SUBMITTED VERSION

Matthew Gilliham and Stephen D. Tyerman

Linking metabolism to membrane signaling: the GABA–malate connection Trends in Plant Science, 2016; 21(4):295-301

© 2015 Elsevier Ltd. All rights reserved.

Published at: http://dx.doi.org/10.1016/j.tplants.2015.11.011

PERMISSIONS

https://www.elsevier.com/about/policies/sharing

Preprint

- Authors can share their preprint anywhere at any time.
- If accepted for publication, we encourage authors to link from the preprint to their formal publication via its Digital Object Identifier (DOI). Millions of researchers have access to the formal publications on ScienceDirect, and so links will help your users to find, access, cite, and use the best available version.
- Authors can update their preprints on arXiv or RePEc with their accepted manuscript.

Please note:

- Some society-owned titles and journals that operate double-blind peer review have different preprint policies. Please check the journals Guide for Authors for further information
- Preprints should not be added to or enhanced in any way in order to appear more like, or to substitute for, the final versions of articles.

12 December 2018

http://hdl.handle.net/2440/101452

1	Linking metabolism to membrane signalling: the GABA-malate connection.
2	
3	Matthew Gilliham, Stephen D. Tyerman
4	
5	ARC Centre of Excellence in Plant Energy Biology and School of Agriculture, Food
6	and Wine, University of Adelaide, Waite Research Precinct, PMB1, Glen Osmond, SA
7	5064.
8	
9	Corresponding author: Gilliham, M; <u>matthew.gilliham@adelaide.edu.au</u> ; Twitter:
10	<u>@IonPlants;</u> lab website: <u>www.plantransig.com</u>
11	

12 Abstract

13 GABA concentration increases rapidly in tissues when plants encounter abiotic 14 or biotic stress, and GABA manipulation affects growth. This coupled to GABA's 15 well-described role as a neurotransmitter in mammals led to over a decade of 16 speculation that GABA is a signal in plants. The discovery of GABA-regulated 17 anion channels in plants provides compelling mechanistic proof that GABA is a 18 legitimate plant-signalling molecule. Here, we examine research avenues 19 unlocked by this finding, and propose that these plant 'GABA receptors' possess 20 novel properties ideally suited to translating changes in metabolic status into 21 physiological responses. Specifically, we suggest they have a role in signalling 22 altered cycling of Tricarboxylic Acid (TCA) intermediates during stress via 23 eliciting changes in electrical potential differences across membranes. 24 25

- 26
- 27

28 Glossary box

- 29 ABA abscisic acid
- 30 ACC synthase 1-aminocyclopropane-1-carboxylate synthase, a rate-limiting
- 31 step in the biosynthesis of ethylene
- 32 Al³⁺ trivalent aluminium cation
- 33 ALMT Aluminium activated malate transporter, forms functional protein from
- 34 one protein isoform
- 35 AKGDH α -ketoglutarate dehydrogenase
- 36 ATP Adenosine triphosphate
- 37 Baclofen a specific GABA_B receptor agonist
- 38 Bicuculline a plant-derived alkaloid that is a 'specific' mammalian GABA_A
- 39 receptor competitive antagonist, which associates with the GABA binding site
- 40 but does not activate the channel, instead it prevents GABA from activating the
- 41 channel
- 42 C Carbon
- 43 Carboxylate (ion) anionic conjugate base of a carboxylic acid of general formula
 44 RCOO⁻
- 45 GABA γ-aminobutyric acid, a non-proteinogenic amino acid and zwitterion;
- 46 acts as an inhibitory neurotransmitter in animals
- 47 GABA_A receptor –mammalian ionotropic GABA receptor formed from the
- 48 multimerisation of various combinations of α , β and γ subunits; chloride channel
- that is opened by the agonist GABA. This hyperpolarises the membrane potentialto reduce membrane excitability
- $\mathbf{50} \quad \text{concerned} \quad \mathbf{50} \quad \mathbf{50}$
- 51 $GABA_{A-\rho}$ rho (ρ) sub-class of GABA_A receptors also known as GABA_C receptors. 52 Similar to ALMT they can form a functional channel using only one subunit form
- 53 GABA shunt the main pathway of GABA metabolism, which bypasses reactive
- 54 oxygen species (ROS) sensitive steps of the TCA cycle (OGDH and AKGDH). The
- 55 GABA shunt consists of the enzymes GAD, GABA-T and SSADH
- 56 GAD glutamate decarboxylase, the cytosolic enzyme that synthesizes GABA via
- 57 decarboxylation of glutamate, this process absorbs a proton and releases CO₂;
- 58 GAD is stimulated by Ca²⁺/Calmodulin and has an acidic pH optimum
- 59 GABA-T GABA transaminase, mitochondrial enzyme encoded by the *pop2* allele
- 60 in Arabidopsis thaliana, converts GABA into SSA
- 61 GABP mitochondrial GABA carrier
- 62 GAT1 plasma membrane localised high affinity GABA transporter
- 63 GHB α -hydroxybutrate, alternative breakdown product of SSA, particularly
- 64 under stress via action of cytosolic and plastidial glyoxylate reductase
- 65 GDH glutamate dehydrogenase

