Subthreshold and Near-Threshold Techniques for Ultra-Low Power CMOS Design

by

James Anthony Kitchener

B.E.(Honours)(Computer Systems), B.MA.&Comp.Sc.,
The University of Adelaide

Thesis submitted for the degree of

Doctor of Philosophy

School of Electrical and Electronic Engineering,
Faculty of Engineering, Computer and Mathematical Sciences
The University of Adelaide, Australia

July 2015
Contents

List of Figures

List of Tables

Abstract

Statement of Originality

Acknowledgements

Chapter 1. Introduction

1.1 Sources of power consumption .. 1

1.2 Applications ... 2

1.2.1 Smart Dust ... 2

1.2.2 Biomedical Implants .. 3

1.2.3 Connected Standby ... 3

1.3 Thesis Structure ... 3

1.4 Publications ... 5

Chapter 2. Characterising Subthreshold Gates

2.1 Characterising Devices .. 7

2.1.1 Non-traditional Devices .. 8

2.2 Characterising Gates ... 9

2.2.1 Methodology .. 9

2.2.2 Baseline Results .. 11

2.2.3 Supply Voltage .. 11
Contents

2.2.4 Temperature ... 14
2.2.5 Sizing .. 16
2.2.6 Process Variability 19
2.2.7 Gate Design ... 21
2.3 Characterising Logic Families 21
2.3.1 A Logic Family for Subthreshold 22
2.4 Further Work ... 25
2.5 Conclusions ... 25
2.6 Acknowledgement .. 27

Chapter 3. Characterising Subthreshold Adders 29
3.1 Metrics ... 30
3.1.1 Power-Delay Product and Energy per Operation 30
3.1.2 Energy-Delay Product 31
3.2 Short Carry Chains ... 31
3.2.1 Methodology ... 33
3.2.2 Measurements .. 34
3.2.3 EPO and EPD .. 37
3.2.4 Reliability ... 39
3.3 Adders ... 43
3.3.1 Ripple Carry Adder 43
3.3.2 Tree Adders .. 45
3.3.3 Methodology ... 45
3.3.4 Measurements .. 46
3.4 Further Work ... 50
3.5 Conclusion .. 51
3.6 Acknowledgement .. 52

Chapter 4. Architectures for Subthreshold Operation 53
4.1 Motivation .. 54
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.5.2</td>
<td>Solutions</td>
<td>154</td>
</tr>
<tr>
<td>6.5.3</td>
<td>Comparison</td>
<td>156</td>
</tr>
<tr>
<td>6.5.4</td>
<td>Disadvantages of Long Gates</td>
<td>159</td>
</tr>
<tr>
<td>6.5.5</td>
<td>Recommended Buffer Loads</td>
<td>160</td>
</tr>
<tr>
<td>6.6</td>
<td>Starved Oscillator Design Space Exploration</td>
<td>160</td>
</tr>
<tr>
<td>6.6.1</td>
<td>Sizing</td>
<td>160</td>
</tr>
<tr>
<td>6.6.2</td>
<td>Balancing pMOS transistor</td>
<td>162</td>
</tr>
<tr>
<td>6.6.3</td>
<td>Starved Placement</td>
<td>163</td>
</tr>
<tr>
<td>6.6.4</td>
<td>Stack Depth</td>
<td>166</td>
</tr>
<tr>
<td>6.6.5</td>
<td>Additional Resistive Load</td>
<td>166</td>
</tr>
<tr>
<td>6.7</td>
<td>Fabrication</td>
<td>169</td>
</tr>
<tr>
<td>6.7.1</td>
<td>Experimental Results</td>
<td>170</td>
</tr>
<tr>
<td>6.8</td>
<td>Application to Subthreshold Logic</td>
<td>173</td>
</tr>
<tr>
<td>6.9</td>
<td>Further Work</td>
<td>174</td>
</tr>
<tr>
<td>6.10</td>
<td>Conclusion</td>
<td>175</td>
</tr>
<tr>
<td>6.11</td>
<td>Acknowledgement</td>
<td>175</td>
</tr>
</tbody>
</table>

