Relationships between Berry Sensory Assessment and Wine Quality in Vitis vinifera L. Shiraz

by

Sandra Milena Olarte Mantilla

Thesis submitted to School of Agriculture, Food and Wine of the University of Adelaide in fulfillment of the requirements for the degree of

Doctorate of Philosophy

July 2015
Relationships between Berry Sensory Assessment and Wine quality in *Vitis vinifera* L. Shiraz.

By:

Sandra Milena Olarte Mantilla

Supervised by:

Dr Susan E.P. Bastian,
Associate Professor, School of Agriculture, Food and Wine. The University of Adelaide

Dr Cassandra Collins,
Senior Lecturer, School of Agriculture, Food and Wine. The University of Adelaide

Dr Patrick G. Iland
Visiting Research Fellow, School of Agriculture, Food and Wine. The University of Adelaide

Thesis submitted in fulfillment of the requirements for the degree of
Doctorate of Philosophy

School of Agriculture, Food and Wine
Faculty of Science,
The University of Adelaide
Waite Research Institute, Glen Osmond, SA 5064
Email: sandra.olartemantilla@adelaide.edu.au
Abstract

Berry sensory assessment (BSA) is a technique that can help grapegrowers and winemakers make decisions about harvest date and grape product allocation. BSA as a structured technique has been used by grapegrowers, winemakers and researchers for the last thirteen years. However the number of studies reporting results of the effect of viticultural practices on berry sensory characteristics and wine quality is limited. This thesis examined the BSA technique through four different studies.

Study one is a combined review literature review and industry survey paper in which the methodology of Berry Sensory Assessment is presented and the research conducted using BSA is discussed. It also presents the results of a survey channeled to Australian grapegrowers and Australian and New Zealand winemakers about their experience using BSA, their perceptions on its use and their suggestions for improving the methodology. It was evident from the survey that 90% of grapegrowers and winemakers use BSA and they want to understand the link between BSA and wine quality. These results demonstrated the importance of BSA for wine producers and the need for further improvement.

The aim of study number two was to determine if berry sensory attributes and berry compositional variables could predict wine sensory attributes, wine compositional variables and wine quality in Shiraz. The analyses of berry and wine sensory attributes, compositional measures and wine quality using partial least squares regression and Pearson’s correlations from two seasons identified several relationships between berry
sensory attributes and wine sensory attributes and quality. A significant negative relationship was identified between seed bitterness and wine savoury spice flavour for the two seasons. The berry sensory attribute pulp detachment from the skin was identified as a predictor of various wine sensory attributes (e.g. the harder to detach skin from the pulp the higher intensity for wine body colour, rim colour and dark berry aroma) and wine quality scores in the season 2011.

The aim of study number three was to determine if berries stored at -20°C for three months could be used instead of fresh berries to conduct BSA. Being able to conduct BSA on frozen berries could help to reduce sensory fatigue in assessors by allowing them to evaluate samples over a longer time period and to schedule BSA away from the busy harvest period. The results of this study determined that sensory profile from Shiraz berries differed in five sensory attributes – pulp sweetness, pulp fresh fig flavour, skin colour extraction, skin bitterness and seed astringency - between fresh and frozen berries at three times of harvest, preventing the evaluation of these five sensory attributes in Shiraz frozen berries.

Study number four aimed to determine the effect of three rootstocks on sensory and compositional differences of Shiraz grapes and wines in comparison to a non-grafted control. The trial was conducted over two seasons. Berry and wine sensory and compositional differences were found between the grafted treatments and the non-grafted control. PCA was able to discriminate the wines from the four treatments in three groups of aroma compounds (acetate esters, ethyl esters and higher alcohols) in both
seasons. The results of wine quality scores from two seasons showed that the un-grafted treatment had the lowest quality and 110 Richter and Schwarzmann the highest.

The findings from this study identified relationships between the sensory and compositional variables in berries and wines that are affecting wine quality. It also showed that the use of rootstocks has an impact on berry and wine sensory and compositional characteristics.
Declaration

This thesis contains no material which has been accepted for the award of any other degree or diploma in any university or other tertiary institution and to the best of my knowledge and belief, contains no material previously published or written by another person, except where due references has been made in text.

I give consent to this copy of my thesis when deposited in the University Library, being available for loan and photocopying, subject to provisions of the Copyright Act 1968.

The author acknowledges that copyright of published works contained within this thesis (as listed below) resides with the copyright holder of those works. I also give permission for the digital version of my thesis to be made available on the Web, via the University’s digital research repository, the library catalogue, The Australasian Digital Thesis Program (ADTP) and also through web search engines, unless permission has been granted by the University to restrict access for a period of time.

