 

approach over an actual period of 40 years (i.e. from 2010 to 2050) for the two different realities are 

presented in Section 4.4.1.4.  The optimal augmentation options for 2020, 2030, 2040 and 2050 for both 

realities are based on the types of results presented in Section. 4.4.1.1 to 4.4.1.3, which are included as 

supplementary material. It should be noted that in real life, an optimal sequence, such as that presented 

in Section 4.4.1.4, would be developed over 40 years, with application of the three steps in the 

proposed process and analysis of the results occurring every 10 years, resulting in the selection of the 

augmentation option(s) to implement at the current decision stage. In practice, there would only be a 

single reality and the two different realities are simulated here for the purposes of assessing the utility of 

the adaptive features of the proposed approach, as explained previously. 
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4.4.1.1 Identification of diverse portfolio of optimal sequence plans (2010-2050) 

The Pareto fronts of optimal sequence plans for the seven scenarios for 2010-2050 are shown in Figure 

4.4.  As can be seen, the optimal augmentation sequences required to ensure supply is greater than or 

equal to demand for the seven scenarios result in significant differences in the PV of cost and the PV of 

GHG emissions. This is as expected, as greater supply augmentation is required for the scenarios that 

include greater population growth and more severe climate change impacts, resulting in higher PV of 

costs and PV of GHG emissions. These increased values of the objective function values are generally 

due the selection of a larger number of augmentation options or their implementation at an earlier stage 

in the planning horizon. Consequently, by using scenarios that represent a wide range of plausible 

future conditions, a diverse portfolio of optimal sequence plans is obtained, each representing different 

trade-offs between the objectives and different abilities to provide water supply security under a variety 

of future conditions. 

 

Figure 4.4 Tradeoff between the PV of GHG emissions and the PV of cost for the seven projected possible future 

scenarios (2010-2050) 

4.4.1.2 Assessment of performance of portfolio of optimal sequence plans (2010) 

The Pareto-optimal solutions in Figure 4.4 contain six unique solutions at the current staging interval 

(2010-2020), resulting in six groups of optimal sequence plans, as shown in Table 4.4. As can be seen, 

one solution consists of no augmentation of the existing water supply, while the other 5 options consist 

of different combinations of stormwater harvesting schemes. 
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Table 4.4 Unique solutions at the current staging interval (2010-2020) for decision stage 1. 

 

The results of the performance assessment of the six groups of optimal sequence plans are given in 

Figure 4.5. As can be seen, there is significant variation in PV of cost and PV of GHG emissions when 

the optimal sequence plans that are part of a particular group are exposed to the conditions represented 

by all scenarios. As expected, robustness increases as the capacity of the augmentation options 

increases. For example, group 1 does not have any supply augmentation and therefore has the lowest 

robustness, groups 2 to 4 include the addition of a single stormwater harvesting scheme, resulting in 

increases in robustness and groups 5 and 6 include the addition of two stormwater harvesting schemes, 

resulting in maximum levels of robustness.  As can be seen, the flexibility of the augmentation options in 

Table 4.4 is highly variable, with some solutions part of optimal sequences for all seven scenarios, while 

others are only part of optimal sequence plans for two of the seven scenarios. 
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Figure 4.5 Results of performance assessment for groups with the same solution at 2010 

4.4.1.3 Selection of water supply augmentation option(s) to be implemented (2010) 

The value path plot corresponding to the results in Figure 4.5 is given in Figure 4.6. As can be seen, 

although the optimal sequence plans in groups 1 ( 1) and 2 ( 2) perform very well in terms of the 

median of PV of cost and flexibility, they perform poorly across the other criteria, with clearly the worst 

performance in terms of the range of the PV of cost, the range of the PV of GHG emissions and 

robustness. The optimal sequence plans in groups 4 ( 4) and 6 ( 6) have high levels of robustness, but 

this comes at the expense of high median PV of cost.  Although these solutions perform well in terms of 

the range of PV of cost, they perform poorly in terms of the median and range of PV of GHG emissions 

and relatively poorly in terms of flexibility. The optimal sequence plans in groups 3 ( 3) and 5 ( 5) tend 

to perform well across all performance criteria. They clearly outperform all other groups in terms of the 

median and range of the PV of GHG emissions, and perform well in terms of robustness and median 

and range of PV of cost.  Their performance in terms of flexibility is at the lower end of the spectrum, but 

the plans that perform best in terms of flexibility tend to perform worst in terms of robustness. 

As discussed previously, the selection of which option to implement at the current decision stage 

depends on the priorities of the stakeholders involved. In the absence of such stakeholder input, for the 

purposes of illustrating the proposed approach in this paper, the sequence plans belonging to Group 3 

are selected as they provide good trade-offs between the performance criteria. Consequently, the 
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Brownhill and Keswick stormwater harvesting scheme is chosen to be implemented at the first decision 

stage and fixed for the subsequent decision stages (see Table 4.4). 

 

Figure 4.6 Results of performance assessment for decision stage 1 (realities 1 and 2). The value path of the selected 

option is highlighted in red. 

4.4.1.4 Selected optimal sequence plans 

The optimal sequences obtained by applying the proposed approach under the two simulated realities 

over the entire planning horizon and their corresponding objective function values are given in Table 

4.5. As mentioned previously, each of these sequences would be developed over a period of 40 years 

in practice, going through the process illustrated in Section. 4.4.1.1 to 4.4.1.3 for the first decision stage 

(see supplementary material for results for other decision stages). As can be seen, there are significant 

differences between the two optimal sequences as a result of the different actual and forecast 

populations, rainfalls and temperatures that characterise the two realities, as well as the ability of the 

proposed approach to adapt to these different conditions over time. This confirms that the proposed 

approach is successful in adapting to changing conditions. 

For both simulated realities, the 50 GL desalination plant and the Brownhill & Keswick stormwater 

harvesting schemes are implemented. However, the desalination plant is implemented earlier for reality 

2.  In addition, the 50GL desalination plant expansion and the Sturt River and Pedler Creek stormwater 

harvesting schemes are implemented under the more severe conditions of reality 2 in order to be able to 

satisfy demand. As can be seen from Table 4.5, the NPV of cost of the optimal sequence plan for reality 
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2 is about 1.5 times that of the optimal sequence plan for reality 1, whereas the corresponding ratio of 

the NPV of GHG emissions is approximately 1.2. 

Table 4.5 Optimal sequences for the two simulated realities considered 

 

4.4.2 Utility Adaptive Features of Proposed Approach 

The average values of the reliability and vulnerability of the water supply systems corresponding to the 

implementation of (i) the sequences obtained using the proposed adaptive optimal sequencing 

approach and (ii) the fixed optimal sequence plans for each scenario under the actual conditions 

experienced as part of the two simulated realities, with the associated average PV of cost and GHG 

emissions are shown in Table 4.6. As can be seen, the performance of the sequences obtained using 

the proposed adaptive approach is very good compared with that of the static approaches. While the 

NPV of cost and GHG emissions of the static sequences developed for scenarios 1 (S1) and 2 (S2) are 

significantly less than those of the adaptive sequences, the corresponding water supply security is not 

acceptable, with average reliabilities of less than 100% in all but one of the five staging intervals, 

ranging from 62% to 85%. Similarly, the average vulnerabilities (demand shortfalls) associated with the 

three staging intervals for which reliability is less than 100% ranges from 11.4% to 16.4%. In contrast, 

the water supply security of the adaptive plan is excellent, with 100% reliability in three of the five 

staging intervals and average reliabilities of 92% and 98% for the other two staging intervals and 

corresponding demand shortfalls of only 3% and 0.5%, respectively. In order to achieve comparable 

(although slightly worse – see Table 4.6) levels of water supply security when static sequence plans are 

considered (S4), the PV of cost increases by $329.77 Million (17.4%) and the PV of GHG emissions by 

1.25 MtCO2-e (9.4%).  In order to achieve better water supply security than that afforded by the 

adaptive plans (100% reliability for all staging intervals – S6), the PV of cost increases by $982.31 

Million (51.7%) and the PV of GHG emissions by 2.31 MtCO2-e (17.7%). In addition, when using the 

static approach, it is unclear which of the 7 sequences to implement. Consequently, these results clearly 



 
 

131 
 

demonstrate the advantage of using the proposed adaptive approach, compared with the corresponding 

static approach. 

Table 4.6 Average performance of systems corresponding to the implementation of different optimal sequence 

plans for realities 1 and 2 

 

4.5 Summary and conclusions 

In this paper, an adaptive, multi-objective optimal sequencing approach for urban water supply 

augmentation under deep uncertainty is introduced. As part of the approach, a diverse portfolio of 

optimal sequence plans is developed for different transient future scenarios using multi-objective 

evolutionary algorithms.  Next, the robustness and flexibility of the components of the optimal sequence 

plans that have to be fixed at the current staging interval is assessed for the time period between now 

and the first opportunity when further changes can be made.  In addition, the variability of the objective 

functions over the entire planning horizon is assessed and the solution that provides the best trade-offs 

between these criteria, in accordance with stakeholder preferences, is selected. This process is 

repeated for the next decision stages, when updated information is available.  In this way, the approach 

is able to successfully balance the need for the development of optimal longer-term plans under deep 

uncertainty with the need to be able to respond to changes as they arise and to provide robust solutions 

between decision stages. It also provides a computational method in support of the successful 

implementation of dynamic adaptive planning as a paradigm for dealing with deep uncertainty. 
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In order to demonstrate the utility of the proposed approach, it is applied to the optimal sequencing of 

urban water supply augmentation options for a case study based on the southern Adelaide water supply 

system from 2010 to 2060.  In order to illustrate the impact of the adaptive nature of the approach, two 

different simulated realities are considered. The results indicate that the approach is successful in 

adapting to changing conditions, while optimising longer-term objectives and satisfying water supply 

security constraints along the planning horizon, in highly uncertain planning environments. This is 

evidenced by the differences in the optimal solutions obtained for the different realities, as well as the 

favourable performance of the adaptive plans compared with those fixed at the beginning of the 

planning horizon. 

Despite the methodological advances of the proposed approach, there remain a number of avenues for 

future improvement. Firstly, as mentioned previously, informal approaches to scenario development and 

the determination of which solution to implement are used. Consequently, the value of using more 

formal approaches for these steps should be explored, especially for more complex problems and for 

real-life applications.  Secondly, the problem formulation (e.g. objectives, constraints, decision variables) 

is assumed to remain constant throughout the planning horizon, which is unlikely to be the case.  

