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Abstract

To conduct neutrino astronomy with the IceCube detector at the South Pole,
the direction of the incoming neutrino must be known accurately to within one
degree. When a muon neutrino interacts in the ice at the South Pole, it produces
a muon which produces Cherenkov light as it travels through the detector. Using
the direction of the muon, the direction of the original neutrino can be determined
and used for astronomy. Millipede is an algorithm used to numerically determine
the properties of the muon track by making predictions about the light signal
seen in the detector and checking how this compares to the observed signal using
a likelihood maximisation.

With this algorithm, the muon track direction is expected to be resolved to
within one degree. However, problems have been encountered with simulated
muons where millipede finds a direction which is very different from the true
direction or millipede fails to reconstruct the event. After analysis of the
likelihood grid scans of some of these events, the problems with millipede seem to
be due to the minimiser finding a local minimum in the likelihood surface rather
than the desired global minimum. These local minima arise from fluctuations
in the likelihood surface. These fluctuations were observed in all dimensions
including track position.

The source of these fluctuations was investigated in simulations by first using
millipede’s predictions as the input waveforms. Poisson fluctuations were then
added and produced a less accurate likelihood scan with more fluctuations.
Finally, the effect of photomultiplier after-pulses was investigated by removing all
signal more than 3µs after the median time. Removing this signal dramatically
improves some of the likelihood scans but many show no change.

After this analysis, the main factors causing these fluctuations in the likelihood
surface seem to be a combination of bin-wise fluctuations in the waveform and
the presence of after-pulses which are not taken into account by millipede. The
after-pulses and other late light seem to be the dominant cause across a range
of energies, though generally high energy events, while the fluctuations are the
dominant cause for the low energy events.
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Chapter 1

Neutrinos

1.1 Background and Discovery
Neutrinos are electrically neutral, almost massless particles which interact only
weakly with matter. Due to this, they pass through most matter unaffected.
This means there is very little direct evidence of their presence and they are
therefore very hard to detect. The existence of the neutrino was first predicted
in 1930 by Wolfgang Pauli to explain the perceived violation of conservation laws
in radioactive β-decay [1] which is divided into two types: β+ and β− decay. In
β− decay, a nucleus has an excess of neutrons and is considered unstable. This
causes one of the neutrons to transform into a proton to produce a more stable
nucleus. Since the proton has positive electric charge and the neutron is neutral,
this process emits a negatively charged electron or β− particle to conserve the
total charge. In β+ decay, the opposite reaction occurs. A proton transforms into
a neutron which emits a positron (or anti-electron) to conserve the positive charge.

These processes were observed by Pauli who measured the “daughter” products
of the decay. It soon became clear that certain properties in the reaction were
not being conserved. While the electron and positron conserved the total charge,
Pauli noticed that the total energy and angular momentum of the parent and
daughters were not the same. This led to the theory that the missing energy and
angular momentum were being carried away by an as-yet undetected particle.
This particle had to be electrically neutral since charge was already accounted
for and it had to have a very low interaction probability to explain its lack of
detection. This particle was later named the neutrino and denoted by the Greek
letter ν. The equations for β− and β+ decay then became the following:

n→ p+ e− + ν̄e (1.1)
p→ n+ e+ + νe (1.2)

where νe is the electron neutrino and ν̄e is the anti-electron neutrino. It was
thought, for many years, that the neutrino was completely undetectable and was
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2 CHAPTER 1. NEUTRINOS

therefore not falsifiable. However, in 1956, Clyde Cowan and Frederick Reines
conducted a successful experiment to directly detect the anti-neutrino [2]. In
this experiment anti-neutrinos were created through β-decay to interact with a
large proton target. Though neutrinos interact very rarely with matter, if there
are enough of them present, the probability of at least one interaction increases
significantly. When the anti-neutrino interacts with the proton, it does so by a
weak interaction to produce a positron and neutron.

ν̄e + p→ n+ e+ (1.3)

This positron then quickly encounters an electron and, as they are each other’s
anti-particle, they annihilate into pure energy. Since the electron and positron
have a known rest energy of 511 keV (511×103 electron volts), double this
amount of energy is emitted in the form of two gamma rays travelling in opposite
directions. A measurement of 511 keV gamma rays can then be used to confirm
the annihilation took place. This verified the reaction in equation 1.3 occurred
and confirmed the existence of the (anti) neutrino.

1.2 Neutrinos in the Standard Model
The standard model of particle physics is a theory used to describe the different
types of subatomic particles and the forces between them. In the standard model,
all matter is made up of “elementary” particles which are defined as having
no known sub-structure [3]. These particles are divided into two distinct types
known as fermions and bosons. The fermions obey laws known as Fermi-Dirac
statistics while the bosons obey Bose-Einstein statistics.

In this model, there are four fundamental forces: the gravitational force, the
electromagnetic force, the weak nuclear force which causes radioactive decay, and
the strong nuclear force which holds the nucleus together. The gravitational force
acts on any particle with mass while the electromagnetic force acts on any particle
with electric charge. Each of these forces is thought to be carried by a different
boson which is exchanged between interacting particles. Three of the forces now
have associated bosons whose existence has been confirmed, though the “graviton”
which carries gravity has not yet been directly detected and remains hypothetical.

The fermions are themselves divided into quarks and leptons. The quarks can
experience all four of the forces while the leptons are unaffected by the strong
nuclear force. The standard model is summarized in table 1.1.
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Fermions Bosons
Generation I II III
Quarks up charm top γ

down strange bottom g
Leptons νe νµ ντ Z0

e µ τ W±

Table 1.1: Table showing particles in the standard model with fermions on the
left and bosons on the right.

Here, νe, νµ and ντ are the three types or “flavours” of neutrinos which have
corresponding charged leptons, the electron (e), the muon (µ) and the tau (τ).
The photon, denoted γ, is a particle of light which carries the electromagnetic
force and g denotes the gluon which carries the strong nuclear force and holds
quarks together to form hadrons. The neutral Z0 boson and the charged W+

and W− bosons carry the weak nuclear force.

The fermions are divided into three “generations” of matter of increasing
mass and instability. The up, charm and top quarks have a charge of +2/3
times the charge of the proton while the down, strange and bottom quarks
have a charge of -1/3. Quarks can combine in groups of three to produce
composite particles called baryons. Every particle in the standard model has
its corresponding anti-particle which has the same mass but opposite electric
charge. A quark can join with an anti-quark to form an unstable particle
known as a meson. All matter we see in our everyday lives is made up of the
first generation of fermions. The proton is a baryon made up of two up quarks
and a down quark while the neutron is made of two down quarks and one up quark.

Since leptons don’t experience the strong nuclear force, the electron, muon
and tau can only be affected by the weak, electromagnetic and gravitational
forces, though gravity is by far the weakest. Since the neutrinos have no charge,
they are unaffected by the electromagnetic force so can only interact by the
weak force and gravity if they have mass. Neutrinos are now believed to have
mass but, as with all subatomic particles, it is so low that the effect of gravity
is negligible in most cases. This leaves only the weak force having a noticeable
effect on the neutrinos.

1.3 Neutrino Interactions
Neutrinos can interact by the weak force in either charged or neutral current
interactions. In the neutral current, a Z0 boson is exchanged between particles
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but the particle types remain the same. The neutral current interaction is depicted
in a Feynman diagram in figure 1.1.

Figure 1.1: Feynman diagram showing a neutral current interaction between a
neutrino and one of the quarks of a neutron.

In the charged current interaction, a W+ or W− is exchanged which changes
the neutrino into its corresponding charged lepton. This is shown for both the
neutrino and anti-neutrino in figure 1.2.

Figure 1.2: Feynman diagram showing a charged current interaction between a
neutrino (or anti-neutrino) and a baryon through the exchange of a W boson.

The charged current interaction results in the production of a charged lepton
as shown in equation 1.3 which interacts more readily so can be directly detected.

1.3.1 Lepton Family Conservation
When a neutrino interacts by the charged current interaction, quantities such
as charge, lepton number and baryon number are always conserved. Lepton or
baryon number is simply the number of leptons or baryons before and after the
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interaction. In other words, if a neutrino (a lepton) interacts with a neutron (a
baryon) there will always be one lepton and one baryon left over as the interaction
products. However, another number which is almost always conserved is lepton
family number. This is a number indicating how many leptons of an individual
family (e, µ or τ) are present before and after the interaction. When the lepton
family number is conserved, this means that, if an electron neutrino goes through
the interaction in figure 1.2, it always produces an electron rather than a muon
or tau. This is summarized below for the charged current interactions:

νl +N → X + l− (1.4)

where N is a nucleon (proton or neutron), X is a baryon whose charge is one
unit greater than N and l− is a charged lepton (e−, µ− or τ−) with νl as its
corresponding neutrino. When the anti-neutrinos interact, they produce the
positive anti-leptons:

ν̄l +N → X + l+ (1.5)

where, this time, X is a baryon whose charge is one unit less than N and l+ is a
charged anti-lepton (e+, µ+ or τ+).

1.4 Summary
To summarise, the neutrino is electrically neutral and interacts weakly with
matter. Although interactions with matter are rare, it is possible, given enough
time, to detect the neutrino through these interactions. Since the neutrino is
unaffected by magnetic fields, it travels in a straight line until the interaction
with matter. This means, when the neutrino is detected, information relating to
its origin is preserved.





Chapter 2

High Energy Astrophysics

High energy astrophysics is the study of the most violent and active regions of
the universe, investigating the energetic particles produced by objects in these
regions. These particles allow a better understanding of these objects which may
not be provided by optical light and other low energy radiation.

2.1 Cosmic Rays
High energy astrophysics primarily deals with cosmic rays which are thought
to mainly consist of high energy protons but can also be heavier atomic nuclei.
These particles travel through space at near the speed of light and can have
energies up to the order 1020 eV, which is 100 billion times its rest energy. The
highest energy cosmic ray ever detected had energy 3.2× 1020 eV [4].

2.1.1 Cosmic Ray Acceleration
When cosmic rays are produced in an active region such as a supernova remnant,
they then have to reach the high energies at which we detect them. The favoured
mechanism is known as Fermi acceleration, proposed by Enrico Fermi in 1949. In
Fermi’s original theory, (known as second order Fermi acceleration) the cosmic
ray is accelerated through collisions with interstellar clouds. These clouds act
as magnetic mirrors reflecting the particle back and forth [5]. If the cloud is
moving towards the particle when the particle collides (a head-on) collision, the
particle gains energy from the reflection. If the cloud is moving away from the
particle, the particle loses energy in the collision. The individual energy gains
from head-on collisions are of the order v/c where v is the speed of the cloud.
When the energy gain is averaged, the head-on collisions are slightly favoured
so the average is non-zero but, due to the cases where the particle loses energy,
the resultant average is now of the order (v/c)2. The average energy gain can be

7
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shown (see appendix A.1.1) to be〈
∆E
E

〉
= 4

3

(
v

c

)2
(2.1)

where ∆E is the increase in energy, E is the current energy, and v is the speed of
the cloud. Due to the slow speed of the cloud relative to the speed of light, the
value of (v/c) will be very small which means, due to this value being squared,
the energy gain will be extremely small.

A new mechanism was proposed known as first order Fermi acceleration. In
this model, cosmic rays are accelerated across a strong shock front such as those
produced in supernova remnants and in the jets of active galaxies. The particle
interacts with magnetic irregularities on either side of the shock. If the material
is moving very fast (close to the speed of light) which is likely in these active
regions, the cosmic ray can gain a large amount of energy with each collision.
The fractional energy gain depends on the angle of the collision relative to the
motion of the material. The average gain over a round trip can be shown (see
appendix A.1.2) to be 〈

∆E
E

〉
= 4

3

(
v

c

)
(2.2)

where v is the speed at which material is ejected from the supernova. Since the
value (v/c) isn’t raised to the second power as it was in second order acceleration,
the average energy gain will not be as small.

With each collision and acceleration, there is a small probability the cosmic ray
will escape the acceleration region and travel through space. Therefore, with more
crossing across the shock, the individual particles gain energy but the number of
particles gaining energy decreases. From this escape probability and the fractional
energy gain, the differential energy spectrum can be shown (see appendix A.1.3)
to be

N(E) ∝ E−2 (2.3)
which predicts the cosmic ray intensity emitted from the source.

2.1.2 Cosmic Ray Propagation Through Space
Magnetic Fields

When cosmic rays travel through space, they encounter galactic and intergalactic
magnetic fields which can deflect charged particles. The amount of bending is
related to a quantity known as the radius of gyration or gyro-radius [6] and is
given by

rg = p

ZeB
(2.4)
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where p is the cosmic ray momentum, Z is the atomic number, e is the charge of
an electron and B is the magnetic field strength. For high energy cosmic rays the
energy is approximately E = pc so the radius is given by

rg = E

ZecB
(2.5)

The amount of bending by a magnetic field is inversely proportional to this
radius. If the radius is infinite, there is no bending. From the equation, for
a given energy, we see that an iron nucleus will be deflected more by a given
magnetic field since it has a higher atomic number than a proton which will
reduce the gyro-radius. To do cosmic ray astronomy the direction of the cosmic
ray’s source must be accurately determined. If there is a great deal of bending,
the direction of the cosmic ray when it arrives at Earth will be very different
from the actual direction to the source.

For this reason, cosmic ray astronomy uses particles which have a large
gyro-radius. This is achieved if the cosmic ray has very high energy. For ultra
high energy protons (above about 1019 eV), the gyro-radius has values of the order
10kpc for galactic magnetic fields and 10Mpc for intergalactic magnetic fields. In
these cases, the bending is small enough that particle astronomy can be attempted.

The GZK Effect

When cosmic rays travel through the universe, they can interact with photons
from the cosmic microwave background (CMB) which is a low energy background
radiation left over from the beginning of the universe. If a cosmic ray photon has
energy greater than about 5× 1019eV, it can interact with a CMB photon which
excites the proton to a ∆+ baryon which can then decay back to a proton and
neutral pion composed of a quark and its anti-quark or a neutron and a positive
pion composed of an up quark and anti-down quark:

γCMB + p→ ∆+ → p+ π0 (2.6)

γCMB + p→ ∆+ → n+ π+ (2.7)
In this process, the proton loses energy. This process repeats until the interaction
probability becomes insignificant again (i.e. when the proton energy drops below
about 5×1019eV.) This energy is known as the Greisen-Zatsepin-Kuz’min or GZK
limit which puts an upper limit on the energy of cosmic rays from distant sources
which can be detected on Earth [7].

2.2 Production of Secondary Particles
High energy cosmic rays can interact with surrounding material near where they
were produced to create secondary particles which also travel out at high energy.
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For example, a cosmic ray proton can interact with a background proton or
neutron to produce charged or neutral pions [8]:

p+ (p, n)→ p+ (p, n) + (π0, π±) (2.8)

where the π− is composed of a down quark and anti-up quark.
Pions are also created when the proton strikes a background photon which elevates
the proton to the excited ∆+ state which decays to a proton or neutron:

p+ γ → ∆+ → (p, n) + (π0, π+) (2.9)

2.2.1 Neutral Messenger Particles
Since cosmic rays can be bent by the magnetic fields and their energy is capped
at the GZK limit, this puts an overall limit on the resolution of the cosmic ray
direction. It is, therefore, useful to search for neutral particles which originate
from the same place as cosmic rays. Since these particles have no charge, they
experience no magnetic force and won’t be deflected by the magnetic fields
allowing them to point directly back to their sources.

The pions produced from cosmic ray interactions are extremely unstable and
decay in a matter of nanoseconds by various processes. The neutral pion decays
when the quark and anti-quark annihilate to form two gamma rays:

π0 → γ + γ (2.10)

The positive pion decays to an anti-muon and a muon neutrino to conserve lepton
family number. Similarly, the negative pion decays to a muon and anti-muon
neutrino:

π+ → µ+ + νµ (2.11)
π− → µ− + ν̄µ (2.12)

The muons are also unstable and decay after about 2 microseconds to an electron
or positron and corresponding neutrinos:

µ+ → e+ + νe + ν̄µ (2.13)

µ− → e− + ν̄e + νµ (2.14)
It should be noted that, if the photon in equation 2.9 is a CMB photon, this is
the GZK effect. The threshold energy of this proton-photon interaction implies
the neutrino will have very high energy. These high energy neutrinos will produce
a very large light signal in a detector so would require a large detector volume.

Neutrinos can also be produced if a neutron is created as shown in
equation 2.8 or 2.9. A free neutron is unstable and will decay by β− decay
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as shown in equation 1.1 with a half life of about 10 minutes. This provides
another source of production for anti-electron neutrinos. From these decay
chains, neutrinos are produced in the same region as cosmic rays and gamma
rays so all three can be used to investigate these regions. Gamma rays can also
be produced from inverse Compton scattering of electrons. This production
mechanism of gamma rays is known as the “leptonic” source as opposed to the
“hadronic” source where they are produced by pions.

Both gamma rays and neutrinos have the advantage over cosmic rays that they
are unaffected by magnetic fields and can point back to their sources, however,
gamma rays have their limitations. Since gamma rays interact more readily
with matter and radiation, over cosmological distances, they will be absorbed
by the intergalactic medium. Neutrinos, by contrast, have a very low interaction
probability. This means neutrinos have the added advantage of pointing back
over cosmological distances to sources in the early universe. The propagation of
cosmic rays, gamma rays and neutrinos is summarised in figure 2.1.

Figure 2.1: Simple example of particles travelling to Earth. In this example,
the cosmic ray path is significantly curved and the gamma ray is eventually
absorbed. In this example, shown over a cosmological distance (∼1000Mpc),
only the neutrino arrives at Earth and preserves information about the source
position.

Neutrino Oscillations

As neutrinos travel through space, it is thought that they “oscillate” between their
three flavours: electron, muon and tau. This means that, given enough time, a
neutrino of a particular flavour can change into a neutrino of a different flavour.
This is due to the mass eigenstates of the neutrinos being different from the flavour
eigenstates. When a neutrino is created, it has mass but the mass is so low that
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it can’t be resolved. For this reason, the mass of a single neutrino can be thought
of as a superposition of the mass states of the three flavours as shown below:

|να〉 =
3∑
i=1

U∗αi|νi〉 (2.15)

and similarly for the anti-neutrinos:

|ν̄α〉 =
3∑
i=1

Uαi|ν̄i〉 (2.16)

where |να〉 is a neutrino flavour eigenstate for a neutrino of definite flavour
(e, µ or τ) and |νi〉 is a neutrino of definite mass. The coefficient U is a matrix and
U∗ is the transpose of its complex conjugate [9]. This shows that, while a neutrino
can have definite flavour, this does not mean it has definite mass. Over time, the
mass eigenstates vary according to the time dependent Schrödinger equation to
give a plane wave solution of the form

|νi(t)〉 = e−i(Eit−~pi·~xi)|νi(0)〉 (2.17)

where Ei is the energy of the eigenstate, ~pi is its momentum and ~xi is the
displacement from the starting point. If the neutrinos are travelling close to
the speed of light, this can be simplified to show the oscillation for a neutrino
having travelled a distance L ∼ ct:

|νi(L)〉 = e−
im2

i
L

2E |νi(0)〉 (2.18)

Since each mass eigenstate has different mass mi, these wave functions propagate
at different speeds. As the flavour eigenstates are superpositions of the mass
eigenstates, the reverse is also true that the mass eigenstates are superpositions
of the flavour eigenstates. Since the mass eigenstates move at different speeds,
it is possible for these “waves” to constructively interfere at certain points giving
a high probability of observing a specific neutrino flavour which may not be the
same as the original neutrino flavour. These probabilities are summarised in the
plot in figure 2.2.
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Figure 2.2: Plot showing probabilities of observing each flavour given a starting
electron neutrino [10].

