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Abstract

Applying MALDI-MS imaging to tissue microarrays (TMAs) provides access to proteomics data

from large cohorts of patients in a cost- and time-efficient way, and opens the potential for applying

this technology in clinical diagnosis. The complexity of these TMA data – high-dimensional low

sample size (HDLSS) – provides challenges for the statistical analysis, as classical methods typically

require a non-singular covariance matrix which cannot be satisfied if the dimension is greater

than the sample size. We use TMAs to collect data from endometrial primary carcinomas from

43 patients. Each patient has a lymph node metastasis (LNM) status of positive or negative,

which we predict on the basis of the MALDI-MS imaging TMA data. We propose a variable

selection approach based on Canonical Correlation Analysis (CCA) which explicitly uses the LNM

information. We apply LDA to the selected variables only. Our method misclassifies 2.3–20.9% of

patients by leave-one-out (LOO) cross-validation and strongly outperforms LDA after reduction of

the original data with principle component analysis (PCA).
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MALDI-MS imaging enables the relative quantification and spatial expression profiling

of thousands of peptides within and between tissues. Using tissue microarrays (TMAs) can

facilitate the acquisition of data from large cohorts of patients [1], but relative to the number

of resolvable ion species, the sample sizes remain small – less than 100 patients represented

in a typical study, although there are some notable exceptions [2]. Classification at a patient

level of such data is of clinical interest, but classical approaches to classification, such as

linear discriminant analysis (LDA), do not apply without modifications such as prior feature

selection or regularisation. In this paper we suggest a method for dimension reduction via

variable selection prior to classification and demonstrate its effectiveness when applied to the

data of [3], which consist of MALDI-MS imaging data collected from TMAs of formalin-fixed

paraffin-embedded (FFPE) primary endometrial carcinoma tissue. For these endometrial

cancer data it is of interest to distinguish between patients with lymph node metastasis

(LNM) and those without.

Endometrial cancer is the most common gynaecological malignancy in Australia with 2256

diagnosed cases in 2010 and 381 associated deaths in 2011 [4]. The presence or absence of

lymph node metastasis (LNM) is the most important prognostic factor in endometrial cancer

as patients with localised disease have a 5 year survival rate of 96%, which drops to just 17%

for patients with metastatic disease [5]. Accurately staging endometrial cancer is difficult

and a large percentage of patients are misclassified prior to treatment [6]. Although the

presence of LNM is confirmed in only around 15% of cases [7, 8], the majority of endometrial

cancer patients undergo radical treatment including the removal of pelvic lymph nodes

as a precautionary measure to compensate for our current inability to accurately stage

the disease. Lymph node removal is associated with significant complications including

lower extremity lymphoedema, which has been described in up to 38% of patients [9]. A

classification system based around predictive tissue markers of metastasis would greatly

benefit stage I endometrial cancer patients by helping determine optimal treatment strategies

that avoid unnecessary, invasive procedures.

The sample preparation of the endometrial TMAs included citric acid antigen retrieval

[10], trypsin digestion, addition of internal calibrants [11], and matrix deposition. Further

details on the data acquisition for the endometrial data are available in [3]. As part of

the data acquisition peak-picking was performed through proprietary software (flexControl

v3.0.1 and flexImaging v4.0.1, Bruker Daltonik, http://www.bruker.com). All our analyses
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are carried out solely on the monoisotopic peaks detected by this method. These peak-data

are about two orders of magnitude smaller and result in much faster computation times

while preserving important information.

Two sections (technical replicates) of two TMAs were analysed and tumour regions anno-

tated by a pathologist. In this analysis, the only information we use about each spectrum is

which patient it belongs to and whether the pathologist’s annotations include it as tumour.

After consideration of the patient clinical data it was determined that 43 patients suitable

for the study are represented across the two TMAs. Of these 43 patients, 16 are LNM

positive, 27 are negative. Details on the endometrial cancer project from which these data

originate are available in [3].

We construct 0.25Da wide, non-overlapping bins which are the variables in our analyses.

In addition we repeat the analyses for shifted bins. Our final prediction combines the

corresponding results from the individual analyses, using a majority rule. Details regarding

the choice of bins, shifted-bin analyses and majority rule are given in the supplementary

information.

For each patient, spectra were averaged for each m/z bin. These averages are assembled

into data matrices with 43 columns corresponding to the patients represented in the study,

and 4582 rows corresponding to m/z bins with at least one peak in them in at least one

spectrum (4570 and 4584 in the two shifted-bin analyses respectively). This resulting data

matrix is what will be used in all following analyses. We centre the rows of these data

matrices, and refer to these centred data as X.

As previously mentioned, classical approaches to classification such as LDA do not apply

to HDLSS data without modifications. Different solution paths exist in the literature which

include replacing the classical LDA by its Naive Bayes version, see [12, Section 13.2.1]. Other

methods that are directly applicable to HDLSS data include Distance Weighted Discrimi-

nation of [13], kernel methods – see [14], and regularisation approaches which make use of

generalised inverses, ridge-like estimates of the covariance matrix, or Lasso and elastic net

type classification – see [15, 16] and references therein.

