ADAPTATION OF WHEAT TO A TROPICAL ENVIRONMENT

Akhmad Zubaidi
Sarjana Pertanian, Agronomi (Mataram)
MScAgric (Adel)

Thesis submitted for the degree of Doctor of Philosophy

School of Agriculture, Food and Wine
The University of Adelaide

September 2015
TABLE OF CONTENTS

LIST OF TABLES ... iv

LIST OF SUPPLEMENTARY TABLES ... v

LIST OF FIGURES ... vii

LIST OF SUPPLEMENTARY FIGURES .. viii

Declaration ... x

Acknowledgement .. xi

Abstract .. xii

CHAPTER 1: INTRODUCTION ... 1

CHAPTER 2: REVIEW OF LITERATURE ... 5

- Wheat production in Indonesia ... 5
- The environment of Lombok .. 6
- Wheat growth and development ... 11
- Early and late maturing cultivars ... 17
- The influence of photoperiod, vernalisation and basic vegetative phase on wheat development ... 19
- Limitation of wheat production in tropical/subtropical environments ... 20
- Effects of high temperature stress ... 21
- Drought stress .. 29
- Physiological processes and heat stress ... 31
- Other constraints to yield: nutritional constraints, waterlogging and disease 32
- Research on wheat adaptation on Lombok Island .. 36
- References .. 38
CHAPTER 3: DEVELOPMENT OF WHEAT UNDER CONTINUOUS HIGH TEMPERATURE

Abstract ..49

Introduction .. 50

Materials and Methods ... 54

Results .. 60

 Growth room experiment .. 60

 Field experiment ... 61

Discussion .. 70

Conclusion ... 73

References .. 75

CHAPTER 4: ADAPTATION OF WHEAT ON LOMBOK ISLAND, INDONESIA

Abstract ... 81

Introduction ... 82

Materials and Methods .. 85

Results ... 93

 Plant development .. 93

 2010 Experiment .. 95

 Grain yield and yield components ... 95

 2011 Experiment .. 100

 Plant growth .. 100

 Yield and yield components .. 102

 Crop development and yield .. 102
LIST OF TABLES

Table 2.1: Some chemical characteristics of Lombok’s soil (Sofyan et al., 2004) 9

Table 3.1: The genotype of the Australian varieties for the Ppd-1 and Vrn-1 genes (Eagles et al., 2009) and the responsiveness to photoperiod, vernalisation and the basic vegetative phase (Brougham, 2006). ... 56

Table 3.2: Site name, altitude, average temperature and rainfall on sites and sowing date of field experiment ... 59

Table 3.3: Average rates of leaf appearance (leaves/day) and the phyllochron (days/leaf) for bread wheat varieties grown in growth room at 30°C/23°C (day/night) and 12 h photoperiod and in two field experiments. The upper and lower limits of the 95% confidence interval are shown in parentheses ... 62

Table 3.4: Time to double ridge, terminal spikelet initiation, length spikelets phase, spikelet number at terminal spikelet initiation and length, and rate of spikelet initiation in growth room experiments (GR1 and GR2) .. 63

Table 3.5: Time to flower (days after sowing) in the growth room and field experiments. Values in the field are shown as the mean ± s.e.m .. 64

Table 3.6: Time of double ridge, terminal spikelets, length spikelets phase, spikelet number at terminal spikelet initiation and length, and rate of spikelet formation in Gunung Sari (GS) and Sembalun (S). Values are shown as mean ± s.e.m. (N=5) 65

Table 3.7: Effect of photoperiod and vernalisation alleles on the time (days) to double ridge, terminal spikelet initiation and flowering at Gunung Sari and Sembalun. Data are from the 5th sowing date at Gunung Sari and the 4th sowing date at Sembalun. Means were compared by t-test and differences significantly ($P < 0.05$) greater than zero are indicated .. 68

Table 4.1: Chemical properties of soils at the experimental sites on Lombok Island in 2010 and 2011 .. 87