Given enough distance to travel, the relative abundances of νe, νµ and ντ
arriving at Earth could be quite different from their values at the source. These
oscillations are thought to be the most likely source of ντ .

2.3 Particle Detection On Earth

2.3.1 Cherenkov Radiation
High energy cosmic rays are detected on Earth through the secondary particles
they create when they interact with the atmosphere. These interactions produce
many charged particles with extremely high energy which means they are
travelling very close to the speed of light c. However, when they move through
the atmosphere, or water, they are moving through a material where the speed of
light is reduced by a factor n, the refractive index. The refractive index is 1.003
for air and 1.33 for water which means, in air, light travels at 99.7% its vacuum
speed and in water, it travels 75% of the vacuum speed.

When a charged particle moves through a polarisable material, the particle’s
electric field causes the molecules in the medium to become polarised. If the
particle is travelling slowly through the medium, this disturbance relaxes back
into equilibrium as the particle passes. However, if the particle is travelling faster
than the response speed of the medium given by c/n, there is not enough time
for the molecules to become unpolarised as the particle passes through. This
causes the disturbance to remain in the medium and the energy stored radiates
out as a coherent shock wave [11], as shown in figure 2.3.
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Figure 2.3: Diagram showing light spheres produced by a charged particle,
forming a Cherenkov cone. In time t, the light travels a distance of ct/n while
the particle travels a larger distance of vt.

This effect is analogous to a sonic boom generated by objects moving faster
than sound. For particles travelling at approximately c, the critical angle θc in
figure 2.3 is given by

cosθc = 1
n

(2.19)

This means, for a denser medium, θc has a higher value meaning the cone is more
compact and directional.

2.3.2 Detection Methods
Air Showers

Cosmic rays are detected on Earth through the extensive air showers produced
when they enter the atmosphere [12]. When a cosmic ray (e.g. a proton) collides
with an air molecule, it loses energy and produces secondary particles such as
pions which decay to muons through the decay equations outlined above. Due to
the high energy of the incident particle, numerous other particles can be created
from this energy. By the time they reach the ground, the shower can contain
up to 1010 particles which are spread out over an area of the order 10 km2 for
an incident particle of 1019 eV. A typical example of a cosmic ray air shower
is shown in figure 2.4. The air shower is divided into muonic, hadronic and
electromagnetic components.

Cosmic ray detectors such as the Pierre Auger Observatory in Argentina use
a large array of water tanks which detect the Cherenkov light produced by these
particles as they pass through, providing information about the direction and
energy of the shower. Pierre Auger also has fluorescence detectors which detect
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Figure 2.4: Diagram showing muonic, hadronic and electromagnetic components
of an air shower caused by a primary hadron [13].

the optical light emitted in the air when a particle excites an air molecule and
the molecule drops back to its ground state. This allows a study of the shower
as it passes through the atmosphere before reaching the Cherenkov tanks.

Gamma rays produce similar air showers when they interact with the
atmosphere. The High Energy Stereoscopic System (H.E.S.S.) observatory in
Namibia has an array of telescopes which detect the Cherenkov light emitted by
the gamma ray air shower as it passes through the atmosphere. Using the signals
received at each telescope, the three dimensional structure and direction of the
air shower can be determined.

Gamma ray air showers are distinguished from cosmic ray air showers since
the shower is dominated by its electromagnetic component. The gamma ray
produces an electron-positron pair which produce more gamma rays through
bremsstrahlung which then produce more electron-positron pairs. This type of
shower has fewer fluctuations and is typically more predictable than the cosmic
ray air shower.

Neutrino Detection

Neutrino detection relies on rare neutrino interactions with matter. To ensure a
detection of a neutrino, a detector must be very large such that the probability
of a neutrino interacting in the detector’s volume is increased. A large volume
detector is also necessary to observe high energy neutrinos. The interaction
products of these neutrinos typically travel large distances within the detector so
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a large volume is required to see the entire signal. Neutrino detectors are mainly
built underwater or in ice as they are dense but transparent media and light
travels only 75% its vacuum speed allowing the detection of Cherenkov light.
However, since neutrinos are neutrally charged, they can’t polarise the material
they move through and can’t produce Cherenkov light on their own.

If a neutrino interacts with a proton or neutron in a charged current
interaction as shown in figure 1.2, it will produce its corresponding charged partner
(e−, µ− or τ−). Since this new particle has charge and is moving very close to the
vacuum speed of light, it can polarise the medium and produce Cherenkov light.
The pattern of Cherenkov light seen in the detector can then be used to determine
the path of the charged lepton. If these interactions happen at high energy, there
will be almost no change in the particle trajectory after the interaction. Therefore,
the direction of the charged lepton reveals the direction of the original neutrino.

2.4 Summary
High energy astrophysics has allowed studies of extremely active regions in the
universe. However, there are limitations in using cosmic rays and gamma rays
to probe these regions. Cosmic rays are charged particles and, therefore, have
their paths altered by magnetic fields meaning the cosmic ray detected at Earth
may not point back to its source. Gamma rays travel in straight lines but are
more readily absorbed by the intergalactic medium making their sources difficult
to observe over cosmological distances.

Neutrinos travel in straight lines and pass through most matter unaffected
making them ideal particles for pointing back to their sources over large distances.
However, to achieve neutrino astronomy, the neutrino must interact in the detector
volume. Since neutrinos only interact weakly with matter, they are very difficult to
detect. To maximise the probability of a neutrino within a detector, the neutrino
detector must have a large volume.
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The IceCube Neutrino
Observatory

3.1 Detector Layout
The IceCube detector is a neutrino observatory with a total volume of 1 cubic
kilometre located in the deep ice at the geographic South Pole. The ice provides
a good target for neutrino interactions and the optical properties allow the
detection of Cherenkov light. The detector is an array of 5,160 digital optical
modules (DOMs) arranged in 86 strings at a depth of 1.5-2.5 kilometres below the
surface where the ice extremely transparent (absorption length ∼ 200 metres). On
each string, the DOMs are separated by 17 metres and the strings are separated
by 125 metres. The DOMs collect the Cherenkov light and, in response, generate
an electric current which is measured to calculate the photon intensity [14]. The
modern IceCube detector is constructed around its predecessor the Antarctic
Muon and Neutrino Detection Array (AMANDA) which was constructed in the
late 1990s. AMANDA is located in the corner of the IceCube array and was
incorporated into the array in 2007. In 2009, AMANDA was decommissioned
and its role is now taken by the Deep Core array [15] which sits at the bottom of
the detector and has its DOMs closer together allowing greater sensitivity to low
energy events [16]. This layout is shown in the diagram in figure 3.1.

On the surface of the ice there is another detector known as IceTop made up
of tanks of ice [17] which also detect Cherenkov light. This provides a better
understanding of the origin of the events seen in the detector. If a muon is
seen beginning in the “in-ice” detector it has obviously formed from a neutrino
interacting in the ice. IceTop, similar to Pierre Auger, can detect cosmic ray air
showers. If a muon enters the IceCube detector from the outside and, at the same
time, a cosmic ray air shower is detected by IceTop, this implies that the muon
was part of the air shower and not the result of a neutrino interaction in the ice.

17
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Figure 3.1: IceCube Detector shown to scale with the Eiffel tower [18].

3.2 Light Signal in DOMs
Due to varying distances between the DOMs and the particle being detected,
each DOM in the detector sees a slightly different amount of light. The amount
of Cherenkov light seen by certain DOMs and the time the light is detected
can reveal information about where the charged lepton was created and its
path through the detector. This can then be used to determine the energy and
direction of the original neutrino.

3.2.1 Detection of Cherenkov Light
The Cherenkov photons from the charged lepton are detected by a
photo-multiplier tube (PMT) inside the DOM. The PMTs used in the
IceCube DOMs consist of a negatively charged photo-cathode, a series of
10 dynodes and a positively charged anode. When a Cherenkov photon strikes
the photo-cathode, its energy is given to an electron in the photo-cathode
material. This “photo-electron” (PE) then accelerates through the PMT towards
the first dynode which is an electrode kept at higher positive potential than the
cathode. When the electron strikes the dynode, it has gained energy which can
then cause multiple electrons to be ejected from the dynode when it collides.
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Figure 3.2: Schematic Diagram of an IceCube DOM [19].

These electrons then accelerate to the second dynode which is at a higher
potential. This process continues with more electrons being produced along the
way until a large number of electrons arrive at the positive anode. The number of
electrons arriving at the anode depends on the potential difference between the
cathode and anode. For IceCube’s PMTs, the anode to cathode voltage is about
1300 V which causes a gain of about 107 [20]. This means, for a single incident
photo-electron, 107 electrons can arrive at the anode, amounting to a strong signal.

The electrons arriving at the anode are measured as an electric current which
is proportional to the intensity of the Cherenkov light. The time distribution of
this intensity is known as the DOM’s waveform. Using the waveforms from all
DOMs, the properties of the particle such as direction, position and energy can
be determined. This is known as event reconstruction and is typically achieved
numerically by predicting the waveforms for given particle parameters and
maximising a likelihood function until the predictions closely match the observed
waveform. This will be covered in more detail in chapter 4.

However, before the event can be properly analysed from its waveforms, the
signal needs to be properly calibrated to determine which parts are due to real
photons produced by the event and which are simply characteristics produced
in the DOM. When the current is generated, the voltage increase is registered
as a digital signal. The digital signal is sampled by four channels: three for the
analogue transient waveform digitiser (ATWD) and one for the flash analogue
digital converter (FADC.) The ATWD has a sample rate of 300 MHz giving a
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sampling interval of 3.3 ns. The ATWD takes 128 measurements giving a total
sampling time of about 422 ns. Each ATWD has a ten bit resolution meaning
each returns the digital voltage as an integer between 0 and 210=1024. For a
faint signal, only one or two channels will be active. If either channel’s maximum
signal value exceeds 768, the third channel is activated as well [21].

The ATWD is typically used for the detection of Cherenkov light which is
the first to arrive. This light could originate when the muon is relatively close to
the DOM or it could be light emitted earlier in the track and has been scattered.
For later detection of Cherenkov light, the FADC, which has a sample rate of
40 MHz or a sampling interval of 25 ns [22], is used. This digitizer takes 256
measurements giving it a longer measuring time of 6.4µs so it can be used for the
broader waveforms. The signal from the four channels is known as the raw data.

The raw data is fed into a wave calibrator which converts the ADC count
integers into an actual signal in units of mV. The ATWD and FADC waveforms
each have a non-zero baseline which is known for each channel and subtracted
by the wave calibrator. Each count in the ADC corresponds to a known voltage
gain. The baseline subtracted counts are multiplied by this gain to obtain the
corresponding voltage.

The timing of this new waveform is also corrected to allow for known delays
due to the signal propagating through the DOM. The waveforms are then
corrected for the “droop” in the DOM’s transformer [23]. This is due to the
transformer acting as a high pass filter which works to attenuate the waveform
after the first peak causing the voltage to appear lower than the true value. This
is compensated by adding the expected reaction voltage for each point along
the waveform. Lastly, the three ATWD channels are combined to give a single
ATWD waveform for each DOM. An example of an FADC waveform before and
after calibration is shown in figure 3.3.

After this calibrated waveform is produced, it is analysed by a feature
extractor which finds the strong peaks, known as pulses, rising above the
background noise. The feature extractor will check the values of the waveform
for each time bin to find a local maximum above the noise threshold. The slope
leading up to this maximum is used to extrapolate a line down to the baseline.
The time this line coincides with the baseline is considered to be the pulse’s start
time. The values in each time bin are summed up until the values drop below
the noise threshold or start to rise again after the maximum which defines the
beginning of a new pulse [21].

This sum can then determine the number of photo-electrons present in the
pulse which is known as the pulse’s charge. The pulse width is simply defined as
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Figure 3.3: Example plots of an FADC waveform before and after calibration
plotted against absolute time. Note the ADC Count has now been converted
into a voltage and the timing of the waveform has now been corrected for the
propagation delay through the PMT.

the time difference between the beginning and end of the sum. These pulse series
are then used by reconstruction algorithms to determine the parameters of the
particle.

3.2.2 Signals of Different Flavours
When a neutrino of a particular flavour (νe, νµ, ντ ) interacts, it will produce a
charged lepton of the same flavour as shown in section 1.3.1. Electrons, muons
and tau leptons all produce Cherenkov light but the light pattern they produce
will depend on the specific flavour. If the incident particle is an electron neutrino
(or anti-neutrino) and the charged particle is an electron (or positron) it will
interact very readily with the surrounding ice as it has, by far, the lowest mass.
This causes the electron to lose its energy to an electromagnetic cascade in the
ice, which is seen by the DOMs as a sphere of light expanding outward [24]. As
the cascade is made up of particles repeatedly scattering through the ice, it is
difficult to determine the direction of the cascade without exact knowledge of the
ice properties. These cascades typically have angular resolutions of about 10◦-20◦.

If the particle is a muon it has a much higher mass and travels through the
detector more easily producing Cherenkov light along the way. This produces a
track-like structure in the detector which makes it easy to see the direction the
particle is travelling. These events can have a reconstruction resolution better
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(a) Visualisation of cascade caused by
an electron

(b) Visualisation of track caused by a
muon

(c) Visualisation of double bang caused by a
tau

Figure 3.4: Visualisation of electron, muon and tau signals in the detector [25].
The sphere size indicates the total pulse charge (intensity) while the colour
indicates time. The earlier times are shown in red and later times are blue.

than one degree.

Theoretically, IceCube can detect tau leptons as well which would have been
produced by neutrino oscillations. If a tau lepton were detected, the signal should
look like a “double bang.” This is because the tau is even less stable than the muon
and, while passing through the detector, will most likely decay to an electron:

τ− → e− + ν̄e + ντ (3.1)

It is theorized that the detector will see a burst of light when the tau is created, a
short, faint track as it moves, and a second burst of light caused by the electron.
For this double bang to be observed in the detector, the tau must have energy of
about 2-20 PeV. The visualisations of the signals from all three flavours are shown
in figure 3.4.
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3.3 Optical Properties of the Ice
In order to accurately determine the parameters of an event given its light signal,
an understanding of how the light propagates in the ice is essential. The IceCube
detector was built at a depth sufficient for the ice to be transparent with an
absorption length of the order 200 m allowing light to easily propagate. However,
even at this depth, light can still be absorbed and scattered through the ice
as it travels hundreds of metres to its target DOM. This means, to perform
reconstruction, knowledge of how the light will scatter in the ice is essential for
predicting waveforms.

Figure 3.5: Plots of the scattering and absorption coefficients as functions of
depth and wavelength of light [26]. As shown, blue light of wavelength 400
nm is scattered more than other visible wavelengths with a coefficient of about
0.03 m−1 while it is absorbed less with a coefficient of less than 0.005 m−1.

These ice properties were determined by AMANDA and IceCube by creating
artificial light sources with DOMs and measuring the scattered light in other
DOMs [26].

The distinct peaks in the absorption and scattering shown in figure 3.5 are
due to dust layers in the ice. These dust layers are at depths which coincide
with IceCube so must be taken into account in any ice model. Cherenkov light
is typically in the blue to ultra-violet (short wavelength) region of the spectrum
which means that absorption is minimised with respect to longer wavelength
red light as shown in figure 3.5. A wavelength around 400 nm has the smallest
scattering coefficient around 0.005 m−1. while 600 nm light has a coefficient of
0.1 m−1. However, the blue light has a scattering coefficient of 0.03 m−1 while
red light has a coefficient of only 0.02 m−1 indicating blue light is scattered more
than red light.
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The ice models used for simulation and reconstruction are updated from
time to time as knowledge of the optical properties improves. Simulation and
reconstruction use a programming package which incorporates everything that
is known about the ice in the detector to accurately predict the paths of all
Cherenkov photons as they scatter through the ice. Ice models known as Spice
1 and Spice 2 (Spice is an abbreviation for South Pole Ice) were the earlier ice
models while the more recent models of the ice are called Spice Mie and Spice Lea
which incorporate a more up to date model of the Mie scattering of light [27, 28].

3.4 Discovery of Astrophysical Neutrinos
Since IceCube directly detects charged leptons rather than neutrinos, it is
possible that most of the particles detected actually arise from cosmic ray air
showers in the atmosphere rather than neutrino interactions in the ice. One of
the advantages of neutrino astronomy is that neutrinos can pass through the
whole Earth before reaching the detector. This means that, even though IceCube
is at the South Pole, neutrinos from the northern hemisphere can be seen as
they come up through the Earth. These are known as “up-going” events whereas
the events from the southern hemisphere are “down-going.” The up-going events
have the extra advantage in that a muon from a cosmic ray air shower on the
other side of the Earth won’t survive the trip through the planet so, if we see an
up-going muon, it can only have been produced by a neutrino. Due to this fact,
the detector was originally used only for up-going events [29].

To be confident about down-going events coming from neutrinos, there is a
layer at the boundary of the detector called the veto layer which excludes muon
events which pass through it from outside. This layer is shown in figure 3.6. If,
for example, a muon forms outside the detector before entering the volume, it
is unknown whether it came from a neutrino or directly from the atmosphere.
If the muon forms in the detector volume, the beginning of the Cherenkov light
pattern can be seen which indicates the position of the neutrino interaction.
These events where the interaction happens inside the detector are known as
starting events. Muon neutrinos from cosmic ray air showers are created by pion
decay so will be accompanied by a muon as they enter the detector.

If a neutrino interacts in the detector but is accompanied by a muon which
has passed through the veto layer, this neutrino is also vetoed as it is probably
atmospheric in origin. For this reason, only the high energy neutrinos are selected
as the accompanying muon tracks would be easily seen if present.

Algorithms have been developed which calculate the expected atmospheric
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Figure 3.6: Diagram of detector from top and side showing veto region. The 80
m veto layer in the middle is due to the dust layer in the ice. Due to the large
amount of absorption in this layer, it is possible a particle entered this layer
horizontally without being flagged at the edges [30].

muon and neutrino fluxes at the detector [31]. These predicted fluxes were
compared to the observed fluxes as shown in figure 3.7. After vetoing many
neutrinos and muons at high energies, the expected atmospheric flux at these
energies drops off rapidly as shown in figure 3.7(a). It is also clear that there have
been many more events detected at these energies which haven’t been vetoed
providing the first clear evidence of extra-terrestrial neutrinos.

