Investigations and Applications of Self-Sufficient Cytochrome P450 Monooxygenases

Samuel David Munday

Supervisors:
Dr Stephen Bell
Prof. Simon Pyke
Assoc. Prof. Christopher Ford

July 2016

Thesis submitted for the degree of Master of Philosophy
Contents

Abstract iii
Declaration iv
Acknowledgements v
Abbreviations vi
List of Figures vi
List of Schemes x
List of Tables xii

1 Introduction

1.1 Cytochromes P450
1.1.1 Background
1.1.2 The catalytic cycle of cytochromes P450
1.2 Common reactions catalysed by P450s
1.2.1 Hydroxylation
1.2.2 Alkene oxidation
1.2.3 Aromatic oxidation
1.3 P450Bm3
1.3.1 Background
1.3.2 Possible physiological roles of P450Bm3
1.3.3 Electron transfer in P450Bm3
1.3.4 P450Bm3 structural studies
1.3.5 Key active site residues for P450Bm3 functionality
1.3.6 Variants and applications of P450Bm3
1.3.7 Improving the oxidation of non-natural substrates using decoy molecules
1.4 Other CYP102 family members and similar enzymes
1.4.1 Possible CYP102 family members
1.5 Thesis Objectives

2 Experimental

2.1 Materials, chemicals and equipment
2.1.1 Substrates, reagents, growth media and buffers
2.1.2 Analytical Equipment
2.2 P450 Enzyme Purifications
2.2.1 Transformation
2.2.2 General P450Bm3 expression and purification
2.2.3 Expression and purification of Krac0936 and Krac9955
2.3 Whole-cell (in vivo) oxidation systems
2.4 In vitro assays
2.4.1 CO assays of Krac0936 and Krac9955
2.4.2 NADPH turnover assays
2.4.3 Spin-state shift assays
2.5 Data Analysis

3 Results

3.1 Introduction

4 Conclusion

4.1 Introduction

Appendices

A.1 Additional information

References

A.1.1 Additional references
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.5.1 GC and GC-MS</td>
<td>34</td>
</tr>
<tr>
<td>2.5.2 Product synthesis</td>
<td>36</td>
</tr>
<tr>
<td>2.6 Phylogenetic analyses</td>
<td>37</td>
</tr>
<tr>
<td>3 Improving oxidation of aliphatic and aromatic hydrocarbons using decoy molecules</td>
<td>39</td>
</tr>
<tr>
<td>3.1 Introduction</td>
<td>39</td>
</tr>
<tr>
<td>3.2 Results</td>
<td>42</td>
</tr>
<tr>
<td>3.3 Discussion</td>
<td>53</td>
</tr>
<tr>
<td>4 Investigating the effect of decoy molecules on the stereoselectivity of oxidation by P450Bm3</td>
<td>60</td>
</tr>
<tr>
<td>4.1 Introduction</td>
<td>60</td>
</tr>
<tr>
<td>4.2 Results</td>
<td>63</td>
</tr>
<tr>
<td>4.3 Discussion</td>
<td>78</td>
</tr>
<tr>
<td>5 Investigating the oxidation of disubstituted benzenes by P450Bm3 variants</td>
<td>85</td>
</tr>
<tr>
<td>5.1 Introduction</td>
<td>85</td>
</tr>
<tr>
<td>5.2 Results</td>
<td>88</td>
</tr>
<tr>
<td>5.2.1 Toluene and anisole</td>
<td>88</td>
</tr>
<tr>
<td>5.2.2 Oxidation of disubstituted benzenes</td>
<td>89</td>
</tr>
<tr>
<td>5.3 Discussion</td>
<td>100</td>
</tr>
<tr>
<td>6 Preliminary characterisation of two CYP102 enzymes from Ktedonobacter racemifer DSM44963</td>
<td>110</td>
</tr>
<tr>
<td>6.1 Introduction</td>
<td>110</td>
</tr>
<tr>
<td>6.2 Results</td>
<td>112</td>
</tr>
<tr>
<td>6.2.1 Phylogenetic analysis</td>
<td>112</td>
</tr>
<tr>
<td>6.2.2 Protein production</td>
<td>114</td>
</tr>
<tr>
<td>6.2.3 Whole-cell oxidation of fatty acids</td>
<td>117</td>
</tr>
<tr>
<td>6.2.4 In vitro oxidation assays of saturated fatty acids</td>
<td>123</td>
</tr>
<tr>
<td>6.2.5 In vitro oxidation assays of unsaturated fatty acids</td>
<td>132</td>
</tr>
<tr>
<td>6.3 Discussion</td>
<td>139</td>
</tr>
<tr>
<td>7 Thesis Summary</td>
<td>143</td>
</tr>
<tr>
<td>References</td>
<td>146</td>
</tr>
<tr>
<td>Appendix A: Mass Spectra of Synthesised Products</td>
<td>160</td>
</tr>
<tr>
<td>Appendix B: Chapter 3 Experimental Data</td>
<td>161</td>
</tr>
<tr>
<td>Appendix C: Chapter 4 Experimental Data</td>
<td>177</td>
</tr>
<tr>
<td>Appendix D: Chapter 5 Experimental Data</td>
<td>189</td>
</tr>
<tr>
<td>Appendix E: Chapter 6 Experimental Data</td>
<td>198</td>
</tr>
<tr>
<td>Appendix F: Publications Arising from this Thesis</td>
<td>218</td>
</tr>
</tbody>
</table>
Abstract