Consequently, the incorporation of approaches that enable the problem formulation to be changed over 

time should be explored (see Maier et al., 2014). Thirdly, as discussed in Section 4.2.5, based on the 

philosophical approach that underpins the proposed method, the solutions obtained might not be 

mathematically optimal. It would be interesting to assess the impact of this in future studies by 

comparing the results obtained using the proposed approach with that of Kang and Lansey (2014), for 

example. Finally, although the approach was presented and applied in the context of urban water supply 

augmentation, it is also applicable to a number of other water resources scheduling and sequencing 

problems, as mentioned previously. Consequently, it would be useful to tailor and apply the approach 

presented in this paper to other problem domains. 
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4.7 Supplementary material 

 

Figure 4.7 Tradeoff between the PV of GHG emissions and the PV of cost for the seven projected possible future 

scenarios (2020-2060)(reality 1) 

 

Table 4.7 Unique solutions at the current staging interval (2020-2030) for decision stage 2 (reality 1) 
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Figure 4.8 Results of performance assessment for groups with the same solution for decision stage 2 (reality 1) 

 

 

Figure 4.9 Results of performance assessment for decision stage 2 (realities 1) 
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Figure 4.10 Tradeoff  between the PV of GHG emissions and the PV of cost for the seven projected possible future 

scenarios (2020-2060) (reality 2) 

 

Table 4.8 Unique solutions at the current staging interval (2020-2030) for decision stage 2 (reality 2) 

 

 

 

Figure 4.11 Results of performance assessment for groups with the same solution for decision stage 2 (reality 2) 
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Figure 4.12 Results of performance assessment for decision stage 2 (realities 2) 
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Figure 4.13 Tradeoff  between  the PV of GHG emissions and the PV of cost for the seven projected possible future 

scenarios (2030-2070) (reality 1) 

 

Table 4.9 Unique solutions at the current staging interval (2030-2040) for decision stage 3 (reality 1) 
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Figure 4.14 Results of performance assessment for groups with the same solution for decision stage 3 (reality 1) 

 

 

Figure 4.15 Results of performance assessment for decision stage 3 (realities 1) 
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Figure 4.16 Tradeoff  between  the PV of GHG emissions and the PV of cost for the seven projected possible future 

scenarios (2030-2070) (reality 2) 

 

Table 4.10 Unique solutions at the current staging interval (2030-2040) for decision stage 3 (reality 2) 
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Figure 4.17 Results of performance assessment for groups with the same solution for decision stage 3 (reality 2) 

 

 

Figure 4.18 Results of performance assessment for decision stage 3 (realities 2) 
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Figure 4.19 Tradeoff  between  the PV of GHG emissions and the PV of cost for the seven projected possible future 

scenarios (2040-2080) (reality 1) 

 

Table 4.11 Unique solutions at the current staging interval (2040-2050) for decision stage 4 (reality 1). 
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Figure 4.20 Results of performance assessment for groups with the same solution for decision stage 4 (reality 1) 

 

 

Figure 4.21 Results of performance assessment for decision stage 4 (realities 1) 
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Figure 4.22 Tradeoff  between  the PV of GHG emissions and the PV of cost for the seven projected possible future 

scenarios (2040-2080) (reality 2) 

 

Table 4.12 Unique solutions at the current staging interval (2040-2050) for decision stage 4 (reality 2). 
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Figure 4.23 Tradeoff  between  the PV of GHG emissions and the PV of cost for the seven projected possible future 

scenarios (2050-2090) (reality 1) 

 

Table 4.13 Unique solutions at the current staging interval (2050-2060) for decision stage 5 (reality 1). 
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Figure 4.24 Results of performance assessment for groups with the same solution for decision stage 5 (reality 1) 

 

 

Figure 4.25 Results of performance assessment for decision stage 5 (realities 1) 

 

 



 
 

146 
 

 

Figure 4.26 Tradeoff  between  the PV of GHG emissions and the PV of cost for the seven projected possible future 

scenarios (2050-2090) (reality 2) 

 

Table 4.14 Unique solutions at the current staging interval (2050-2060) for decision stage 5 (reality 2) 
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Chapter 5 

5 Thesis Summary 

Sequencing of water supply sources involves selecting the supply sources to implement at specific 

stages over a planning horizon. This approach has long been used to identify water supply sources that 

maintain water supply security. However, in recent years, the sequencing of urban water supply sources 

has been complicated by a number of factors, including the consideration of alternative sources of water 

(e.g. desalination, stormwater, rainwater, recycled wastewater), the inclusion of multiple sustainability 

criteria (e.g. economic, environmental, social) and the consideration of extended planning period (e.g. 

50 to 100 years). A review of the sequencing of urban water supply sources studies showed that 

traditional sequencing approaches have generally not considered the following: (i) multiple sustainability 

criteria; (ii) various water supply sources in a regional water supply system; (iii) extended planning 

horizons; (iv) uncertainties associated with the extended planning horizons; and (v) robustness/ 

adaptation in solutions to cope with changes in the system over an extended planning period. Thus, 

advanced sequencing approaches are developed to address the knowledge gaps revealed from the 

literature. The proposed approaches have been applied to the case study of the southern Adelaide 

water supply system to demonstrate their effectiveness and their ability to provide useful information for 

managers of the system. 

5.1 Research Contributions 

The overall contribution of this thesis is the development of robust, adaptive, multi-objective optimal 

sequencing approaches for an urban water system with various  supply sources under deep uncertainty. 

The proposed approaches enable optimal sequence plans to be generated in order to minimise 

economic and environmental costs, and deep uncertainty to be considered with the aid of robustness 

and adaptation. The utility of the approaches is demonstrated using a real case study with information 

gained being able to assist with the decision making process related to the future planning and 

management of Adelaide’s water supply sources. 

Specifically, in meeting the objectives of this research mentioned in the introduction (Chapter 1), the 

following research contributions were made:  

1. In the first paper, the two approximate optimal sequencing approaches, the “build up” (BU) and 

“build to target” (BTT) methods are developed to incorporate multiple objectives into the 
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sequencing of alternative water supply sources at the regional scale. The approaches consider 

various water supply options, such as traditional surface water resources and desalination, as 

well as stormwater and rainwater harvesting. In addition, the impact of different objective 

function weightings and sequencing approaches on (i) the optimal sequences of alternative 

water supply sources; and (ii) the objective function values, is assessed under a range of 

possible scenarios for the case study. The results obtained show that the BU method generally 

results in less favourable objective function values, but is more flexible and responsive to future 

changes compared with the BTT method. 

2. In the second paper, the sequencing approach is enhanced by utilising multi-objective 

evolutionary algorithms ( Water System Multi-objective Genetic Algorithm), coupled with a water 

supply system simulation model (i.e. WaterCress), to identify a diverse portfolio of optimal 

sequences by obtaining optimal sequences under deep uncertainty and selecting optimal 

sequences that are diverse in terms of solutions and trade-offs between objectives. Then, 

global sensitivity analysis using Sobol’ is performed on the selected sequences to assess the 

variation (robustness) of system performance under a wide range of plausible future conditions 

and to determine the relative contribution of the uncertain variables to the variation in system 

performance. Based on the results of the sensitivity analysis, and consideration of other 

relevant criteria, such as adaptability and the ability to meet demand shortfalls with the aid of 

water restrictions, an optimal sequence is selected that provides a good compromise between 

average and extreme values of the performance measures, as well as the ability to adapt to 

actual future conditions. 

3. In paper 3, the approach presented in paper 2 is extended by adding adaptive capacity. As part 

of the approach, a diverse portfolio of optimal sequence plans is developed for different future 

scenarios using multi-objective evolutionary algorithms. Next, the robustness and flexibility of 

the components of the optimal sequence plans that have to be “locked in” at the current staging 

interval is assessed for the time period between now and when further changes can be made. 

In addition, the variability of the objective functions over the entire planning horizon is assessed 

and the solution that provides the best trade-offs between these criteria is selected. This 

process is repeated for the next decision stages, when updated information will be available.  In 

this way, the approach is able to successfully balance the need for the development of optimum 

longer-term plans with the need to be able to respond to changes as they arise. The results 
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indicate that the approach is successful in adapting to changing conditions, while optimising 

longer-term objectives and satisfying water supply security constraints along the planning 

horizon, in highly uncertain planning environments. This was shown by the differences in the 

optimal solutions obtained for the different realities, as well as the favourable performance of 

the adaptive plans when compared to those fixed at the beginning of the planning horizon, even 

if future conditions were known with reasonable certainty. 

5.2 Research Limitations 

The limitations of this research are discussed below. 

1. As part of the case study, the problem formulation (e.g. objectives, constraints, decision 

variables) is assumed to remain constant throughout the planning horizon, which is unlikely to 

be the case. Consequently, the incorporation of approaches that enable the problem 

formulation to be changed over time should be explored.   

2. System reliability is considered as a constraint to be satisfied at each decision stage. However, 

there might be advantages in including reliability as an objective, as this enables trade-offs 

between reliability and other objectives to be explored explicitly.  In addition, the use of other 

risk-based system performance measures that not only take account of the probability of 

system failure (i.e. demand exceeding supply capacity), but also the consequences of system 

failure, are an important consideration. 

3. As part of the case study, informal approaches to scenario development and the determination 

of the solutions that represent the “best” trade-offs between performance criteria are used.  The 

value of using more formal approaches for these steps should be explored, especially for more 

complex problems and for real-life applications.   

4. In general, two of the most promising approaches to dealing with deep uncertainty include the 

development of robust solutions, which are designed to perform well under a large range of 

future conditions, and the development of flexible solutions, which are designed to enable 

adaptation to changing future conditions. One of the limitations is that robustness and flexibility 

are calculated post-optimisation, thereby only enabling the robustness and flexibility of solutions 

that are optimal with respect to the objectives to be assessed, rather than optimising robustness 
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and flexibility explicitly. Consequently, robustness and/or flexibility should be considered as 

objectives during the optimisation process. 

5.3 Recommendations for Future Work 

This research has introduced new approaches to the sequencing of urban water supply sources in a 

robust and adaptive manner. However, there are still opportunities to address the limitations identified 

above as part of future studies: 

1. Considering the changes of the formulation of the optimisation problem over time. For example, 

values of the future uncertain variables (e.g. demand, discount rate, energy cost and etc.) could 

be re-estimated at a regular time-step. Possible changes in objectives and/or constraints during 

the planning horizon should also be considered. 

2. Incorporating robustness and/or flexibility as objectives during the optimisation process, rather 

than calculating them  post-optimisation. This would  enable robustness and adaptability to be 

considered as objectives in the optimisation process explicitly. 

3. Using more formal approaches, such as scenario discovery (e.g. Lempert and Groves, 2010, 

Kasprzyk et al., 2013b) and multi-criteria decision analysis (Korteling et al., 2013, Hyde and 

Maier, 2006) for scenario development and the selection of the “final” optimal sequence plans 

could be investigated in future research, especially for more complex problems. 

4. Altering the scope of the model to incorporate wastewater reuse schemes, agricultural 

demands, water sensitive urban design and cluster or unit scale modelling. Furthermore, other 

sustainability indicators (e.g. social benefits) could be investigated to provide different trade-

offs.  
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Abstract Optimal long-term sequencing and scheduling play an important role in many water resources
problems. The optimal sequencing of urban water supply augmentation options is one example of this. In
this paper, an adaptive, multiobjective optimal sequencing approach for urban water supply augmentation
under deep uncertainty is introduced. As part of the approach, optimal long-term sequence plans are
updated at regular intervals and trade-offs between the robustness and flexibility of the solutions that have
to be fixed at the current time and objectives over the entire planning horizon are considered when select-
ing the most appropriate course of action. The approach is demonstrated for the sequencing of urban water
supply augmentation options for the southern Adelaide water supply system for two assumed future real-
ities. The results demonstrate the utility of the proposed approach, as it is able to identify optimal sequen-
ces that perform better than those obtained using static approaches.

1. Introduction

Formal optimization methods for sequencing or scheduling play an important role in long-term manage-
ment and planning for a number of water resources problems, such as the sequencing of urban water sup-
ply augmentation options [Beh et al., 2014; Mortazavi-Naeini et al., 2014; Ray et al., 2012], the sequencing of
urban water supply infrastructure [Kang and Lansey, 2014], scheduling the replacement of urban water sup-
ply mains [Dandy and Engelhardt, 2001, 2006], investment scheduling for irrigated agricultural expansion
planning [Allam and Marks, 1984], management of water supply systems [Housh et al., 2013], and the sched-
uling of environmental flows in rivers [Szemis et al., 2012, 2013]. The focus of this paper is on urban water
supply augmentation, for which the optimal sequencing of supply sources has long been used to identify
systems that maintain water supply security and minimize water supply costs [e.g., Becker and Yeh, 1974;
Butcher et al., 1969; Morin and Esogbue, 1971; Atkinson, 2002]. As part of the optimal sequencing process,
the best combination of supply augmentation options that is able to satisfy projected demands over a
long-term planning period (e.g., 30–50 years) is identified. The optimal sequencing of these options over
the planning period is also determined, in recognition of the fact that demands are likely to change over
time. Consequently, decisions in relation to which augmentation options should be implemented are made
at a number of decision points over the planning horizon, which are generally spaced at regular time inter-
vals (e.g., 10 years), resulting in a number of staging intervals over the planning horizon.