Using this background simulation method, IceCube confirmed the detection of
28 high energy starting event (HESE) neutrinos from astrophysical sources from
two years of data in 2013. This number was increased to 37 after a third year
of data was collected. Although neutrinos travel in straight lines, there is still
an intrinsic uncertainty in the arrival directions when they arrive in the detector.
This uncertainty is well below one degree for tracks and about 10◦ for cascades as
stated in section 3.2.2. Due to this uncertainty, it is possible that two observed
neutrinos coming in slightly different directions originated from the same point
if their direction uncertainties overlap. Using this, numerous studies have been
done to determine the probability that clustered neutrinos came from the same
point, and further, the strength or intensity of the possible source. Using these
probabilities, a sky map can be created showing possible clusters of neutrino
events represented by a test statistic (TS) which indicates the likelihood that the
neutrinos came from the same source.



26 CHAPTER 3. THE ICECUBE NEUTRINO OBSERVATORY

(a) Neutrino and Muon fluxes plotted
against deposited energy.

(b) Neutrino and Muon fluxes against
arrival direction.

Figure 3.7: Plots of the predicted neutrino and muon fluxes for different
energies and direction compared to actual data [30].

Figure 3.8: Sky Map showing the 37 events from the three year sample in
galactic coordinates. The shading represents the test statistic [32].

The sky-map of the test statistic shows what appears to be a significant
clustering of neutrino events near the galactic centre which would be a good
candidate source of high energy particles. However, this hypothesis was tested by
generating a series of random skies to see how clustered the neutrinos could have
been by random chance. It was found that 7% of the time, the random clustering
is even greater than that shown in figure 3.8. This value is not considered a
statistically significant result so this is not considered a point source. So far, none
of the observed clustering has been found to be significant enough to indicate any
common source for any events.
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Event Reconstruction

Reconstruction is the process of taking raw data from the light signal detected
by the DOMs and, from this signal, determining the physical properties of the
detected particle such as its energy, direction and position. This is done by
computer algorithms which use the parameters of the detector and its DOMs,
as well as the optical properties of the ice to determine the most likely particle
properties which would produce this signal.

The most basic reconstruction algorithms, such as line-fit, determine the
parameters of the event analytically by minimising for the distance between the
track and the illuminated DOMs. This provides a first guess of the particle
parameters. More advanced algorithms, such as MPE and millipede, calculate
these parameters numerically by maximising a likelihood function. All events in
the IceCube detector are reconstructed relative to the IceCube coordinate system.

4.1 IceCube Coordinate System
This coordinate system has its origin near the centre of the detector about 2
km below the surface. The y-axis points north of the detector along the prime
meridian towards Greenwich. The coordinate system is right handed so the x-axis
points 90◦ clockwise from the y-axis which is along the 90◦ E line of longitude.
The z-axis points straight up from the centre.

The direction of the detected particle is given by its zenith θ and azimuth
φ. The zenith is the angle between where the particle is coming from and the
overhead direction. In other words, an event that is heading straight down will
have a zenith of 0 while a horizontal event will have a zenith of 90◦ (π/2 radians)
and an event travelling straight up will have a zenith of 180◦ (π radians.) Since
the detector is at the South Pole, zenith (in radians) is related to declination δ or
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celestial latitude by a simple relation.

δ = θ − π

2 (4.1)

Azimuth is the horizontal angle and is defined as being zero for the positive x-axis
and increases in an anticlockwise direction such that it is 90◦ (π/2 radians) for
positive y, 180◦ (π radians) for negative x and 270◦ (3π/2 radians) for negative
y. Unlike zenith, azimuth has no constant relation to a celestial coordinate since
azimuth is fixed relative to the detector and right ascension or celestial longitude
completes a revolution every 24 hours. The relation between azimuth and right
ascension, therefore, depends on the time of measurement. The coordinate system
is illustrated in figure 4.1.

Figure 4.1: Diagram representing coordinates for a down-going event.

4.1.1 Definition of Vertex
In addition to zenith and azimuth, each detected particle has a vertex associated
with it which is a point (x,y,z) in space which lies on the particle motion vector.
This position defines where the particle track passes in the detector. For example,
two muons could be travelling in the same direction which means they have the
same (θ, φ) coordinates but pass through the detector on opposite sides. This
means these muon tracks will have different vertex positions.

In addition to energy and direction, the vertex position is also calculated in
the reconstruction. Since the vertex merely defines where the track passes, its
position along the track itself can be rather arbitrary. Simulations of muons
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which store the particles in a Monte Carlo Tree (see appendix B.2) put the muon
track vertex at the location of the neutrino interaction. In this case, the vertex
could be outside the detector. Reconstruction algorithms generally result in a
vertex which is inside the detector volume.

As shown in the visualisation in figure 3.4, the light signal seen in the detector
gives an indication of where the particle passes through the detector. Analytic
algorithms such as line-fit place the vertex near the beginning of this light pattern
by minimising the distance to the illuminated DOMs. Numeric algorithms use
this vertex and direction as an initial guess and shift it to maximise the likelihood
function. While the vertex could theoretically now be placed at any position
along the track and produce the same result, the step size used in the algorithm
is generally too small to produce a substantial vertex shift along the track.

4.2 Line-Fit
Most reconstruction algorithms find the particle’s direction and position by
numerical means. That is, an initial guess particle trajectory is used and its
expected signal is compared to the observed signal. The particle parameters are
changed until the expected signal matches what is seen in the detector. However,
due to the complexity of the problem being solved, it is necessary to have initial
guess parameters which are already fairly close to the true parameters (i.e. < 5◦.)
The initial guess is generated by analytic means to get an approximate result
without being too computationally intensive.

Line-fit is one of the more basic reconstruction algorithms used to provide
a first guess for more sophisticated reconstructions. This algorithm ignores the
geometry of the Cherenkov cone and simply treats the particle as a straight line
in 3-dimensional space. If the particle is at a position ~r0 at time 0 and its velocity
is equal to ~v, at time ti, its position is given by

~r ∼ ~r0 + ~vti (4.2)

If all the DOMs which have registered photon hits have positions given by ~ri and
they receive light at time ti, the distance between the DOMs and the position
of the particle at this time is minimised by minimising the sum of the distances
squared given by

χ2 =
Nhits∑
i=1
|~ri − ~r0 − ~vti|2 (4.3)

This can be minimised analytically by differentiating with respect to the free
variables ~r0 and ~v. The minimum occurs for ~r0 and ~v given by

~r0 = 〈~ri〉 − ~v〈ti〉 (4.4)
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~v = 〈~riti〉 − 〈~ri〉〈ti〉
〈t2i 〉 − 〈ti〉2

(4.5)

where, for a parameter xi, 〈xi〉 defines the average xi over all i [33].
From these variables, the particle track parameters can be found. The track vertex
position is just given by ~r and its arrival direction can be found by the unit vector
in the direction of −~v. The magnitude of ~v is simply taken to be c. However, this
method ignores the geometry of the Cherenkov light and any optical properties of
the ice. In reality the situation is significantly more complex. This initial guess
must now be used by numerical algorithms which take into account the physics
of the particle light emission and propagation to the DOMs.

4.3 SPE and MPE
Using the Line-fit solution as a starting track, numerous algorithms exist which
take this track and alter its parameters until the most likely set of parameters
is found. The reconstruction is achieved by calculating a quantity known as the
likelihood for a certain set of track parameters and finding the track for which this
quantity is maximised. Likelihood is essentially the probability that the observed
signal was produced by given input parameters. In general, likelihood is best
described as the product given below:

L(~x|~a) =
∏
i

p(xi|~a) (4.6)

where p(xi|~a) is the probability density function for getting the measured charge
distribution in time (waveforms) xi for input track parameters ~a. In the case of
muon reconstruction, the input parameters are quantities such as the starting
energy, energy losses, direction, time and vertex position of the track.

Early numerical reconstruction algorithms included the single photo-electron
(SPE) and multi photo-electron (MPE) methods. These methods take into
account the geometry of the Cherenkov cone emitted by the muon and
incorporate some knowledge about the optical properties of the ice. As shown
in figure 4.2, the muon is travelling through the detector with energy E0 and
velocity unit vector given by p̂. The muon is said to have position ~r0 at time t0.
The Cherenkov cone is emitted with critical angle θc where cosθc ∼ 1/n. The
distance d is defined as the closest distance between the muon track and the
DOM at position ~ri.

To simplify the likelihood calculation for given input parameters
a = (~r0, t0, E0, p̂), a new variable is defined known as the time residual
tres. The time residual is defined as the difference between the time the DOM
registers the light and the time the light would have arrived if it had travelled
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Figure 4.2: Diagram of muon track and Cherenkov cone [33].

in a straight line without being scattered. Since light is known to scatter off the
ice and take an indirect path to the DOM, this time residual will be non-zero in
most cases.

The time the light reaches the DOM with no scattering, known as the
“geometric time,” is determined using the geometry of the Cherenkov cone shown
in figure 4.2. The earliest light arriving at the DOM is emitted at the Cherenkov
angle θc to the muon path. As shown in figure 4.2, the muon travels from position
~r0 at a speed approximately equal to c. The light travels through the ice at a
speed c/n where n is the refractive index. By adding the two paths shown in the
diagram together, the geometric time can be shown (see appendix A.2) to be

tgeo = t0 + p̂ · (~ri − ~r0) + dtanθc
c

(4.7)

where p̂ is the unit vector in the direction of the muon path. The time residual
is given by tres = thit − tgeo where thit is the time recorded by the DOM after the
calibration discussed in section 3.2.1.

Given a time residual for a DOM and knowledge of the optical properties
of the ice, it is possible to calculate p(tres,i|~a) which is the probability density
function of obtaining this time residual for the i-th DOM given guess parameters
~a. These probability density functions are then multiplied together to obtain the
likelihood. The probability density p(tres,i|~a) across the waveform is estimated by
a “Pandel” function which is a modified gamma distribution detailed in [33].
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In the single photo-electron (SPE) method, the likelihood function is simplified
such that only one photon is considered for each DOM without altering the Pandel
function. In this case, the likelihood function is simply

L =
nhits∏
i=1

p1(tres,i|~a) (4.8)

where nhits is the number of DOMs which see light and p1(tres,i|~a) is the value of
the Pandel function for a single photon in the i-th DOM.

This likelihood is calculated for the initial guess parameters given by line-fit
or another basic reconstruction algorithm. The particle parameters are then
varied and the likelihood is recalculated. This repeats until the parameters which
give the maximum are found. The SPE simply uses the value of the unaltered
Pandel function for a single photon. A slightly more sophisticated approach is to
include the information that only one photon is being considered. This method,
known as the multi photo-electron (MPE) method, calculates the probability
density of a photon in the i-th DOM having tres with the knowledge that it is the
first photon in a sample of ni photons.

The likelihood then becomes

L =
nhits∏
i=1

nip(tres,i|~a)(1− P (tres,i))ni−1. (4.9)

where ni is the number of photons detected for the i-th DOM. The probability
P1(tres) is the cumulative distribution of p(tres|~a) given by [33]:

P (tres) = 1−
∞∫

tres

p(t|~a)dt. (4.10)

Since the MPE method is a more general case as it works for multiple photon
counts, this method is assumed to produce a more accurate reconstruction than
SPE. However, since both methods are only considering the first detected photon,
these methods are generally used as intermediate steps to provide a first guess for
a more sophisticated algorithm. They are generally not considered final results.

4.4 Millipede
The millipede algorithm is a method of reconstruction which is primarily used
to reconstruct the energies of muons as they pass through the detector [24]. The
name “millipede” comes from the method, where the muon track in the detector is
divided into segments. In each segment, a certain amount of energy is lost which
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can create photon later registered by the DOMs. The intensity of light in each
DOM can then be thought of as a superposition of all the light emitted at each
segment of the track. This is illustrated in figure 4.3.

Figure 4.3: Diagram of a track divided into n losses each emitting light received
by m DOMs. Here, En is the energy lost at the n-th segment and Nk is the
number of photons received by the k-th DOM.

The amount of light seen by the k-th DOM is dependent on the ice properties
between the DOM and the energy loss segment as indicated earlier. Therefore,
without background noise, the number of photons at the k-th DOM is given by

Nk =
n∑
i=1

Λi(~rk)Ei (4.11)

where Λi is a coefficient describing how the intensity will change for a given
energy loss Ei and a distance vector ~rk between the loss and the k-th DOM. This
parameter incorporates what we know about the optical properties of the ice at
this specific location. With background noise ρ, the equation becomes

Nk = ρ+
n∑
i=1

Λi(~rk)Ei (4.12)

This relation can be summarised in the following matrix equation [34]
N1 − ρ1

.

.

.
Nm − ρm

 =


Λ1(~r1) . . . Λn(~r1)
. .
. .
. .

Λ1(~rm) . . . Λn(~rm)




E1
.
.
.
En

 (4.13)



34 CHAPTER 4. EVENT RECONSTRUCTION

which can also be given by
~N − ~ρ = Λ · ~E. (4.14)

In reality, the DOM signals are also distributed in time. This means that a single
DOM can contribute more than one element to ~N where Nk is the photon count
in an individual time bin. This means the value of m is now greater than the
number of DOMs which adds more variables to the equation.

4.4.1 Millipede Time Binning
To reconstruct an event with millipede, the event waveforms are read into the
algorithm as a pulse series map. This pulse series map contains information
extracted from the calibrated waveforms similar to the example in figure 3.3 for
all DOMs. Each pulse has a given charge which is the number of photo-electrons
(PEs) contained in the pulse as well as a start time and a width.

Figure 4.4: Pulse series extracted from the calibrated waveform shown in
figure 3.3.

The pulse series map is initially divided up into pulse series for each hit
DOM. Millipede needs to take the pulse series map and combine it into a single
vector. The width of millipede’s time bins are determined by how many photons
are allowed in each bin given by the input variable “PhotonsPerBin”. However,
before this step, the waveform is pre-binned for each DOM based on the widths
and times of the pulses. This initial binning method creates bins spanning the
event time window alternating between a bin spanning a pulse and a bin spanning
a gap between pulses. For a bin spanning a pulse, the number of photons in this
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bin is simply the number of photo-electrons in the pulse. For a bin spanning a
gap, the number of photons is 0.

Figure 4.5: Simple example of a pulse series containing two pulses divided into
five bins. The widths w2 and w4 are the time widths of the first and second
pulse respectively. The widths w1 and w5 will typically be very large as the time
window is comparatively much larger than the pulse series.

As shown in figure 4.5, the bins span the entire time window and are divided
by the pulses. Millipede then re-bins the waveform by combining these initial
bins until either the photon count exceeds the value of PhotonsPerBin or the
bin width exceeds 200 ns. However, if the initial bin already has a width greater
than 200 ns, this bin stays as it is. This width limit of 200 ns ensures that, for
dim signals, a time distribution of photons can still be produced. For example,
if the number of photons never reaches PhotonsPerBin, the result will be a
single bin containing all light surrounded by two empty bins [35]. In this case,
information about the relative photon arrival times is lost. The value of 200 ns is
optimised to minimise computing time and keep enough information to perform
an accurate reconstruction. The comparison between the original pulse series
and millipede’s binned waveform is shown in figure 4.6. The original pulse series
is shown on a negative scale for clarity.

In figure 4.4, the pulse series contained a total of 34 pulses pre-binned into 69
bins. The first bin extends from the start of the time window to about 10000 ns
which is the time the pulse series begins. The next bins have combined several
pulses each until the width reaches 200 ns. The combining of bins stops if adding
another bin will cause the combined bin to exceed 200 ns in width which ensures
the bin will stay below this maximum width. For example, in figure 4.5, the
first two bins will be combined if w1 + w2 < 200 ns. The third bin will only be
added if w1 +w2 +w3 < 200 ns. Otherwise, the third bin will become part of the
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Figure 4.6: Pulse series from figure 4.4 (red, shown on negative scale) and pulse
series re-binned by millipede. Note the early pulses are close together and are
combined to form the wide bins. The later pulses after about 11000 ns are
unchanged due to the gaps between them exceeding 200 ns.

next combined bin. This accounts for the very narrow bins at just over 11000
ns, 12300 ns and about 16000 ns seen in figure 4.6. These narrow pulses are
bordered by gaps considerably wider than 200 ns, so the bins are not combined
and are the same as the initial bins.

This binning produces a vector of photon counts as well as timing information
for the bins. One of these vectors is produced for each DOM which has been
illuminated by Cherenkov light. The “unhit” DOMs are also used by default and
simply use one bin spanning the entire time window and containing no photons.
The vectors for all DOMs are then concatenated to form a single vector ~N .

4.4.2 Millipede Likelihood
To calculate the likelihood of a given loss pattern, the predicted photon counts are
calculated and compared to the actual signal. This prediction uses the same bins
and times as the observed signal and creates a vector of expected photon counts
with the same number of elements as ~N . This prediction ~λ is calculated using the
optical properties of the ice to find the transformation matrix Λ and applying the
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matrix equation from equation 4.12. The prediction for the k-th bin is given by

λk = ρ+
n∑
i=1

Λi(~rk)Ei (4.15)

The values of Λi depend on the input parameters and how the track is divided
up. This prediction produces the k-th likelihood contribution which follows a
Poissonian distribution so is given by

Lk = λNk
k

Nk!
e−λk . (4.16)

This function is at its maximum when the prediction is equal to the input signal
(λk = Nk.) The total likelihood is given by the product the contributions from
all bins:

L =
m∏
i=1
Li =

m∏
i=1

λNi
i

Ni!
e−λi . (4.17)

In practice, the millipede algorithm calculates the log of the likelihood which is
then maximised. Using log laws, the log of the likelihood above is just the sum of
the logs of the contributions:

lnL =
m∑
i=1

(Nilnλi − ln(Ni!)− λi). (4.18)

Due to the complexity of the likelihood function, it is impossible to find the
maximum by purely analytic means. Instead, the millipede algorithm is used
to find this critical point by numerical methods. In this algorithm, rather
than finding the maximum of a function, the negative log likelihood (-LLH) is
calculated and a minimum is found. A minimum for the negative log likelihood
naturally implies a maximum for the likelihood function. At this point, all the
predictions ~λ match the signal ~N as closely as possible.

To reconstruct the losses, the predictions λi are calculated for an initial
guess track known as the “seed” and the observations Ni are extracted from
the waveform to calculate the negative log of the likelihood. This is repeated
with different energy patterns until the algorithm finds a minimum negative log
likelihood (i.e. until it finds the loss pattern and starting energy which best
matches the observations.)

The millipede algorithm is also used to reconstruct properties such as direction
and vertex position. To perform these reconstructions, initial guesses for these
parameters are used to calculate the most likely energy loss pattern as before.
The direction and position are then varied by a predefined step size and the
energy loss reconstruction is repeated to try to achieve a smaller negative log
likelihood. This process continues until a minimum is found.
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4.4.3 Issues with Millipede
Millipede has encountered issues in reconstructing simulated events where
the reconstructed parameters differ greatly from the simulated parameters or
millipede fails to reconstruct the event. Studies have been conducted by members
of the IceCube Collaboration to diagnose the problems with the millipede
minimiser.

When the event is reconstructed incorrectly, this is thought to be due to
fluctuations in the likelihood surface. The set of parameters found by millipede
could correspond to a local minimum which is shallower than the true minimum.
This can cause the minimiser to become “trapped” in this local minimum which
could be a long way off the global minimum [34]. In extreme cases, the minimiser
can jump between different local minima with every step which means it has
difficulty reconstructing the event at all.