Chapter 7. Conclusions 177

Bibliography 181
List of Figures

2.1 Gate testbed (from Blaauw, Kitchener and Phillips [10] © 2008 IEEE) 9
2.2 Supply voltage vs propagation delay 12
2.3 Left: Supply voltage vs dynamic power. Right: energy consumed over a single transition 12
2.4 Leakage of the two input gate \(a \overline{b} \) with respect to supply voltage 13
2.5 Effect of supply voltage on worst case noise margin 14
2.6 Temperature vs propagation delay for a NAND2 gate normalised to 30° 15
2.7 Power consumption for a NAND2 gate normalised to 30°. Left: Dynamic power. Right: Leakage power 16
2.8 Noise margins for the INV and INV25 gates (from Blaauw, Kitchener and Phillips [10] © 2008 IEEE) 18
2.9 Voltage sweep for WP and WS corners 20

3.1 4-bit versions of the carry chains tested: (a) grey cells; (b) inverting grey cells; (c) valency 3 grey cells; (d) valency 3 inverting grey cells; (e) valency 4 inverting grey cells (6-bit). 32
3.2 Cells used in the carry chains of prefix adders and their equivalent implementations 33
3.3 Testbed used for carry chain simulations 34
3.4 Carry chain average propagation delay from \(C_{in} \) to \(C_{out} \). Left: \(V_{DD} = 0.3 \) V Right: \(V_{DD} = 1.8 \) V 35
3.5 Carry chain leakage power. Left: \(V_{DD} = 0.3 \) V Right: \(V_{DD} = 1.8 \) V 35
3.6 Carry chain average energy per switch from \(C_{in} \) to \(C_{out} \). Left: \(V_{DD} = 0.3 \) V Right: \(V_{DD} = 1.8 \) V 36
List of Figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.7</td>
<td>Leakage power for 6 bit carry chains</td>
<td>36</td>
</tr>
<tr>
<td>3.8</td>
<td>Energy per operation. Left: $V_{DD} = 0.3,\text{V}$ Right: $V_{DD} = 1.8,\text{V}$</td>
<td>38</td>
</tr>
<tr>
<td>3.9</td>
<td>Supply voltage vs energy per operation for 6 bit carry chains</td>
<td>38</td>
</tr>
<tr>
<td>3.10</td>
<td>Energy-delay product for 6 bit carry chains</td>
<td>39</td>
</tr>
<tr>
<td>3.11</td>
<td>Minimum supply voltage required for inverting grey cell carry chain</td>
<td>42</td>
</tr>
<tr>
<td>3.12</td>
<td>8-bit versions of the adders tested: (a) ripple-carry; (b) inverting ripple-carry; (c) PG ripple; (d) inverting PG ripple; (e) Sklansky; (f) inverting Sklansky; (g) valency 3 Sklansky</td>
<td>44</td>
</tr>
<tr>
<td>3.14</td>
<td>Adder average propagation delay from C_{in} to C_{out} at $V_{DD} = 0.3,\text{V}$ (from Blaauw, Kitchener and Phillips [10] © 2008 IEEE)</td>
<td>47</td>
</tr>
<tr>
<td>3.15</td>
<td>Adder average switching energy at $V_{DD} = 0.3,\text{V}$ (from Blaauw, Kitchener and Phillips [10] © 2008 IEEE)</td>
<td>47</td>
</tr>
<tr>
<td>3.16</td>
<td>Adder leakage power at $V_{DD} = 0.3,\text{V}$ (from Blaauw, Kitchener and Phillips [10] © 2008 IEEE)</td>
<td>48</td>
</tr>
<tr>
<td>3.17</td>
<td>Energy per operation at $V_{DD} = 0.3,\text{V}$</td>
<td>48</td>
</tr>
<tr>
<td>3.18</td>
<td>Percentage of power attributable to leakage for 32 bit adders</td>
<td>49</td>
</tr>
<tr>
<td>4.1</td>
<td>A Mixed Timing Domain system consisting of two different clock domains</td>
<td>60</td>
</tr>
<tr>
<td>4.2</td>
<td>A GALS system with multiple synchronous domains communicating over an asynchronous channel</td>
<td>60</td>
</tr>
<tr>
<td>4.3</td>
<td>Point to point ring topology</td>
<td>62</td>
</tr>
<tr>
<td>4.4</td>
<td>Timing constraints of a D-flop</td>
<td>63</td>
</tr>
<tr>