Table 4.2: Mean monthly minimum and maximum temperatures and rainfall at the six experimental sites in 2010 and 2011. Temperatures were measured by a data logger at each sites and rainfall was recorded at a nearby weather station 88

Table 4.3: Times to the beginning of stem elongation (ZGS 31, Zadoks et al. 1977), flowering (ZGS 65) and maturity of 4 varieties of bread wheat on Lombok Island. Data are the averages ± sem over all sowing times at each site Table 4.4. Average yield, total dry matter at maturity and yield components of varieties
grown at three sites in Experiment 1 in 2010, grouped according to maturity type. Data are the means across six sowing times.................................94

Table 4.4. Average yield, total dry matter at maturity and yield components of varieties grown at three sites in Experiment 1 in 2010, grouped according to maturity type. Data are the means across six sowing times...96

Table 4.5. The responses to sowing date among varieties of bread wheat sown at three sites on Lombok Island in 2011. Grain yield is based on bulk harvest of half the plot while grain number and thousand grain weight as derived from quadrat samples ..103

Table 4.6. Correlation between grain yields with grains m^{-2}, thousand grain weight, time to stem elongation (GS31), anthesis (GS65), maturity (GS90), durations of stem elongation to anthesis and anthesis to maturity at lowland and upland sites.....104

Table 5.1: Time taken to reach specific growth stages in four varieties of wheat grown at three temperatures. Values are shown as the mean ± standard error of the mean (n=4) ...131

Table 5.2: Plant dry matter, stem weight, leaf weight and leaf area and specific leaf area (SLA) at anthesis..132

Table 5.3: Plant yield and yield components of four wheat varieties grown under three temperature regimes. ..134

Table 5.4: Leaf temperature (T_{leaf};{^\circ}C), maximum rate of photosynthesis (A; \mu mol m^{-2} s^{-1}), stomatal conductance (g_{s}; \mu mol m^{-2} s^{-1}), apparent mesophyll resistance (g_{ma}), ratio of internal and external partial pressures of CO_{2} (C_{i}:C_{a}), and dark respiration rate (R; \mu mol m^{-2} s^{-2}) in four wheat varieties grown at three temperatures. Measurements were made on the flag leaf at anthesis.................139

Table 5.5: The effects of temperature on the initial slope of the A:C_{i} curve and the light response curve for four varieties of wheat grown at three temperatures. The values are shown as the mean ±s.e.m based on the regression at either external CO_{2} concentrations of 50, 100, 150 and 200 \mu mol mol^{-1} or light at 0, 25, 50 and 100 \mu mol m^{-2} s^{-1}. All regressions were significant (P<0.001)...........................140

Table 5.6. Correlation coefficients between grain yield, biomass at anthesis (DMa), biomass at maturity (DMm), time to anthesis, specific leaf area (SLA). Stem water soluble carbohydrate at anthesis (WSCa), photosynthetic rate (A), stomatal conductance (gs), the ratio of internal and external partial pressures of CO_{2} (C_{i}:C_{a}), estimate of mesophyll resistance (g_{ma}), quantum efficiency (QE), initial response to CO_{2} curve (CO_{2} resp) and estimate of mitochondrial respiration (R) among four varieties of wheat grown at three temperatures (n=12). Significance levels are shown as: * P<0.05; ** P<0.01; *** P<0.001 ..141
LIST OF SUPPLEMENTARY TABLES

Supplementary Table 3.1 Average yield and yield components of crops at different time of sowing in Experiment 2010 ... 167

Supplementary Table 3.2. Average yield and yield components of four varieties of bread wheat sown at three locations on Lombok Island in 2011. 168

Supplementary Table 4.1. Comparisons of ANOVA of the time of sowing experiments at three sites on Lombok based on fully replicated randomised complete block design or treating the experiment as unreplicated and using sowing times and varieties as pseudoreplicates to test the effects of Variety and Sowing date respectively. 169
LIST OF FIGURES