The cytochrome P450 superfamily catalyses the oxidation of a vast array of organic molecules. Most commonly, this oxidation process ensues by the insertion of a single oxygen atom from dioxygen into an unreactive C–H bond. There is a high degree of interest for this reaction type in conventional synthesis, but it is difficult to achieve high levels of selectivity and is often performed under harsh conditions. CYP102A1 or P450Bm3 from *Bacillus megaterium* however, can perform this oxidative process under physiological conditions and so researchers have a strong interest in exploiting the potential benefits of this enzyme. The natural substrates of P450Bm3 are fatty acids but this thesis will address both modern and classical techniques to improve catalytic performance with a variety of non-natural substrates. The first two results chapters of this thesis (Chapters 3 and 4) describe the effect of decoy molecules on non-natural substrate oxidation with the aim of improving rates of product formation while maintaining the selectivity of the enzyme. Analysis of the oxidation of these substrates by wild-type P450Bm3 and the variant KT2 showed substantial increases in product formation rate while maintaining the regioselectivity. As a rigorous test of regioselectivity, a selection of xylenes were used that have previously been shown to generate multiple products upon P450Bm3 oxidation. Retention of enantioselectivity was also assessed by using prochiral substrates that have stereocentres introduced upon P450Bm3 oxidation. Chiral chromatography analysis of these turnovers showed that in most cases, the enantioselectivity of the enzyme was either maintained or marginally improved. Knowing that xylenes give a range of oxidation products upon P450Bm3 activity, a wider range of disubstituted benzene compounds were also analysed (Chapter 5). These substrates were chosen to resemble potential xenobiotic compounds in order to assess what metabolites may be produced by P450Bm3 and therefore other P450 systems. These substrates were analysed with several P450Bm3 variants and significantly improved rates of product formation were observed, enabling identification of the likely metabolites. Chapter 6 describes an investigation into two potential CYP102 family members from the bacterium *Ktedonobacter racemifer* DSM44963 (Krac0936 and Krac9955). Their sequenced genes show similarities to P450Bm3, which encouraged the investigation of a range of fatty acid substrates with these two enzymes. Although their product distributions differed, both Krac0936 and Krac9955 were active with straight-chain saturated and unsaturated fatty acids.
Declaration

I certify that this work contains no material which has been accepted for the award of any other degree or diploma in my name, in any university or other tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text. In addition, I certify that no part of this work will, in the future, be used in a submission for my name, for any other degree or diploma in any university or other tertiary institution without the prior approval of the University of Adelaide and where applicable, any partner institution responsible for the joint-award of this degree.