A different solution path consists of reducing the number of variables or features first, and

then applying the chosen classifier to the reduced data. In MALDI-MS imaging data PCA

is a popular feature reduction method, see [17, 18] and references therein. More recently [19]

have suggested the use of PCA on MALDI-MS imaging data from TMAs in a classification
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context. For a generic reference to PCA see [20] and [12, Chapter 2 and Section 4.8].

Other feature reduction approaches used in proteomics include the application of univari-

ate tests such as Wilcoxon rank-sum statistics or t-tests – see [21, 22]. For high-dimensional

data [23] ranked the variables by applying t-tests simultaneously to all variables and analysed

the performance of this approach. We follow a related path, based on Canonical Correlation

Analysis (CCA), and select the ‘best’ original variables in a supervised manner prior to

classification. The selected variables do not require any interpretation, as they are simply

the m/z bins. Our approach contains the approach of [23] as a special case, and does not

require tuning parameters as regularisation-type methods do.

In CCA the data are split into two sets of variables and the linear combinations of variables

in each subset with the strongest correlation are determined. Typically this correlation is

much stronger than that of any individual pair of variables from the two subsets. In a

regression context the correlation between a response and the predictor variables shows the

relative strength of the response on the individual predictors. In a classification framework,

we use class labels of observations as one subset of variables, and all other variables as the

second subset. For our data, the class labels are the LNM status, and the variables are all

m/z bins.

It is beyond the scope of this paper to review the different approaches mentioned above

or to show detailed comparisons. However, because of the repeated use of PCA for MALDI-

MS data, we include a performance comparison of our proposed method with that based on

feature reduction with PCA. We note that our CCA-based variable selection is supervised,

while PCA does not use the class labels in its feature reduction. As a consequence PCA

may not find features that are optimal for predicting class membership. In addition, our

suggested CCA-based approach simply ranks the original variables, here m/z bins, and

picks the best, while PCA transforms the original variables and results in features that are

linear combinations of all m/z bins. While we expect to relate the ‘best’ CCA masses to

biomarkers, no such interpretation is possible for the PCA features. In our results, shown

in Figure 1 and Figure 2, we will see the dramatic improvement in prediction that can be

achieved with the supervised CCA-based variable selection compared to the unsupervised

PCA-based dimension reduction.

In the context of MALDI-MS data, CCA has been used in finding correlations between

datasets collected from the same tissue using different imaging techniques [24]. These authors
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use CCA in its standard form: finding correlations between two subsets of variables that

belong to a natural partition – m/z values collected using one imaging technique, and

m/z values collected using the second imaging technique. CCA has also been used in

a classification context [25], although in an exploratory manner – plotting the strongest

correlation between their data and their prediction variable to observe a linear relationship.

In this paper we also use the first and strongest correlation obtained from CCA, but we

deviate from the conventional approach in that we explicitly use the information inherent in

the first direction vector for variable selection. CCA-based variable selection as suggested

by [26] is further described in [12, Sections 13.3.1 and 13.3.3], and references therein. We

modify their approach for our data, essentially by using centred labels. Here we briefly

introduce our variable ranking approach, but further details, motivation, and comments can

be found in the supporting information. Let X be a d×n centred data matrix whose columns

represent observations (patients), and whose rows represent variables (m/z bins). Let y be a

1×n vector of (centred) class labels −2n+

n
and 2n−

n
corresponding to the same n observations

as the columns of X, where n+ (n−) is the number of observations in the positive (negative)

class. The key idea is to exploit the relationship between X and y. Details describing how

we use CCA are included in the supporting information, but essentially we will be interested

in the vector φ, which satisfies

XXTφ = XyT . (1)

The vector φ contains the weights for the linear combination of variables, or rows of X, which

gives rise to the strongest absolute correlation with y. Variable reduction to k variables is

obtained by selecting variables corresponding to the k highest entries of φ by absolute value.

In what follows, LDA refers to Fisher’s linear classification as described in [12, Section 4.3].

LDA finds the direction which maximises the between-class variance and simultaneously

minimises the within-class variance of the data. We will use the term CCA-LDA to refer to

the process of first using the CCA variable selection to perform a dimension reduction step,

and then apply LDA to the selected variables. Similarly, we will use the term PCA-LDA

to refer to the process of first performing PCA dimension reduction, and then apply LDA

to the selected variables. We measure the performance of these methods by Leave-One-Out

(LOO) cross-validation. LOO cross-validation is an iterative process where in each iteration

one observation is left out, the classification rule is trained on the remaining data, and

tested on the left-out observation – assigning it a class label. This process is repeated until
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all observations have been assigned class labels in the ‘testing’ step. Incorrectly assigned

observations are counted as LOO misclassification. We use LOO cross-validation rather

than a more traditional training/ testing design (where separate datasets are used for the

training and testing steps) because of the relatively small number of observations (n = 43).

We examined the effect of the parameters such as regions of tissue and data form as

variations of the computational pipeline. In particular we consider the variations listed

below and implement all possible combinations of these choices in order to determine which

parameters are most important for classification.