<td>4.5</td>
<td>Implementation of clock guarding</td>
<td>66</td>
</tr>
<tr>
<td>4.6</td>
<td>Example system to illustrate the Mixed Timing Domain design procedure</td>
<td>68</td>
</tr>
<tr>
<td>4.7</td>
<td>Procedure step 1</td>
<td>70</td>
</tr>
<tr>
<td>4.8</td>
<td>Procedure step 2</td>
<td>71</td>
</tr>
<tr>
<td>Figure</td>
<td>Description</td>
<td>Page</td>
</tr>
<tr>
<td>--------</td>
<td>---</td>
<td>------</td>
</tr>
<tr>
<td>4.9</td>
<td>Procedure steps 3 and 4</td>
<td>72</td>
</tr>
<tr>
<td>4.10</td>
<td>Procedure step 5</td>
<td>74</td>
</tr>
<tr>
<td>4.11</td>
<td>Procedure step 6</td>
<td>75</td>
</tr>
<tr>
<td>4.12</td>
<td>Procedure step 7</td>
<td>76</td>
</tr>
<tr>
<td>4.13</td>
<td>Procedure step 8</td>
<td>77</td>
</tr>
<tr>
<td>4.14</td>
<td>Procedure step 9</td>
<td>78</td>
</tr>
<tr>
<td>4.15</td>
<td>Mixed-clock FIFO stage from the Chelcea design. Diagram adapted from Fig. 6, [17] © 2004 IEEE</td>
<td>82</td>
</tr>
<tr>
<td>4.16</td>
<td>Flaw in Ono Design. Diagram adapted from [72] Figures 10 and 11, © 2009 IEEE</td>
<td>83</td>
</tr>
<tr>
<td>4.17</td>
<td>Flaw in Rahimian Design. Diagram adapted from Fig. 2 and Fig. 4 in [79], © 2010 IEEE</td>
<td>85</td>
</tr>
<tr>
<td>5.1</td>
<td>Overview of a FIFO</td>
<td>90</td>
</tr>
<tr>
<td>5.2</td>
<td>MC FIFO high level design</td>
<td>92</td>
</tr>
<tr>
<td>5.3</td>
<td>MC stage architecture</td>
<td>93</td>
</tr>
<tr>
<td>5.4</td>
<td>Timing diagram for sending a word to the MC FIFO</td>
<td>94</td>
</tr>
<tr>
<td>5.5</td>
<td>Timing diagram for retrieving a word from the MC FIFO</td>
<td>94</td>
</tr>
<tr>
<td>5.6</td>
<td>(a) Original Empty Detector (b) Nearly Empty Detector</td>
<td>95</td>
</tr>
<tr>
<td>5.7</td>
<td>Data Validity Controller for MC FIFO</td>
<td>97</td>
</tr>
<tr>
<td>5.8</td>
<td>STG describing part of the non-synchronous portion of MC DVC</td>
<td>98</td>
</tr>
<tr>
<td>5.9</td>
<td>MC FIFO high level design</td>
<td>100</td>
</tr>
<tr>
<td>5.10</td>
<td>Top level architecture for a length 3 AA FIFO</td>
<td>103</td>
</tr>
<tr>
<td>5.11</td>
<td>AA cell architecture</td>
<td>104</td>
</tr>
<tr>
<td>5.12</td>
<td>State transition graph for AA Data Validity Controller, reproduced from [17]. © 2004 IEEE</td>
<td>104</td>
</tr>
<tr>
<td>5.13</td>
<td>Timing Diagram for write and read operations on the AA FIFO</td>
<td>105</td>
</tr>
<tr>
<td>5.14</td>
<td>An SA FIFO stage</td>
<td>107</td>
</tr>
<tr>
<td>5.15</td>
<td>Data Validity Controller for AS FIFO</td>
<td>107</td>
</tr>
</tbody>
</table>
List of Figures

5.16 STG for the asynchronous portion of the AS FIFO 107
5.17 STG for the asynchronous portion of the SA FIFO 108
5.18 Micrograph of fabricated chip implementing an earlier iteration of the FIFOs ... 109
5.19 Left: Latency for a combined put/get operation. Right: Normalised latency ... 110
5.20 Latency for the various FIFOs including synchroniser delay, normalised to the MC FIFO in the right graph 111
5.21 Left: Throughput for a combined put/get operation. Right: Normalised throughput ... 112
5.22 Supply vs maximum sustained power consumption 114
5.23 Percentage of energy attributed to leakage over a combined put/get operation ... 114
5.24 Leakage power consumption .. 115
5.25 Best and worst case power consumption for clock gating 116
5.26 Supply vs energy per operation .. 117