I give consent to this copy of my thesis, when deposited in the University Library, being made possible for loan and photocopying, subject to the provisions of the Copyright Act 1968.

I also give permission for the digital version of my thesis to be made available on the web, via the University’s digital research depository, the Library Search and also through web search engines, unless permission has been granted by the University to restrict access for a period of time.

Samuel David Munday
July 2016
Acknowledgements

Thanks must first and foremost go to Dr Stephen Bell. His mentorship and guidance over the last two years has been truly appreciated and should not go unnoticed. His thorough proofreading and editing is also a big bonus!

The members of both the Bell and Pyke groups from the last two years must also be thanked for their friendship and support. These people all show a big passion for science and have been great to work alongside.

Friends and family, thank you for your support also. You’ve all been a great boost and a continual source of encouragement for me.

It has been a busy but rewarding two years and I am truly grateful for the experience.
Abbreviations

AMU: atomic mass units
BA: benzyl alcohol
BID: barrier discharge ionisation detector
BSTFA: N,O-bis(trimethylsilyl)trifluoroacetamide
CPR: cytochrome P450 reductase
CYP: cytochrome P450
DMP: dimethylphenol
DTT: dithiothreitol
ee: enantiomeric excess
EMM: *E. coli* minimal media
FAD: flavine adenine dinucleotide
FMN: flavine mononucleotide
GC: gas chromatography
HPLC: high performance liquid chromatography
HS: high spin
IPTG: isopropyl-β-D-thiogalactopyranoside
kan: kanamycin
LB: Luria-Bertani broth
LS: low spin
MBA: methylbenzyl alcohol
MP: methylphenol
NAD(P)(H): nicotinamide adenine dinucleotide (phosphate)(H = reduced form)
NIH: National Institutes of Health
NPG: N-palmitoyl glycine
PAH: polyaromatic hydrocarbon
PFR: product formation rate
SB: substrate bound
SF: substrate free
TE: trace elements solution
TIC: total ion count
TMCS: trimethylchlorosilane
Tris: tris(hydroxylmethyl)aminomethane
WT: wild-type
$2\times$YT: yeast extract tryptone medium
List of Figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>P450<sub>cam</sub> shares the characteristic fold of P450s.</td>
<td>3</td>
</tr>
<tr>
<td>1.2</td>
<td>The general P450 catalytic cycle.</td>
<td>5</td>
</tr>
<tr>
<td>1.3</td>
<td>The radical rebound mechanism of cytochromes P450.</td>
<td>7</td>
</tr>
<tr>
<td>1.4</td>
<td>Possible concerted (a) and non-concerted (b) mechanisms of P450 epoxidation.</td>
<td>8</td>
</tr>
<tr>
<td>1.5</td>
<td>Terminal alkene inhibition of P450 enzymes.</td>
<td>9</td>
</tr>
<tr>
<td>1.6</td>
<td>Hypothesised mechanisms of benzene hydroxylation by P450s.</td>
<td>10</td>
</tr>
<tr>
<td>1.7</td>
<td>Electron flow in P450Bm3 with the associated reduction potentials.</td>
<td>12</td>
</tr>
<tr>
<td>1.8</td>
<td>The pathway of electron transfer in P450Bm3.</td>
<td>14</td>
</tr>
<tr>
<td>1.9</td>