In the past, optimal sequencing approaches have considered traditional sources of water, such as reservoirs
and groundwater, and have attempted to minimize cost objectives [e.g., Chang et al., 2009; Connarty and
Dandy, 1996]. More recently, multiple objectives [e.g., Beh et al., 2012, 2014; Mortazavi-Naeini et al., 2014]
and alternative sources of water, such as desalinated water, storm water, rainwater, and reclaimed waste-
water [e.g., Beh et al., 2012, 2014; Downs et al., 2000; Ray et al., 2012] have been considered. However, while
uncertainties about future conditions, such as population growth, per capita demand and hydrological
inputs, have been considered in the determination of optimal portfolios of future urban water supply and
demand management options [e.g., Kasprzyk et al., 2009, 2012, 2013; Paton et al., 2014b; Zeff et al., 2014],
they have generally not been considered in the optimal sequencing of these options. In other words, while
these uncertainties have been considered in determining which sources are best suited to satisfying
demand at some time in the future, they have not been considered in relation to the timing of the imple-
mentation of these sources over the planning horizon, which is a much more complex problem. Only Ray
et al. [2012] have developed a formal optimization approach for the sequencing of long-term urban water
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supply augmentation options under deep uncertainty, which is uncertainty associated with multiple possi-
ble futures for which relative probabilities are unknown (e.g., climate change and population growth [Lem-
pert et al., 2003]). However, it should be noted that the approaches of Housh et al. [2013] and Kang and
Lansey [2014] could also be used for this purpose, even though they were developed for the optimal
sequencing of urban water supply infrastructure and water supply system management options,
respectively.

A potential disadvantage of the approaches of Ray et al. [2012] and Housh et al. [2013] is that they are
based on what are generally referred to as traditional optimization methods (i.e., linear and stochastic pro-
gramming, respectively, in this case), which have a number of shortcomings compared with evolutionary
optimization approaches [see Maier et al., 2014; Mortazavi-Naeini et al., 2014]. Some of these shortcomings
include not being able to be linked with simulation models of the urban water supply system under con-
sideration, thereby potentially ignoring important nonlinear interactions [Matrosov et al., 2013b], and not
being truly multiobjective. Although Kang and Lansey [2014] use a genetic algorithm as their optimization
engine and indicate that their approach could be extended to include multiple objectives, this was not
done in their paper.

The approaches presented in Ray et al. [2012], Housh et al. [2013], and Kang and Lansey [2014] do not
include formal mechanisms for updating optimal sequences over time when new information about current
and plausible future conditions becomes available. Consequently, these approaches can be considered to
deal with deep uncertainty by way of ‘‘static robustness,’’ which aims to reduce vulnerability under the larg-
est range of plausible future conditions [Walker et al., 2013]. However, given that optimal urban water sup-
ply augmentation sequence plans are generally developed over periods of 30–50 years, with augmentation
options added incrementally over time (e.g., at 5 or 10 year intervals), there is likely to be significant benefit
in developing an optimal sequencing approach that deals with deep uncertainty by way of ‘‘dynamic
robustness,’’ which considers adaptation over time as conditions change [Walker et al., 2013]. It should be
noted that although any of the above sequencing approaches could be applied using a sliding temporal
window and Kang and Lansey [2014] include an explicit flexibility criterion in their optimization process and
mention that their approach should be reapplied periodically, these adaptive mechanisms have not been
formalized and their utility has not been demonstrated. The lack of the explicit application of an adaptive
approach could at least in part be due to the difficulty of being able to test the adaptive mechanisms of
such sequencing approaches, as adaptation needs to respond to changes in future conditions, which have
not yet occurred and are therefore unknown. Consequently, there would be value in developing an experi-
mental approach for testing the potential benefits of formal adaptive optimization approaches compared
with currently used static (i.e. non-adaptive) approaches.

Given that existing multiobjective approaches to the optimal sequencing of water supply augmentation
options are deterministic [e.g., Mortazavi-Naeini et al., 2014] and that existing optimal sequencing
approaches that do consider uncertain future conditions are not multiobjective and do not include any for-
malmechanisms for adaptation, there is a need to develop a multiobjective, adaptive optimisation
approach for the sequencing of urban water supply augmentation options. However, as pointed out by
Kwakkel et al. [2014], the use of dynamic adaptive plans, rather than static plans, represents an emerging
planning paradigm for dealing with deep uncertainty. As such, implementation of this paradigm represents
a major challenge, especially in terms of the development of computational methods that support the
development of such plans, including consideration of transient scenarios [Kwakkel et al., 2014]. This is par-
ticularly the case for the urban water supply augmentation problem, as infrastructure decisions are difficult
to reverse and have long lifespans, making it difficult to develop dynamic, adaptive pathways. In addition,
because of long lead times and large investments associated with urban water supply infrastructure, there
is a need to ensure that water supply security is not compromised in periods between the implementation
of augmentation options.

It follows that an adaptive approach to the optimal sequencing of urban water supply augmentation
options is not simply a matter of reapplying an optimal static approach over a sliding window [see Szemis
et al., 2014], but requires careful design so that it enables the identification of (i) augmentation sequences
that are both optimal for the long term, yet sufficiently flexible to be able to be adapted with minimal loss
of optimality and (ii) augmentation options that are robust to changing conditions in periods between the
implementation of augmentation options. In other words, such an approach should account for (i) dynamic
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robustness over the entire planning horizon, (ii) static robustness during those periods of the planning hori-
zon when no changes can be made to the system, and (iii) pathways that are sufficiently flexible to cater to
adaptation at minimal loss of optimality.

Consequently, the objectives of this paper are (i) to develop an formal optimal sequencing approach for
urban water supply augmentation that is multiobjective and adaptive and (ii) to demonstrate the applica-
tion of the approach to a case study based on the southern Adelaide water supply system in South Aus-
tralia, including the development of an experimental approach that enables the potential benefits of
adaptive approaches to be compared with currently used static approaches. The remainder of this paper is
organized as follows. The proposed optimal sequencing approach is introduced in section 2 and its applica-
tion to the case study is described in section 3. Results and discussion are presented in section 4, followed
by a summary and conclusions in section 5.

2. Proposed Adaptive, Multiobjective Optimal Sequencing Approach

The philosophy underpinning the proposed approach is to add consideration of deep uncertainty to the tra-
ditionally used approach to obtaining optimal urban water supply augmentation sequences, which is based
on the optimization of a set of objectives subject to the satisfaction of water supply security constraint(s).
An approach based on this philosophy enables decision makers to explore the impact of the consideration
of deep uncertainty on optimal sequences of water supply augmentation options by identifying dynamic
adaptive pathways, rather than a single optimal solution, which is in alignment with approaches based on
adaptive dynamic planning [Haasnoot et al., 2013, 2014; Kwakkel et al., 2014]. This philosophy is also in
keeping with that used in scenario-based decision-making, in which scenarios ‘‘provide a dynamic view of
the future by exploring various trajectories of change that lead to a broadening range of plausible alterna-
tive futures’’ [Mahmoud et al., 2009], enabling ‘‘. . .a creative and flexible approach to preparing for an uncer-
tain future’’ [Mahmoud et al., 2009]. This is in contrast to flexible optimal sequencing approaches that have
been developed for water distribution system design [Basupi and Kapelan, 2013] and flood management
[Woodward et al., 2013], in which uncertain future conditions are represented by probability distributions,
thereby explicitly weighting the likelihood of different outcomes, rather than representing a set of alterna-
tive future states of the world [Mahmoud et al., 2009]. Consequently, the proposed approach is more likely
to be able to cater to deep uncertainty. However, it is acknowledged that the proposed approach also has a
number of limitations, such as a potential loss of mathematical optimality, as discussed in section 2.5.

In line with the underpinning philosophy outlined above, the proposed optimal sequencing approach for
urban water supply augmentation under deep uncertainty consists of three steps (see Figure 1), namely, (i)
identification of a diverse portfolio of optimal water supply augmentation sequence plans over the entire
planning period with the aid of scenario-based multiobjective optimization in order to identify solutions
that are optimal under a range of plausible future conditions (catering to dynamic robustness over the
entire planning horizon); (ii) assessment of the performance of the portfolio of optimal sequence plans in
terms of robustness and flexibility over the current staging interval and variation of the optimization objectives
over the entire planning period (catering to static robustness during those periods of the planning horizon
when no changes can be made to the system and to consideration of adaptation at a minimal loss of opti-
mality); and (iii) selection of the water supply augmentation option(s) to be implemented at the current deci-
sion stage based on the trade-offs between the performance criteria in (ii). The above steps are repeated at
subsequent decision stages (e.g., if the staging interval is 10 years, this process is repeated every 10 years)
(Figure 1). Details of each of these steps are given in the following sections. It should be noted that the pro-
posed approach could be easily adapted to other long-term water resources sequencing or scheduling
applications.

2.1. Identification of Diverse Portfolio of Optimal Water Supply Augmentation Sequence Plans
When identifying a set of optimal solutions under deep uncertainty, it is critical to identify a portfolio of
potential solutions that are able to respond to different future conditions [Korteling et al., 2013]. In order to
achieve this, it is proposed to use a formal multiobjective optimization approach to develop independent
optimal sequence plans over the entire planning horizon (e.g., 50 years) for a number of scenarios repre-
senting different combinations of uncertain variables affecting future conditions. As shown in Figure 1 (Step
1a), the first step in the process involves the formulation of the optimization problem, including selection of
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the objectives to be optimized (e.g., minimize cost and minimize greenhouse gas emissions) (Os(s51 to p)),
selection of the planning horizon (i.e., the period over which optimal sequence plans are to be developed)
(T), selection of the staging interval (i.e., the interval at which the addition of potential water supply aug-
mentation options is considered) (t), selection of the water supply augmentation options (i.e., the decision
variables) (Wk(k51 to n)) and definition of the constraint(s) (i.e., that some measure of supply is greater than
or equal to some measure of demand, in addition to any constraints on the decision variables). The number
of decision stages, y, can be calculated as y5 (T1t)/t). It should be noted that it is suggested to only con-
sider discrete water supply augmentation options, as this is what would generally be considered in practice.

Next, the uncertain variables need to be selected (UV1, UV2, . . ., UVx). As the optimization problem
addressed here is the optimization of the selected objectives subject to supply being greater than or equal
to demand, the critical uncertainties are in relation to the satisfaction of this constraint, and are therefore
likely to be variables that affect supply and demand (e.g., rainfall, temperature, evaporation, and popula-
tion). As shown in Figure 1 (Step 1b), the ranges of the uncertain variables need to be defined for each of
the decision stages y at the current time period i (UV1,y,i, UV2,y,i, . . ., UVx,y,i), followed by the selection of sce-
narios that consist of different combinations and values of the uncertain variables (S1,i, S2,i, . . ., Sc,i) (Figure 1,
Step 1c). It should be noted that the ranges of the uncertain variables, as well as the selection of the scenar-
ios, should reflect current best knowledge in relation to the plausible changes of these variables over the
planning horizon.

The use of scenario analysis is considered most appropriate for determining the portfolio of diverse solu-
tions, as it enables alternative plausible future dynamic pathways to be developed in line with the philoso-
phy that underpins the proposed approach, as outlined earlier. It should be noted that the different
scenarios are not designed to predict the future, but to enable exploration of a relatively small number of
different plausible futures that are generally not equally likely [Mahmoud et al., 2009]. For this reason, sce-
nario analysis has been adopted widely as a means of assessing the impact of deep uncertainty in water

Figure 1. Diagrammatic representation of proposed adaptive, multiobjective optimal sequencing approach under deep uncertainty.
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resources planning [Kasprzyk et al., 2012, 2013; Matrosov et al., 2013a, 2013b]. Most scenario development
involves people from different disciplines and organizations [Mahmoud et al., 2009] and can be achieved
using informal [see e.g., Kasprzyk et al., 2012; Lany et al., 2013] or more formal [see e.g., Leenhardt et al.,
2012; Lempert and Groves, 2010; Mahmoud et al., 2009; Matrosov et al., 2013b] approaches.

