A New Solution for an Edge Dislocation with Applications to the Stress and Fracture Analysis of Multilayered Media

By
Aditya Khanna
B.Eng. (Mechanical)

A thesis submitted for the degree of Doctor of Philosophy at the

School of Mechanical Engineering
The University of Adelaide
Australia

Submitted: 1st of December, 2015
Accepted: 16th of March, 2016
Abstract

The stress and fracture analysis of multilayered materials and structures containing crack-like defects is of interest in many research areas, such as composites, bio-mechanics, and geomechanics, and engineering applications, such as coatings, electronics, and adhesive joints. The main objective of this thesis is to further develop a general methodology and utilise it for the examination of fracture problems in multilayered materials. The general methodology is based upon the distributed dislocation technique and edge dislocation solutions obtained within the framework of plane theory of linear elasticity. This methodology has been shaped by the seminal contributions of many researchers over the past fifty years and currently represents a powerful tool for the analysis of crack problems.

New theoretical models and techniques are developed in the present thesis for a range of multi-disciplinary problems utilising the adopted methodology. The research gaps and objectives are formulated specifically for each problem and discussed in separate chapters of this thesis. The solution of each of these problems represents an original and substantial contribution towards the respective area of research. The significant outcomes of this thesis include: a new approach for the analysis of reinforced cracks in layered media, a new mechanism for height control of hydraulic fractures in layered hydrocarbon reservoirs, and a new predictive model for skier-triggered avalanches.

The original contributions of this thesis also include a new fundamental solution for an interfacial edge dislocation, which recovers all previously published solutions for edge dislocations in isotropic multilayered media. The obtained solution can be utilised to derive the governing integral equations for a wide variety of quasi-static crack problems in linearly elastic and isotropic multilayered materials, without any restrictions on the crack orientation or number of elastic layers. Therefore, the newly obtained solution further extends the general
methodology to effectively solve a wide class of fracture problems in multilayered materials and structures.

This thesis is presented in the form of a compendium of publications in high impact specialist journals. The main body of the thesis contains four articles which are united by the above mentioned theme and methodology. Three appendices are also included, which represent a compilation of the candidate’s publications on related topics. A complete publication list is provided in the forthcoming pages.
Declaration

I certify that this thesis contains no material which has been accepted for the award of any other degree or diploma in my name in any university or other tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text. In addition, I certify that no part of this thesis will, in the future, be used in a submission in my name for any other degree or diploma in any other university or other tertiary institution without the prior approval of the University of Adelaide.

I give consent to this copy of my thesis when deposited in the University library, being made available for loan and photocopying, subject to the provisions of the Copyright Act 1968. I acknowledge that copyright of the published works contained within this thesis resides with the copyright holder(s) of those works.

I also give permission for the digital version of my thesis to be made available on the web, via the University’s digital research repository, the Library Search and also through web search engines.

________________________ ______________________
Aditya Khanna Date
Acknowledgements

I would like to begin by thanking A/Prof Andrei Kotousov for his mentorship and continuous efforts towards my professional development. Over the years, Andrei not only acted as my research supervisor but also provided me with several career enhancing opportunities. For that, I am very grateful to him. I hope that our collaboration is long lasting.

The research undertaken in this thesis would not have been possible without the financial support in the form of the Australian Postgraduate Award administered by the University of Adelaide on behalf of the Department of Education and Training of the Australian government. The additional financial support from the School of Mechanical Engineering in the form of causal teaching-assistant and lecturing positions is also greatly acknowledged. I would like to thank A/Prof Colin Kestell, Dr Antoni Blazewicz, Mr Gareth Bridges, A/Prof Andrei Kotousov, Dr John Codrington, A/Prof Zonghan Xie, and Dr Zhao Tian for offering me these positions.

I greatly appreciate the guidance and support received from Prof Pavel Bedrikovetsky during my candidature. I would also like to thank the editors and anonymous reviewers for their constructive and valuable feedback during the peer-review of manuscripts included in this thesis. Special thanks go to Ms Tracy Miller for proof-reading the thesis prior to submission.

I dedicate the thesis to my parents, Vijay and Renu Khanna and my sister, Maulshree Khanna. It is due to their continued support that I was able to pursue my interests freely.
List of publications

This thesis is comprised of published and submitted journal articles in accordance with the Academic Program Rules 2015 of The University of Adelaide. A complete list of articles written during the candidature is presented here. The main body of the thesis is based on the following journal articles:

The following journal articles are of closely related to the main topic of research and are included in the thesis as appendices:

The remaining journal articles authored by the candidate are not related to the main topic of the thesis. These articles are listed below but not included in the thesis.

The outcomes of the undertaken research were also presented at several international peer-reviewed conferences. The complete list of conference articles is provided below, however these articles are not included in the thesis.

14) A. Kotousov, **A. Khanna** and S. Bun, An analysis of elasto-plastic fracture criteria, Recent Advances in Structural Integrity Analysis - Proceedings of the International

Table of Contents

Abstract ... i
Declaration ... iii
Acknowledgements ... v
List of publications ... vii
Table of Contents ... xi

1. Introduction ... 1
 1.1 Multilayered materials .. 3
 1.2 Fracture mechanisms in multilayered materials ... 5
 1.3 Numerical solution techniques ... 7
 1.4 Methodology and details of publications ... 8
 1.5 Concluding remarks .. 14
 References .. 15

2. Background on LEFM and DDT ... 23
 2.1 Basic concepts of LEFM ... 25
 2.2 Stress singularities in plane elasticity .. 27
 2.3 Fundamentals of DDT .. 31
 2.4 Review of dislocation solutions in multilayered media ... 33
 2.5 General form of singular integral equations under consideration .. 35
2.6 Numerical solution techniques ...37
2.7 Concluding remarks ..41
References ...42

3. The stress field due to an interfacial edge dislocation in a multi-layered
medium ..47
Statement of Authorship...49
Abstract ..51
1. Introduction ..51
2. Problem Formulation ...52
3. Problem 1: Edge dislocation at a bimaterial interface....................52
4. Problem 2: Dislocation-free strip problem..................................54
5. Validation of the dislocation solution ...55
6. Interfacial crack in an arbitrarily layered medium55
7. Concluding Remarks ...57
Appendix A. Equations of compatibility and equilibrium at the interfaces......58
References ...59

4. Stress analysis of a crack in a fiber-reinforced layered composite............61
Statement of Authorship..63
Abstract ..65
1. Introduction ..65
2. Problem Formulation ...66
Appendix A. Conductivity and performance of hydraulic fractures partially filled with compressible proppant packs .. 133

Appendix B. Effect of residual opening on the inflow performance of a hydraulic fracture .. 145

Appendix C. On a rigid inclusion pressed between two elastic half spaces 159