<td>The active site of P450Bm3 bound to NPG (PDB 1JPZ).</td>
<td>15</td>
</tr>
<tr>
<td>1.10</td>
<td>P450Bm3 epoxidises linoleic acid to give (+)-leukotoxin B.</td>
<td>19</td>
</tr>
<tr>
<td>1.11</td>
<td>o-Hydroxylation of halobenzenes by P450Bm3 variants.</td>
<td>20</td>
</tr>
<tr>
<td>1.12</td>
<td>A comparison of SF, SB WT P450Bm3 and SF KT2 P450Bm3 active site regions.</td>
<td>22</td>
</tr>
<tr>
<td>1.13</td>
<td>Activation of P450Bm3 by PFC molecules as dummy substrates.</td>
<td>23</td>
</tr>
<tr>
<td>2.1</td>
<td>Theoretical spin state shifts of P450<sub>cam</sub>.</td>
<td>33</td>
</tr>
<tr>
<td>2.2</td>
<td>Calibration of 2,6-dimethylphenol.</td>
<td>36</td>
</tr>
<tr>
<td>3.1</td>
<td>PFC8, PFC9 and PFC10.</td>
<td>39</td>
</tr>
<tr>
<td>3.2</td>
<td>NADPH activity and PFR of WT and KT2 with benzene and cyclohexane using decoy molecules.</td>
<td>44</td>
</tr>
<tr>
<td>3.3</td>
<td>GC-MS analyses of WT and KT2 turnovers with benzene and cyclohexane with and without PFC9.</td>
<td>45</td>
</tr>
<tr>
<td>3.4</td>
<td>NADPH activity and PFR of WT and KT2 with toluene and anisole using decoy molecules.</td>
<td>46</td>
</tr>
<tr>
<td>3.5</td>
<td>GC-MS analyses of WT and KT2 turnovers with toluene and anisole with and without PFC9.</td>
<td>47</td>
</tr>
<tr>
<td>3.6</td>
<td>NADPH activity and PFR of WT and KT2 with m-, p- and o-xylene using decoy molecules.</td>
<td>50</td>
</tr>
<tr>
<td>3.7</td>
<td>GC-MS analyses of WT and KT2 turnovers with m-, p- and o-xylene with and without decoys.</td>
<td>51</td>
</tr>
<tr>
<td>4.1</td>
<td>NADPH activity and PFR of WT and KT2 with ethylbenzene and propylbenzene using decoy molecules.</td>
<td>64</td>
</tr>
<tr>
<td>4.2</td>
<td>GC-MS and chiral GC analyses of WT and KT2 turnovers of ethylbenzene and propylbenzene with and without PFC9.</td>
<td>65</td>
</tr>
<tr>
<td>4.3</td>
<td>NADPH activity and PFR of WT and KT2 with styrene and trans-β-methylstyrene using decoy molecules.</td>
<td>68</td>
</tr>
</tbody>
</table>
4.4 GC-MS and chiral GC analyses of WT and KT2 turnovers of styrene and
trans-β-methylstyrene with and without PFC9. 69
4.5 NADPH activity and PFR of WT and KT2 with propiophenone and phenyl-
lacetone using decoy molecules. ... 72
4.6 GC-MS and chiral GC analyses of WT and KT2 turnovers of propiophenone
and phenylacetone with and without PFC9. 74
4.7 NADPH activity and PFR of WT and KT2 with α-tetralone and 1-indanone
using decoy molecules. ... 76
4.8 Chiral GC analyses of WT and KT2 turnovers of α-tetralone and 1-indanone
with and without PFC9. ... 77
4.9 Production of (R)-α-Et may rely on the orientation of the substrate, ethylbenzene 83

5.1 Toluene-derived substrates oxidised by P450Bm3 and four other variants. . . 86
5.2 GC-MS analyses of WT and KT2 turnovers of toluene and anisole. 89
5.3 GC-MS and HPLC analyses of ortho-substituted toluene turnovers. 93
5.4 GC-MS analyses of meta-substituted toluene turnovers. 98
5.5 Deuterium isotope labelling may assist in mechanism determination. 109