6.1 A conceptual diagram showing the physical construction of the smart label (from [77]) ... 127
6.2 A flow diagram showing the temperature logging behaviour of the smart label (from [77]) ... 127
6.3 (a) A fully starved inverter. (b) A semi-starved inverter 129
6.4 A simplified starved inverter .. 131
6.5 Effect of supply voltage on the behaviour of the starved inverters. Left: Propagation delay. Right: Energy per transition 137
6.6 Effect of temperature on the behaviour of the starved inverters. Left: Propagation delay. Right: Power consumption 137
6.7 Maximum and minimum achievable output voltage levels 138
6.8 An oscillator built using starved gates ... 141
6.9 Waveform of a semi-starved oscillator ... 143
List of Figures

6.10 Waveform of a fully starved oscillator ... 143
6.11 Effect of supply voltage on the behaviour of starved oscillators. Left:
 Frequency. Right: Combined power consumption 145
6.12 Effect of power consumption on the components of starved oscillators. 146
6.13 Effect of temperature on the behaviour of starved oscillators. Left:
 Frequency. Right: Combined power consumption 147
6.14 Effect of temperature on the frequency of oscillation of the semi-
 starved inverter with V_{DD} varied between 1 and 1.5 V. 148
6.15 Power consumption of an ordinary inverter with a DC voltage sweep
 applied to the input. ... 153
6.16 Power consumption of individual transistors after application of voltage
 to gate ... 153
6.17 Testbench for load gate voltage sweep .. 156
6.18 Power consumption of various load gates with a DC voltage sweep
 applied to the input at $V_{DD} = 1.2$ V ... 157
6.19 Power consumption of inverters with various lengths with respect to
 gate voltage. ... 157
6.20 Power consumption of a semi-starved oscillator with various buffered
 loads ... 158
6.21 Power consumption of various load gates with a DC voltage sweep
 applied to the input at $V_{DD} = 1.5$ V ... 159
6.22 Effect on starved transistor sizing on frequency 161
6.23 Effect of starved transistor width on power consumption. Left: V_{DD}
 $= 1.0$ V. Right: $V_{DD} = 1.5$ V ... 162
6.24 Frequency and power consumption of semi-starved oscillators tested
 with and without balancing pMOS transistor 163
6.25 Effect of starved transistor placement on semi-starved oscillators.
 Left: Frequency. Right: Power consumption .. 164
6.26 Frequency of unbalanced and rail balanced oscillators 165
6.27 Minimum voltage achievable by a semi-starved oscillator 166
6.28 A starved oscillator with additional resistive load 167
<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.29</td>
<td>Performance of a semi-starved oscillator with resistive load. Left: Frequency. Right: power consumption.</td>
<td>168</td>
</tr>
<tr>
<td>6.30</td>
<td>Configuration of fabricated oscillators (from Kitchener and Phillips [51])</td>
<td>169</td>
</tr>
<tr>
<td>6.31</td>
<td>Micrograph of fabricated oscillators (from Kitchener and Phillips [51])</td>
<td>170</td>
</tr>
<tr>
<td>6.32</td>
<td>Supply voltage vs frequency of fabricated oscillators (from Kitchener and Phillips [51])</td>
<td>172</td>
</tr>
<tr>
<td>6.33</td>
<td>Power consumption vs frequency of fabricated oscillators (from Kitchener and Phillips [51])</td>
<td>173</td>
</tr>
</tbody>
</table>
List of Tables