Figure 2.1: Map of Lombok Island with different altitude; the highest altitude around Mt Rinjani-Segara Anak Lake (>3000m) ...7

Figure 2.2: Average daily maximum and minimum temperature of Lombok Island (left) and rainfall and rainy days (right). The horizontal bars shows 3 cropping patterns on Lombok; white bars for rice and black for other crops and proposed for wheat (WMO, 2012) ..8

Figure 3.1: Long term average of daily maximum and minimum temperature (left) and total rainfall and rainy days and average daylength (plus civil twilight) for Mataram on Lombok Island. [Sources: rainfall and temperature World Meteorological Organisation (http://worldweather.wmo.int/043/c00654.htm); daylength: US Naval Observatory (http://aa.usno.navy.mil/data/)]55

Figure 3.2: Flowering time of wheat varieties for each sowing dates at (a) Gunung Sari and (b) Sembalun for Axe, Janz, Yitpi, Nias and Dewata. These varieties represent the range in flowering times among the varieties. (c) The relationship between the mean time to flower at Gunung Sari and Sembalun based on all six sowing times at Gunung Sari. The error bars are the standard errors of the mean among the varieties and the 1:1 line is also shown. The mean temperatures before flowering were 27°C at Gunung Sari and 22°C at Sembalun. Data from Slafer and Rawson (1995a) (■) comparing mean temperatures of 22°C and 25°C under long days and Rahman and Wilson 1978 (○) comparing mean temperatures of 19.5°C and 27.5°C are also shown ...66

Fig 4.1. Long term average of daily maximum and minimum temperature and total rainfall and rainy days for Lombok Island (WMO, 2012) (http://worldweather.wmo.int/043/c00654.htm), and Irradiation of closed area Denpasar (Morrison and Sudjito, 1992). Closed bars indicate growing season in which wheat is proposed, during the coolest month May to August and the open bars represent the current rice growing seasons ..90

Fig 4.2. The average responses to sowing time of wheat sown at three sites on Lombok Island, Indonesia in 2010. The LSD (P= 0.05) for comparisons among sowing dates at each site are shown as vertical bars. The predicted optimum sowing date for Sembalun is 10 May (day 130). Grain yield from three sowing dates was only available at Namada because of water logging at the first three sowing times ...97

Fig 4.3. The average effect of time of flowering on the yield of wheat at three locations on Lombok Island in (a) 2010 and (b) 2011. The LSD (P = 0.05) for comparisons among sowing dates for each site in 2010 and for the Site x Sowing date
interaction in 2011 are shown. The predicted optimum sowing date for Sembalun in 2010 is 8 July (day 190). Grain yield from three sowing dates was only available at Namada in 2010 because of water logging at the first three sowing times .. 98

Fig 4.4. The relationships between grain yield and (a) grains m$^{-2}$ and (b) thousand grain weight for the varieties Axe, Gladius, Nias and Dewata sown in 2010 (closed symbols) and 2011 (open symbols). The sites are Gunung Sari (●), Lekok (○), Senaru (□) and Sembalun (▲, ∆).. 99

Fig 4.5. Change in tiller number (a, c, e) and shoot dry matter (b, d, f) of plants in 2011 based on days after sowing for different varieties (a, b), sowing dates (c, d) and sites (e, f). .. 101

Fig 4.6. The relationships between elevation and growing season mean temperature on the grain yield of bread wheat on Lombok Island, Indonesia. The relationships in 2010 (●) and 2011 (○) is between site mean yield and (a) altitude and (b) temperature. The results of Handoko (2007) on Java Island (●) are compared with the results from Lombok Island (○) for the variety Dewata between yield and (c) elevation and (d) growing season temperature. 105

Fig 4.7. The regressions of variety yield against site mean yield derived from trials conducted in 2010 and 2011 for the Australian wheat varieties Axe and Gladius and the Indonesian varieties Nias and Dewata. ... 109