6.1 Phylogenetic trees for the holoproteins and haem domains of Krac0936 and
Krac9955. .. 113
6.2 SDS-PAGE analysis of partially purified Krac0936 114
6.3 CO difference spectrum of Krac0936 ... 115
6.4 Codon analysis of Krac0936, Krac9955 and CYP102A1. 116
6.5 GC-MS analyses of in vivo P450Bm3 turnovers of saturated fatty acids. .. 118
6.6 GC-MS analyses of Krac0936, Krac9955 and P450Bm3 turnovers of dodecanoic
acid. ... 119
6.7 Mass spectra of ω-1, ω-2 and ω-3 hydroxylated dodecanoic acid products. . 120
6.8 Mass spectra of ω-4 and ω-5 hydroxylated dodecanoic acid products. 122
6.9 Saturated fatty acid substrates used in in vitro experiments 124
6.10 Krac0936 spin state shifts with saturated fatty acids 125
6.11 GC-MS analyses of Krac0936 turnovers of saturated fatty acids. 127
6.12 GC-MS analyses of Krac9955 turnovers of saturated fatty acids. 129
6.13 Major product for Krac9955 oxidation of saturated fatty acids. 131
6.14 Mass spectra of ω-6, ω-7 and ω-8 hydroxylated pentadecanoic acid. 131
6.15 Unsaturated fatty acids used in in vitro experiments with Krac0936 and Krac9955.133
6.16 Krac0936 spin state shifts with unsaturated fatty acids. 134
6.17 GC-MS analyses of Krac0936 turnovers of unsaturated fatty acids. 135
6.18 GC-MS analyses of Krac0936 turnovers of unsaturated fatty acids. 137
6.19 Mass spectra of the ω-6 and ω-8 allylic alcohols of myristoleic acid and palmi-
toleic acid. ... 139
A.1 Mass spectra of synthesised phenols .. 161
A.2 Mass spectra of synthesised phenols .. 161
B.1 NADPH oxidation assays of o-xylene by WT and KT2 with and without PFC10. 162
B.2 GC-MS analyses of WT and KT2 turnovers of benzene with PFC8 and PFC10. 164
B.3 GC-MS analyses of WT and KT2 turnovers of cyclohexane with PFC8 and PFC10. 165
B.4 GC-MS analyses of WT and KT2 turnovers of toluene with PFC8 and PFC10. 166
B.5 GC-MS analyses of WT and KT2 turnovers of anisole with PFC8 and PFC10. 167
B.6 GC-MS analyses of WT and KT2 turnovers of m-xylene with PFC8 and PFC10. 168
B.7 GC-MS analyses of WT and KT2 turnovers of p-xylene with PFC8 and PFC10. 169
B.8 GC-MS analyses of WT and KT2 turnovers of o-xylene with PFC8 and PFC10. 170
B.9 HPLC analyses of xylene turnovers. .. 171
B.10 Mass spectra of benzene, phenol and cyclohexanol. 172
B.11 Mass spectra of toluene, anisole and their oxidation products. 174
B.12 Mass spectra of xylene substrates. .. 174
B.13 Mass spectra of xylene products. ... 176