Once the problem has been formulated and the uncertain variables and scenarios defined, the portfolios of
Pareto-optimal sequences over the entire planning horizon (i.e., from i5 a to i5 a1 T) can be obtained. As
shown in Figure 1 (Step 1d), as part of the optimization process, the benefit associated with the capital
(CAP) and operating (OP) values are maximized over the p objectives, y decision stages, and n water supply
options subject to the supply provided by the selected water supply options at a particular decision stage
(Qky) being greater than or equal to the demand at that decision stage (Dy), as suggested by Beh et al.
[2014].

For the optimization engine, it is recommended to use multiobjective evolutionary algorithms (MOEAs).
This is because they have proved to be flexible and powerful tools for solving complex water resources
problems [Nicklow et al., 2010] and are able to identify solutions that represent multiobjective trade-offs in a
single optimization run, without the need to provide relative weights for the various objectives. Addition-
ally, EAs have been found to perform well in a number of urban water resources applications [Cui and Kuc-
zera, 2003; di Pierro et al., 2009; Mortazavi et al., 2012; Newman et al., 2014]. EAs can also be linked directly
with simulation models of the water supply system under consideration, enabling interactions between dif-
ferent water sources to be taken into account, which is an important consideration [Matrosov et al., 2013b].
Further details of the advantages of EAs are given in Maier et al. [2014].

As part of the optimization process, separate deterministic optimal sequence plans are generated over the
entire planning horizon for each scenario (Figure 1, Step 1d), as was undertaken by Housh et al. [2013] and
Kang and Lansey [2014]. The objective function values of each sequence at each decision point are calcu-
lated with the aid of a simulation model of the resulting water supply system, which includes any existing,
as well as the proposed, water supply sources. The simulation model is also used to check that supply is
greater than or equal to demand throughout the planning horizon. Each staging interval of each sequence
is simulated separately in order to cater to the potential incorporation of additional water supply options at
each of the decision points. At the end of the optimization process, an approximation to the Pareto front
[Pareto, 1896] of sequence plans for the scenario under consideration is obtained, which represents the
best feasible trade-offs between the selected objectives. The solutions on the Pareto fronts for the different
scenarios constitute the desired diverse portfolio of optimal water supply augmentation sequence plans
(Figure 1, Step 1d).

2.2. Assessment of Performance of Portfolio of Optimal Sequence Plans
Even though it is important that optimal sequence plans are obtained over the entire planning horizon,
decisions in relation to which options are actually implemented are only made for the current staging inter-
val. For example, although optimal sequence plans might be developed for 40 years, if the staging interval
is 10 years, only the first set of decisions of the 40 year plan is fixed now, while the rest of the plan can be
adapted before the next set of decisions about which water supply augmentation option(s) to implement
has to be made in 10 year time. Consequently, the members of the portfolio of optimal sequence plans are
grouped prior to performance assessment so that members of each group have the same augmentation
option(s) at the current decision stage (~P1, ~P2, . . ., ~Pu ; . . . :; ~PG ), where ~Pu is the uth group of sequence
plans that have the same augmentation options at the current decision stage, and G is the number of
groups of optimal sequence plans with unique water supply augmentation options at the current decision
stage (Figure 1, Step 2), which are determined by inspection of all optimal sequence plans. In this way, it is
recognized that only decisions about which options to implement at the current decision stage need to be
made at this time. However, optimality over the entire planning horizon is taken into account by only con-
sidering options at the current decision stage that are part of optimal sequence plans for the entire plan-
ning horizon. This concept of identifying optimal solutions over the planning horizon for different scenarios
and focusing on the implementation of options at the first decision stage is similar to that followed by
Housh et al. [2013] and Kang and Lansey [2014].

Although the optimal sequence plans that are part of a particular group have the same solution at the
current decision stage, they have different solutions at subsequent decision stages, as they are drawn
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from different parts of the Pareto front (i.e., they represent different trade-offs between objectives) or
from different Pareto fronts (i.e., they are optimal for different scenarios) and therefore represent different
plausible future dynamic pathways that need to be assessed and explored. In order to achieve this, the
performance of each of these pathways is assessed in terms of (i) the implications for water supply secu-
rity until further changes can be made to the system (see Figure 1, Step 2a—robustness), (ii) the implica-
tions on the ability to provide optimal solutions for different scenarios (see Figure 1, Step 2a—flexibility),
and (iii) the potential implications on objective function values (see Figure 1, Step 2b), as discussed in sub-
sequent sections.

2.2.1. Assessment of Robustness and Flexibility Over Current Staging Interval
Robustness. The system that is fixed now will be exposed to uncertain conditions over the current staging
interval (e.g., over the next 10 years). Consequently, although all current-stage augmentation options satisfy
the constraint that supply is greater than or equal to demand for the scenario for which this option is opti-
mal, to the degree to which water supply security of each of the unique current-stage solutions is adequate
under all different scenarios until further changes can be made to the system needs to be assessed. This is
achieved by assessing the static robustness of the different unique water supply augmentation options at
the current decision stage (i.e., of the optimal sequence plans that form part of each of the groups
~P1; ~P2; . . . ; ~Pu ; . . . :; ~PG
� �

for all scenarios (S1,i, S2,i, . . ., Sc,i) over the current staging interval (i.e., before
there is an opportunity to make further changes to the system) (Figure 1, Step 2a).

In order to measure robustness, a number of different metrics can be used [Hashimoto et al., 1982; Kasprzyk
et al., 2013; Korteling et al., 2013; Matrosov et al., 2013a, b], all of which reflect some measure of insensitivity
to future conditions and the ability to perform satisfactorily over a broad range of future conditions. As part
of the proposed approach, the measure of robustness used by Paton et al. [2014a, b] is used:

Robustnessu5
Ruc
c

; (1)

where Ruc is the number of scenarios for which group ~Pu of the optimal sequence plans is considered to
exhibit acceptable performance over the current staging interval and c is the total number of uncertain sce-
narios. A desirable property of this measure of robustness is that it considers each scenario as an independ-
ent plausible future and provides information on the fraction of scenarios for which a particular solution
performs at an acceptable level from a water supply security perspective. Which performance levels are
considered acceptable are case study dependent, but could include potential water supply security meas-
ures such as reliability, resilience and vulnerability, as recommended by Yazdani et al. [2011], or the risk of
water shortages, as suggested by Hall et al. [2012]. It should be noted that, as the solutions at the current
staging interval are identical for each of the groups of optimal sequence plans ( ~P1 , ~P2 , . . ., ~PG ), robustness
only has to be calculated once for each group.

Flexibility. Given the adaptive nature of the proposed approach, the flexibility that the supply augmentation
options that are fixed at the current decision stage provide in terms of being able to be part of optimal
long-term sequence plans in the face of uncertain future conditions is also important. As stated in Mejia-Gir-
aldo and McCalley [2014], a ‘‘solution is flexible when it can be adapted cost-effectively to any of the condi-
tions characterizing the identified scenarios.’’ From this perspective, a solution is more flexible if it is optimal
for a larger number of scenarios and less flexible if is optimal for a smaller number of scenarios. Conse-
quently, Flexibility is defined as the fraction of the scenarios for which group ~Pu solutions at the current deci-
sion stage are optimal as follows:

Flexibilityu5
Cpu
c

; (2)

where Cpu is the number of scenarios for which a particular set of augmentation options(s), ~Pu is selected over
the current staging interval, and c is the total number of uncertain scenarios. Therefore, a flexibility of 1 indi-
cates that the solution that is fixed at the current decision stage is part of optimal sequence plans for every sce-
nario and can therefore be part of optimal solutions under the full range of plausible future conditions
considered. In contrast, a flexibility of 1/c indicates that the solution that is fixed at the current decision stage
is only optimal for one of the c future scenarios. If this solution is implemented and the single scenario for
which this solution is optimal does not occur, any changes to the sequence plan over the planning horizon
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will result in a loss of optimality, as another plan will be optimal. It should be noted that flexibility is calculated
for each group of optimal sequence plans ( ~P1 , ~P2 , . . ., ~Pu, . . ., ~PG ) (see Figure 1, Step 2a).

2.2.2. Assessment of Variation in Objectives for the Selected Scenarios Over the Entire Planning
Horizon
In addition to the assessment of robustness and flexibility of ~Pu (i5 1, 2, . . ., G), it is important to consider
the central tendency and spread of the objective function values of all of the different optimal sequence
plans that are part of a group over all scenarios. In order to achieve this, it is proposed to use the median
and range of the objective functions (O1, O2, . . ., Op) over the entire planning horizon. It should be noted
that the median and range are suggested as measures of central tendency and variation, rather than alter-
native measures, such as the expected value and standard deviation, as the scenarios represent different
plausible futures, rather than events of a certain probability. In order to obtain the required values of
median and range, the objective functions are calculated for each member of a particular group of optimal
sequence plans over all scenarios. These calculations are repeated for each group of optimal sequence
plans ~Pu (i5 1, 2, . . ., G) so that values of the median and range are obtained for each objective for each of
the groups (see Figure 1, Step 2b).

2.3. Selection of Water Supply Augmentation Options to be Implemented
Finally, the most appropriate group of optimal sequence plans, and hence the water supply augmenta-
tion option(s) to be implemented at the current decision stage, needs to be selected. When dealing
with multiple, competing objectives, there is generally no single optimal solution, but a collection of
solutions that are all optimal [Pareto, 1896]. This is because for these solutions, improvements in one
objective can only be achieved at the expense of degradation in at least one of the other objectives,
requiring additional preference information to enable one of these solutions to be selected [Cohen and
Marks, 1975]. Consequently, the solution to be implemented has to be selected based on user prefer-
ences of the trade-offs between the median and range of the objectives over the entire planning hori-
zon (e.g., 50 years) and robustness and flexibility over the current staging interval (e.g., the next 10
years until further changes can be made to the system). It is suggested to use value path plots
[Geoffrion et al., 1972] for this purpose, as they are a well-known method for visualizing the trade-offs
between performance measures (see Figure 1, Step 3).

It should be noted that the purpose of the proposed approach is not to suggest a single best solution, but
to provide the best possible information on solutions that represent alternative future pathways to decision
makers. This is in line with other approaches that follow a similar philosophy as that underpinning the pro-
posed approach [e.g., Kasprzyk et al., 2013; Kwakkel et al., 2014]. As mentioned above, selection of the option
to be implemented is based on user preferences and should involve input from affected stakeholders. If the
number of objectives (p) and the number of groups of optimal sequence plans with the same augmentation
options at the current decision stage (G) is relatively small, this could be done informally. However, when
the product of p and G is large, the use of more advanced visual analytics [see e.g., Kollat and Reed, 2007;
Reed and Kollat, 2013], which is limited to about six or seven options, or more formal decision-making proc-
esses, such as multicriteria decision analysis [e.g., Hyde and Maier, 2006; Korteling et al., 2013] or scenario dis-
covery [e.g., Kasprzyk et al., 2012; Lempert, 2013] approaches, for example, could be used. However, as
mentioned above, the focus of this paper is not on the process for selecting the best option, but on the pro-
vision of information to decision makers.

2.4. Adaptive Process
As part of the adaptive process, the general steps outlined in sections 2.1–2.3 are repeated at each decision
stage (i.e., every t years (e.g., every 10 years)) (see Figure 1, outer loop). However, there are some differences
between decision stages, as illustrated in Figure 1 and summarized below.