Tests have been done on simulated events where the initial guess parameters
are varied to test the effect on the accuracy of the fit. These tests revealed that,
if the initial guess track position is only slightly off the true position, the error
margin increases greatly [36]. This means the accuracy of the reconstruction
depends on the quality of the initial guess in an issue known as the “seeding
problem.” This, of course, proves very problematic in the reconstruction of real
events where the true parameters are unknown.
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Initial Testing of Millipede

For the first part of this project, the reconstruction was run on a set of simulated
muon events generated with the Spice-Mie ice model. In this reconstruction,
a sample of track events with energy greater than 20 TeV was selected and
reconstructed with a full free scan in which millipede was allowed to minimise
for the direction. Unless otherwise stated, the position and energy losses of the
track are being fitted as well. The initial guess track for the minimiser is named
“PoleMuonLlhFit” which is an early likelihood fit using the SPE method [37].
The previous fit is compared to the more advanced millipede fit.

To properly test the accuracy of both reconstructions, the space angle between
their result and the true (Monte Carlo) direction is used (see appendix A.3) as a
measure of accuracy.

5.1 Comparison of Reconstructions
The space angle between the PoleMuonLlhFit direction and the true direction
was compared to the angle between the millipede direction and the true direction.
This is represented in a histogram in figure 5.1 showing the distribution of
angular error in the fits.

The histogram shows that, for both fits, the majority of events are fit close to
the true direction with a space angle difference less than 1◦. Millipede performs
slightly better with a greater number of events within 1◦. However, there are
still many events beyond 2◦ with some greater than 10◦ for both fits. This
demonstrates that, if the initial guess from PoleMuonLlhFit is far from the true
direction (> 10◦) millipede has difficulty getting any closer to the true direction.
This is possibly due to the likelihood fluctuations creating local minima. These
bad fits could also be due to the signal in the DOMs being relatively faint and the
track hard to pinpoint. To understand this, the angular differences were plotted

39
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Figure 5.1: Histogram of space angles between fit and true direction for both
reconstructions. Note millipede has a higher number of events with small
angular error.

in a 2-dimensional histogram against the original muon energy taken from the
simulated data as shown in figure 5.2.

(a) Millipede. (b) PoleMuonLlhFit.

Figure 5.2: 2D histograms showing space angle difference compared to the muon
energy. Millipede is shown to have its least accurate fits at generally lower
energies while PoleMuonLlhFit has its least accurate fits across all energies.

The 2-dimensional histograms reveal that, for millipede, the events which
are particularly bad fits are at energies at the lower end of the spectrum of the
order 10 TeV. This suggests that millipede is far better at reconstructing bright,
high energy events while PoleMuonLlhFit has poor fits across the entire spectrum.
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Both reconstructions were compared directly in a plot of millipede angular
difference against PoleMuonLlhFit difference.

Figure 5.3: Histogram of millipede error against PoleMuonLlhFit error. The line
where errors are equal is shown. Millipede has a smaller error in 66.4% of the
events.

The comparison plot between the two reconstructions in figure 5.3 shows a
slight majority of events have millipede fits closer to the true direction (below
dashed line) than PoleMuonLlhFit but there are still many where millipede is a
poorer fit (above dashed line.)

5.2 Grid Scans
To better understand these issues with the fitting, likelihood grid scans have been
performed which, rather than letting the algorithm find the most likely direction,
provide the algorithm with a fixed direction and calculate the likelihood value.
For each direction, millipede is used to minimise the negative log likelihood for
all parameters (including vertex position) except the direction. This means, for
each direction, as the algorithm is running, a track of constant direction is simply
being translated in space as shown in figure 5.4 until the most likely position
is found. These fits each produce a likelihood value which can then be used to
create a map of the entire sky showing the negative log likelihood for all directions.
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Figure 5.4: Example of a muon track having its vertex shifted twice while
maintaining constant direction. This repeats until the best track position is
found.

5.2.1 Healpix Grid
The grid scan is run using the Hierarchical Equal Area and isoLatitude Pixelisation
(healpix) grid which is a method to map out a sequence of points on the surface
of a unit sphere. The sky is divided into a certain number of pixels each with
the same angular size in order to map out the sequence of points as uniformly
as possible [38]. A specific grid is defined by a parameter known as Nside. This
parameter is always a power of 2 (1,2,4,8,...) and is related to the number of pixels
in the sky by

Npix = 12N2
side (5.1)

This means the simplest map divides the sky into 12 pixels. The next value
of Nside will divide each of these pixels into four equal pieces giving a 48 pixel
sky. The next will be 192 pixels and so on. Each pixel is centred on a specific
direction which, in this case, is a zenith and azimuth in IceCube coordinates.
With increasing pixel number, the sky is mapped out in bands of constant zenith.
The sky map on the healpix grid is displayed with 0◦ at the top and 180◦ at
the bottom. Azimuth has its zero in the centre and increases to the left. In
the context of IceCube coordinates, this means the south celestial pole (directly
overhead) is at the top of the sky map.
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5.2.2 Example Scans of HESE Neutrinos
Scan for Track Event

An example grid scan created by millipede is shown in figure 5.5 for a muon
event in the first high energy starting event (HESE) sample of 28. This scan was
produced by the IceCube collaboration following the discovery of astrophysical
neutrinos discussed in section 3.4. The colour scale shown is the negative log
likelihood value for each direction. The resolution of the likelihood scan is given
by the σ value defined as the point where the negative log likelihood increases
by 1.15 units from the minimum. This is because the values −2lnL follow a χ2

distribution with two degrees of freedom, zenith and azimuth (see section 5.3.)

(a) Visualisation of a muon event
nicknamed “Zoot”.

(b) Sky map of muon event [39].

Figure 5.5: Visualisation and sky map of muon event. The skymap shows a
clear minimum region in negative log likelihood given by the blue spot centred
around 60◦ zenith and 30◦ azimuth. This minimum indicates the most likely
direction. The actual resolution of this event is 0.359◦ given by the 1.15 increase
in negative log likelihood.

The full sky scan of the muon event shows a relatively narrow minimum region
for negative log likelihood. This indicates a sharp “peak” in likelihood for these
directions indicating fine angular resolution for the muon (0.359◦).

Scan for Cascade Event

The following millipede grid scan in figure 5.6 was performed on a very high
energy (∼ 1 PeV) cascade event.

The scan of the cascade shows a much broader deep blue region than the
muon event which indicates the direction for the cascade has a higher level of
uncertainty associated with it. The resolution of this event (1.34◦) is coarser that
the resolution for the muon, however, it should be noted that the high energy of
this event causes it to have better resolution than most cascades.
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(a) Visualisation of a cascade event
nicknamed “Bert”.

(b) Sky map of cascade event [39].

Figure 5.6: Visualisation and sky map of cascade event. The sky map shows
a broader minimum region than the track centred around 70◦ zenith and 320◦
azimuth. This event has resolution 1.34◦. This resolution is difficult to see
in the scan as the negative log likelihood varies by about 3000 units and σ is
determined by an increase of only 1.15.

5.2.3 Testing with HESE Track Event
Millipede was tested on a muon event from the HESE event nicknamed “Animal”
using PoleMuonLlhFit as the seed. The visualisation is shown in figure 5.7.
For each direction in the scan, millipede was given the seed vertex from
PoleMuonLlhFit and allowed to vary the vertex and energy losses to find the
minimum. This was performed on a sky with Nside of 8 giving 768 pixels
shown in figure 5.8. Also shown, is the direction given by millipede when the
likelihood is minimised for direction (the “full free fit”) represented by the triangle.

Since muons, generally have very precise resolution in their scans, the
behaviour of the likelihood surface is better understood by zooming in on this
minimum region. Another scan was done which fitted the vertices but only
scanned over directions close to the direction given by millipede’s full free fit.
This region consisted of a 3◦×3◦ square centred on the millipede fit direction
with an Nside of 512 to get a more precise likelihood scan. While the bottom half
of the 3◦×3◦ scan in figure 5.9 appears to be trending toward smaller negative
log likelihood, there are many local minima where the minimiser could get stuck.

Also, the direction fitted by millipede is on the edge of this minimum region
rather than in the centre which implies that the global minimum of the scan isn’t
where millipede has fitted the direction. To properly test the accuracy of millipede
with these scans, the scans were run on a selection of simulated muon events.
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Figure 5.7: Visualisation of muon event nicknamed “Animal.” As shown, the
muon is created in the top right and loses much of its energy in the early stages
shown by red and orange. It then travels on a downward trajectory through the
detector losing small amounts of its energy along the way.

Figure 5.8: Full sky map of Animal with vertex being fitted for each direction.
While there is a minimum around the result from the full free fit at 54.2◦ zenith
and 341◦ azimuth, there are extreme fluctuations seen throughout the scan.
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Figure 5.9: 3◦×3◦ scan of likelihood surface from figure 5.8. This scan exhibits
fluctuations where the likelihood value is changing significantly for very similar
directions. This likelihood surface has a resolution 0.46◦.

5.2.4 Scans of Four Simulated Events
Four examples were chosen from the sample of simulated events to more closely
compare the reconstructions given by Millipede and PoleMuonLlhFit: one where
both fits are close to the true direction (within 0.1◦), one where millipede is
close and PoleMuonLlhFit is far (outside 1◦), one where millipede is far and
PoleMuonLlhFit is close and one where they are both bad fits. A grid scan was
run on each of these events on a 3◦×3◦ region centred on the true direction.

The directions given by the millipede free scan and the PoleMuonLlhFit
reconstruction were compared to the true direction and the direction
corresponding to the minimum negative log likelihood in the scan. Most
of these grid scans show a great deal of fluctuations in the millipede likelihood
surface. Due to these fluctuations, the scan in figure 5.10(a) where both are
close has a minimum further from the true direction than the free scans. In
figure 5.10(b), when millipede is close, the scan looks much smoother and,
since millipede starts from PoleMuonLlhFit, this shows that millipede has
reconstructed this event quite accurately.

When PoleMuonLlhFit is closer, in figure 5.10(c) the minimum from the scan
gets closer to the millipede free fit but both are far from the true direction. The
likelihood surface also looks relatively smooth for this event but is quite inaccurate.
The scan in figure 5.10(d) where they are both bad fits shows the millipede free
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(a) Scan where both fits are close.
There is an obvious minimum region
of negative log likelihood but there are
many local minima.

(b) Scan where millipede fit is close.
The millipede likelihood surface has
minimal fluctuations and the scan
minimum is close to the true direction.

(c) Scan where PoleMuonLlhFit is close.
Again, the millipede likelihood surface
shows fluctuations and a minimum
region which is not centred around the
true direction.

(d) Scan where neither fit is close.
Millipede likelihood shows huge
fluctuations with no obvious minimum.

Figure 5.10: Grid Scans of four simulated events.
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fit direction and PoleMuonLlhFit are close to each other but far from the true
direction. The minimum from the scan gets closer to the true direction but the
likelihood surface still has a lot of fluctuations.

5.3 Test of Statistical Errors

5.3.1 1-dimensional Scans and Curve Fitting
While the grid scans in figure 5.10 demonstrate fluctuations in the likelihood,
there appears to be an overall trend showing a minimum region near the true
direction. A minimum region was also observed for the HESE track event shown
in section 5.2.3.

A test of the overall accuracy of these scans would be to determine how often
the true direction falls within one standard deviation (σ) of the minimum. For a
large sample of events, this should happen 68% of the time. The value of σ also
gives an indication of the event’s resolution. This value can be found using the
knowledge that the parameter −2lnL follows a Chi squared (χ2) distribution.

This χ2 distribution has two degrees of freedom (zenith and azimuth),
meaning σ is defined as the distance from the minimum where the value increases
by 2.3 units (see appendix A.4). However, since −2lnL follows the χ2 distribution
and the parameter displayed on the scans is the negative log likelihood, this
critical value is halved. This means the 1σ surface on the scans contains all
points within 1.15 units of the minimum.

The scans in previous examples have fluctuations which make it very difficult
to find the 1σ surface from these scans alone. To find σ, the negative log
likelihood must increase by only 1.15 but the scale of some of these scans is of
the order 100 units. Between directions, the negative log likelihood can vary
by substantially more than 1.15 units. This could mean that the value of σ is
much smaller than the pixel size and the events have very fine resolution (of
the order 0.01 degrees) but this is thought to very unlikely. It is more likely
that the likelihood fluctuations are hiding a statistical surface. To eliminate
these fluctuations for the purpose of finding σ, the likelihood data was fitted to
a parabola. This parabola would have an obvious minimum and a 1σ surface
around this minimum. These fits were created for the four examples seen in
figure 5.10. The parabolas are shown in figure 5.11.

When the likelihood surface is fit to a parabola, it is revealed that, for the
cases when millipede is close to the truth, in figures 5.11(a) and 5.11(b), the
value of sigma is large and the true direction is contained in the 1σ surface.
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(a) Scan where both fits are close. The
minimum region is broad so the 1σ surface
includes the true direction. This has a σ
value of 0.53◦.

(b) Scan where millipede fit is close. There
is little change since smooth surface in
figure 5.10(b). The 1σ surface includes the
true direction. This has a σ value of 0.28◦.

(c) Scan where PoleMuonLlhFit is close.
Likelihood surface is steep producing
a small value of σ. 1σ surface doesn’t
contain true direction. This has a σ value
of 0.086◦.

(d) Scan where neither fit is close. 1σ
surface is small and doesn’t contain true
direction. This has a σ value of 0.16◦.

Figure 5.11: Grid Scans of four simulated events.
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When millipede is a poor fit, in figures 5.11(c) and 5.11(d), the steepness of the
likelihood surface produces a small σ value so the true direction is not contained
in the 1σ surface.

The shape of the likelihood surface can be further investigated by plotting
the negative log likelihood against the angle away from the minimum. This helps
verify if the overall trend of the likelihood function is parabolic. This was created
for the previous four examples as shown in figure 5.12.

(a) Scan where both fits are close. (b) Scan where millipede fit is close.

(c) Scan where PoleMuonLlhFit is close. (d) Scan where neither fit is close.

Figure 5.12: One-dimensional likelihood scan of four events. Plotting the
negative log likelihood against angle away from minimum reveals the likelihood
surface follows a parabolic trend away from the minimum. The case where
millipede is a good fit in figure 5.12(b) matches a parabola the closest.

As shown in figure 5.12, the underlying behaviour of the likelihood surface
appears to be parabolic despite the fluctuations. When millipede is a good fit
in figure 5.12(b), the behaviour is closest to a parabola though the other cases
exhibit similar behaviour. However, due to the fluctuations, it is still difficult to
find the value of 1σ without fitting a parabola.
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More Events

These one dimensional scans and fitted parabolas were created for another bright,
down-going muon. The visualisation of this event is shown in figure 5.13.

Figure 5.13: Visualisation of Spice-Mie simulated downgoing event.

(a) Fitted parabola for one degree radial
scan. 1σ surface around minimum is
shown. This has a σ value of 0.18◦.

(b) 1D likelihood scan and fitted parabola.

Figure 5.14: 1D and 2D fitted parabolas.

Fitting a parabola to the 1D likelihood surface in figure 5.14(b) reveals that
the points in the plot follow this overall trend and the fitted parabola runs
through the middle of the points. On the 2D grid in figure 5.14(a), the parabola’s
minimum is very close to the original scan’s minimum. The true direction almost
sits on the 1σ surface indicating this is a relatively well reconstructed event.
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Through fitting a parabola to this event in 1D and 2D, it appears that there
is indeed an underlying smooth likelihood surface for this event which is hidden
by the fluctuations.

Another event was chosen which has a well defined horizontal track but only
has an energy of 30 TeV so creates a much fainter signal. The visualisation is
shown in figure 5.15.

Figure 5.15: Visualisation of faint horizontal event.

A grid scan was performed on this event on a region within 1◦ of the true
direction. The scan in figure 5.16 exhibits an elliptical minimum region as
demonstrated by the fitted parabola and its 1σ surface. This shows that the scan
is well resolved in zenith but not so well in azimuth. However, the 1σ surface
is quite small in both dimensions causing it to not include the true direction.
This is an example of an event whose fluctuations cause an inaccurate likelihood
surface as the true direction is outside 1σ but the millipede fit still manages to
find a minimum close to the true direction as shown by the triangle.
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(a) Fitted parabola for one degree radial
scan. This has a σ value of 0.16◦.

(b) 1D likelihood scan.

Figure 5.16: 1D and 2D fitted parabolas.

This was repeated for a faint event whose visualisation is shown in figure 5.17.

Figure 5.17: Visualisation of low energy event.

The visualisation of this event shows a very faint signal in the detector.
As millipede has been shown in figure 5.2(a) to reconstruct these low energy
events relatively poorly, this would be a good test of how the energy affects the
likelihood surface. Similar to before, this grid scan was run over a 1◦ radius
region centred on the true direction.

Figure 5.18 reveals large fluctuations in the likelihood surface of this event.
Since the negative log likelihood can vary by more than two units between adjacent
pixels and there is no clear minimum region, it is impossible to find σ without
fitting a parabola. The fluctuations make the fitted parabola extremely flat with a
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(a) One degree radial likelihood scan. (b) Fitted parabola. This has a σ value of
1.96◦.

Figure 5.18: Scans of low energy event.

minimum outside the region of the scan and a large 1σ surface 1.96◦ in radius. This
demonstrates millipede’s generally poor angular resolution for faint, low energy
events.

5.3.2 Results from multiple events
To test how accurate the scans are overall, this method of parabola fitting was
applied to a sample of 431 events simulated with the Spice-Mie model. Each
event had a grid scan performed over all directions within 3◦ of the true direction.
This was then fit to a parabola. For each event, the space angle ∆θ between
the parabola’s minimum and the true direction (i.e. the truth’s offset angle) was
calculated and compared to the value of σ.

These values were plotted in a scatter plot of σ against the offset angle of the
truth. The scatter plot shows about half of the 431 events have 1σ surfaces which
include the true direction but there are many events which have the true direction
well outside 1σ. For statistical uncertainties in the directions, it is expected that
about 68% would lie within 1σ. The behaviour of all 431 events as a whole is best
described on a cumulative plot of the ratio ∆θ/σ. This plot takes the ratio of the
offset angle of the truth to σ for each event and calculates how many events have
a smaller value of this ratio. This can then be used to see how many events have
true direction within 1σ, 2σ etc. The cumulative plot in figure 5.20 shows that
slightly less than half of the events have true directions within 1σ and there still
many events (about 20%) outside 1σ. The percentages for the first three multiples
of σ are shown in table 5.1.
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Figure 5.19: Plot of σ against offset angle of truth. Dashed line marks points
where truths sits on 1σ surface. True direction is outside σ for 60% of events.

Figure 5.20: Cumulative plot of 431 events. First three multiples of σ and their
corresponding event counts are shown. Also shown is the curve expected for
statistical errors.
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Multiple of σ: % expected (number expected) % within (number within)
σ: 68.27% (295) 39.68% (171)
2σ: 95.45% (412) 71.93% (310)
3σ: 99.73% (431) 81.21% (350)

Table 5.1: Table showing percentages of events within each multiple of σ with
the expected percentages from the definition of σ.