C.1 GC analyses of WT and KT2 turnovers of ethylbenzene, propylbenzene and styrene with PFC8 and PFC10. 178
C.1 GC analyses of WT and KT2 turnovers of trans-β-methylstyrene, propiophenone and phenylacetone with PFC8 and PFC10. 179
C.2 Chiral GC analyses of WT and KT2 turnovers with no decoy, PFC8 and PFC10. 182
C.3 GC co-elution experiments of styrene and trans-β-methylstyrene products. 183
C.4 Mass spectra of ethylbenzene and its oxidation products. 184
C.5 Mass spectra of propylbenzene and its oxidation products. 185
C.6 Mass spectra of styrene and its oxidation products. 186
C.7 Mass spectra of trans-β-methylstyrene and its oxidation products. 186
C.8 Mass spectra of propiophenone and prophe-OH. 187
C.9 Mass spectra of phenylacetone and phenacet-OH. 187
C.10 Mass spectra of α-tetralone and α-tet-OH. 187
C.11 Mass spectra of 1-indanone and 1-ind-OH. 188
D.1 Mass spectra of 2-bromotoluene and its oxidation products. 192
D.2 Mass spectra of 2-chlorotoluene and its oxidation products. 193
D.3 Mass spectra of 2-ethyltoluene and its oxidation products. 194
D.4 Mass spectra of 2-methylanisole and its oxidation products. 195
D.5 Mass spectra of 3-bromotoluene and its oxidation products. 196
D.6 Mass spectra of 3-methylanisole and its oxidation products. 197
E.1 Krac0936 NADPH oxidation assays. .. 199
E.2 GC-MS analysis of the BSTFA/TMCS derivatised in vivo turnover of tetradecanoic acid with Krac9955. 203
E.3 GC-MS analyses of Krac0936 turnovers of dodecanoic and heptadecanoic acids. 203
E.4 GC-MS analyses of Krac0936 turnovers of decanoic and undecanoic acids. . . 203
E.5 Mass spectra of decanoic acid and oxidation products. 204
E.6 Mass spectra of undecanoic acid and oxidation products. 205
E.7 Mass spectra of dodecanoic acid and oxidation products. 206
E.8 Mass spectra of tridecanoic acid and oxidation products. 208
E.9 Mass spectra of tetradecanoic acid and oxidation products. 209
E.10 Mass spectra of pentadecanoic acid and oxidation products. 211
E.11 Mass spectra of hexadecanoic acid and oxidation products. 211
E.12 Mass spectra of heptadecanoic acid and oxidation products. 212
E.13 Mass spectra of 10-undecenoic acid and oxidation products. 213
E.14 Mass spectra of myristoleic acid and oxidation products. 214
E.15 Mass spectra of palmitoleic acid and oxidation products. 215
E.16 Mass spectra of oleic acid and oxidation products. 216
E.17 Mass spectra of linoleic acid and oxidation products. 217
List of Schemes