- 66 GLR glutamate receptor-like proteins, the homolog of ionotropic glutamate
- 67 receptors in animals (iGluR), which mediate excitatory neuronal signals
- 68 GTP guanosine triphosphate
- 69 Malate C₄H₆O₅; dissociates into malic acid consisting of the carboxylate malate
- anion, and H⁺; the form of malate is pH sensitive with a pKas of 3.4 and 5.2 $\,$
- 71 Muscimol analog of GABA, and 'specific' and 'diagnostic' GABA_A receptor
- agonist, derived from the mychorrhizal fungus *Amanita muscaria*
- 73 PM plasma membrane
- 74 Picrotoxin non-competitive GABA_A receptor antagonist that inhibits channel
- activity through occluding the pore and open channel block. It is a plant alkaloid
 derived primarily from *Anamirta cocculus*
- 77 N Nitrogen
- 77 N Nitrogen
- 78 OGDH 2- oxoglutarate dehydrogenase
- ProT low affinity plasma membrane localised proline transporter that is alsopermeable to GABA
- 81 TCA cycle tricarboxylate acid, also known as the citric acid or Krebs cycle
- 82 ROS reactive oxygen species
- 83 SSA Succinic semialdehyde, converted into succinate by SSAH
- 84 SSADH Succinic semialdehyde dehydrogenase mitochondrial enzyme that
- 85 converts SSA into succinate for entry into the TCA cycle
- 86

87	Outstanding questions
88	 How does GABA directly regulate ALMT activity – through direct binding
89	and channel gating, or through GABA occlusion of the pore (i.e. open
90	channel block)? A rapid GABA-induced reduction in anion efflux through
91	ALMT has been observed but the mechanism by which this occurs has not
92	been described.
93	 Where is the putative GABA binding region within the ALMT protein
94	structure? Is it on the inside or outside of the cell or accessible to both
95	sides? The topology of the ALMT is under debate; the topology has
96	implications for where the putative GABA binding region is located.
97	 Do functional ALMT consist of multiple monomeric or multimeric
98	subunits, if so can these be heteromeric as well as homomeric? <i>Many</i>
99	mammalian GABA receptors are composed of multiple subunits with the
100	GABA binding site formed between adjacent subunits. Single ALMT genes
101	form a functional protein when expressed individually in X. laevis oocytes
102	but it is unclear whether the channel is composed of multiple subunits
103	and/or whether the putative GABA binding site can occur within a
104	monomer.
105	 Are there additional regions of the ALMT associated with GABA efficacy
106	and are there additional GABA sensitive proteins?
107	• How does GABA exit the cell? <i>The protein responsible for efflux of GABA</i>
108	has not been confirmed.
109	 How do the other signals regulate ALMT/R-type anion channel activity
110	and how do these signals interact with GABA (i.e. Aluminium, pathogens,
111	ABA, ethylene)? As multiple signals regulate ALMT activity they can be
112	viewed as an important regulator of membrane potential – how multiple
113	signals converge and interact on the one protein is unclear.
114	• Are there transcriptional signals downstream of GABA regulation of
115	ALMT activity?
116	• Does GABA directly regulate the activity of other transporters or is the
117	regulation of other ion fluxes due to indirect regulation via ALMT activity?
118	• Is it possible to develop a biosensor for GABA for recording in vivo GABA
119	concentrations in real time?
120	
121	