The results show there are not enough events within each multiple of σ for
these errors to be purely statistical. This suggests that the inaccuracy in the
scans are caused by more than just statistical fluctuations.

5.3.3 Test of Overall Smoothness
To understand how severe the fluctuations in the likelihood surface are, the overall
smoothness of the scan must be properly quantified. This is found by calculating
the second derivatives of the negative log likelihood with respect to direction. For
a given 1D slice on the grid scan, the second derivative is approximated by taking
three adjacent points and calculating the likelihood difference between points 1
and 2 and the difference between points 2 and 3. This gives the first derivative
between these points. To calculate the second derivative, the difference between
these first derivatives is calculated:

d2LLHi

dn2 = (LLHi+1 − LLHi)− (LLHi − LLHi−1) (5.2)

where n is the pixel number along the 1D slice. However, this parameter must be
normalised according to how flat or steep the surface is. This is determined by
the second derivative of the parabola p(n) with respect to pixel number which,
by definition, is constant across the slice. For all points along the 1D slice, the
second derivative of the parabola is subtracted from the second derivative of the
likelihood. This difference is squared to give all terms the same sign. The terms
are added up over the 1D slice and the square root of the result is calculated.
This is normalised by dividing by the number of terms in the sum and the second
derivative of the parabola giving a relative RMS value:

RMSrel =

√
N−1∑
i=2

(
d2LLHi

dn2 − d2p
dn2

)2

(N − 2) d2p
dn2

(5.3)

where N is the number of points along the 1D slice, meaning, since each point
used in the sum must have one point on either side, N − 2 points can be used
in the sum. This parameter is added up over all slices across the scan to give a
sense of the overall size of the fluctuations. A larger value for RMSrel means the
fluctuations are more extreme while a small value means the scan is reasonably
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Figure 5.21: Comparison between RMSrel and millipede fit accuracy.

smooth.
This parameter is calculated along lines of constant zenith. The space angle
between the millipede fit and the true direction is plotted against RMSrel in
figure 5.21 to see how the quality of the scan affects the accuracy of the overall
fit. This comparison shows a slight upward trend with poorer fits corresponding
to likelihood surfaces with more fluctuations. However, there are still events with
relatively large fluctuations which fit reasonably close. RMSrel is also compared
to the muon energy to understand which types of events cause some scans to
become smoother than others.

When RMSrel is compared to the energy, as shown in figure 5.22, the scans
with the most extreme fluctuations are revealed to correspond to some of the
lowest energy events. This is similar to the behaviour found in figure 5.2 where
the angular error of the fit was larger for the lower energies.



58 CHAPTER 5. INITIAL TESTING OF MILLIPEDE

Figure 5.22: Histogram of muon energy against RMSrel.

5.3.4 Comparison to smooth function
For each likelihood scan, the parabola provides a new “best fit” direction given
by its minimum. This minimum could be very close to the true direction while
the millipede free fit is very different. This would imply that the minimiser is
getting stuck in a local minimum whereas the true minimum is found using the
grid scan. The space angle ∆θ between the parabola minimum and the true
direction is plotted against the angle between the millipede free fit and the true
direction in figure 5.23. The line where both are equal is shown.

The comparison between the millipede free fit and the parabola accuracy in
figure 5.23 shows many events where the millipede fit is quite far from the true
direction while the parabola has been able to find a closer minimum. However,
there are also other events where the parabola minimum is further away. For
these event scans it is possible the likelihood surface doesn’t have an obvious
central minimum region like the one shown in figure 5.10(b). This means, when
the parabola is fit to the scan, only part of the parabola is covering the three
degree radial scan meaning the minimum could be quite far away. In this case,
millipede is probably getting stuck in a local minimum which happens to be near
the true direction whereas the broader minimum region could be further away.
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Figure 5.23: Histogram of angular error of parabola against angular error of
millipede’s fit.

5.4 Summary
After evaluating the overall errors in millipede fits, it becomes clear that
millipede has a greater amount of accuracy than previous reconstruction
algorithms. However, there are still many cases when millipede gets the
wrong answer when reconstructing the simulated muon events. These errors
can be of the order 10◦ which is well outside the resolution required for astronomy.

After performing grid scans over the millipede likelihood surface, it becomes
clear that the surface is not smooth. Many events have likelihood surfaces which
have severe fluctuations leading to many local minima. While fluctuations would
be expected in any likelihood surface due to imperfections in the model used
for the predictions, these fluctuations in millipede’s likelihood space have been
observed to cause errors in direction fitting which are more apparent at lower
energies.

After comparing the accuracy of the likelihood scan to the accuracy of the
free fit, it becomes obvious that some events have a shallow likelihood minimum
which gives a larger uncertainty even with the parabola fit. The fluctuations
in the likelihood surface add to the difficulty of finding the true direction using
millipede’s free fit. These fluctuations in the likelihood surface now need to be
investigated.





Chapter 6

Investigation of Likelihood
Fluctuations

Since millipede is best at reconstructing bright, high energy events, an event was
chosen which should be easy for millipede to reconstruct accurately. This event
would be expected to have minimal fluctuations in the likelihood surface and
millipede should be able to find the best direction easily. This would determine
if millipede exhibits the same behaviour seen in figure 5.10 (a), (c) and (d) even
with a well defined event.

This simulated event has a starting muon energy of 1.09 PeV (1.09×1015eV)
and travels along an almost horizontal track.

Figure 6.1: Visualization of high energy event in detector.

The visualization of this event shows numerous DOM hits in the detector from
the creation of the muon to the muon exiting the detector.
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6.1 Close Grid Scan
This bright event was scanned over a 1◦×1◦ grid centred on the true direction.
This scan used the position given in the full free millipede scan as the seed and
fitted the vertex and energy losses for fixed directions. Since this event is high
energy and has a clear track, the likelihood surface should look smooth and have
a resolution less than 1◦. On this scan, the minimum pixel direction, the true
direction and the direction from the free reconstruction are shown.

Figure 6.2: 1◦×1◦ grid scan of bright event. Note the extreme likelihood
fluctuations. (RMSrel = 338.)

The likelihood surface for this event shows similar fluctuations to the previous
scans. While the free fit managed to find a direction very close to the true
direction, the minimum pixel is further off. Between pixels in the scan, the
negative log likelihood varies by more than 1.15 and it is impossible to determine
the resolution without fitting a parabola.

6.1.1 Vertex Shifts
Since the vertex is being fitted by millipede between directions in the scan, it is
possible that the likelihood could be fluctuating in the vertex space. It is possible
that, for almost identical directions, the vertex is being fitted to a very different
location. For a smooth scan, we would expect the vertex fit to also follow a
coherent pattern, correlated to a change in the track direction. To investigate
this further, a correlation study can be done in which the fitted vertex position
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for each direction in the scan can be compared to that direction’s likelihood.

Since the free fit managed to find a direction reasonably close to the true
direction in this example event, the fitted vertex for this direction is used as the
reference and the fitted vertices for the other directions are compared to this
original vertex. The distances between the new fitted vertices and this original
position in metres are plotted out over the same region in the sky. Each pixel in
this scan maps to a pixel in the scan shown in figure 6.2.

Figure 6.3: 1◦×1◦ grid scan of vertex shift. This scan reveals large differences in
vertex shift for very similar directions.

The grid scan in figure 6.3 showing the distance between fitted vertices shows
fluctuations implying the vertex is fitted to different locations for very similar
directions with no obvious pattern. There is a slight correlation where the small
vertex shifts, shown in blue, correspond to the small negative log likelihood
values. The greatest vertex shifts happen at the top right of figure 6.3 in the
same area as the higher values of the negative log likelihood.

These vertex shifts are also plotted against the negative log likelihood for a
more direct comparison. This is shown in figure 6.4.
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Figure 6.4: Comparison plot of distance from original vertex against negative
log likelihood. The plot reveals that the smallest values of negative log
likelihood correspond to the smallest and largest vertex shifts.

The plot of distance against negative log likelihood in figure 6.4 reveals two
clusters at the lower end of the likelihood scale. This shows some directions
near the minimum have small vertex shifts while some have shifts up to 10
metres. This is demonstrated in figure 6.3. However, from this, it is unknown if
these shifts are mainly along the particle track, perpendicular to it, or due to a
combination of both. For this reason, the shifts in vertex were separated into a
component parallel to the direction from the free scan and one perpendicular to
this direction. This situation is illustrated in figure 6.5.

The plots from figure 6.3 and figure 6.4 were recreated this time showing the
vertex shifts parallel and perpendicular to the fitted direction. The plots for
the parallel component, in figure 6.6, reveal behaviour almost identical to the
total distance between vertices including the two clusters at the minimum end of
the scale. This indicates that the majority of the vertex shift is in the parallel
direction.

The perpendicular distance scan in figure 6.7 shows that, for most directions,
there is minimal shifting in this direction with most directions shifted less than 3
metres. The comparison plot reveals a more interesting trend where the overall
likelihood gets worse if the perpendicular shift is greater. This verifies that it
is mainly the shifts in perpendicular rather than parallel direction which affect
the likelihood. This would be expected since a vertex shift in this perpendicular
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Figure 6.5: Example of a vertex shifting parallel and perpendicular to the
original direction where d2 = d2

‖ + d2
⊥.

direction would shift the entire track in space which would change the likelihood
value. However, there are some directions which obviously break this trend having
a low value for negative log likelihood but a large vertex shift. This possibly
indicates there is another local minimum some distance away.
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(a) 1◦×1◦ grid scan for parallel component of vertex
shift.

(b) Comparison plot of parallel component of shift against negative
log likelihood. This reveals similar behaviour to the total vertex shift
shown in figure 6.4.

Figure 6.6: Grid scan and comparison plot for parallel shift.
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(a) 1◦×1◦ grid scan for perpendicular component of
vertex shift.

(b) Comparison plot of perpendicular component of shift against
negative log likelihood. Contrary to the parallel shift, this shows
a clear positive correlation between negative log likelihood and
perpendicular vertex shift.

Figure 6.7: Grid scan and comparison plot for perpendicular shift.
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6.2 Vertex Scans
To analyse the likelihood function relative to the vertex, scans were performed
which fixed the vertex and allowed millipede to minimise for the direction and
calculate the likelihood.

6.2.1 Three-dimensional Vertex Scan
The vertices were scanned over a 3-dimensional space in a 10m×10m×10m cube
centred on the vertex from the full free scan to get a more complete view of the
likelihood surface’s vertex dependence. At each point in the cube, the direction
was fitted by millipede.

Figure 6.8: Likelihood scan over 10m×10m×10m cube. The fitted muon track
is also shown. The muon can be seen entering the cube on the left at (x, y, z) ∼
(52, 40, 231) and exiting on the right at (x′, y′, z′) ∼ (62, 40, 230). The negative
log likelihood shows minima towards the centre of the cube but also shows some
fluctuations in vertex space.

The scan shows the likelihood gets considerably worse at the top and bottom of
the cube which is expected as these areas correspond to shifts in the perpendicular
direction which has been shown to affect the likelihood. There are still some
fluctuations in the likelihood between vertices but a clear minimum region towards
the centre.
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6.2.2 Plane Scan
Since the largest likelihood sensitivity with the vertex shifts seems to be in the
plane perpendicular to the track, the vertices were scanned over a 2-dimensional
plane. This plane is defined relative to the track from the full free fit. The plane
is centred on the fitted vertex from this reconstruction and is perpendicular to
the fitted track as shown in figure 6.9.

These positions were then fixed and used by the minimiser to find the most
likely direction. Since this particular event is travelling almost horizontally along
the x-axis, the perpendicular plane will be almost vertical on the yz plane. The
vertex scan was done on this plane for a 2m×2m square as this is the scale of the
majority of vertex shifts seen in figure.

Figure 6.9: Example of a fitted track with 2m×2m perpendicular plane centred
at its vertex.

For this plane scan, as shown in figure 6.9, the plane was centred at the
vertex from the full free fit while the initial guess direction was the direction
given by the free scan. Each point on the plane is given two coordinates x′ (the
“horizontal” displacement) and y′ *the “vertical” displacement) which map to a
vertex in IceCube coordinates (x, y, z) as shown in section A.5. For each point in
the plane, the direction is fitted by millipede. The scan is shown in figure 6.10.
The likelihood scan shows a clear minimum region centred around the minimum
from the free scan. Despite this overall trend toward a well defined minimum,
there are still relatively large likelihood fluctuations between adjacent directions.

Scanning over the vertex space shows that the likelihood value depends greatly
on vertex position. As expected, shifting the track in a perpendicular direction
away from the minimum causes the negative log likelihood to become larger.
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Figure 6.10: Plot of negative log likelihood for fixed points on a perpendicular
plane, allowing millipede to fit the direction and energy losses. The red cross
is the minimum likelihood position. This central minimum region reveals the
negative log likelihood increases with perpendicular distance.

These scans also indicate that the likelihood function also has fluctuations in
vertex space. Whether the fluctuations occur in vertex space more than direction
space must now be investigated.

6.3 Fixed Vertex

6.3.1 Fixed Energy Losses
To check that the likelihood function has fluctuations mainly in vertex space
as opposed to direction space, a new scan was created for the event in which
everything (including energy losses) is fixed between directions and millipede is
only used as a likelihood calculator. In the original simulation, the data is stored
in a Monte Carlo (MC) tree where the muon track is accompanied by daughter
products which carry energy away from the muon (see appendix B.2.) These
products can be seen through the light pattern in the DOMs. Millipede would
then reconstruct the energy losses from this observed signal. In this alternative
method, the true muon losses are known and fixed keeping their energies and
positions along the track constant.

For the grid scan in zenith and azimuth, the track is kept at a constant vertex
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Figure 6.11: Example of two tracks with different directions but common vertex
and the same energy loss pattern.

and allowed to pivot around this point. As the track moves, its losses stay at the
same positions relative to each other and the vertex meaning they move with the
track. This is illustrated in figure 6.11. The losses are kept in the same relative
true positions on the track for each direction, however, the actual positions of these
losses in (x,y,z) must be found for a likelihood calculation. These positions would
vary as the track direction changes as shown in figure 6.11. The new position is
found for each loss by calculating the distance d between this loss and the fixed
vertex. The vector between the vertex and the loss is given by

~v = ±d(sinθcosφx̂ + sinθsinφŷ + cosθẑ) (6.1)

Whether +d or −d is used depends on whether the loss is “before” or “after”
the vertex on the track. If the loss occurs before the particle reaches the vertex,
the vector will be pointing towards (θ, φ) so +d is used. If the loss occurs later,
the vector is pointing in the opposite direction so −d is used. This vector ~v is
then simply added to the vertex position vector to obtain the new position for
the loss in x,y and z. These parameters are then used by millipede to calculate
the likelihood. This is shown on the same 1◦ × 1◦ grid as before. The vertex was
fixed at the true vertex.

The grid scans in figure 6.12 show that the likelihood surface for fixed losses
is much smoother than when the vertex and losses were being fitted as shown by
the values of RMSrel. However, in both scans there is an extreme jump in the top
right. This is more obvious on the scan where the losses and vertex are fixed as it
might be partially corrected for by the fitting of the vertex. However, even with
this likelihood jump, the overall scan with fixed losses shows a smooth likelihood
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(a) Grid scan over zenith and azimuth
for fitted energy losses and vertex.
(RMSrel = 338.)

(b) Grid scan for fixed energy losses and
vertex. This scan reveals a smoother
surface with a clear minimum. (RMSrel =
30.)

Figure 6.12: Grid scan for fitted and fixed losses.

surface with a clear minimum.

6.3.2 Only Fitting Energy Losses
To finally verify that the fluctuations are the most extreme in the vertex space,
the scan was run again but this time, millipede was allowed to reconstruct the
energy losses for each direction in the scan while keeping the vertex position
constant at its true value. Millipede is also allowed to vary the positions of
the losses along the track. The region of the scan is the same 1◦×1◦ grid as before.

The grid scan in figure 6.13 where energy losses are fitted but vertex is fixed
also shows a likelihood surface which is not as smooth as the surface for fixed
energy losses from figure 6.12(b) but is still a great deal smoother than when
the vertex is being fitted in figure 6.12(a) as shown by the RMSrel values. The
scan now shows a clearer minimum which is not too far from the true direction
and almost coincides with the free fit direction. This indicates that most of the
fluctuations in the likelihood surface arise when the vertex is allowed to float in
the fit.
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Figure 6.13: Scan over 1◦ × 1◦ grid with fitted energy losses but fixed vertex.
The scan minimum now almost coincides with the millipede free fit. The
likelihood surface is still smoother than when the vertex is fitted. (RMSrel =
108.)

6.4 Summary
The 1◦×1◦ scan of a bright muon event reveal extreme fluctuations in the
likelihood surface, with respect to zenith and azimuth, which are thought to be
the main cause of the problem with millipede’s accuracy. Closer investigation of
the individual directions of these scans reveals that the vertex is being fitted by
millipede to very different locations for almost identical directions.

The main contribution to likelihood differences seems to be vertex shifts
in the plane perpendicular to the muon track. While the shift in this plane is
comparably small, the negative log likelihood is shown in figure 6.10 to increase
with increasing distance from the centre of this plane.

Figures 6.12 and 6.13, when the vertex is fixed, show a smoother likelihood
surface indicating that likelihood fluctuations arise mainly when the vertex is
allowed to float freely. This suggests that most of the likelihood fluctuations arise
mainly in the vertex space rather than direction space. This causes the fitted
vertex to fluctuate between directions. The source of these fluctuations in vertex
space must now be investigated.





Chapter 7

Possible Causes of Vertex
Fluctuations

The likelihood fluctuations in vertex space are most likely due to a combination of
an incomplete model of the ice and features of the waveforms in real and simulated
data which millipede is not taking into account when calculating its predictions.
These features could be fluctuations in the waveform, or secondary pulses created
inside the PMT.

7.1 Using Millipede Predictions as Input
To check that these extra waveform features are the most likely cause of
fluctuations and there are no internal errors in millipede, the predictions
calculated by millipede’s likelihood function are used as the input pulses for
reconstruction.

In other words, the millipede likelihood function is now used as the simulator.
In this method, millipede is given the true (Monte Carlo) direction, vertex
position and energy losses for a simulated event and calculates the predicted
waveforms. These waveforms are then used as an input signal, creating an event
which millipede then reconstructs. If there are no internal errors in millipede,
this should produce a smooth likelihood surface with a minimum close to the
true direction. This method was tested on the bright event from figure 5.13 using
millipede’s predictions for the true direction as the simulated DOM waveforms.
The one degree radial scans are shown in figure 7.1. Unless otherwise stated, the
point on the scan labelled “Millipede Fit” is the result from the full free fit using
the original pulses (i.e. before altering the waveform.)

These scans reveal that using millipede predictions as the input pulses creates
an extremely smooth likelihood surface after reconstruction (as shown by the
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(a) Scan using Original Waveforms as
input. This has RMSrel=45.

(b) Scan using Millipede’s Predicted
Waveforms as input. This has
RMSrel=5.5.

Figure 7.1: One degree radial scans using original simulated pulses and
millipede’s predicted pulses. Note when millipede predictions are used as the
input, the likelihood surface becomes smooth.