As decision points are generally separated by some time (e.g., 10 years), the understanding of the
trajectories of the various uncertain variables (e.g., population growth and climate futures) is likely to
have changed from one decision point to the next. Consequently, the scenarios to be considered in
the identification of the portfolio of optimal sequence plans (i.e., S1,i, S2,i, . . ., Sc,i) are also likely to
be different, as they should be developed based on best available knowledge at the time (see
section 2.3).
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While the duration of the planning horizon (e.g., 50 years) remains unchanged, the actual start and end
times of the planning horizon over which optimal sequence plans are developed with the aid of multiobjec-
tive evolutionary algorithms will be different (i.e., there will be different start and end points) (Figure 1).

2.5. Advantages and Limitations of Proposed Approach
Optimality versus practicality. As mentioned previously, the philosophy underpinning the proposed
approach is to enable decision makers to explore the impact of deep uncertainty on urban water supply
augmentation sequences that are optimal with respect to the objectives and subject to meeting water sup-
ply security constraints, thereby presenting decision makers with plausible future pathways. Consequently,
the assessment of the impact of uncertainty on the water supply security constraint via the robustness mea-
sure and the assessment of the adaptability of selected solutions to different conditions via the flexibility
measure are not included as additional objectives of the optimization problem, but are considered postop-
timization. This is in line with other similar approaches to assessing water supply security under deep uncer-
tainty that have not considered the sequencing of options [e.g., Kasprzyk et al., 2013].

Apart from the philosophical reasons for not including robustness and flexibility as objectives stated above,
there are also practical reasons, as the consideration of robustness and flexibility as objectives would
increase the computational effort associated with the optimization considerably. This is because the calcula-
tion of robustness and flexibility for each solution at each iteration of the EA requires the results of the opti-
mization runs for all scenarios. This would increase computational effort significantly, especially since the
run-times associated with the integrated model of the water resources system can be quite long. Further-
more, repeated model runs with different stochastically generated hydrological inputs are required in order
to obtain a rigorous assessment of water supply security [see Mortazavi et al., 2012], thereby increasing run-
times even further.

Despite the advantages outlined above, consideration of robustness and flexibility post-optimization, rather
than as objectives in the optimization problem, can also be considered a limitation, as this could result in
solutions with reduced robustness and flexibility, since these measures are not optimized. In other words,
the proposed approach identifies the relative robustness and flexibility of solutions that are optimized for
the objectives, but does not necessarily identify solutions that are optimally robust and flexible. However,
for the urban water supply augmentation problem and robustness measure considered here, the solution
for the worst-case scenario will, by definition, always have a robustness of 1 (i.e., the largest possible, and
hence optimal, value). Nevertheless, identification of the best possible trade-offs between robustness and
the other performance measures are not guaranteed. In relation to flexibility, an alternative measure, such
as regret costs [see Kang and Lansey, 2014], could have been used and included more formally in the opti-
mization process, thereby improving the mathematical optimality of the solutions. However, such an
approach would be geared toward identifying a single optimal solution, rather than presenting decision
makers with alternative pathways.

The approach of presenting decision makers with different future pathways by obtaining separate opti-
mal solutions for each scenario could also result in a loss of mathematical optimality, as a solution that
is optimal for a particular scenario might not be optimal if all scenarios are considered simultaneously,
as was done by Kang and Lansey [2014]. However, it should be noted that the flexibility criterion intro-
duced in this paper provides an indication as to whether or not this is the case. For example, if the flex-
ibility criterion is equal to 1, then there is no loss of optimality, as a particular solution is optimal across
all scenarios. In contrast, if the flexibility is less than 1, there will be some loss of optimality. However,
the magnitude of this loss cannot be quantified in terms of objective function values using this crite-
rion. It should also be noted that as Kang and Lansey [2014] used a compromise cost function to obtain
an optimal solution across all scenarios, rather than presenting alternative pathways to decision makers,
there is likely to be a trade-off between achieving mathematical optimality and presenting options to
decision makers.

Another factor that could result in a loss of mathematical optimality is the fact that the proposed approach
uses discrete values of the water supply augmentation options. However, from a practical perspective,
urban water supply augmentation options are generally discrete in nature (e.g., whether to implement a
particular augmentation option or not or what capacity a particular augmentation option should be), so this
is unlikely to present any problems from a practical perspective.
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Single objective versus multi objective. As mentioned previously, compared with other approaches to solv-
ing similar problems [Housh et al, 2013; Kang and Lansey, 2014; Ray et al., 2012], the proposed approach
is multiobjective, which is an advantage, given that most practical problems have more than one objec-
tive. Although Kang and Lansey [2014] used an EA as their optimization engine, thereby enabling their
approach to be expanded to be multiobjective, this extension has not yet been reported or tested in
the literature.

However, the proposed approach also presents a number of challenges due to its multiobjective nature.
First, there could be multiple sequence plans with the same solution at the current staging interval that are
on the Pareto front for a particular scenario. In this case, only the presence or absence of this solution on
Pareto fronts for different scenarios is taken into account in the calculation of flexibility (equation (2)), not
the number of optimal sequence plans with this solution, and hence potential losses in trade-off informa-
tion are not considered in the proposed flexibility criterion. Second, as the number of scenarios for which
particular sequence plans are optimal varies, some sequence plans that are Pareto optimal for a particular
scenario might be completely dominated in terms of the median and range of the objective function values
once the solution has been evaluated over all scenarios, for some of which a solution might not be Pareto
optimal. However, this is not a problem from a practical perspective, as such solutions can be discarded as
part of the final evaluation process.

3. Case Study

3.1. Background
In order to illustrate and test the utility of the proposed approach, it is applied to a case study based on the
southern region of the Adelaide water supply system (WSS) in 2010. Adelaide is the capital city of South
Australia (SA) (see Figure 2) and has a population of approximately 1.3 million. It is one of the driest capital
cities in the world [Wittholz et al., 2008], having a Mediterranean climate, with hot dry summers and mild
wet winters. Recorded annual rainfall ranges from 257 to 882 mm [Maier et al., 2013]. Average annual mains
water consumption was estimated to be 163 gigalitres (GL) in 2008 [Government of South Australia, 2009].

This case study is selected as it has been used as a benchmark in previous water resources studies. Paton
et al. [2013] assessed the impact of climate change on the water supply security of this system and con-
cluded that supply augmentation was needed. Paton et al. [2014b] assessed the utility of a small number of
water supply augmentation options in terms of PV of cost and water supply security and Paton et al.
[2014a] used a multiobjective optimization approach to explore the trade-offs between PV of cost, PV of
greenhouse gas emissions and water supply security for different supply augmentation options and operat-
ing policies. However, the sequencing of water supply augmentation options was not considered in any of
these studies. The optimal sequencing problem for this system was addressed by Beh et al. [2014], but they
used an approximate problem formulation in conjunction with a linear programming method, did not use a
truly multiobjective approach and did not consider the impact of uncertainty (i.e., the optimal sequencing
problem was considered to be deterministic).

The southern Adelaide WSS (see Figure 2) supplies around 50% of the demand of metropolitan Adelaide. In
2010, the system was supplied by three reservoirs—Myponga, Mount Bold and Happy Valley. Mount Bold
and Myponga reservoirs receive water from local catchments, and Mount Bold also receives water pumped
from the River Murray via the Murray Bridge to Onkaparinga pipeline. The amount of water supplied from
the River Murray is based on a 5 year rolling license for Adelaide, which is fixed at 650 GL. Of this, half is
assumed to be allocated to the southern Adelaide WSS. The Happy Valley reservoir is a service reservoir that
stores water transferred from Mount Bold reservoir prior to treatment at the Happy Valley water treatment
plant.

As highlighted by Paton et al. [2013], supply augmentation is required for the southern Adelaide WSS to
meet future demands in the face of increased water demand and climate change impacts. In this study, the
potential augmentation options identified by the SA government are considered, including a desalination
plant at Port Stanvac, various storm water harvesting schemes, and household rainwater tanks (Figure 2)
[Government of South Australia, 2009]. It should be noted that long-term demand management options
have already been applied extensively in the case study system and are therefore not considered. However,
supply shortfalls that can be accommodated by temporary water restrictions are included as part of the
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acceptability criterion for the robustness calculations (see section 3.3.2). Augmentation of existing sources is
also excluded as options, as there is limited potential for additional supply from these sources.

3.2. Overall Experimental Approach
In line with the objectives stated in section 1, the overall purpose of the experimental approach is to dem-
onstrate the application of the proposed approach to the Adelaide case study and to test the utility of the
adaptive features of the proposed approach by comparing its performance with that of an equivalent static
approach. A summary of the overall experimental approach is given in Figure 3. Part A in Figure 3 corre-
sponds to the application of the proposed approach to the Adelaide case study and is aligned with the gen-
eral approach introduced in section 2 (Figure 1). Part B in Figure 3 corresponds to the assessment of the

Figure 2. Map of the Southern Adelaide water supply system (WSS).
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utility of the adaptive features of the proposed approach by comparison with an equivalent static
approach.

As it is only possible to evaluate the true utility of the adaptive nature of the proposed approach over the
actual duration of the planning horizon (e.g., over the next 40 years), the proposed experimental approach
is based on assumed known future conditions (or simulated realities) and the simulation of what would
actually happen over the adopted planning horizon under these conditions (Figure 3, Part A). In other
words, steps 1–3 of the proposed approach (Figures 1 and 3, Part A) are implemented at 2010 to determine
which supply augmentation option(s) to implement at this time. Next, it is assumed that 10 years have
passed and that it is known what the actual values of the uncertain variables at this time are and that the
corresponding updated estimates of the ranges of the uncertain variables and scenarios are known. Steps
1–3 of the proposed approach are then repeated to determine which supply augmentation option(s) to
implement at the simulated current time (i.e., 2020). This whole process is then repeated for 2030, 2040,
and 2050 for a particular reality in accordance with the adaptive nature of the proposed approach (Figures
1 and 3, Part A).

In order to demonstrate that the proposed adaptive approach results in different augmentation options
under different sets of actual future conditions, the entire process in Part A of Figure 3 is repeated for a dif-
ferent set of assumed known future conditions. These two sets of assumed known future conditions are
referred to as Reality 1 and Reality 2. In other words, two sets of independent results are presented for two
alternative simulated realities for the sake of comparison of how different augmentation options can be
obtained by using the adaptive approach based on different changes in actual future conditions. It should
be noted that the realities are different from the scenarios. However, the realities represent actual known

Figure 3. Summary of experimental approach for the Adelaide case study.
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future conditions (i.e., what has actually happened), which are assumed for the purposes of the computa-
tional experiments for testing the utility of the adaptive features of the proposed approach presented in
this paper (Figure 3, Part B), the scenarios represent plausible future conditions at the time of decision mak-
ing and are an integral part of the proposed approach (Figure 3, Part A).

In order to assess the utility of the adaptive nature of the proposed approach, the augmentation options
obtained using the proposed adaptive approach are compared with an equivalent static approach [e.g.,
Mortazavi-Naeini et al., 2014], as all current approaches to the optimal sequencing of urban water supply
augmentation options are not adaptive, as discussed in section 1 (Figure 3, Part B). Consequently, the static
approach provides a benchmark of current best practice in literature against which to assess the adaptive
features of the proposed approach. The static approach is implemented for each of the plausible scenarios
to provide a comprehensive basis of comparison.

The comparison of the adaptive and static approaches is conducted over the two independent realities. As
the purpose is to assess how well the sequence plans obtained using the proposed adaptive approach and
the benchmark static approach perform under the two realities, and not which approach performs best for
a given reality, the performance metrics for a particular sequence are averaged over the two realities. This
enables the performance of a selected sequence to be assessed in the face of the occurrence of two differ-
ent actual future conditions, which are unknown at the time of decision making.