122	TRENDS BOX	
123		
124	• GABA, the non-protein amino acid regulates the activity of ALMTs	
125	(Aluminium activated anion transporters), these, like mammalian GABA _A	
126	receptors are anion channels that alter the electrical potential across	
127	membranes.	
128	• ALMT are a multigenic protein family found in all plants that are involved	
129	in multiple physiological processes; contrary to their name most ALMT	
130	are not activated by aluminium, instead they are activated by anions and	
131	negatively regulated by GABA.	
132	 ALMTs share little homology to mammalian GABA_A receptors; the only 	
133	region of similarity so far identified is a putative GABA binding domain 12	
134	amino residues in length.	
135	• Site directed mutagenesis of a phenylalanine in this motif renders wheat	
136	ALMT1 unresponsive to GABA, but otherwise unchanged in its properties.	
137	• Regulation of ALMT by GABA and malate provides a link between the TCA	
138	cycle and membrane signalling.	
139		
140		
141		
142		
143		

144 Main text

145 (re-)Defining the roles of GABA in plants

146 **GABA** is an important **C**:**N** metabolite produced by plants and animals; it is a 147 significant source of succinate for the **TCA cycle** (see glossary). In plants, it has 148 also been proposed to have roles in C:N balance [1, 2], the regulation of cytosolic 149 pH [3, 4], protection against oxidative stress [5, 6], salt tolerance [7], plant 150 microbe interactions [8-10], defence against insect attack [11], and as an 151 endogenous signalling molecule [12-14]. Speculation that GABA acts as a plant 152 signal was originally spawned over a decade ago, and has been reiterated 153 frequently, following the convergence of multiple strands of evidence [6, 15, 16]: 154 i) GABA concentration increases rapidly in plant tissues upon any of a multitude 155 of abiotic (anoxia, heat, cold, salt, drought, mechanical) or biotic stresses 156 (herbivory, pathogens, viruses)[12, 17, 18]; ii) animals contain both ionotropic 157 and metabotropic GABA receptors [19, 20], and GABA is a key neurotransmitter 158 [21, 22] and intercellular signal in immune cells [23]: iii) plants contain **GLR**s 159 that are involved in regulation of growth, wound signalling and plant defence 160 signalling [24-26]: iv) some GABA receptor agonists (baclofen) and antagonists 161 (**bicuculline** and **picrotoxin**) produced a phenotypic response in plants [15]; v) 162 pollen tube growth to the ovary is directed by a GABA gradient [13, 27]; and, vi) 163 the presence of GABA binding sites on plant membranes [28]. For GABA to 164 constitute a signal in plants a receptor would be needed, but no homologs of 165 animal GABA receptors are present in Arabidopsis [6]. It was hypothesised that 166 GLRs could fulfil a GABA receptor role through their action as ligand gated ion channels [6], some of which are Ca²⁺ permeable [24, 29] and are activated by a 167 168 range of amino acids [30]; however, GABA does not appear to have been tested

169 [30, 31]. Instead, it was recently found that GABA regulated **ALMT** channel

activity, and that this resulted in changes in plant growth [32]. This implicates

171 ALMT proteins as prime 'plant GABA receptor' candidates.

172

In this opinion article we briefly highlight the findings of Ramesh et al. (2015)
and discuss their ramifications. In particular, we focus on how the activation of
ALMT by several TCA cycle intermediates and their inhibition by GABA, positions
ALMT as likely metabolic sensors that are able to decode environmental