<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>One oxygen atom from O₂ is inserted between a C–H bond to give the alcohol.</td>
<td>2</td>
</tr>
<tr>
<td>2.1</td>
<td>Synthesis of 2-methoxy-3-methylphenol.</td>
<td>37</td>
</tr>
<tr>
<td>2.2</td>
<td>Synthesis of 1-(2-methylphenylethanol).</td>
<td>37</td>
</tr>
<tr>
<td>2.3</td>
<td>Synthesis of fatty acid epoxides.</td>
<td>37</td>
</tr>
<tr>
<td>3.1</td>
<td>Oxidation of benzene, cyclohexane, toluene and anisole by WT P450Bm3.</td>
<td>40</td>
</tr>
<tr>
<td>3.2</td>
<td>Oxidation of m-, p, and o-xylene by WT P450Bm3.</td>
<td>41</td>
</tr>
<tr>
<td>3.3</td>
<td>Product distributions of WT- and KT2-catalysed oxidation of toluene and anisole in the presence and absence of decoy molecules.</td>
<td>48</td>
</tr>
<tr>
<td>3.4</td>
<td>Product distributions of WT and KT2 P450Bm3-catalysed oxidations of m-, p- and o-xylene in the presence and absence of decoys.</td>
<td>52</td>
</tr>
<tr>
<td>3.5</td>
<td>Oxidation mechanism of m-xylene by P450Bm3.</td>
<td>56</td>
</tr>
<tr>
<td>3.6</td>
<td>Oxidation mechanism of p-xylene by P450Bm3.</td>
<td>58</td>
</tr>
<tr>
<td>3.7</td>
<td>Oxidation mechanism of o-xylene by P450Bm3.</td>
<td>58</td>
</tr>
<tr>
<td>4.1</td>
<td>Product distributions of WT and variant P450Bm3-catalysed oxidation of alkylbenzene and vinylbenzene substrates.</td>
<td>61</td>
</tr>
<tr>
<td>4.2</td>
<td>Product distributions of WT P450Bm3-catalysed oxidation of ketone-containing substrates.</td>
<td>62</td>
</tr>
<tr>
<td>4.3</td>
<td>Product distributions of WT- and KT2-catalysed oxidation of ethylbenzene and propylbenzene in the presence and absence of decoys.</td>
<td>66</td>
</tr>
<tr>
<td>4.4</td>
<td>Product distributions of WT- and KT2-catalysed oxidation of styrene and trans-β-methylstyrene in the presence and absence of decoys.</td>
<td>71</td>
</tr>
<tr>
<td>4.5</td>
<td>Product distributions of WT- and KT2-catalysed oxidation of propiophenone and phenylacetone in the presence and absence of decoys.</td>
<td>75</td>
</tr>
<tr>
<td>4.6</td>
<td>Product distributions of WT- and KT2-catalysed oxidation of α-tetralone and 1-indanone in the presence and absence of decoys.</td>
<td>78</td>
</tr>
<tr>
<td>5.1</td>
<td>Oxidation of m- and o-xylene by WT and RLYF/A330P.</td>
<td>87</td>
</tr>
<tr>
<td>5.2</td>
<td>Oxidation of toluene and anisole by P450Bm3 variants.</td>
<td>90</td>
</tr>
<tr>
<td>5.3</td>
<td>Oxidation of ortho-substituted toluenes by P450Bm3 variants.</td>
<td>95</td>
</tr>
<tr>
<td>5.4</td>
<td>Possible minor products of 2-ethyltoluene oxidation by P450Bm3 variants.</td>
<td>96</td>
</tr>
<tr>
<td>5.5</td>
<td>Oxidation of meta-substituted toluenes by P450Bm3 variants.</td>
<td>99</td>
</tr>
<tr>
<td>5.6</td>
<td>Possible oxidation mechanisms of 2-Br and 2-Cl by P450Bm3 variants.</td>
<td>103</td>
</tr>
<tr>
<td>5.7</td>
<td>Resonance stability rationalisation for 2-X-6-MP formation.</td>
<td>104</td>
</tr>
<tr>
<td>5.8</td>
<td>Possible oxidation mechanisms of 2-MeO by P450Bm3 variants.</td>
<td>105</td>
</tr>
<tr>
<td>5.9</td>
<td>Possible oxidation mechanisms of 3-Br and 3-MeO by P450Bm3 variants.</td>
<td>107</td>
</tr>
</tbody>
</table>
6.1 Fragmentations used to identify dodecanoic acid hydroxylated at the ω-1, ω-2 and ω-3 positions post derivatisation in BSTFA/TMCS. .. 121
6.2 Fragmentations used to identify dodecanoic acid hydroxylated at the ω-4 and ω-5 positions post derivatisation in BSTFA/TMCS. .. 123
6.3 Product distributions of saturated fatty acid oxidation by Krac0936. 128
6.4 Product distributions of saturated fatty acid oxidation by Krac0936. 130
6.5 Fragmentations used to identify dodecanoic acid hydroxylated at the ω-7 and ω-8 positions post derivatisation in BSTFA/TMCS. .. 132
6.6 Product distributions of unsaturated fatty acid oxidation by Krac0936. 136
6.7 Product distributions of unsaturated fatty acid oxidation by Krac0936. 138
6.8 Fragmentations used to identify the allylic alcohol products of 10-undecenoic acid, myristoleic acid, and palmitoleic acid. .. 139
List of Tables