RMSrel values) which is centred on the true direction. The minimum of the scan
is within one bin of the true direction. This strongly implies that the source of
the fitting errors and likelihood fluctuations is differences between the predicted
waveforms and the actual pulses. The next test is to artificially add waveform
fluctuations to understand how the likelihood surface is affected.

7.1.1 Adding Poisson Fluctuations
After creating these predictions from the true particle parameters, Poisson
fluctuations are added by replacing the predicted charge of each pulse with
a Poisson deviate which is a random variable sampled from a Poissonian
distribution (see appendix B.4.) The original value predicted by millipede is
used as the mean of this distribution. The Poisson deviate replaced the millipede
prediction for each pulse to introduce waveform fluctuations. The 1◦ radial scans
are compared in figure 7.2.

When the Poisson deviate is added, it is revealed that fluctuations are
introduced into the likelihood space as is reflected in the RMSrel values.
However, the likelihood surface is still smoother than the result using the
standard simulation shown in figure 7.1(a). While this result implies that
waveform fluctuations can cause likelihood fluctuations, it also implies that
Poisson fluctuations in the true waveform are probably not the only cause of
likelihood and vertex fluctuations. The other features in the waveform, which
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(a) Scan using Millipede’s Predicted
Waveforms as input. This has
RMSrel=5.5.

(b) Scan using Millipede Predictions with
Poisson Fluctuations as input. This has
RMSrel=13.

Figure 7.2: One degree radial scans using millipede predictions and Poisson
deviate.

millipede is apparently not taking into account, must now be investigated.

7.2 Attempts to Remove After-pulses
After-pulses are spurious features in a waveform which appear several
microseconds after the main pulse and are created by ionisation of residual
gases in the PMT. While the PMT requires a vacuum to operate properly, in
reality, there are trace amounts of gas such as hydrogen, oxygen and helium
contaminating the PMT.

As an electron travels from the photo-cathode to the anode, it accelerates
and gains energy. When a high energy electron strikes the gas molecule, it can
ionise the gas molecule by ejecting one or more of its electrons. This changes
the gas molecule into a positive ion which is drawn by the electric field towards
the negative cathode. When the ion strikes the cathode, its energy is given to
electrons which accelerate towards the dynodes and anode. This process is shown
in the diagrams in figure 7.3.

These electrons create new pulses in the DOM which are weaker than the
main pulse. This new signal will also arrive at a later time determined by the
potential difference and the mass and charge of the positive ion. Singly ionised
helium (He+) appears to be the main contributor to after-pulses [40].

For the PMTs used in IceCube at their operating voltage of around 1300 V,
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Figure 7.3: Diagrams of PMT showing production of after-pulses. Top: The
primary electron accelerates towards the positive anode and collides with
contaminant gas. Middle: The ionised gas accelerates to the negative cathode.
Bottom: Once the positive ion strikes the photo-cathode, secondary electrons
are produced and accelerate towards the anode.
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the after-pulses have been found to be around 300ns to 11µs after the main
pulse [20]. The waveform predictions calculated by millipede don’t include any
after-pulses. However, the after-pulses are present in the observed waveforms for
real events and are also included in Monte Carlo simulated events. It is thought
that these differences in the predicted and measured waveforms could account for
the fluctuations in the likelihood surface [41]. To test this idea, for each DOM in
the detector, the median time of the waveform is calculated and all pulses more
than 3µs after this time are removed from the waveform.

To demonstrate the nature of the after-pulses in the waveform, the average
pulse is plotted for the bright muon event from figure 5.13. For each DOM, the
charge of a given pulse is calculated as a fraction of the total charge in the detector.
The time of the pulse relative to the median time is also calculated. The results
from all DOMs are collected together to show how the waveform evolves as a
function of the offset from the median time. This average pulse is plotted for the
original simulation and for millipede’s predictions in figure 7.4. The cut at 3µs is
shown by the dashed line.

(a) Waveform from original simulated pulses.
Note the relative increase of charge around
8µs.

(b) Waveform Predicted by Millipede. Here,
there is no extreme charge increase at 8µs.

Figure 7.4: Average waveform for actual pulses and for millipede prediction.
In both waveforms, the charge is seen to decrease almost exponentially after
the peak around zero. In the millipede predictions, this trend continues to the
end of the waveforms but in the actual simulation, the charge starts increasing
around 5µs to form a secondary peak at 8µs due to the contributions of the
after-pulses in all DOMs.

The average waveform reveals a clear bulge around 8µs after the median which
is not present in millipede’s prediction which seems to follow an exponential decay.
However, this secondary pulse is over 1000 times smaller in amplitude than the
main pulse.
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7.2.1 Reconstructions with Time Cut
A grid scan was performed on this same event, after removing all pulses more
than 3µs after the median to investigate the effect on the likelihood surface. This
is displayed in figure 7.5.

(a) Scan with Original Pulses.
RMSrel=45.

(b) Scan with 3µs cut. RMSrel=3.1.

Figure 7.5: One degree radial scans using original pulses and 3µs cut. Note
the 3µs cut produces a smooth likelihood surface with a much smaller RMSrel
value.

As shown in figure 7.5(b), removing pulses more than 3µs after the median
time dramatically improves the shape of the likelihood surface (RMSrel decreases
from 45 to 3.1) and even shifts the minimum region closer to the true direction.
This gives a strong indication that, despite the very small amplitude of the
after-pulses, they seem to have a large effect on the reconstruction. As the vertex
shifts in the perpendicular direction were shown in chapter 6 to closely correlate
with the negative log likelihood, these shifts should now also produce a smooth
pattern. Similar to section 6.1.1, for each direction in the scan, the perpendicular
distance between the fitted vertex and the vertex of the minimum negative log
likelihood is calculated and displayed in figure 7.6.

When the original waveforms are used in the reconstruction, as shown in
figure 7.6(a), there is no obvious pattern to how the vertex is fitted as a function
of zenith and azimuth. Like the example in section 6.1.1, very similar directions
have vertices fitted to very different positions. After the 3µs cut in figure 7.6(b),
the vertex shift shows a clearer minimum region around the centre and adjacent
directions are fitted to similar positions. The scan of vertex shift isn’t as
smooth as the likelihood surface but it definitely shows an improvement. The
likelihood is also plotted on a 3D diagram showing the vertices fitted across the
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(a) Scan with Original Pulses. (b) Scan with 3µs cut.

Figure 7.6: One degree radial scans showing perpendicular vertex shift (in
metres) on colour scale. Note when the 3µs cut on after-pulses is applied, the
vertex shifts show a clear minimum near the true direction .

scan with negative log likelihood on the colour scale. In these plots, shown in
figure 7.7, each point in 3D space is a pixel from the one degree radial scans
shown in figure 7.5. The position of each point shows the fitted position for
this fixed direction and the colour of the point indicates the negative log likelihood.

The 3D plot, in figure 7.7(a), of the vertices reveals likelihood fluctuations
when the original pulses are used. When the 3µs cut is applied, in figure 7.7(b),
the distribution becomes a smoother, elliptical pattern with a clear minimum
region in negative log likelihood represented by the blue points on the figure.
These points are also represented on a 2D plot in figure 7.8 by projecting them
onto the average plane passing through the points. The scan over the average
plane shows, for the original waveforms in figure 7.8(a), there is no overall pattern
in the negative log likelihood values while for the 3µs cut in figure 7.8(b), the
negative log likelihood has a clear central minimum in vertex space. Also, the
spread in fitted vertices is reduced (now all vertices fit within 3 metres.) This
reveals that, when the cut is applied, the likelihood surface is smoothed out for
vertices as well as direction.
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(a) With Original Pulses. (b) With 3µs cut on Pulses.

Figure 7.7: 3D Plots showing negative log likelihood for fitted vertices. Each
point corresponds to a pixel in the scans in figure 7.5 and the colour scale
corresponds to the negative log likelihood. When a 3µs cut is applied, the
vertices form a more coherent pattern with minimum negative log likelihood
towards the centre.

(a) With Original Pulses. (b) With 3µs cut on Pulses.

Figure 7.8: Plots showing fitted vertex positions on average plane with negative
log likelihood on the colour scale. When the 3µs cut is applied, the vertices
become more organised, with higher values (orange-red points) on the outside
and a minimum (blue points) near the centre.
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1-dimensional Scans

As shown in section 5.3, when the original simulated waveforms are used, the
fluctuations in the likelihood surface make it impossible to find σ without fitting
a parabola. Since, for this event, the scan is smoother after the 3µs cut, it
is possible that σ can now be found from the likelihood values alone (without
fitting a parabola.) This event is now plotted with negative log likelihood against
angular separation from the minimum. In these plots, each point is given by a
pixel in the scans from figure 7.5. These plots are shown in figure 7.9.

(a) With Original Pulses. (b) With 3µs cut on Pulses.

Figure 7.9: One dimensional scans showing negative log likelihood against space
angle away from minimum when using the original simulated waveforms and the
3µs cut on the waveforms. Note that when the 3µs cut is applied the pattern
becomes narrower, more closely resembling a parabola. The value of σ is shown
to be about 0.2◦ which agrees closely with the value from the fitted parabola
shown in figure 5.14(a).

The plot with the 3µs cut reveals that the likelihood function has indeed
become closer to a parabola. The fact that the points don’t sit perfectly on a
parabola, and there is still some spread, implies that the smooth likelihood scan
in figure 7.5(b) is not completely symmetric. In other words, the higher values
of negative log likelihood (the top curve in figure 7.9(b)) are in the direction in
which the negative log likelihood increases more rapidly than for the bottom
curve. However, the surface is now smooth enough that it is possible to estimate
a σ value without fitting a curve. Simply using the negative log likelihood values
produces a σ value of about 0.2◦ for this event which agrees closely with the
value obtained from the parabola shown in figure 5.14(a).
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Test with Another Event

This 3µs cut was applied to another simulated track to see if it has the same
smoothing effect on the likelihood surface. The likelihood scans in zenith and
azimuth are shown in figure 7.10.

(a) Scan with Original Pulses. This has
RMSrel=50.

(b) Scan with 3µs cut on pulses. This has
RMSrel=42.

Figure 7.10: One degree radial scans using original waveform and 3µs cut. Note
that when the cut is applied, while the likelihood surface becomes, overall,
slightly smoother, there is a region to the left of the true direction where the
values suddenly increase.

For this event, as shown in figure 7.10(b), removing pulses more than 3µs
after the median seems to slightly broaden the minimum region of the direction
scan and the likelihood surface, overall, is smoother. However, there is now
a region where the negative log likelihood suddenly increases with respect to
nearby directions. This behaviour wasn’t present in the scan from the original
pulses which indicates that, by performing this cut at 3µs, there is potentially
useful “late light” which is being cut. The one dimensional scans for this event, in
which negative log likelihood is plotted against space angle away from minimum,
is shown in figure 7.11.

After the 3µs cut on this event, the one dimensional likelihood points in
figure 7.11(b) spread out with respect to the points in figure 7.11(a). However,
it should be noted that the overall trend of the negative log likelihood appears
more parabolic than before. The points in figure 7.11(a) seem to follow a linear
path while in figure 7.11(b) the maximum and minimum points follow a curved
path. However, unlike the event shown in figure 7.9, there is a notable drop in
negative log likelihood around 0.3◦ away from the minimum. This degeneracy
means, for this event, a parabola must be fit to the surface to find σ.
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(a) With Original Pulses. (b) With 3µs cut on Pulses.

Figure 7.11: One dimensional scans showing negative log likelihood against
space angle away from minimum when using the original simulated waveforms
and the 3µs cut on the waveforms. Note that when the 3µs cut is applied the
points become more spread out.

These results show that the method of simply removing pulses more than
3µs after the median time doesn’t improve all scans in general and, as shown in
figure 7.10, may introduce odd behaviour. However, even with this behaviour,
the likelihood surface has become overall smoother for both of these events (as
given by the RMSrel values.)

7.2.2 Tightness of the Minimum
The resolution, σ, of a likelihood scan is defined by the points where the negative
log likelihood increases by 1.15 units. In order to calculate the value of σ directly
from a likelihood scan (without fitting a parabola), the negative log likelihood
must vary gradually enough such that the 1.15 level is at least one pixel away
from the minimum. In other words, if, when moving one pixel away from the
minimum, the negative log likelihood increases by substantially more than 1.15,
this is a very tight minimum and the 1σ surface is hidden.

To investigate the tightness of the minima, the average increase in negative
log likelihood is calculated for a series of pixels neighbouring the minimum of
the scan. This series of pixels is illustrated in the example shown in figure 7.12.
If the increase in negative log likelihood is greater than 1.15, the σ surface is
buried between the pixels. The standard deviation (spread) in the negative log
likelihood values is also calculated. If this spread is also more than 1.15, this
confirms the fluctuations are still too great to determine the resolution.
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Figure 7.12: Example of the scan minimum and surrounding pixels. The
negative log likelihood is calculated for pixels neighbouring the minimum
(dashed line) and the minimum negative log likelihood is subtracted to find the
increase.

The spread in negative log likelihood values is compared to the average
increase for the neighbouring pixels, as shown in figure 7.12, for a sample of 250
events. This is shown in a histogram, in figure 7.13, for reconstructions using the
original simulated pulses and using the 3µs cut pulses.

As shown in the histograms in figure 7.13, there are many events in which the
average likelihood increase is more than 1.15 and the likelihood spread is more
than 1.15 (outside the dashed lines.) When the original pulse series is used in the
reconstruction, 67% of events lie outside the dashed box shown in figure 7.13(a)
while, for the 3µs cut shown in figure 7.13(b), 35% are outside this box. This
implies that, when the 3µs cut is applied, there are more events in which the
negative log likelihood increase and spread are small enough for the σ surface to
be calculated directly.

To check that there is a 1σ surface which can be found from the negative log
likelihood values alone, two more events were selected which had increases, from
minimum to adjacent pixels, less than 1.15 when the 3µs cut is applied. These
scans, centred on the true (Monte Carlo) direction, are displayed in figure 7.14
with the negative log likelihood represented by the colour scale. The colour scale
is set to only include pixels in which the increase is less than 1.15. Where the
pixel colour changes to red indicates where the 1σ surface can be found. Also
plotted, is the 1σ surface obtained by fitting a parabola.
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(a) With Original Pulses. (b) With 3µs cut on Pulses.

Figure 7.13: Comparison histogram of spread in negative log likelihood values
against average increase in negative log likelihood for pixels neighbouring the
minimum. The dashed lines show the points when either quantity is equal to
1.15. Events with a negative log likelihood increase greater than 1.15 have very
tight minima which hide the σ value. When the original pulses are used, about
67% of events have minima which are too tight. After the 3µs cut, 35% have
minima which are too tight.

(a) Scan of event with a relatively broad
minimum using the 3µs cut.

(b) Scan of another event with a broad
minimum using the 3µs cut.

Figure 7.14: Scans of two events in which the increase after one pixel is less
than 1.15. The colour scale shows the negative log likelihood increase from
the minimum. The transition to red pixels indicates the 1σ surface obtained
directly from the likelihood values. For both events, this surface seems to agree
with the 1σ surface from the parabola.

As shown in the event scans in figure 7.14, the 1σ surface found directly from
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the likelihood surface agrees closely with the surface obtained from the parabola.
This implies that, for some events, the minimum is broad enough such that it
is possible to estimate the σ values without fitting a parabola. The likelihood
surface was also plotted out for an event which had an increase greater than 1.15
for the first pixel to understand the nature of this minimum (whether it is a local
or global minimum.) This is shown in figure 7.15. As before, the colour scale
shows the negative log likelihood increase and the 1σ surface for the parabola fit
is shown.

Figure 7.15: Scan showing increase in negative log likelihood from the
minimum. This scan shows a broad minimum region but a deep local minimum
where millipede is becoming trapped. The 1σ surface shown is centred around
the parabola minimum which demonstrates the parabola fit has correctly found
this minimum region.

As can be seen in figure 7.15, the negative log likelihood increases by about
4 units one pixel away from the minimum though there is a broad minimum
region shown in light blue. The parabola’s 1σ surface is centred on the parabola’s
minimum. This indicates that the parabola is finding the broad minimum region
which is closer to the true direction (the centre of the scan), which implies that
the deep minimum found by millipede is false.

According to figure 7.13, once the 3µs cut is applied, there are still many events
in which the minimum is too tight to determine the σ value. Some events still
have negative log likelihood increases and spreads of the order 1000. Performing
a finer grid scan could reveal that these events simply have very fine resolution.
However, as shown in figure 7.15, it is more likely that most of these events have
deep local minima due to likelihood fluctuations. A parabola fit is needed to
find the broader minimum region shown in figure 7.15. More work could be done
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to determine why millipede is producing these narrow minima but, in the next
section which investigates the scan accuracy, σ is calculated by fitting parabolas.

7.2.3 Overall Accuracy of Scans
Similar to section 5.3, grid scans were performed on 431 simulated muon events
with this 3µs cut on the pulses. As has been shown in figure 7.11 and figure 7.13,
there are events where performing the 3µs cut doesn’t produce a smooth enough
surface to calculate σ. For this reason, the grid scans of these events were, again,
fit to parabolas to find σ. The space angle between the true (Monte Carlo)
direction and the minimum of the parabola ∆θ was calculated. The ratio ∆θ/σ
is displayed in a cumulative plot in figure 7.16 showing the percentage of events
falling within each multiple of σ. This is also summarised in table 7.1.

Figure 7.16: Cumulative plots of ∆θ/σ for 431 events.

Multiple of σ % within for Original Waveform % within for 3µs cut
σ 39.68% 38.98%
2σ 71.93% 73.55%
3σ 81.21% 83.53%

Table 7.1: Table showing percentages of events within each multiple of σ for
both original waveforms and 3µs cut.

The result, in figure 7.16, shows that performing the 3µs cut does little
to increase the accuracy of the grid scan and, while some scans may become



90 CHAPTER 7. POSSIBLE CAUSES OF VERTEX FLUCTUATIONS

Figure 7.17: Comparison of ∆θ/σ between original pulses and 3µs cut. The
dashed line shows where ∆θ/σ is equal for both original pulses and 3µs cut.
Events below this line have scans of increased accuracy. The result shows about
half have increased accuracy while the accuracy gets worse for the other half.

smoother, the minimum is still around the same place. As shown in table 7.1,
there are now fewer events within 1σ but more within 2σ though not by much.
This is summarised in the comparison histogram shown in figure 7.17. The
comparison plot shows some events where the position of the minimum relative
to σ improves and some where the minimum gets further away relative to σ.
However, most events show little or no change implying this cut has very little
effect on the accuracy of the grid scans.

The cut was further compared to the results using the original simulated
waveforms by performing a full free fit on a large sample where millipede is used
to reconstruct all parameters including the direction to see how the space angle
between the fit and true direction improves. This is shown by calculating the
space angle between the true direction and the fit for the original pulses and the
3µs cut and subtracting the cut value from the original value. A positive number
means the accuracy has improved. The resultant histogram is shown in figure 7.18.