177 responses into physiological outputs. Furthermore, we propose a series of

178 unanswered questions and research streams that stem from the discovery of

- 179 GABA-regulated anion channels in plants.
- 180

181 **The discovery of GABA-regulated anion channels in plants**

182 Under acidic conditions, when Al³⁺ is available in the soil solution, free Al³⁺

183 causes significant damage to root apical cells, reducing root elongation, nutrient

and water uptake, and crop yield [33, 34]. When cells of Al³⁺-tolerant plant roots

185 come into contact with Al³⁺, **carboxylate** exudation is stimulated. This

186 carboxylate chelates the Al³⁺ in the apoplast and rhizosphere, which prevents

187 damage to roots [33]. Whilst studying this process in wheat (*Triticum aestivum*,

188 *Ta*), Ramesh et al. (2015) found that under conditions where root carboxylate

189 (malate) efflux was high i.e. in acidic conditions with Al³⁺ present or under

alkaline conditions, tissue GABA concentration was low and this coincided with

191 sustained root growth [32]. In contrast, when malate efflux was low, GABA

- 192 concentration was high (i.e. under acidic conditions when Al³⁺ was absent) [32].
- 193 Treatment of roots with GABA inhibited malate efflux and abolished Al³⁺

194 tolerance [32]. Intriguingly **muscimol** inhibited root malate exudation and Al³⁺

tolerance, whilst bicuculline attenuated muscimol and GABA inhibition of root

196 malate efflux [32]. These results indicated similarities between the mechanism of

- 197 GABA regulation of anion flux across plant and animal cell membranes [35].
- 198

199 When the pharmacological profile of TaALMT1, the source of wheat root malate 200 exudation stimulated by Al³⁺ – and the major source of wheat Al³⁺ tolerance – 201 was examined in heterologous expression systems it mirrored the results found 202 in wheat roots [32]. The affinity for TaALMT1 GABA-regulation was found to be 203 in the low micromolar range [32], similar to that for animal GABA_{A-p} receptors 204 and some GABA_A receptors [19]. Sequence comparison between TaALMT1 and 205 ion channels used to construct a GABA_A receptor model [36] revealed a shared 206 motif of 12 amino residues [32]. This motif contained residues that have been 207 associated with GABA binding in GABA_A receptors [37]. Mutagenesis of this motif 208 in TaALMT1 reduced the EC₅₀ for GABA from $\sim 1 \mu$ M to > 1 mM, but preserved 209 other properties of the channel such as Al³⁺ activation [32]. A fluorescent 210 muscimol-conjugate associated with membranes of *Xenopus laevis* expressing 211 wildtype TaALMT1 but not when the mutagenized GABA unresponsive TaAMLT1 212 was expressed; wheat roots that highly expressed *TaALMT1* also fluoresced 213 highly when exposed to the conjugate whereas the signal was much reduced in 214 roots of Al³⁺ sensitive wheat [32]. This suggests that muscimol and GABA bind to 215 this motif in ALMT.

216

In mammals, GABA activates Cl⁻ channels in the mature central nervous system
and immune cells leading to Cl⁻ influx, membrane hyperpolarisation and a

220 relative hyperpolarisation of the membrane potential and an inhibition of 221 growth [32]. The similarity in how plants and animals respond to GABA suggests 222 that convergent evolution has occurred, unless this motif was recruited 223 independently into both sets of proteins from a common source [35]. 224 225 The significance of ALMT sensitivity to GABA becomes evident with the 226 knowledge that ALMT are present in all plants and form a multigenic family; 227 Arabidopsis has fourteen members, rice has nine and grapevine twelve [39]. 228 ALMT are expressed throughout plant tissue with some having discrete 229 expression patterns, and the majority of ALMT contain the putative GABA binding motif [32]. Despite their name Al³⁺ does not activate most ALMT, instead 230 231 all ALMT members examined so far are activated by anions, in particular malate, 232 and they are involved in a range of physiological processes including stomatal 233 movement, pollen tube growth, nutrition, and grape berry and tomato ripening 234 [39]. Arabidopsis ALMT12 carries the majority of rapid-type (R-type)/(Quickly 235 activating-QUAC) anion current in guard cells, so it has been speculated that 236 other ALMT may also carry other R-type anion currents found in most cell types 237 [40] [39]. The moniker ALMT was adopted following the properties of the first 238 member identified, TaALMT1, so given the above the proposal that the ALMT 239 family should be renamed is a valid suggestion [32, 39].