2.1 Growth media and buffer components. ... 28

3.1 \textit{In vitro} NADPH activity for wild-type and KT2 P450Bm3 with PFCs. 43

3.2 \textit{In vitro} oxidation activity data for benzene and cyclohexane with wild-type and KT2 P450Bm3 in the absence and presence of PFCs. 44

3.3 \textit{In vitro} oxidation activity data for toluene and anisole with wild-type and KT2 P450Bm3 in the absence and presence of PFCs. 46

3.4 Product distributions arising from the turnovers of toluene and anisole with wild-type and KT2 P450Bm3 in the absence and presence of PFCs. 48

3.5 \textit{In vitro} oxidation activity data for \textit{m}-, \textit{p}- and \textit{o}-xylene with wild-type and KT2 P450Bm3 in the absence and presence of PFCs. .. 49

3.6 Product distributions arising from the turnovers of \textit{m}-, \textit{p}- and \textit{o}-xylene with wild-type and KT2 P450Bm3 in the absence and presence of PFCs. 52

4.1 \textit{In vitro} oxidation activity data for ethylbenzene and propylbenzene with wild-type and KT2 P450Bm3 in the absence and presence of PFCs 64

4.2 Product distributions arising from the turnovers of ethylbenzene and propylbenzene with wild-type and KT2 P450Bm3 in the absence and presence of PFCs .. 66

4.3 \textit{In vitro} oxidation activity data for styrene and \textit{trans}-\textit{β}-methylstyrene with wild-type and KT2 P450Bm3 in the absence and presence of PFCs. 68

4.4 Product distributions arising from the turnovers of styrene and \textit{trans}-\textit{β}-methylstyrene with wild-type and KT2 P450Bm3 in the absence and presence of PFCs .. 70

4.5 \textit{In vitro} oxidation activity data for propiophenone and phenylacetone with wild-type and KT2 P450Bm3 in the absence and presence of PFCs 71

4.6 Product distributions arising from the turnovers of propiophenone and phenylacetone with wild-type and KT2 P450Bm3 in the absence and presence of PFCs .. 75

4.7 \textit{In vitro} oxidation activity data for \textit{α}-tetralone and 1-indanone with wild-type and KT2 P450Bm3 in the absence and presence of PFCs. 76

4.8 Product distributions arising from the turnovers of \textit{α}-tetralone and 1-indanone with wild-type and KT2 P450Bm3 in the absence and presence of PFCs. 78

5.1 \textit{In vitro} oxidation activity data for toluene and anisole with P450Bm3 variants. 88

5.2 Product distributions arising from the turnovers of toluene and anisole using P450Bm3 variants. .. 89

5.3 \textit{In vitro} oxidation activity data for \textit{ortho}-substituted toluenes with P450Bm3 variants. .. 91
5.4 Product distributions arising from the turnovers of ortho-substituted toluenes with P450Bm3 variants. ... 94

5.5 In vitro oxidation activity data for meta-substituted toluenes with P450Bm3 variants. ... 97

5.6 Product distributions arising from the turnovers of meta-substituted toluenes using P450Bm3 variants. ... 99

6.1 Product selectivity data for different CYP102 family enzymes with a selection of fatty acids. ... 111

6.2 Product distribution data for in vivo systems with saturated fatty acids. .. 119

6.3 In vitro oxidation activity and selectivity data for saturated straight chain fatty acids with Krac0936. ... 126

6.4 In vitro coupling efficiency and selectivity data for saturated straight chain fatty acids with Krac9955. ... 128

6.5 In vitro oxidation activity and selectivity data for Krac0936 with unsaturated fatty acids. ... 134

6.6 In vitro coupling efficiency and selectivity data for unsaturated fatty acids with Krac9955. ... 137

B.1 The m/z values, GC-MS and HPLC RTs of Chapter 3 substrates and products. 163

C.1 The m/z values, GC and chiral GC RTs of Chapter 4 substrates and products. 177

D.1 The m/z values, GC-MS and HPLC retention times (RTs) of Chapter 5 substrates and products. ... 189

E.1 Rare codons in E. coli. ... 198

E.2 The GC-MS m/z values and retention times (RTs) of BSTFA/TMCS derivatised Chapter 6 substrates and products. ... 200