The histogram of energy against accuracy improvement in figure 7.18 shows
that most events have hardly any change after applying the cut and there seems to
be no energy dependence on whether or not the accuracy improves. Particularly
for the low energy events, there are around the same number of events which have
poorer fits as there are which have better fits. This, again, implies that performing
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Figure 7.18: Histogram of muon energy against difference between original error
and error with 3µs cut. Note, for almost all events, there is very little change.

the 3µs cut has little effect on the accuracy.

7.2.4 Comparison of Fluctuations
To check the overall effect on the scans, for both the original waveforms and the
3µs cut on the original waveforms in the sample of 431, RMSrel was found in
the method described in section 5.3.3 for lines of constant zenith. The value of
RMSrel was compared to the value given by the original pulses. This comparison
is plotted in a histogram shown in figure 7.19. The line of equality is shown
where RMSrel doesn’t change after the cut. Events which fall below this line
have smoother scans after the cut. The comparison in figure 7.19 shows most
events have smaller RMSrel values after the cut implying smoother scans though
some of these changes may not be obvious by simply looking at the scans.

Finally, the change in RMSrel is compared to the initial (Monte Carlo)
energy of the muon to understand which types of events are most affected by
this 3µs cut. This is plotted in a histogram of muon energy against the ratio
(RMSrel)Original/(RMSrel)Cut. Values of this ratio greater than one correspond to
the 3µs cut producing a smoother scan than the original pulses. The histogram
of muon energy against this ratio is shown in figure 7.20.

This histogram reveals most events (∼ 74%) have RMSrel ratios greater than
one, meaning, as shown in figure 7.19, most events have smoother scans after the



92 CHAPTER 7. POSSIBLE CAUSES OF VERTEX FLUCTUATIONS

Figure 7.19: Comparison histogram of RMSrel. Note the majority of events
(74%) are below the line of equality indicating that most events produce a
smoother scan when the 3µs cut on the pulses is applied.

Figure 7.20: Comparison histogram of energy againstRMSrel ratio. Note most
events have minimal change while there are some low energy events where
RMSrel increases after the cut, possibly due to potentially useful late light
being removed.
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3µs cut. There are, however, some low energy events and a small number high
energy events where RMSrel increases after the cut. This is probably an extreme
case of the example shown in figure 7.10 where the cut is removing late, scattered
light which could be used in the reconstruction. There are also some low energy
events in which the scan is becoming considerably smoother. This could either
be due to the removal of after-pulses or fluctuations occurring in the tail of the
waveform.

These results have shown that, while the likelihood surfaces and accuracy
of some events improve as a result of the 3µs cut as shown in figure 7.5 when
RMSrel dropped from 45 to 3.1, about one third of events show little or no change
and some events (about 26%) have scans with more fluctuations when the cut is
applied. This demonstrates that, in general the reconstruction can’t be improved
by simply removing the pulses 3µs after the median. However, the result from
the event shown in figure 7.5 strongly suggests that the after-pulses are the main
contributor to the likelihood fluctuations and inaccuracies in the fitting. The
effect of after-pulses must now be compared to the effect of Poisson fluctuations
to determine which has the greater effect on the results.

7.3 Adding After-pulses and Fluctuations
To check which, between the after-pulses and Poisson fluctuations, has the
greatest effect on the likelihood fluctuations and overall accuracy, both after-pulses
and fluctuations are added to the millipede predictions found in section 7.1.
The fluctuations and after-pulses are applied to the millipede predictions, using
methods described in Appendices B.4 and B.5 respectively, for the sample of 431
events. The values of RMSrel are calculated for the scans from these new sets of
waveforms as well as the smooth scans using millipede predictions.

7.3.1 Adding Poisson Fluctuations
To understand if the likelihood fluctuations get more extreme when Poisson
fluctuations are added, the ratio (RMSrel)Poisson/(RMSrel)Prediction is calculated to
compare RMSrel for the added fluctuations to RMSrel for millipede’s predictions.
The muon energy is plotted against the RMS ratio for an added Poisson deviate
to check which types of events are affected by this change. Plotting the muon
energy against the increase in fluctuations in figure 7.21 reveals the events where
the Poisson deviate has the greatest effect generally correspond to the lower
energies. However, there are some events where the Poisson deviate appears
to produce a smoother scan than when millipede predictions are used. This is
probably due to millipede failing to reconstruct a dim event and the Poisson
fluctuations producing a smoother surface by chance. The full free fit was also
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Figure 7.21: Histogram of muon energy against ratio of RMSrel for Poisson
fluctuations relative to RMSrel for millipede predictions. Note that most of
the events which are affected by Poisson fluctuations are low energy. Some of
these have ratios less than one which means, possibly due to a dim signal in the
detector, millipede has trouble reconstructing these events and, by chance, the
Poisson fluctuations manage to create a smoother surface.

Figure 7.22: Histogram of muon energy against increase in angular error when
the Poisson deviate is applied. Note, again, that high energy events are mostly
unaffected by the Poisson fluctuations.
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run on a larger sample of events with added fluctuations. For each event, the
space angle (angular error), α is calculated between the fit and the true direction
for both the fit using millipede predictions and the fit using the predictions
with added Poisson fluctuations. The muon energy is plotted in a histogram in
figure 7.22 against the difference in angular error (αPoisson − αPrediction.)

This histogram in figure 7.22 shows Poisson fluctuations have a greater effect
on the accuracy of low energy events. Some events have angular errors increasing
by more than 4◦ though there are some events where the Poisson fluctuations
produce a more accurate fit. Most high energy events are unaffected by the
fluctuations.

7.3.2 Adding After-pulses
These same tests were applied to the events which had after-pulses added to the
millipede predictions. In this method, the after-pulses are approximated using a
probability of after-pulses given an initial number of primary photo-electrons. In
other words, the size and number of after-pulses depends on the magnitude of the
primary pulse predicted by millipede. This probability is shown in appendix B.5
and defines the probability of a certain number of after-pulses given a number
of initial photo-electrons and an ionisation probability. This method was tested
first on the event shown in figure 7.5 and the ionisation probability was varied
until the magnitude of the after-pulses approximately resembled the increase
shown in figure 7.4(a). The relative abundances of the different elements affect
the time distribution of after-pulses and are approximated from [40]. The plots
of the average pulses are shown in figure 7.23.

As shown in figure 7.23, adding after-pulses to the millipede predictions
produces an increase in average charge 1000 times smaller than the main peak.
This pulse series is then given to millipede to perform reconstruction. Since the
predictions calculated in the likelihood function won’t take these new after-pulses
into account, the likelihood surface should have more fluctuations. The one
degree radial grid scan is shown for this event in figure 7.24.

The scan of this event shows that, when after-pulses are added to the millipede
predictions, in figure 7.24(b), the likelihood fluctuations get considerably worse
though the minimum is still relatively close to the true direction. While the
after-pulses are of a similar magnitude to the original simulation, the scan
produced bears little resemblance to the original scan shown in figure 7.5(a).
This demonstrates how much the specific behaviour of the after-pulses can affect
the likelihood surface. This was tested across the same events from section 7.3.1
to understand how these added after-pulses affect the quality and overall accuracy
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(a) Waveform predicted by millipede with no
fluctuations or after-pulses.

(b) Millipede prediction with added
after-pulses.

Figure 7.23: Average waveform for millipede predictions and predictions with
added after-pulses.

(a) Scan using pure Millipede
Predictions as input. This has RMSrel =
5.5.

(b) Scan using Millipede Predictions with
Added after-pulses. This has RMSrel =
207.

Figure 7.24: One degree radial scans using pure millipede predictions and
predictions with added after-pulses.
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Figure 7.25: Histogram of muon energy against ratio of RMSrel for added
after-pulses relative to RMSrel for millipede predictions. Note, in contrast
to Poisson fluctuations, the after-pulses have at least a small effect across all
energies. There are some dim events where the surface manages to become
smoother while the events which have increased fluctuations are generally at
high energies.

of the fits. Similar to the tests in figures 7.21 and 7.22, the fluctuations are
compared between the result using these added after-pulses and pure millipede
predictions as well as the overall accuracy of the fits. The plot of the muon energy
against the ratio (RMSrel)AfterPulses/(RMSrel)Prediction is shown in figure 7.25.

The plot in figure 7.25 reveals a slight trend towards higher energy muons
having more fluctuations when the after-pulses are added. This is probably due
to the high energy events producing a brighter signal in the detector with a
greater number of photo-electrons making after-pulses more likely. The muon
energy is plotted in figure 7.26 in a 2D histogram against the increase in error
(αAfterPulses − αPrediction) for this method.

This plot, in figure 7.26, of the increase in angular error for added after-pulses
shows, similar the result shown in figure 7.25, added after-pulses are shown to
affect the accuracy across a range of energies. There is also an overall higher
proportion of events where the error has substantially increased (by more than
2◦) than when the Poisson deviate was applied. This implies that the after-pulses,
and millipede’s failure to account for them, are a major factor in the reconstruction
errors and could explain the errors and fluctuations seen in the high energy event
from section 6.1.
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Figure 7.26: Histogram of muon energy against increase in angular error when
after-pulses are added. The error increase occurs across a wider range of
energies than for the Poisson fluctuations.

7.4 Summary
After testing the reconstruction algorithm with various input waveforms, it
becomes clear that the accuracy of the reconstruction and the fluctuations in the
likelihood surface depend greatly on the input waveforms given to millipede for
reconstruction.

When the millipede predictions are used as the input rather than the original
simulated waveforms, the likelihood surface becomes almost perfectly smooth
with a minimum which matches the true direction. This shows that the primary
cause of the fluctuations in the likelihood surface is not the calculation of the
likelihood itself but millipede’s failure to accurately predict the waveforms. After
allowing these predicted pulses to vary according to a Poisson distribution, the
likelihood fluctuations are introduced though are not as extreme as the result
with the original simulation. The effect tends to be greater at lower energies.

When the waveform is cut 3µs after the median time to remove after-pulses,
the likelihood surface becomes smoother in most events (about 74%) but shows
very little change in about one third of the sample. After adding a Poisson
deviate and after-pulses to the signal for a number of events, it was found that
many of the low energy events had more fluctuations when the Poisson deviate
was applied. When after-pulses were added, the fluctuations became more
extreme for most events with a slight trend towards high energy events.
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This suggests that the cause of the fluctuations in the likelihood surface
and millipede’s inaccuracy are due to a combination of Poisson fluctuations
and after-pulses (or other late light) in the waveforms. The fluctuations in the
waveform have little effect on the high energy events while the after-pulses and
late light have a noticeable effect across all energies though slightly more for high
energies.





Chapter 8

Conclusions

In this work, the accuracy of millipede as a direction reconstruction algorithm
was assessed. When run on a sample of simulated events, millipede was found to
be a more accurate algorithm than the SPE method which preceded it. However,
millipede still showed large inaccuracies for many low energy muon events as well
as for some high energy events. These inaccuracies were found to be mainly due
to the fluctuations in the likelihood surface creating local minima for millipede
to become “trapped.”

After investigating these fluctuations in more detail, it became clear that the
likelihood fluctuations appear in all dimensions including the vertex space. It
was found that, when the vertex is fixed, and millipede is used as a likelihood
calculator, the likelihood surface becomes smooth. This implies that the
likelihood fluctuations arise when the vertex is allowed to float and is fitted by
millipede.

After replacing the usual simulated waveforms with waveforms predicted
by millipede’s likelihood function for the true direction, the likelihood surface
becomes smooth and is centred on the true direction indicating there are no
internal errors in millipede. It has been previously suggested that millipede’s
failure to account for after-pulses in the waveform are contributing to its
fluctuations and inaccuracy. Removing all pulses more than 3µs after the median
time has been shown to slightly improve the reconstruction in most cases (about
74%), though in about a third of the events there is little or no change and about
26% of events have poorer fits when the cut is applied.

Adding Poisson deviates and after-pulses to the predictions from millipede’s
likelihood function is revealed to generally increase the fluctuations and decrease
the accuracy. Poisson fluctuations are seen to have a greater effect on low energy
events and a very small effect at higher energies. After-pulses have a greater
effect than Poisson fluctuations across most energies with a slight trend towards
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high energy events. However, it should be noted that this doesn’t prove physical
after-pulses are the main issue. This simply means late light, which has been
unaccounted for in the likelihood function, has the greatest effect. This late light
is, most likely caused by after-pulses in the PMT but could also be due to an
inaccurate ice model.

8.1 Future Work
Since the late light which is not taken into account seems to be the main cause
of the fluctuations and inaccuracies, more could be done to incorporate these
features into millipede’s likelihood function. Millipede’s inaccurate behaviour
seems to be due to differences between its likelihood prediction of the waveforms
and the Monte Carlo simulated waveforms. Whenever these waveforms are made
to be the same, the likelihood fluctuations are strongly reduced as shown in
figure 7.1. In reality, there will be after-pulses in the waveform and, currently,
millipede’s predictions don’t take these after-pulses into account.

The late light may be partly due to inaccuracies in the ice model but more
could be done to incorporate after-pulses into the millipede predictions. IceCube
is interested in high energy neutrino events which will probably produce bright
signals with many after-pulses. If the after-pulses are the main cause of this late
light, and the millipede predictions were to incorporate these after-pulses, the
predictions would more closely match the input pulses. As has been shown in
section 7.1, this would produce a smoother likelihood surface which accurately
finds the minimum. The increase in accuracy could be examined by comparing
the space angles in a histogram similar to figure 5.1.

If the accuracy in the direction fitting for these simulated events improves to
well within one degree for a larger range of events, these methods can be applied to
real data as it would now be possible to perform neutrino astronomy on a larger
sample of events. With more accurate and precise direction reconstruction, it
would be possible to perform more accurate correlation studies between neutrinos
and cosmic rays as well as more accurate searches for neutrino point sources.



Appendix A

Derivations

A.1 Cosmic Ray Acceleration and Spectrum

A.1.1 Second Order fermi Acceleration

Figure A.1: Diagram of particle scattering through cloud with incident angle θ1
and exit angle θ2 [42].

The cloud is moving with velocity v along the x-axis. The particle’s initial energy
in the cloud’s frame E ′1 is related to the energy in the lab frame by the Lorentz
transform.

E ′1 = γ(E1 − βpxc) (A.1)

where β = v/c, γ = 1/
√

1− β2 and px = |~p1|cosθ1 and is the component of the
particle’s velocity in the x direction. Since the particle is travelling close to the
speed of light, |~p1|c ∼ E1 so the cloud frame energy can be rewritten as

E ′1 = γE1(1− βcosθ1) (A.2)
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Similarly, the exit energy in the lab frame can be found by Lorentz transforming
out of the cloud frame.

E2 = γE ′2(1 + βcosθ′2) (A.3)

Since the scattering in the clouds is collisionless, there is no energy change in the
cloud frame, hence E ′2 = E ′1. Energy gain is given by

∆E
E1

= E2 − E1

E1
= γE ′2(1 + βcosθ′2)

E1
− 1 (A.4)

⇒ ∆E
E

= γ2E1(1 + βcosθ′2 − βcosθ1 − β2cosθ1cosθ′2)
E1

− 1 (A.5)

⇒
〈

∆E
E

〉
= 1 + β 〈cosθ′2〉 − β 〈cosθ1〉 − β2 〈cosθ1〉 〈cosθ′2〉

1− β2 − 1 (A.6)

where 〈cosθ1〉 and 〈cosθ′2〉 are the average values of cosθ1 and cosθ2 respectively.
After many interactions in the cloud, the exit direction is randomised so 〈cosθ′2〉 =
0 [42]. The value of 〈cosθ1〉 is found using the collision rate over all angles. This
rate is given by

dn

dΩ1
∝ (1− βcosθ1) (A.7)

where dΩ1 ∝ dcosθ1. The value of 〈cosθ1〉 is given by the average of cosθ1 weighted
over the collision rate integrated over all angles.

〈cosθ1〉 =
∫

cosθ1
dn
dΩ1

dΩ1∫ dn
dΩ1

dΩ1
(A.8)

⇒ 〈cosθ1〉 =

1∫
−1

(cosθ1 − βcos2θ1)dcosθ1

1∫
−1

(1− βcosθ1)dcosθ1

=
1
2 −

β
3 −

1
2 −

β
3

1− β
2 + 1 + β

2
= −β3 (A.9)

Using this and the fact that β � 1, equation A.6 becomes

⇒
〈

∆E
E

〉
= 1− β2/3

1 + β2 − 1 = 1 + β2/3− (1− β2)
1− β2 ∼ 4

3

(
v

c

)2
(A.10)

which is the fractional energy gain shown in equation 2.1.
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A.1.2 First Order Fermi Acceleration

Figure A.2: Diagram of particle bouncing back and forth across a shock.

As in second order acceleration,

⇒
〈

∆E
E

〉
= 1 + β 〈cosθ′2〉 − β 〈cosθ1〉 − β2 〈cosθ1〉 〈cosθ′2〉

1− β2 − 1 (A.11)

where β = vp/c and vp is the speed of the ejected material. As shown in figure A.2,
the values of θ1 are always between 90◦ and 270◦ meaning cosθ1 is always negative
with the most likely collisions happening for θ1 = 180◦. This gives the collision
rate equal to

dn

dΩ1
∝ −cosθ1 (A.12)

Therefore, the average angle is given by

〈cosθ1〉 =

0∫
−1
−cos2θ1dcosθ1

0∫
−1
−cosθ1dcosθ1

=

(
1
3

)
−
(

1
2

) = −2
3 (A.13)

The values of θ′2 are always between 0 and 90◦ so cosθ′2 is always positive and the
greatest interaction probability occurs for θ′2 = 0. This gives

dn

dΩ′2
∝ cosθ′2 (A.14)

⇒ 〈cosθ′2〉 =

1∫
0

cos2θ′2dcosθ′2
1∫
0

cosθ′2dcosθ′2
=

(
1
3

)
(

1
2

) = 2
3 (A.15)
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Assuming β � 1, equation A.11 becomes

⇒
〈

∆E
E

〉
∼ 1 + 2β

3 + 2β
3 − 1 = 4

3

(
vp
c

)
(A.16)

which is the fractional energy gain shown in equation 2.2.