reduction in membrane excitability [38]. GABA regulation of ALMT results in a

240

219

241 The when, why and how of GABA-gated ALMT?

Plants alter their internal GABA concentration in response to environmental
changes within seconds; GABA can also follow daily rhythms or exhibit sustained

increases over days [6, 16, 41, 42]. A frequent immediate response to

environmental stress is an increase in cytosolic Ca²⁺ concentration, which

activates **GAD**, resulting in GABA synthesis; this increase in GABA concentration

is then capable of reducing ALMT activity (Figure 1). This bodes well for GABA

being a signal; however, many questions remain.

249

250 Linking GABA-regulated membrane potential to transcription and phenotype? A 251 consistent phenotype downstream of the disruption of GABA metabolism, or the 252 application of exogenous GABA is altered growth. This has been observed for 253 pollen tubes, roots and hypocotyls [27, 43]. The regulation of membrane 254 potential is known to constitute a signal in many cell types. Stress affects both 255 stomatal aperture and pollen tube growth; in both stomatal guard cells and 256 pollen tubes the control of anion fluxes – and membrane potential – is essential 257 for the control stomatal movement and growth respectively [40, 44]. ALMT are 258 expressed in both guard cells and pollen tubes, and have a confirmed role in 259 stomatal aperture control [45] [40, 46, 47]. Whether GABA regulation of ALMT 260 activity occurs in these systems and is a signal is an active area of research. 261

GABA has been proposed to affect the flux of ions other than anions. Influx of
Ca²⁺ via channels localised to pollen tubes was proposed to increase following
GABA treatment in tobacco as a component of pollen tube guidance to the ovary
[16, 43]. Whereas GABA pre-treatment followed by H₂O₂ application to barley
roots (in lieu of hypoxia) resulted in less cell death, a stimulation of net Ca²⁺
efflux and reduced net K⁺ efflux [48]. As sustained K⁺ release across a membrane
cannot occur without the movement of a balancing charge, GABA may be

269 affecting K⁺ flux indirectly by inhibiting anion release via an ALMT. GABA-270 regulation of ALMT is also likely to affect Ca²⁺ channel activity via provoking 271 changes in membrane potential [32] (Figure 1). How specific GABA-elicited 272 changes in transporter activity and membrane potential affect gene transcription 273 is unclear. However, expression of 14-3-3 proteins, which have a range of targets 274 including pumps, channels and transcription factors, is reduced in Arabidopsis 275 seedlings by GABA in an ethylene and ABA dependent manner [49]. GABA also 276 increases **ACC synthase** expression and ethylene production in sunflower [50] 277 and considering ethylene can also reduce TaALMT1-dependent malate efflux 278 [51] there appears to be cross-talk between GABA and ethylene signalling. When 279 GABA was applied in the absence of Ca²⁺ and under C or N limitation cell wall 280 synthesis genes were inhibited, in addition to a change in expression of a small 281 subset of genes that also respond to abiotic stress, inorganic substances and 282 others that are involved in C or N metabolism [52, 53]. In another study both 283 malate and citrate induced changes in transcription, which included **GABA-T** and 284 ALMT genes [54]. As so few transcripts were altered in Arabidopsis grown in 285 liquid culture following 1 mM GABA treatment (eighty-nine) it was argued that a 286 broad signalling role for GABA is unlikely [53]. However, it is possible that 287 signals may have been masked by analysing transcription in multiple cell types 288 or under particular experimental conditions.