Figure 5.1 The effects of growth temperature on total water use (bars)and water use efficiency (lines) for dry matter production (○) and grain yield (□) for four varieties of wheat .. 136

Fig 5.2. The concentrations of stem water soluble carbohydrate at anthesis (□) and maturity (■) and the percentage change between anthesis and maturity (lines) in four varieties of wheat grown at different temperatures 137

Fig 5.3: The relationship between sensitivity in yield to high temperature among four wheat varieties when grown in the field or in growth rooms. The field results are derived from experiments on Lombok at warm lowland sites (Gunung Sari (GS) or Lekok) and at a cool highland site (Sembalun) in 2011 and 2012 and the relative yields in the growth rooms are based on 32°C/23°C and 28°C/20°C. 142

Fig 5.4. The relationship between time to anthesis (a) and time TSI-anthesis (b) to yield of 4 varieties tested... 145
LIST OF SUPPLEMENTARY FIGURES

Supplementary Fig. 5.1. The relationships between grain yield per plant and (a) grain number per plant and (b) kernel weight for four varieties of wheat grown at three temperatures...170

Supplementary Figure 5.2. The light response curves for four wheat varieties grown at 25°/15°C (●), 28°/20°C (■) or 32°/32°C (▲)...171

Supplementary Figure 5.3. The CO₂ response curves for four wheat varieties grown at 25°/15°C (●), 28°/20°C (■) or 32°/32°C (▲)...172
Declaration

I certify that this work contains no material which has been accepted for the award of any other degree or diploma in my name, in any university or other tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text. In addition, I certify that no part of this work will, in the future, be used in a submission in my name, for any other degree or diploma in any university or other tertiary institution without the prior approval of the University of Adelaide and where applicable, any partner institution responsible for the joint-award of this degree.

I give consent to this copy of my thesis, when deposited in the University Library, being made available for loan and photocopying, subject to the provisions of the Copyright Act 1968.

I also give permission for the digital version of my thesis to be made available on the web, via the University’s digital research repository, the Library Search and also through web search engines, unless permission has been granted by the University to restrict access for a period of time.

Alkhmad Zubaidi
Acknowledgement

I would like to express my sincere gratitude and appreciation to my supervisors, Associate Professor Glenn K. McDonald and Associate Professor Gurjeet Gill. I owe the most gratitude to Associate Professor McDonald, who has given generously of his time and provided excellent supervision throughout my study, especially for his endless patience, understanding and invaluably constructive criticism. I am sincerely thankful to Associate Professor Gill for his invaluable guidance, friendly advice and constructive criticism during the project work and writing. I would also like to sincerely thank my external supervisor, Prof. Mansur Ma’shum from the University of Mataram for his guidance and encouragement during my study, especially field work on Lombok Island Indonesia.

I gratefully acknowledge and thank to all staff and friends of the School of Agriculture, Food and Wine, especially the Agronomy Lab, Waite Institute for their help and friendship. My thanks to Ms. Teresa Fowles for her help in ICP analysis. My special thanks to Dr. Ian Dundas for his help and friendship during my time in Adelaide.

I express my thanks to the Directorate General of Higher Education (DIKTI), Indonesian Department of Education for granting me a scholarship and to the Rector of Mataram University for giving me study leave for conducting this study. My warm thanks also for Dr. Budi Indarsih, Coordinator of DIKTI scholarship at University of Mataram, for her support and guidance on organising my scholarship.

I also wish to express my sincere gratitude to my wife, Ratna, and my children, Annisa, Amalia and Arief for their endless support and patience in every situation. My special thanks also to all my brothers and sisters for their help and moral support during my field experiments in Lombok.
ABSTRACT

Wheat consumption in Indonesia is continuously increasing. Indonesia imports considerable amounts of wheat for domestic consumption and processing and this has increased with economic development. Therefore to lower the high import of wheat grains, Indonesia should have domestic production. Even though Indonesia straddles the equator, the high altitudes in many parts of Indonesia means that wheat could potentially be grown during the dry season as it is more drought tolerant than rice. However, improved adaptation of wheat to tropical environments is needed to achieve this goal.