Details of the implementation of the above approach for the case study based on the southern Adelaide
WSS are given in the subsequent sections, with Part A of Figure 3 corresponding to section 3.3 and Part B to
section 3.4.

3.3. Identification of Optimal Sequence Plans
The details for steps 1–3 of the proposed approach (Figure 1) for the Adelaide case study are summarized
in Part A. of Figure 3 and described below. As mentioned above, this process is repeated for each of the
two independent realities for the sake of assessing the utility of the adaptive features of the proposed
approach.

3.3.1. Identification of Diverse Portfolio of Optimal Supply Augmentation Sequence Plans
Problem formulation (Figure 3, Part A, section 1a). A 40 year planning horizon and a 10 year staging interval
are adopted. Therefore, there are five decision stages over the 40 year planning horizon (i.e., 2010, 2020, . . .,
2050). However, as these years correspond to the first year of the 40 year planning horizon, a total time
period of 80 years is considered (i.e., 2010–2050, 2020–2060, . . ., 2050–2090).

The selected objectives include the minimization of the present value (PV) of economic cost and the PV of
greenhouse gas (GHG) emissions. GHG emissions are considered as an objective in addition to the most
commonly used objective of cost minimization due to an increased awareness of the need to reduce the
carbon footprint associated with water supply systems [Wu et al., 2010a, 2010b, 2013; Paton et al., 2014a].
GHG emissions are of particular concern for the southern Adelaide system because water is pumped signifi-
cant distances from the River Murray and because desalination is considered as an alternative source of
water [see Beh et al., 2014; Paton et al., 2013, 2014a, 2014b]. Note that gross GHG emissions are used in this
study. These may be fully or partially offset by the purchase of green power or other carbon offsets.

Both the PV of cost and the PV of GHG emissions consist of two components, namely capital and operating
values. Capital costs and GHG emissions are incurred at the construction phase of a project (e.g., materials
and outlay), while operating values are incurred over the life of a project (e.g., electricity for pumping and
maintenance). A discount rate of 6% is used for the calculation of the PV of cost, as suggested by Wu et al.
[2010b]. In contrast, a discount rate of 1.4% is used for the calculation of the PV of GHG emissions, as this
has been suggested as being appropriate for stabilizing GHG concentrations in the atmosphere within a
desired range [Wu et al., 2010a]. The capital emissions values are computed using embodied energy [Treloar,
1995] and emission factor analysis [Wu et al., 2010a]. Further details are provided in Beh et al. [2014] and
Paton et al. [2013, 2014a, b].

The existing water supply options (i.e., the three reservoirs and supply from the River Murray) are included
in all sequence plans at the beginning of the planning horizon. However, the desalination plant, storm
water harvesting schemes and household rainwater tanks are considered as potential additional water sup-
ply sources at each decision point.
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The production capacity of the Port Stanvac desalination plant is either 50 or 100 GL per annum, with the
option of a 50 GL per annum expansion of the 50 GL per annum plant. Thus, either a 50 or a 100 GL desali-
nation plant can be selected at any of the decision stages, but not both, and the selected desalination plant
cannot be down-sized at later stages. It should be noted that the desalination plant can supply the entire
metropolitan Adelaide region, so it is assumed that 50% of its capacity can supply the southern Adelaide
WSS. Once one of the desalination options has been selected, it cannot be selected again. However, if the
50 GL desalination plant is selected, expansion to full capacity is allowed at one of the subsequent
decision points.

The storm water harvesting schemes considered include Brownhill and Keswick Creek, Sturt River, Field
River and Pedler Creek (Figure 2). The potential supply from these schemes is generally different from year
to year as a result of hydrologic variability, but their estimated annual yields range from 1.6 to 7.0 GL/yr
[Beh et al., 2014]. One or more of the schemes can be selected at any of the decision stages. However, each
scheme can only be selected once. The amount of water supplied by each scheme during each decision
stage is calculated using a simulation model and is a function of rainfall and the interaction with the other
selected sources.

Ten potential rainwater tank capacities are considered, ranging from 1 to 10 kL. The potential supply from
these tanks is generally different from year to year as a result of hydrologic variability, but their estimated
annual yields range from 35 to 47.1 kL/tank/yr [Beh et al., 2014]. It is assumed that rainwater tanks with a
particular capacity can be implemented at any of the decision stages. However, the option to use rainwater
tanks as a source can only be selected once during the planning horizon. In addition, it is assumed that
once a particular rainwater tank capacity option has been selected, this is implemented across all dwellings
as a result of government regulation.

As the quality of the storm water and rainwater is generally not of drinking standard, these sources are
assigned to nonpotable uses, whereas supply from the reservoirs and the desalination plant is chosen to
provide household indoor use. Further details of the mapping of sources to end-uses and how this was rep-
resented in the simulation model are given in Beh et al. [2014] and Paton et al. [2014a, b].

The decision variables corresponding to the sequencing of the above augmentation options used during the
optimization are summarized in Table 1. The estimated yield, capital and unit operating costs and GHG emis-
sions of each water supply options are also given in Table 1 [see Beh et al., 2014]. However, these are only
estimates and the actual values supplied by each source are calculated with the aid of a simulation model
for a particular scenario at a particular decision stage based on the interaction of the different potable and
nonpotable demands and the selected mix of supply sources. As the capacities of most of the water supply
options are fixed (i.e., desalination, storm water harvesting schemes), the discrete decision variables corre-
spond to the decision stage at which a particular option is implemented, ranging from 0 (i.e., the option is
not implemented over the planning horizon) to 5 (i.e., the option is implemented at decision stage 5) (deci-
sion variables 1–4 and 6–9, Table 1). However, in addition to a decision variable for timing, rainwater tanks
also have an integer decision variable corresponding to rainwater tank capacity (decision variable 5, Table 1),
ranging from 1 to 10 kL. It should be noted that the number of rainwater tanks implemented depends on
the time of implementation, as the number of households changes with time due to changes in population.

Table 1. Details of Decision Variable Formulation

Decision
Variable Description

Lower
Limit

Upper
Limit

Estimated
Yield

Capital
Cost ($)

Unit
Operation
Cost ($/kL)

Capital
GHG Emissions

(kgCO2-e)

Unit GHG
Emissions

(kgCO2-e/kL)

1 50 GL desalination plant implementation stage 0 5 25.0 GL/yr 1,347,000,000 1.00 228,538,000 5.41
2 100 GL desalination plant implementation stage 0 5 50.0 GL/yr 1,830,000,000 1.00 237,103,000 5.43
3 50 GL desalination plant expansion implementation stage 0 5 25.0 GL/yr 483,000,000 1.00 8,565,000 5.41
4 Household rainwater tank implementation stage 0 5
5 Household rainwater tank size (kL) 1 10 35.0–47.1 kL/yr 2,181–3,560 0.63–0.78 718–4,635 1.22
6 Brownhill and Keswick Creek storm water harvesting

scheme implementation stage
0 5 6.3 GL/yr 160,025,000 1.23 7,249,000 2.04

7 Sturt River storm water harvesting scheme implementation stage 0 5 7.0 GL/yr 194,193,000 1.23 7,351,000 2.06
8 Field river storm water harvesting scheme implementation stage 0 5 1.6 GL/yr 35,689,000 1.23 3,576,000 6.05
9 Pedler Creek storm water harvesting scheme implementation stage 0 5 5.0 GL/yr 110,682,000 1.23 5,643,000 1.60
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Definition of uncertain variables and scenarios
(Figure 33, Part A, sections 1b and 1c). Popula-
tion, rainfall and temperature are considered
as the uncertain variables (UV1,i, UV2,i, UV3,i)
as they have a direct impact on supply and
demand. As mentioned in section 3.2, in
order to illustrate the benefit of the adaptive
nature of the proposed approach, it is
applied to two realities, each consisting of
different known trajectories of the uncertain
variables up to 2050. Reality 1 has a milder
and Reality 2 a more severe impact on water
supply security in terms of total demand
and climate change conditions (see Table 2).

The changes in population growth and climate change impact used in the two realities are based on esti-
mates from the Government of South Australia [2009] and Australian Bureau of Statistics [2013] to ensure
they are plausible.

For each reality, seven scenarios (S1,i, S2,i, . . ., S7,i) consisting of different population growth and climate
change impacts are used to represent a small number of plausible, but different, future pathways. Scenario
1 represents the best set of plausible future conditions in terms of water supply security with extremely low
projected population growth and the least severe future climate change impact. In contrast, Scenario 7 rep-
resents the worst set of plausible future conditions with respect to water supply security, with extremely
high projected population growth and severe climate change impact. These extremes are considered to
ensure the generation of Pareto-optimal solutions that can cater to a wide range of plausible future condi-
tions. Details of the ranges of the uncertain variables for each of the seven scenarios for each of the two
realities, representing assumed best knowledge at the time of interest, are given in Table 3. As can be seen,
the ranges of the uncertain variables for the different scenarios change over time, thereby representing
transient scenarios, as advocated by Haasnoot et al. [2013] and Kwakkel et al. [2014].

The seven population scenarios for each reality are based on an initial population of 600, 240 for the south-
ern Adelaide region in 2010 [Australian Bureau of Statistics, 2011]. For each reality, the seven time series of
population projections are based on 40 year annual population projections accounting for various assump-
tions of fertility, mortality, net interstate migration and net overseas migration [Australian Bureau of Statis-
tics, 2013].

Table 2. Details of the Two Realities (Assumed Known Future Condi-
tions) Considered (Cumulative Changes)

2020 2030 2040 2050

Reality 1
Population growth 7% 13% 18% 22%
Climate change impact
1. Changes in temperature (�C) 0.25 0.55 0.70 1.00
2. Changes in rainfall 20.5% 21.5% 24.0% 26.0%
Reality 2
Population growth 7% 18% 20% 29%
Climate change impact
1. Changes in temperature (�C) 0.25 0.60 1.00 1.25
2. Changes in rainfall 20.5% 23.0% 26.0% 29.0%

Table 3. Uncertain Variable Options for Each Scenario and Reality (Cumulative Changes)

2010–2050 2020–2060 2030–2070 2040–2080 2050–2090

Population
Growth (%)

Temperature
Change (�C)

Rainfall
Change
(%)

Population
Growth
(%)

Temperature
Change (�C)

Rainfall
Change
(%)

Population
Growth
(%)

Temperature
Change (�C)

Rainfall
Change
(%)

Population
Growth
(%)

Temperature
Change
(�C)

Rainfall
Change
(%)

Population
Growth
(%)

Temperature
Change (�C)

Rainfall
Change
(%)