289

Topology and the regulation of local GABA concentration. The current model for
TaALMT1 topology, and its rapid inhibition by external GABA, suggests that the

- 292 putative GABA binding motif is localised on the extracellular face of the
- 293 membrane but a role for cytosolic GABA in regulating plasma membrane or

294 tonoplast localised ALMT cannot be excluded [32]. GABA regulation of ALMT was 295 not completely abolished by mutagenesis of the proposed GABA binding motif so 296 there is scope for other regions of the protein to interact with the motif or for 297 multiple GABA binding sites. Of all the amino acids, GABA shows the highest 298 efflux from wheat roots but interestingly shows a similar amount of influx [55]. 299 Such an apparent futile cycle may be justified energetically if GABA was 300 important for cell-to-cell communication or biotropic interactions. The identified 301 uptake transporters for GABA (GAT1 and ProT) may be involved in efflux but 302 this is unlikely for GAT1 given its probable mechanism of proton co-transport 303 [56], and the fact that GABA efflux is passive [57]. Recently, the role of GAT1 in 304 GABA influx into cells was further reinforced by use of Arabidopsis *gat1* 305 knockout mutants [58]. Feeding GABA to C deficient plants resulted in GABA 306 influx into the cells and the TCA cycle of wildtype plants whereas this did not 307 occur in *gat1* mutants [58].

308

309 GABA can be found in micromolar concentrations in root exudates and the 310 apoplast [55], but for it to act as a signal it will need to have local concentrations 311 in the vicinity of ALMT strictly controlled. An initial argument against GABA 312 being a signal in animals was the presence of millimolar concentrations of GABA 313 in the bulk tissue [59, 60]. The same argument could be applied against GABA 314 being a plant signal; however, evidence already exists for tight control of plant 315 tissue GABA concentrations including the existence of micromolar GABA 316 gradients in floral tissue [6, 13, 16]. Further investigation of pharmacology will 317 greatly assist the characterisation of GABA signalling in plants as it did for 318 mammalian GABA receptors [32, 59]. Another useful innovation will be the

ability to detect GABA concentration with both cellular and apoplastic

320 resolution; this has been performed in plants to date using a commercial GABA

antibody in fixed tissue [13]. A GABA sensor that allows time-resolved

322 micromolar spatial resolution in living tissue would be a great benefit to explore

323 how GABA compartmentation is regulated. Some progress has occurred using

324 whole-cell patch clamp with human embryonic kidney cells expressing GABA

325 receptors [61] or GABA imprinted electrodes [62].

326

327 *Do other metabolites regulate ALMT?* It has been proposed that the role of 328 TaALMT1 in sustained anion efflux may be a specialisation in the family [39]. 329 Instead, the ALMT family generally appear to be activated by malate and 330 inhibited by GABA [32], but these metabolites appear to be one of a number of 331 signals that act upon ALMT to fine tune cellular responses to environmental or 332 metabolic conditions. For instance, ALMT/R-type anion channels are also 333 negatively regulated by niflumate, nucleotides including ATP and GTP, voltage, 334 ethylene (indirectly via GABA?), and positively regulated by ABA (indirectly?), 335 phosphorylation, malate, succinate, fumarate, pathogens, voltage and a range of 336 inorganic ions [32, 39]. Considering the wide range of compounds already 337 known to affect ALMT activity other regulators are likely to exist. Candidate 338 compounds included **GHB**, other amino acids, other carboxylates and 339 compounds related to GABA metabolism [32, 35, 63]. It is tempting to speculate, 340 despite the lack of a nervous system, plants could propagate long distance 341 electrical signals through ALMT in a similar fashion to that observed recently for 342 GLRs, through the interaction with the gating signals of GABA- and carboxylate 343 (malate); such a signal could mediate long-distance as well as local changes in

transcription. In Figure 1 we propose a model of how the properties of ALMT
make it suitable as a signalling interface between carbon metabolism and
physiological responses by the plant.