Lombok Island (8.5°S 116°E) is suggested to be one of the potential areas of wheat growing. The average maximum temperature at the capital city, Mataram (low altitude) is 30-32°C during day time and minimum at 20-23°C at night but this is moderated by elevation in the centre of the island. The lowest temperature during the year is between June and August which also is the dry season. Lombok’s current farming system consists of two rice plantings during the rainy season and a non-rice planting during the dry season. May to September is proposed to be the wheat growing period on Lombok to have the plant flowering during the time of lowest temperatures and coincidently with no or limited rainfall during grain development to avoid grain sprouting in the field before harvested.

In order to investigate the adaptation of wheat on Lombok Island Indonesia, a series of growth chamber and field experiments was conducted. The initial controlled environment experiments at Adelaide University that examined patterns of apical development and seedling growth were done at a continuously high temperature (32/23°C) day/night to imitate temperatures at lowland sites of Lombok Island while in later experiments in which development, growth and yield were studied, the temperature treatments were expanded to 3 temperature regime, 32/23°C, 28/20°C to imitate lowland and highland temperatures of Lombok Island and 25/15°C to represent a temperature more
typical of a wheat producing area in a temperate environment. Field experiments were
done in two consecutive years 2010 and 2011 at 3 different elevation sites on Lombok
Island-Indonesia: Sembalun (1000masl), Narmada (200 masl) and Gunung Sari (10masl) in
2010, and Sembalun, Senaru (500masl) and Lekok (10masl) in 2011. Seeds were sown at
6 sowing times in 2010 and 3 sowing times in 2011. A range of Australian varieties with
different maturities were grown and later two Indonesian varieties were included.

Plant development was rapid under continuously high temperature environment
both under controlled environment experiments and in field experiments with double ridge
occurring 15-30 days after sowing and flowering occurring 40-70 days after sowing in
most varieties. There was good correlation in the rates of development under controlled
environment and field conditions. The differences in flowering time were related to
photoperiod sensitivity and intrinsic earliness among varieties. The results suggested that
early maturing varieties (e.g. Axe) developed very rapidly which may limit their yield
potential.

In the field trials on Lombok, wheat productivity was influenced by elevation and
sowing date. At lowland sites yields were about 1 t/ha or less, whereas when grown at 500
masl elevation or above yields were substantially higher and ranged from 2.2-3.2 t/ha. The
change in yields with elevations was associated with changes in mean temperature: the
change in yield with increasing temperature was -55 g/m²/°C. The optimum sowing time at
higher elevation on Lombok was from mid-May to early June which allowed plants to
flower in the cooler and drier time of the year, and this also allow wheat to fit in with the
current cropping systems. Mid-season varieties that flowered after 65 days were generally
higher yielding than earlier flowering or later flowering varieties. Yield was most strongly
related to grains/m² which emphasised the importance of the timing of the phase of ear and
floret development for sink development in this short season environment.
Growing wheat at 32/23°C greatly reduced wheat yields compared to 28/20°C and 25/15°C due to much more rapid development, lower net photosynthesis rates and lower accumulation of water soluble carbohydrates (WSC). This resulted in reduction in both grain number and kernel weight with yield being relatively more affected by changes in grain number. There was some evidence of genetic variability to heat stress. The differences in yield among varieties was related to differences in photosynthetic rate, stomatal conductance as well as the amount and remobilisation of WSC. Two Indonesian varieties were more tolerant to high temperature than Australian varieties.

The results of this work suggested that it is feasible to grow wheat on Lombok Island at elevations above 500 m. Mid-season varieties that flower after 60-70 days appear to be the most promising pattern of development. There appears to be significant genetic variation in yield to allow further development of improved varieties. Future work should consider adapting wheat into broader potential areas of Indonesia, developing appropriate cropping practices for different altitude and yield potential areas, and introducing or breeding new heat stress tolerant varieties.