Reality 1
Scenario 1 22.80 0.80 27.60 21.20 0.94 27.70 213.60 1.06 28.60 235.20 1.16 29.30 269.20 1.25 210.00
Scenario 2 8.00 0.80 27.60 16.40 0.94 27.70 13.20 1.06 28.60 220.00 1.16 29.30 218.40 1.25 210.00
Scenario 3 18.80 1.09 29.90 17.20 1.31 210.40 9.20 1.52 211.80 226.40 1.66 212.80 221.60 1.71 213.10
Scenario 4 29.60 1.09 29.90 8.40 1.31 210.40 9.60 1.52 211.80 6.80 1.66 212.80 0.00 1.71 213.10
Scenario 5 40.80 1.09 29.90 20.00 1.31 210.40 32.00 1.52 211.80 38.80 1.66 212.80 41.20 1.71 213.10
Scenario 6 51.60 1.29 211.60 30.80 1.41 211.90 52.00 1.57 212.20 66.80 1.72 213.10 76.80 1.91 214.30
Scenario 7 62.80 1.29 211.60 34.00 1.41 211.90 58.00 1.57 212.20 75.60 1.72 213.10 88.40 1.91 214.30
Reality 2
Scenario 1 22.80 0.93 29.40 35.20 1.08 210.80 61.20 1.22 212.00 81.20 1.33 213.00 97.60 1.44 213.90
Scenario 2 8.00 0.93 29.40 38.40 1.08 210.80 67.20 1.22 212.00 90.00 1.33 213.00 108.80 1.44 213.90
Scenario 3 18.80 1.26 212.30 39.20 1.51 212.50 70.00 1.75 213.70 96.00 1.92 214.40 118.40 1.97 214.80
Scenario 4 29.60 1.26 212.30 40.00 1.51 212.50 73.20 1.75 213.70 102.40 1.92 214.40 128.00 1.97 214.80
Scenario 5 40.80 1.26 212.30 42.80 1.51 212.50 77.60 1.75 213.70 107.20 1.92 214.40 133.20 1.97 214.80
Scenario 6 51.60 1.49 214.30 45.60 1.63 215.50 81.60 1.81 216.50 112.00 1.98 217.80 138.40 2.19 218.30
Scenario 7 62.80 1.49 214.30 51.60 1.63 215.50 96.80 1.81 216.50 138.00 1.98 217.80 176.80 2.19 218.30
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The seven rainfall and temperature scenarios for each reality are based on different combinations of SRES
scenarios (A1FI, A1T, A2, B1, and B2) and Global Circulation Models (GCMs) (CCSM3, CGCM3.1, CSIRO-MK3.5,
FGOALS-g1.0, MIROC3.2 (hires), MIROC3.2 (medres), and MRI-CGCM2.3.2), as suggested by Paton et al.
[2013] for the case study area. Based on the outputs of different combinations of SRES scenarios and GCMs,
the climate change impacted daily rainfall and evaporation data are obtained by multiplying the 40 year
historical rainfall and evaporation data used in the simulation model by the appropriate climate change fac-
tor obtained from OzClim (http://www.csiro.au/ozclim/), as was undertaken by Paton et al. [2013] for the
case study area.

As discussed in section 2.1, in practice, the scenarios would be developed with the aid of stakeholders with
different backgrounds and from different organizations. However, in this case, the above scenarios are
assumed for the sake of illustration of the proposed approach. However, the scenarios are selected carefully
to represent a range of plausible and very different future conditions. In addition, the different scenarios are
not necessarily equally likely, as some represent combinations of extreme conditions, while others do not.

Determination of portfolio of optimal sequences (Figure 3, Part A, section 1d). WaterCress (Water-Community
Resource Evaluation and Simulation System) is used as the simulation model for calculating the objective
functions and checking demand constraints. WaterCress is a water balance model that enables simulation of
a real life layout of a water supply system as an assembly of its components. Each component has an associ-
ated database which contains all variables (e.g., demand, rainfall, and evaporation) necessary to enable
quantities of water to be estimated and tracked through a specified water supply system [Clark et al., 2002].
WaterCress is chosen for this case study because it (i) can incorporate multiple rainfall time series, (ii) can
model multiple catchment-reservoir relationships, and (iii) can incorporate less conventional water supply
sources (e.g., desalination and recycled water). Furthermore, the model is freely available and was devel-
oped specifically for South Australian conditions. Further details of the WaterCress model developed for the
case study WSS are given in Beh et al. [2014] and Paton et al. [2014a].

Total demand is calculated as a function of population size, per capita demand and commercial and indus-
trial demand. Population is considered as one of the uncertain variables, as detailed above. Average house-
hold size is assumed to be constant at 2.3 people and per capita demand is held constant at 491 L/p/d over
the planning horizon [see Beh et al., 2014], as variability in population has been shown to have by far the
greatest impact on water supply security for this system [Paton et al., 2013].

For each of the two realities, the multiobjective optimization process is repeated for each scenario at
each of the five decision points. The Water System Multiobjective Genetic Algorithm (WSMGA) [Wu
et al., 2010a] is used as the optimization engine, as it is based on the widely used multiobjective
genetic algorithm NSGA-II [Deb et al., 2002], is able to cater to integer decision variables, and has been
used successfully in a number of multiobjective optimization studies of water systems [Paton et al.,
2014b; Wu et al., 2010a, 2010b, 2013]. In order to obtain the best possible values of the parameters con-
trolling GA searching behavior, a number of preliminary trials are conducted. The optimal values are
found to be a population size of 150, a probability of crossover of 0.9 and a probability of mutation of
0.1. Hypervolume convergence is used as the termination criterion, as this is one of the most popular
measures for capturing the diversity, as well as the convergence, of solutions in multiobjective optimiza-
tion problems [Reed et al., 2013; Zitzler, 1999].

3.3.2. Assessment of Performance of Portfolio of Optimal Sequence Plans
For a particular reality and decision stage, all solutions on the Pareto fronts for the seven scenarios are ana-
lyzed and grouped so that each group contains the same augmentation option(s) at the current staging
interval (see section 2.2) and all solutions in each of these groups are assessed in terms of robustness, flexi-
bility and variation of the median and range of the PV of cost and PV of GHG emissions over all scenarios,
as detailed below.

3.3.2.1. Assessment of Robustness and Flexibility
Robustness is calculated in accordance with equation (1) (see section 2.2) (Figure 3, Part A, section 2a). In
equation (1), the performance of the water supply system is considered acceptable when reliability (equa-
tion (3)) is greater than 95% and the maximum vulnerability (equation (4)) is less than or equal to 27% of
demand. This latter figure is equal to the projected savings under Adelaide’s highest Level 5 water restric-
tions [Chong et al., 2009].
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As suggested by Beh et al. [2014] and Paton et al. [2014a, 2014b], hydrologic variability is accounted for by
using 20 replicates of daily stochastic rainfall for each rainfall station. These stochastic rainfall series are gen-
erated for each scenario using the Stochastic Climate Library (SCL) (www.toolkit.net.au/scl). Further details
of the generation of the stochastic rainfall time series are given in Paton et al. [2013] and Beh et al. [2014].
Consequently, the reliability and vulnerability values used in the robustness calculations are the average val-
ues obtained for the 20 stochastic rainfall sequences for the next staging interval as follows:

Reliability5

Xm

k51
Ts
Ti

� �h i
k

m
; (3)

where Ts is the number of years for which supply meets demand, Ti is the length of the selected staging
interval (years), and m is the number of stochastic sequences.

Vulnerability5

Xm

k51
maximum Dy

Sy

� �h i
k

m
; (4)

where Dy is the volume of annual supply shortfall, as obtained from theWaterCressmodel, and Sy is the total
annual demand, as obtained from theWaterCress model.

3.3.2.2. Assessment of Variation in Objectives
The median and range of the PV of cost and the PV of GHG emissions are obtained by calculating the
PV of cost and PV of GHG emissions for all Pareto optimal solutions for all scenarios and calculating the
required statistics for all solutions belonging to a particular group (i.e., with the same solution at the
current staging interval) (Figure 3, Part A, section 2b). This is achieved with the aid of the WaterCress
model.

3.3.3. Selection of Water Supply Augmentation Options to be Implemented
The water supply augmentation option(s) to be implemented at a particular decision stage are selected
based on informal consideration of the trade-offs between the performance metrics (i.e., robustness,
flexibility, median and range of PV of cost, and median and range of PV of GHG emissions), as illus-
trated in value path plots (Figure 3, Part A, section 3). It should be noted that all indices of the perform-
ance metrics are scaled from zero to one, where one is the best and zero the worst value.

It should be noted that in practice, more formal decision-making processes are likely to be used,
including stakeholder input and a clear articulation of the relative importance of the criteria, poten-
tially using some of the methods mentioned in section 2.3. However, this is not been undertaken
here, as the main purpose is to illustrate the information obtained by applying the proposed
approach and the selection of options has been made by weighing up the trade-offs between the
assessment criteria.

3.3.4. Application to Different Decision Stages Under Different Realities (Known Future Conditions)
As shown in Figure 3, steps 1–3 outlined in sections 3.3.1–3.3.3 are implemented for five decision stages
starting at 2010, 2020, 2030, 2040, and 2050, using the different scenarios outlined in Table 3. The
entire process is also repeated for the two independent realities, as explained earlier (see Tables 2 and
3) for the purpose of being able to simulate the performance of the proposed approach under different
actual conditions and enabling the assessment of the utility of the adaptive features of the proposed
approach.

3.4. Evaluation of Adaptive Optimal Sequence Plans
As mentioned in section 3.2, in order to assess the utility and potential benefits of the proposed adapt-
ive approach, the actual performance of the optimal adaptive sequences obtained for the two realities
is compared with that of static optimal sequences obtained for the different scenarios at the beginning
of the planning horizon in terms of optimization objectives and actual water supply security (i.e., reli-
ability and vulnerability) (Figure 4, Part B). It should be noted that for each of the optimal sequence
plans, the NPV of cost and GHG emissions are calculated for the entire planning horizon (as there is a
single plan), while reliability and vulnerability are calculated for each staging interval, as they change
over the planning horizon as different augmentation options come online. In accordance with the over-
all approach outlined in section 3.2, the overall performance of the sequences obtained using the
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proposed adaptive and the benchmark static approaches is compared by averaging the performance
measures over the two realities.

4. Results and Discussion

The results are presented in two sections, including an illustration of the development of the adaptive opti-
mal sequence plans for a single time step (Part A of Figure 3, section 4.1) and the evaluation of the utility of
the adaptive features of the proposed approach (Part B of Figure 3, section 4.2).

4.1. Development of Adaptive Optimal Sequence Plans
In this section, the results for each of the three major steps of the proposed approach (i.e., Steps 1, 2, and 3
in Figures 1 and 3a) are presented for the first decision stage (i.e., 2010) for illustration purposes (sections
4.1.1–4.1.3). The optimal sequences obtained by simulating application of the proposed approach over an
actual period of 40 years (i.e., from 2010 to 2050) for the two different realities are presented in section
4.1.4. The optimal augmentation options for 2020, 2030, 2040, and 2050 for both realities are based on the
types of results presented in sections 4.1.1–4.1.3, which are included as supporting information. It should be
noted that in real life, an optimal sequence, such as that presented in section 4.1.4, would be developed
over 40 years, with application of the three steps in the proposed process and analysis of the results occur-
ring every 10 years, resulting in the selection of the augmentation option(s) to implement at the current
decision stage. In practice, there would only be a single reality and the two different realities are simulated
here for the purposes of assessing the utility of the adaptive features of the proposed approach, as
explained previously.

4.1.1. Identification of Diverse Portfolio of Optimal Sequence Plans (2010–2050)
The Pareto fronts of optimal sequence plans for the seven scenarios for 2010–2050 are shown in Figure 4.
As can be seen, the optimal augmentation sequences required to ensure supply is greater than or equal to
demand for the seven scenarios result in significant differences in the PV of cost and the PV of GHG emis-
sions. This is as expected, as greater supply augmentation is required for the scenarios that include greater
population growth and more severe climate change impacts, resulting in higher PV of costs and PV of GHG
emissions. These increased values of the objective function values are generally due the selection of a larger
number of augmentation options or their implementation at an earlier stage in the planning horizon. Con-
sequently, by using scenarios that represent a wide range of plausible future conditions, a diverse portfolio
of optimal sequence plans is obtained, each representing different trade-offs between the objectives and
different abilities to provide water supply security under a variety of future conditions.

4.1.2. Assessment of Performance of Portfolio of Optimal Sequence Plans (2010)
The Pareto-optimal solutions in Figure 4 contain six unique solutions at the current staging interval (2010–
2020), resulting in six groups of optimal sequence plans, as shown in Table 4. As can be seen, one solution
consists of no augmentation of the existing water supply, while the other five options consist of different

combinations of storm water
harvesting schemes.