2.1 Performance of a two input NAND gate .. 11
2.2 Performance of inverter configurations at 0.3V, 0.5V and 1.8V 17
2.3 Power consumption measurements of inverter configurations at 0.3V,
0.5V and 1.8V ... 17
2.4 Unscaled results for an inverter ... 23
2.5 Logic family behaviour at $V_{DD} = 0.3\ V$ (and $V_{DD} = 1.8\ V$). All
transistors are minimum width (from Blaauw, Kitchener and Phillips
2.6 Comparative merits of gates at different supply voltages 26
3.1 Minimum supply voltage for successful operation 40
3.2 Parameters for Monte Carlo analysis ... 40
3.3 Minimum supply voltage statistics after Monte Carlo simulation 41
3.4 Summary of the merits of chains of gates compared to low-valency
non-inverting logic ... 51
4.1 Data representation in dual rail designs .. 55
4.2 Summary of high-level design methodologies when applied to sub-
threshold designs .. 86
4.3 Summary of asynchronous design methodologies as applied to sub-
threshold design .. 88
5.1 Output states for MC Data Validity Controller 98
6.1 Steady-state drain currents of the starved transistors in a fully-starved
gate ... 134
6.2 Performance characteristics of starved inverters at $V_{DD} = 1.2\ V$ 136
6.3 Performance characteristics of a semi-starved inverter at various corners139
6.4 Performance characteristics of a fully starved inverter at various corners140
List of Tables

6.5 Performance characteristics of starved oscillators at $V_{DD} = 1.2$ V . 144
6.6 Performance characteristics of a semi-starved oscillator at various corners . 149
6.7 Performance characteristics of a fully starved oscillator at various corners . 150
Abstract

The miniaturisation of electronic circuits allows the potential for new applications, such as smart-dust or the Internet of Things. However, the design of batteries has not improved at the same rate as CMOS technology, so circuits need to be designed for improved energy efficiency to enable new form factors and applications.

To address these issues, the use of subthreshold and near-threshold supply voltages is proposed. Throughout this thesis, the nature of what makes a design suitable for subthreshold use is examined. This work starts at the gate level, where the effects of transistor geometry and valency are examined. The levels of abstraction are progressively increased until high level architectures are considered, where quasi-delay-insensitive and globally-asynchronous locally-synchronous designs are argued as suitable for designing reliable systems. To assist in this, a methodology for partitioning systems into separate timing domains is proposed, and applied to published designs.

The underlying theme throughout the exploration of subthreshold technology is the effects and mitigation of process and environmental variation, to which designs are increasingly susceptible as the supply voltage is lowered. This vulnerability affects all levels of design, from the widths of individual transistors to the choice of overall architectures, where a fundamental issue is the ability to determine when a unit of work has been performed.

Not all applications respond well to the scaling of supply voltage. To address this, an alternative approach is considered where the system spends much of its lifetime in a powered-down state, being woken at appropriate intervals by a wakeup timer. As power consumption is a function of frequency, this timer seeks to achieve energy efficiency by maximising the period of oscillation. Despite the higher supply voltages considered, the themes of environmental and process variation continue, as the wakeup timers examined share similarities to subthreshold designs. Two of the proposed timers have been fabricated and are compared to simulated results and other published work.
Statement of Originality

I certify that this work contains no material which has been accepted for the award of any other degree or diploma in my name, in any university or other tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text. In addition, I certify that no part of this work will, in the future, be used in a submission in my name, for any other degree or diploma in any university or other tertiary institution without the prior approval of the University of Adelaide and where applicable, any partner institution responsible for the joint-award of this degree.

I give consent to this copy of my thesis when deposited in the University Library, being made available for loan and photocopying, subject to the provisions of the Copyright Act 1968.

The author acknowledges that copyright of published works contained within this thesis resides with the copyright holder(s) of those works. I also give permission for the digital version of my thesis to be made available on the web, via the University’s digital research repository, the Library Search and also through web search engines, unless permission has been granted by the University to restrict access for a period of time.

Signed

Date
I would like to thank my supervisors, Dr. Braden Phillips and A/Prof. Mike Liebelt, for the advice and mentoring they have provided over my many years of candidature.

I acknowledge the help of the School of Electrical and Electronic Engineering, for funding my Divisional Scholarship and for the provision and support of the equipment and software needed for my research.

I owe a debt of gratitude to Prof. David Blaauw of the University of Michigan, for funding the initial work on subthreshold logic and for starting me on the eventual direction that my research followed.

The assistance that Dr. Braden Phillips and Robert Moric provided in preparing my chip for fabrication was invaluable and allowed me to submit the chip within a tight deadline.

Finally I would like to thank my parents, for the support they have given me. I would not have been able to complete this long and difficult journey without their encouragement.

James