A.1.3 Cosmic Ray Spectrum
The cosmic ray spectrum is derived using the probability of the particle escaping
the shock, the fractional energy gain and the compression ratio in the shock. The
compression ratio is given by

R = ρshocked

ρunshocked
(A.17)

where ρshocked is the density of material “inside” the shock (to the left in figure A.2)
and ρunshocked is the density outside the shock. The ratio of speed of the shock to
the speed of the interstellar medium is given by

vs
vp

= R

R− 1 (A.18)

⇒ vp =
(

1− 1
R

)
vs. (A.19)

The fractional energy gain can then be written in terms of this ratio:

∆E
E

= 4
3
vp
c

= 4
3

(
1− 1

R

)
vs
c
. (A.20)

As the particle travels back and forth across the shock, there is a small probability
Pesc that it will escape the shock and travel to Earth. This escape probability is
given by

Pesc = 4
R

vs
v

(A.21)

where v is the speed of the cosmic ray and v ∼ c. The probability of the particle
remaining in the shock after k crossings is given by

P (≥ k) = (1− Pesc)k. (A.22)

After k crossings, the energy of the particle is given by

E = E0

(
1 + ∆E

E

)k
(A.23)

where E0 is the initial energy of the particle. This can be rearranges to give

k = ln(E/E0)
ln(1 + ∆E/E) . (A.24)
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Since the energy after k crossings, E, increases with k, the number of cosmic rays
remaining after at least k crossings will be the number with energy greater than
or equal to E. This is known as the integral spectrum and is given by

N(≥ E) = N0(1− Pesc)k (A.25)

where N0 is the initial number of particles. Dividing by N0 and taking the log of
both sides gives

ln(N/N0) = kln(1− Pesc) = ln(E/E0)ln(1− Pesc)
ln(1 + ∆E/E) . (A.26)

This implies

N(≥ E) = N0

(
E

E0

)−Γ
∝ E−Γ (A.27)

where Γ is given by
Γ = − ln(1− Pesc)

ln(1 + ∆E/E) . (A.28)

The values Pesc and ∆E/E are assumed to be small meaning the logarithms can
be approximated as ln(1−Pesc) ∼ −Pesc and ln(1 + ∆E/E) ∼ ∆E/E. This gives

Γ = Pesc

∆E/E =

(
4vs

Rv

)
4
3

(
1− 1

R

)
vs

c

. (A.29)

Since v ∼ c, this becomes

Γ =

(
4vs

Rc

)
4
3

(
1− 1

R

)
vs

c

= 4vs
4
3(R− 1)vs

= 3
R− 1 . (A.30)

For strong shock fronts, the compression ratio is approximately 4, meaning Γ = 1.
Therefore, the integral spectrum is given by

N(≥ E) ∝ E−1. (A.31)

The differential spectrum is found by differentiating N(≥ E) which gives

N(E) ∝ E−2 (A.32)

as shown in equation 2.3.
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A.2 Geometric Time for SPE and MPE

Figure A.3: Diagram of muon track and Cherenkov cone showing distance muon
travels before light is emitted (rµ) and the distance light travels to DOM (rγ.)

The geometric time shown in equation 4.7 is given by t0 plus the time the muon
takes to travel rµ plus the time the photon takes to travel rγ as shown in figure A.3.

tgeo = t0 + rµ
c

+ nrγ
c

(A.33)

where n is the refractive index of the ice, the muon is travelling at speed c and
the photon has speed c/n. As shown in figure A.3, the hypotenuse rγ is simply
given by

rγ = d

sinθc
. (A.34)

The angle between (~ri− ~r0) and p̂ is given by α. As p̂ is a unit vector, this implies

p̂ · (~ri − ~r0) = |~ri − ~r0|cosα. (A.35)

By the definition of cosα, the side adjacent to α is given by

rµ + d

tanθc
= |~ri − ~r0|cosα = p̂ · (~ri − ~r0). (A.36)

⇒ rµ = p̂ · (~ri − ~r0)− d

tanθc
. (A.37)

⇒ tgeo = t0 +
p̂ · (~ri − ~r0)− d

tanθc
+ nd

sinθc

c
. (A.38)
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By the definition of θc where cosθc=1/n and the definition of tanθc=sinθc/cosθc,
this gives

nd

sinθc
− d

tanθc
= d

sinθccosθc
− dcosθc

sinθc
(A.39)

= d(1− cos2θc)
sinθccosθc

= dsin2θc
sinθccosθc

= dsinθc
cosθc

= dtanθc. (A.40)

Finally, substituting into equation A.38:

tgeo = t0 + p̂ · (~ri − ~r0) + dtanθc
c

(A.41)

as shown in equation 4.7.

A.3 Space Angle Formula
The space angle between two vectors describes how far apart they are on the
surface of a sphere. This angle is simply the angle α between two vectors ~u and
~v given by their dot product.

cosα = ~u · ~v (A.42)

A unit radial vector in spherical coordinates is given by

~u = sinθcosφx̂ + sinθsinφŷ + cosθẑ (A.43)

where x̂, ŷ and ẑ are the unit vectors in the x, y and z directions, θ is the zenith
and φ is the azimuth as defined before. The unit radial vectors for the true
direction and a fit are shown in the example in figure A.4.

The dot product between these two vectors is given by

~u · ~v = sinθ1cosφ1sinθ2cosφ2 + sinθ1sinφ1sinθ2sinφ2 + cosθ1cosθ2 = cosα (A.44)

This can be simplified to

cosα = sinθ1sinθ2cos(φ2 − φ1) + cosθ1cosθ2 (A.45)

This formula reflects the nature of spherical coordinates in a way that zenith and
azimuth alone can’t. For example, if two vectors have the same zenith of 1◦ but
are separated 180◦ in azimuth, the space angle between them will only be 2◦ since
the azimuths are much closer together at the poles. On the other hand, if these
vectors were on the equatorial plane and separated 180◦ in azimuth, the space
angle would be 180◦. This formula for space angle was used to asses the accuracy
of the fits in chapters 5 and 7.
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Figure A.4: Diagram of two vectors in 3-dimensional space with the space angle
α between them shown.

A.4 Chi Squared Critical Value
The Chi Squared (χ2) distribution is a probability density function given by

px(n) =
(x2 )n

2−1e−
x
2

2Γ(n2 ) (A.46)

where n is the number of degrees of freedom in the variable x [43, p. 36]. The
gamma function of a variable k, Γ(k) is equal to the factorial of k, k!, for integer
values of k. For the likelihood grid scans, there are two degrees of freedom (zenith
and azimuth) so n = 2 which means Γ(n2 ) = 1! = 1. The probability density
function for these scans is then

px(2) =
(x2 )1−1e−

x
2

2 = 1
2e
−x

2 (A.47)

The probability below some critical value xc is given by the integral

P (x < xc) = 1
2

∫ xc

0
e−

x
2 dx = 1− e−

xc
2 (A.48)

To find the value of σ, the integral above must be equal to 68% as, in any
probability distribution, 68% of the values should lie within 1σ of the mean.
This gives the following equation to be solved.

1− e−
xc
2 = 0.68 (A.49)

⇒ e−
xc
2 = 0.32 (A.50)
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⇒ xc = −2ln(0.32) ∼ 2.30. (A.51)

This is contrasted with the case for one degree of freedom in which the critical
value is about 1. When calculating the σ values in chapters 5 and 7, this critical
value for two degrees of freedom is halved since it is −2lnL which follows the χ2

distribution and −lnL which is calculated by millipede. Therefore, σ is defined
by an increase of 2.30/2 = 1.15 units in negative log likelihood.

A.5 Perpendicular Plane Coordinates
For the likelihood scan over a perpendicular plane, shown in section 6.2.2, each
vertex on the plane is given two coordinates x′ and y′ which correspond to a vertex
(x, y, z) in IceCube coordinates. The two coordinates, x′ and y′, are defined by
the spherical unit vectors in the azimuthal and zenith directions given by

~x′ = x′φ̂ = −x′sinφx̂ + x′cosφŷ (A.52)

~y′ = y′θ̂ = y′cosθcosφx̂ + y′cosθsinφŷ− y′sinθẑ (A.53)

where θ is the track’s zenith and φ is the azimuth. The vectors ~x′ and ~y′ are
the horizontal and vertical displacements from the centre of the plane given by
(x0, y0, z0). In the case shown in section 6.2.2, this centre point is the fitted vertex
with the minimum negative log likelihood. Each point (x, y, z) on the plane is
simply given by

(x, y, z) = (x0, y0, z0) + ~x′ + ~y′ (A.54)

Each coordinate is then calculated from

x = x0 − x′sinφ+ y′cosθcosφ (A.55)

y = y0 + x′cosφ+ y′cosθsinφ (A.56)

z = z0 − y′sinθ (A.57)

These equations were used to translate the two dimensional plane coordinates into
IceCube coordinates which are understood by millipede.
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Technical Details of Simulation
and Reconstruction

In this section, the software used for event reconstruction and simulation will be
discussed in more detail. The methods used to produce input waveforms from the
millipede likelihood function (as in section 7.1) and adding Poisson fluctuations
and after-pulses (as in sections 7.3.1 and 7.3.2) will also be explained.

B.1 The IceTray Software
Event reconstruction for IceCube is achieved with a software framework known
as “IceTray” which is written in C++. In IceTray, information about an event is
held in a “physics frame” which consists of numerous frame objects containing
the event properties such as the raw data, the pulses and any reconstructions.
The pulses are saved as an object of type I3RecoPulseSeriesMap. This data
type contains a list of all illuminated DOMs and for each DOM, a list of the
pulses which make up the waveform. Each pulse has a given time, width
(both in ns) and total charge (photo-electron count.) This “pulse series map”
is the final stage in data processing which is read into the reconstruction algorithm.

The reconstructions are stored in the frame with the I3Particle data type.
This data type contains the physical properties of the reconstructed particle such
as the type (e.g. MuMinus), energy (in GeV), arrival direction (θ,φ in radians),
vertex position (x, y, z in metres) and vertex time (in nanoseconds.)

B.2 The MC Tree
IceCube simulations are performed using what is known as a Monte Carlo (MC)
simulation which is commonly used to model complex systems. This simulates a
particle defined by a set of parameters describing its velocity, position, energy,
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time etc. Eventually, a random process is initiated which has an associated
probability based on known physical laws. This will then generate a new set
of particle parameters which may experience a different set of processes [44]. If
the process is repeated for long enough, this would accurately model a physical
system of particles.

A large sample of previously simulated muon-neutrino events was obtained for
millipede testing which contained a mix of νµ and ν̄µ events. For these simulated
events, the particle track is defined by an MC “Tree” of type I3MCTree which
contains the parameters of the original particle and the daughter products which
branch off as it loses energy. The tree starts off as a single νµ or ν̄µ stored in
an I3Particle. This particle then interacts in the ice by the charged current
interaction to produce a µ− or µ+ and a hadronic cascade started by the nucleon
it encountered.

The muon and hadronic cascade are considered the “daughter” products of
the neutrino and they, in turn, interact in the ice to produce their own daughter
products. These secondary products include photons which can cause pair
production (production of an electron and positron) which will then produce its
own signal. The hadronic cascade daughter products can even include muons
but these are of such low energy, their signal is very small compared to the
original muon. The signal observed in the detector is a combination of all of
these interactions but the true muon energy and direction can be extracted from
the muon part of the tree.

Figure B.1: Diagram of Monte Carlo Tree of particles produced by a neutrino
interaction.
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From the tree of particles generated, as well as a knowledge of the optical
properties of the ice, the light signal in the DOMs can be calculated. This signal
now has the same characteristics as real signal and can be used for direction and
energy reconstructions.

B.3 Using the Millipede Likelihood Function as
the Simulation

To use the millipede likelihood function as a simulation, the millipede algorithm
is given a series of energy losses as a list of particles. Each particle in this list
has a given time, energy and position which record how much energy is lost and
the location of the loss in space and time.

To create signal from these losses, a new pulse map needs to be defined for
the event. In the original simulated waveforms, a pulse map contains the series
of pulses in time (each with a start time, width and photo-electron count) for all
illuminated DOMs. For the simulation with the millipede likelihood function the
map is predefined with a series of pulses, each containing zero charge, for each
DOM which defines the time frame in which each DOM is likely to see light. For
each DOM a time scale is decided based on how far the DOM is from its nearest
loss and when that loss occurred.

For each DOM in the detector, the time the muon passed closest to the
DOM is calculated and the loss immediately preceding this time is chosen. The
earliest time light can arrive at the DOM is defined as the time it takes to travel
along the muon track at the speed of light c and then travel to the DOM at
the local speed of light c/n at the Cherenkov angle θc. This is shown in figure B.2.

The distances rµ and rγ are defined in the following way: the muon travels
a distance rµ along its track until the angle between the track and the distance
vector between the muon and the DOM is equal to the Cherenkov angle θc. The
distance light then needs to travel to the DOM is rγ. If the energy loss occurs at
time t = 0, the earliest time a photon can arrive at the DOM is given by

tγ = rµ + nrγ
c

(B.1)

The values of rµ and rγ are determined by the relations shown in equations A.37
and A.34 respectively. For each DOM that is expected to see light, a series of
zero charge pulses is defined where the pulses are all 25 ns wide and extend 7000
ns from the earliest time defined above. It should be noted that this method of
defining the pulse map is for the most general loss patterns. If the true energy
losses are used, the pulse map should be similar to the map for the original pulses
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Figure B.2: Diagram of muon track showing relative positions of energy loss and
DOM.

so in this particular case, the original pulses can be used to define the binning.

Using the pulse map and the positions and times of the losses, millipede can
create a response matrix which determines the contributions of each loss toward
the photon count for each time bin as mentioned in chapter 4. These contributions
are in units of photo-electrons/GeV and are determined by the optical properties
of the ice and relative positions of the losses and the DOMs. An example track
and loss pattern is shown in the diagram in figure B.3. As in the prediction
calculation shown in section 4.4.2, the waveform vector ~N is given by

~N = Λ ~E (B.2)

where Λ is the response matrix and ~E is the energy loss vector.

This signal vector now contains the waveforms of all DOMs joined into a single
vector. However, the point in the vector at which one waveform ends and another
begins is recorded in the algorithm. These start and end points are used to convert
the signal vector into a map containing the pulse series for each illuminated DOM
and identification of the corresponding DOM. The new waveforms are now in a
format which can be read back into the millipede reconstruction algorithm.
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Figure B.3: Diagram of muon track showing light from losses arriving at DOMs.

B.4 Added Poisson Fluctuations
A Poisson deviate has probability given by

P (k) = λke−λ

k! (B.3)

where k is the variable being sampled and λ is the expected value or mean of k.
The Poisson deviate is used to add fluctuations to the existing waveform where
the mean of the distribution is taken as the original waveform value.
The millipede predictions used in section 7.1 are now used as means in Poisson
distributions to produce a new value randomly taken from the distribution. In this
method, a random number r0 is generated between 0 and 1. If the random number
is larger than e−q where q is the original charge (photo-electron count), another
random number r1 is generated and multiplied to the first random number. This
continues until the resultant product falls below e−q. With larger charge values
e−q will be smaller meaning more steps are required to drop below this number.
The Poisson deviate is taken as the number of steps required to reach this point
[45, p. 293-294]. In other words, the new charge value qnew is the smallest value
of m such that

m∏
i=0

ri < e−q (B.4)

where ri is the i-th random number generated between 0 and 1.
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B.5 Added After-pulses
To apply after-pulses to the predicted waveform, as was achieved section 7.3.2,
the first step is to determine how many after-pulses (if any) there will be.
The probability for k after-pulses occurring due to an incident pulse of n
photo-electrons is given by a Poissonian [46].

Pµ(n, k) = (nµ)k
k! e−nµ (B.5)

where µ is the average number of ionisations per photo-electron. For each pulse
in the predicted waveform, a random number is generated and the probability
shown above determines how many after-pulses are produced. The value of µ for
these tests is chosen to be 0.2.

The time delay between the main pulse and after-pulse depends on the type of
gas being ionised and the electric field strength in the PMT. For a pair of dynodes
spaced ∆x apart, the electric field strength will be V/∆x where V is the potential
difference. The acceleration of the ion with charge q and mass m is

a = qV

m∆x (B.6)

The distance travelled between dynodes can be expressed as

∆x = 1
2at

2 (B.7)

The time for the ion to travel between dynodes starting at rest is then given by

t =
√

2∆x
a

=
√

2m(∆x)2

qV
(B.8)

The relative abundances of the different ions are chosen based on [40]. In this
case, a random number is generated again and, based on where it sits between 0
and 1 and the probability of each ion, this determines the type of ion, and hence
the mass and charge to be used to calculate the time delay. The time delay is
calculated using equation B.8 and a pulse of 1 photo-electron is placed this amount
of time after its corresponding main pulse. This is repeated across all main pulses
in all DOMs to produce the new average pulse plot shown in figure 7.23(b).



Appendix C

Reconstruction Python Code

The reconstruction was performed using the reconstruction software “IceRec” in
version V14-11-00.

C.1 Millipede Free Fit
The code below shows the calls to the reconstruction functions for the full free fit
and the values of the settings.

#load spline tables containing ice model
muon_service = photonics_service.I3PhotoSplineService(‘emu_abs.fits’,
‘emu_prob.fits’, 0)

cascade_service = photonics_service.I3PhotoSplineService
(‘ems_mie_z20_a10.abs.fits’, ‘ems_mie_z20_a10.prob.fits’, 0)

tray = I3Tray()
#Import file
tray.AddModule(‘I3Reader’, ‘reader’, FilenameList=[input_i3file])

#Define step sizes for vertex and direction
VertexStep = 5*I3Units.m
angleStep = 5*I3Units.deg

tray.AddService(‘MillipedeLikelihoodFactory’, ‘millipedellh’,
MuonPhotonicsService=muon_service,
CascadePhotonicsService=cascade_service,

PhotonsPerBin=100, MuonRegularization=0, ShowerRegularization=0,
#Set bad or saturated DOMs which will not be included
ExcludedDOMs=[‘BadDomsList’, ‘CalibrationErrata’, ‘SaturatedDOMs’,
‘BrightDOMs’],

#Set time window and input waveforms
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ReadOutWindow=‘OfflinePulsesTimeRange’,
Pulses=‘OfflinePulses’)

tray.AddService(‘I3GSLRandomServiceFactory’,‘I3RandomService’)
tray.AddService(‘I3GulliverMinuitFactory’, ‘minuit’,

MaxIterations=2000, MinuitPrintLevel=1)

tray.AddService(‘MuMillipedeParametrizationFactory’, ‘millipedeparam’,
#Set step sizes of position, time and direction and spacing of energy losses

MuonSpacing=0, ShowerSpacing=10, StepT=15*I3Units.ns,
StepX=VertexStep, StepY=VertexStep, StepZ=VertexStep,
StepZenith=angleStep, StepAzimuth=angleStep)

#Load first guess track
tray.AddService(‘I3BasicSeedServiceFactory’, ‘seed’,
FirstGuess=‘PoleMuonLlhFit’,

TimeShiftType=‘TNone’)

#Perform reconstruction and store result in frame
tray.AddModule(‘I3SimpleFitter’, ‘MillipedeFit’, SeedService=‘seed’,

Parametrization=‘millipedeparam’, LogLikelihood=‘millipedellh’,
Minimizer=‘minuit’)

C.2 Grid Scan
To perform a grid scan over zenith and azimuth, for each direction, the result
from the free fit is used and the zenith and azimuth are set to new values.

def setDirection(frame):
#Load previously defined directions
global theta,phi

#Define new particle
seedTrack = dataclasses.I3Particle()
#Set Direction
seedTrack.dir = dataclasses.I3Direction(theta,phi)
#Set other parameters to free fit values
seedTrack.pos = frame[‘MillipedeFit’].pos
seedTrack.time = frame[‘MillipedeFit’].time
seedTrack.fit_status = frame[‘MillipedeFit’].fit_status
#Save result
frame[‘forcedDir’] = seedTrack
return True
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tray.AddModule(setDirection,‘setdirection’)

#Define vertex step
VertexStep = 5*I3Units.m

#Zenith and azimuth are fixed so angle step is zero
angleStep = 0

The reconstruction is then performed as shown in section C.1 using the new
parameters from `forcedDir' as the seed.
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