The results of the performance
assessment of the six groups of
optimal sequence plans are
given in Figure 6. As can be
seen, there is significant varia-
tion in PV of cost and PV of GHG
emissions when the optimal
sequence plans that are part of
a particular group are exposed
to the conditions represented
by all scenarios. As expected,
robustness increases as the
capacity of the augmentation
options increases. For example,

Figure 4. Trade-off between the present value of GHG emissions and the cost for the
seven projected possible future scenarios (2010–2050).
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group 1 does not have any supply augmentation and therefore has the lowest robustness, groups 2–4
include the addition of a single storm water harvesting scheme, resulting in increases in robustness and
groups 5 and 6 include the addition of two storm water harvesting schemes, resulting in maximum levels of
robustness. As can be seen, the flexibility of the augmentation options in Table 4 is highly variable, with
some solutions part of optimal sequences for all seven scenarios, while others are only part of optimal
sequence plans for two of the seven scenarios.

4.1.3. Selection of Water Supply Augmentation Option(s) to be Implemented (2010)
The value path plot corresponding to the results in Figure 5 is given in Figure 6. As can be seen, although
the optimal sequence plans in groups 1 (~P1) and 2 (~P2) perform very well in terms of the median of PV of
cost and flexibility, they perform poorly across the other criteria, with clearly the worst performance in terms
of the range of the PV of cost, the range of the PV of GHG emissions and robustness. The optimal sequence
plans in groups 4 (~P4) and 6 (~P6) have high levels of robustness, but this comes at the expense of high
median PV of cost. Although these solutions perform well in terms of the range of PV of cost, they perform
poorly in terms of the median and range of PV of GHG emissions and relatively poorly in terms of flexibility.
The optimal sequence plans in groups 3 (~P3) and 5 (~P5) tend to perform well across all performance criteria.
They clearly outperform all other groups in terms of the median and range of the PV of GHG emissions and

Table 4. Unique Solutions at the Current Staging Interval (2010–2020) for Decision Stage 1

Group

Decision Stage at Which to Implement Water Supply Options for t5 2010 (15 Implemented at t5 2010)

50 GL
Desalination

Plant

100 GL
Desalination

Plant

50 GL
Desalination
Expansion

Rainwater
Tank

Tank
Size

Brownhill and
Keswick Creek
Storm Water

Harvesting Scheme

Sturt River
Storm Water

Harvesting Scheme

Field River
Storm Water

Harvesting Scheme

Pedler Creek
Storm Water

Harvesting Scheme

~P1
~P2 1
~P3 1
~P4 1
~P5 1 1
~P6 1 1

Figure 5. Results of performance assessment for groups with the same solution at 2010.
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perform well in terms of robustness and median and range of PV of cost. Their performance in terms of flex-
ibility is at the lower end of the spectrum, but the plans that perform best in terms of flexibility tend to per-
form worst in terms of robustness.

As discussed previously, the selection of which option to implement at the current decision stage depends
on the priorities of the stakeholders involved. In the absence of such stakeholder input, for the purposes of
illustrating the proposed approach in this paper, the sequence plans belonging to group 3 are selected as
they provide good trade-offs between the performance criteria. Consequently, the Brownhill and Keswick
storm water harvesting scheme is chosen to be implemented at the first decision stage and fixed for the
subsequent decision stages (see Table 4).

4.1.4. Selected Optimal Sequence Plans
The optimal sequences obtained by applying the proposed approach under the two simulated realities over
the entire planning horizon and their corresponding objective function values are given in Table 5. As men-
tioned previously, each of these sequences would be developed over a period of 40 years in practice, going
through the process illustrated in sections 4.1.1–4.1.3 for the first decision stage (see supporting information
for results for other decision stages). As can be seen, there are significant differences between the two optimal
sequences as a result of the different actual and forecast populations, rainfalls and temperatures that charac-
terize the two realities, as well as the ability of the proposed approach to adapt to these different conditions
over time. This confirms that the proposed approach is successful in adapting to changing conditions.

For both simulated realities, the 50 GL desalination plant and the Brownhill and Keswick storm water har-
vesting schemes are implemented. However, the desalination plant is implemented earlier for Reality 2. In
addition, the 50 GL desalination plant expansion and the Sturt River and Pedler Creek storm water harvest-
ing schemes are implemented under the more severe conditions of Reality 2 in order to be able to satisfy
demand. As can be seen from Table 5, the NPV of cost of the optimal sequence plan for Reality 2 is about
1.5 times that of the optimal sequence plan for Reality 1, whereas the corresponding ratio of the NPV of
GHG emissions is approximately 1.2.

4.2. Utility Adaptive Features of Proposed Approach
The average values of the reliability and vulnerability of the water supply systems corresponding to the imple-
mentation of (i) the sequences obtained using the proposed adaptive optimal sequencing approach and (ii)
the fixed optimal sequence plans for each scenario under the actual conditions experienced as part of the two
simulated realities, with the associated average PV of cost and GHG emissions are shown in Table 6. As can be
seen, the performance of the sequences obtained using the proposed adaptive approach is very good

Figure 6. Results of performance assessment for decision stage 1 (realities 1 and 2). The value path of the selected option is highlighted in red.

Water Resources Research 10.1002/2014WR016254

BEH ET AL. VC 2015. American Geophysical Union. All Rights Reserved. 19



compared with that of the static approaches. While the NPV of cost and GHG emissions of the static sequen-
ces developed for scenarios 1 (S1) and 2 (S2) are significantly less than those of the adaptive sequences, the
corresponding water supply security is not acceptable, with average reliabilities of less than 100% in all but
one of the five staging intervals, ranging from 62 to 85%. Similarly, the average vulnerabilities (demand short-
falls) associated with the three staging intervals for which reliability is less than 100% ranges from 11.4 to
16.4%. In contrast, the water supply security of the adaptive plan is excellent, with 100% reliability in three of
the five staging intervals and average reliabilities of 92 and 98% for the other two staging intervals and corre-
sponding demand shortfalls of only 3 and 0.5%, respectively. In order to achieve comparable (although
slightly worse, see Table 6) levels of water supply security when static sequence plans are considered (S4), the
PV of cost increases by $329.77 million (17.4%) and the PV of GHG emissions by 1.25 MtCO2-e (9.4%). In order
to achieve better water supply security than that afforded by the adaptive plans (100% reliability for all stag-
ing intervals, S6), the PV of cost increases by $982.31 million (51.7%) and the PV of GHG emissions by 2.31
MtCO2-e (17.7%). In addition, when using the static approach, it is unclear which of the seven sequences to
implement. Consequently, these results clearly demonstrate the advantage of using the proposed adaptive
approach, compared with the corresponding static approach.

5. Summary and Conclusions

In this paper, an adaptive, multiobjective optimal sequencing approach for urban water supply augmenta-
tion under deep uncertainty is introduced. As part of the approach, a diverse portfolio of optimal sequence
plans is developed for different transient future scenarios using multiobjective evolutionary algorithms.

Table 5. Optimal Sequences for the Two Simulated Realities Considered

Optimal Sequence for Reality 1 and Optimal Sequence for Reality 2

50 GL
Desalination

Plant

100 GL
Desalination

Plant

50 GL
Desalination
Expansion

Rainwater
Tank

Tank
Size

Brownhill and
Keswick
Creek

Storm Water
Harvesting
Scheme

Sturt River
Storm
Water

Harvesting
Scheme

Field River
Storm Water
Harvesting
Scheme

Pedler
Creek
Storm
Water

Harvesting
Scheme

PV of
Cost

($ million)

PV of
GHG

Emissions
(MtCO2-e)

Optimal
adaptive
plan for
Reality 1

3 0 0 0 0 1 0 0 0 1,537.26 12.15

Optimal
adaptive
plan for
Reality 2

2 0 5 0 0 1 3 0 3 2,262.42 14.44

Table 6. Average Performance of Systems Corresponding to the Implementation of Different Optimal Sequence Plans for Realities 1 and 2

PV of Cost
($ million)

PV of
GHG Emissions
(MtCO2-e)

2010–2020 2020–2030 2030–2040 2040–2050 2050–2060

Reliability
(%)

Vulnerability
(%)

Reliability
(%)

Vulnerability
(%)

Reliability
(%)

Vulnerability
(%)

Reliability
(%)

Vulnerability
(%)

Reliability
(%)

Vulnerability
(%)

Optimal fixed plan
(Scenario 1)

900.10 9.74 100 0.0 85 11.4 75 13.25 62 16.4 68 14.15

Optimal fixed plan
(Scenario 2)

954.95 9.92 100 0.0 85 11.4 75 13.25 62 16.4 68 14.15

Optimal adaptive plan 1899.84 13.30 100 0.0 98 0.5 100 0.0 92 3.0 100 0.0
Optimal fixed plan

(Scenario 3)
2228.51 13.57 100 0.0 100 0.0 100 0.0 92 2.95 83.5 6.35

Optimal fixed plan
(Scenario 4)

2229.61 14.55 100 0.0 100 0.0 100 0.0 92 2.95 92 2.2

Optimal fixed plan
(Scenario 5)

2254.22 14.60 100 0.0 100 0.0 100 0.0 92 2.95 92 2.2

Optimal fixed plan
(Scenario 6)

2882.15 15.66 100 0.0 100 0.0 100 0.0 100 0.0 100 0.0

Optimal fixed plan
(Scenario 7)

3187.10 16.59 100 0.0 100 0.0 100 0.0 100 0.0 100 0.0
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Next, the robustness and flexibility of the components of the optimal sequence plans that have to be fixed
at the current staging interval is assessed for the time period between now and the first opportunity when
further changes can be made. In addition, the variability of the objective functions over the entire planning
horizon is assessed and the solution that provides the best trade-offs between these criteria, in accordance
with stakeholder preferences, is selected. This process is repeated for the next decision stages, when
updated information is available. In this way, the approach is able to successfully balance the need for the
development of optimal longer-term plans under deep uncertainty with the need to be able to respond to
changes as they arise and to provide robust solutions between decision stages. It also provides a computa-
tional method in support of the successful implementation of dynamic adaptive planning as a paradigm for
dealing with deep uncertainty.

In order to demonstrate the utility of the proposed approach, it is applied to the optimal sequencing of
urban water supply augmentation options for a case study based on the southern Adelaide water supply
system from 2010 to 2060. In order to illustrate the impact of the adaptive nature of the approach, two dif-
ferent simulated realities are considered. The results indicate that the approach is successful in adapting to
changing conditions, while optimizing longer-term objectives and satisfying water supply security con-
straints along the planning horizon, in highly uncertain planning environments. This is evidenced by the dif-
ferences in the optimal solutions obtained for the different realities, as well as the favorable performance of
the adaptive plans compared with those fixed at the beginning of the planning horizon.

Despite the methodological advances of the proposed approach, there remain a number of avenues for future
improvement. First, as mentioned previously, informal approaches to scenario development and the determi-
nation of which solution to implement are used. Consequently, the value of using more formal approaches
for these steps should be explored, especially for more complex problems and for real-life applications. Sec-
ond, the problem formulation (e.g., objectives, constraints, and decision variables) is assumed to remain con-
stant throughout the planning horizon, which is unlikely to be the case. Consequently, the incorporation of
approaches that enable the problem formulation to be changed over time should be explored [see Maier
et al., 2014; Piscopo et al., 2015]. Third, as discussed in sections 2.5, based on the philosophical approach that
underpins the proposed method, the solutions obtained might not be mathematically optimal. It would be
interesting to assess the impact of this in future studies by comparing the results obtained using the proposed
approach with that of Kang and Lansey [2014], for example. Finally, although the approach was presented and
applied in the context of urban water supply augmentation, it is also applicable to a number of other water
resources scheduling and sequencing problems, as mentioned previously. Consequently, it would be useful to
tailor and apply the approach presented in this paper to other problem domains.
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