• Data form: using raw intensities (I), log-intensities (log(I + 1)), peak areas, signal-to-

noise ratios or binary presence/ absence of peaks.

– For non-binary data forms, absence of peaks: When averaging spectra in which

some m/z bins contains no peaks, the absence of peaks is included as a zero value,

or ignored and not be included in the average.

– For binary data, spatial smoothing: The spatially smoothed binary data as de-

scribed in [27] is used with smoothing parameters 0, 0.15, or 0.25 where 0 corre-

sponds to no smoothing.

• Regions of tissue: all spectra, or spectra from annotated tumour regions only. Re-

stricting to only annotated tumour regions represents a reduction in the total number

of spectra from 123561 to 45877 (∼ 37%) in the endometrial TMA data.

Our analyses showed that data form was the only factor that consistently affected clas-

sification performance, with log-intensity data performing best, and binary data typically

performing second best.

Overall, the CCA-LDA outperformed PCA-LDA. A typical case can be seen in Figure 1 in

which we compare our CCA-LDA with PCA-LDA using the same parameter settings – log-

intensity data with zeroes included for absent peaks in the averaging step, and restricting

to only annotated tumour regions. Figure 1 shows the LOO misclassification (out of 43

patients) of CCA-LDA and PCA-LDA on the y-axis against the number of variables or

dimensions on the x-axis (used in the LDA step). In the case shown in Figure 1, CCA-

LDA strictly outperforms PCA-LDA and it can be seen that CCA-LDA achieves its most

parsimonious minimum misclassification of 5 by selecting 19 variables. Figure 2 shows the
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most parsimonious minimum misclassifications for each of the 22 combinations listed in the

dot points above, when using PCA-LDA and CCA-LDA. The minimum misclassifications

of CCA-LDA shown in Figure 2 vary between 1 (2.3%) and 9 (20.9%), while the minimum

misclassifications of PCA-LDA vary between 7 (16.3%) and 18 (41.9%).

The improved performance of our CCA-based variable selection over the standard PCA

dimension reduction, which uses linear combinations of variables, is likely due to the fact that

PCA is a purely variance-based method, which ignores any information about the clinical

outcome of interest (LNM). It is possible that the high-variance components of the data,

which PCA selects, may not include the crucial classification information necessary in order

to predict the clinical outcome accurately. CCA variable selection in contrast explicitly takes

into account the clinical outcome when selecting the variables, and this could account for

its improved performance in comparison to PCA.

Another advantage of CCA variable selection over that with PCA is the interpretability

of the variable-reduced data – the PCA variable-reduced data is produced by projection and

so the new variables are linear combinations of the original variables, making them difficult

to interpret. The variables selected via our CCA-based approach are a subset of the original

variables and so preserve their interpretation as m/z bins. This interpretation is of use in

designing follow-up biomarker studies. Some of the specific m/z bins that are highly ranked

in the CCA-based variable selection are discussed in [3].

In conclusion, we have presented a variable selection method for MALDI-MS imaging

data on TMAs, and demonstrated that this variable selection method combined with LDA

achieves a LOO misclassification of between 2.3% and 20.9% for lymph node metastasis

status in the endometrial cancer data of [3].
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Research Foundation. The authors would also like to thank Professor Martin Oehler for ac-

cess to the samples, and Associate Professor Gurjeet Kaur for her help with histopathological
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bers, Eckhard Belau, Ralf Hartmer, Detlev Suckau, Katja Specht, Matthias Philip Ebert,
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FIG. 1: LOO-misclassification for log-intensity data, including zeroes for absent peaks when aver-

aging and restricting to spectra from tumour regions. The x-axis shows the number of variables

(m/z bins) 1 to 40 included in the CCA data, or the number of principle components (linear com-

binations of m/z bins), 1 to 40 included in the PCA data. For each dimension-reduced data, LDA

is performed and the LOO-misclassification shown on the y-axis separately for CCA and PCA. The

smallest misclassification of 5 for CCA-LDA occurs when the best 19 variables are selected. The

smallest misclassification of 15 for PCA-LDA occurs when the PCA-dimension is 36. A comparison

shows that CCA-LDA results in lower misclassification and a more parsimonious model in this case.
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FIG. 2: Best LOO-misclassification for each of the 22 combinations of data type, inclusion/ exclu-

sion of empty values (for non-binary data types), smoothing (for binary data types), and restriction

to spectra from tumour annotated tissue. The x-axis shows the minimum number of variables for

the CCA data, or the number of principle components of the PCA data, that results in the smallest

LOO-misclassification in each scenario. The y-axis shows the number of misclassified patients for

that scenario, with CCA in circles and PCA in triangles. For example the circle at (x, y) = (23, 1)

indicates that CCA-LDA results in a LOO misclassification of one when the best 23 CCA-selected

variables are used in LDA for this particular scenario (binary data with a 0.25-smooth and restrict-

ing to spectra from regions annotated as tumour only). The figure clearly shows that CCA-LDA

consistently achieves better LOO misclassification than PCA-LDA on these data.
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