_______________________ _____________________

Sandra Milena Olarte Mantilla Date
Journal of Papers Published as part of this Research

Review: Berry Sensory Assessment: concepts and practices for assessing winegrapes’ sensory attributes.
Australian Journal of Grape and Wine Research 18 (3): 245-225
Presented in Chapter 2

Comparison of sensory attributes of fresh and frozen wine grape berries using berry sensory assessment.
Presented in Chapter 3

Olarte Mantilla, S.M., Collins, C, Illand, P.G., Kidman, C.M., Ristic, R., Hasted, A., Jordans, C. and Bastian, S.E.P.
Relationships between grape and wine sensory Attributes and Compositional Measures of cv. Shiraz.
[Manuscript in revision - American Journal of Enology and Viticulture]
Presented in Chapter 4

Olarte Mantilla, S.M., Collins, C, Illand, P.G., Kidman, C.M., Ristic, R., Boss, P.K.B., Jordans, C. and Bastian, S.E.P.
Wine quality in Shiraz (Vitis vinifera L) can be modulated by the use of rootstocks
[Submitted Manuscript]
Presented in Chapter 5

Each of these manuscripts is presented in the thesis in the form according to the author instructions for the associated journal.

This thesis has been prepared following the University of Adelaide specifications for a PhD thesis by publication format
Related Publications and Communications Arising During Candidature

Olarte Mantilla, S.M., Collins, C., Bastian, S.E.P. **Berry Sensory Assessment (BSA) – should frozen wine grape berries be used in sensory evaluations? Is BSA important for winemakers and grapegrowers?** (poster). 17th International Symposium GiESCO. Asti (Alba) – Italy, September 2011.
Olarte Mantilla, S.M., Collins, C., Bastian, S.E.P. *Berry Sensory Analysis – Should frozen wine grape berries be used on sensory evaluations? Is BSA important for winemakers and grapegrowers?* (seminar). Crush symposium, Adelaide – September 2011.

Acknowledgements

This thesis is dedicated to my family, my mum who has been every week listening patiently providing advice, love and believe. To my dad even when he doesn’t say much, I know he misses me and feels proud of me. To my siblings Diego and Mario and to my nieces and nephew who bring me happiness with every smile. Thank you, you are the most important part of my life.

I sincerely like to thank my supervisors, Dr Susan Bastian, Dr Cassandra Collins and Dr Patrick Iland for their support, advice, patience and encouragement thorough this project.

I also want to thank Dr Paul Boss for his help in the last part of the project.

I want to acknowledge thankfully the funding received for my PhD project from the Australian Grape and Wine Authority (AGWA). I also want to thank the South Australian Research and Development Institute (SARDI) for allowing me to use their vineyard for my research project.

I also would like to thank my colleagues at Adelaide University, particularly to Dr Catherine Kidmann, Dr Renata Ristic, Dr Crystal Sweetman and pre Doctor Joanna Gambetta for their friendship and advice.

It has been a long journey where some people have come and gone but I want to thank for their support Oscar, David, Gabi, Vanessa, Roberta, Brad, Sofi a big thank you.
Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AGWA</td>
<td>Australian Grape and Wine Authority</td>
</tr>
<tr>
<td>ANOVA</td>
<td>Analysis of Variance</td>
</tr>
<tr>
<td>BSA</td>
<td>Berry Sensory Assessment</td>
</tr>
<tr>
<td>DA</td>
<td>Descriptive Analysis</td>
</tr>
<tr>
<td>CSIRO</td>
<td>Commonwealth Scientific and Industrial Research Organisation</td>
</tr>
<tr>
<td>GC-MS</td>
<td>Gas Chromatography- Mass Spectrometry</td>
</tr>
<tr>
<td>HPLC</td>
<td>High Performance Liquid Chromatography</td>
</tr>
<tr>
<td>ICPAES</td>
<td>Inductively Coupled Plasma Atomic Emission Spectrometry</td>
</tr>
<tr>
<td>LRI</td>
<td>Linear Retention Index</td>
</tr>
<tr>
<td>MFA</td>
<td>Multi Factor Analysis</td>
</tr>
<tr>
<td>PCA</td>
<td>Principal Component Analysis</td>
</tr>
<tr>
<td>PLS</td>
<td>Partial Least Squares</td>
</tr>
<tr>
<td>SARDI</td>
<td>South Australian Research and Development Institute</td>
</tr>
<tr>
<td>SO₂</td>
<td>Sulphur Dioxide</td>
</tr>
<tr>
<td>TA</td>
<td>Titratable Acidity</td>
</tr>
<tr>
<td>VA</td>
<td>Volatile Acidity</td>
</tr>
</tbody>
</table>