347

348 The flux of C intermediates, NADH and ATP production during aerobic 349 respiration does not always occur in a cyclical fashion through the classical 350 components of the TCA cycle [64]. When excessive **ROS** are induced by 351 environmental conditions **OGDH** and **AKGDH** are inhibited and 2-oxoglutarate is 352 transported out of the mitochondria into the cytoplasm where it is converted to 353 GABA via the combined action **GDH** and GAD. GABA is then shunted back into the 354 mitochondria where it is converted into SSA and finally succinate (Figure 1). The 355 fact that there are multiple membrane transport steps needed suggests that 356 there is a reason for compartmentation of GABA metabolism – a plausible 357 reasons for this could be the accessibility of cytoplasmic GABA to the plasma 358 membrane so it can be used as a signal, in addition to its role as a metabolite in 359 the mitochondria.

360

361 **Concluding remarks.**

The identification of GABA-gated anion channels in plants provides a convincing 'plant GABA receptor' candidate and appears to provide a definitive answer in the debate of whether GABA can be a plant-based signal or whether it is just a metabolite. However, this finding also poses many more questions, many of which are covered here (Outstanding questions box). To rouse research activity and set a research agenda, we have also proposed a model of how GABA and carboxylate concentration, transport and action might co-ordinate to signal plant

369 metabolic status (Figure 1). Testing this model should help to further explain370 how and when GABA signalling occurs in plants.

371

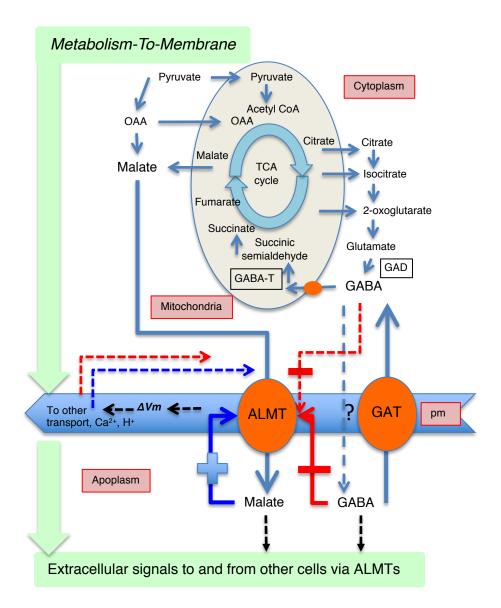
372 Acknowledgments

We apologize to those colleagues who have contributed to this field but were not
cited because of space limitations. We thank the Australian Research Council for
funding M.G. through FT130100709 and M.G. and S.D.T. through CE140100008.

376

Figure 1. Model proposing how ALMT could sense and signal metabolic

378 status. The regulation of ALMT activity on the PM by carboxylate anions, in 379 particular malate (positive, blue arrow), and GABA (negative, red arrow) 380 provides a mechanism by which changes in cell metabolism could lead to voltage 381 changes (Δ Vm); this could convey cell metabolic status to adjacent cells. GABA 382 inhibits the ALMT channel with high affinity $(1 \mu M)$, whereas malate activation 383 has a lower affinity (1 mM), these properties may lead to transient activation of 384 ALMTs. GABA acts on the outside of the channel in heterologous systems, but 385 GABA-binding sites may also exist on the cytoplasmic side, or be accessible from 386 both sides [32]. How GABA effluxes from the cell is not known, but there is a 387 high affinity uptake transporter (AtGAT) [16, 63], which may be critical in regulating apoplasmic GABA concentrations. GABA and malate are connected in 388 389 metabolism via pathways through the tricarboxylic acid (TCA) cycle and the 390 GABA shunt [6, 16, 54, 63, 64]. A likely negative correlation between TaALMT1 391 activation and the concentration of GABA [32] may reflect the metabolic flux 392 through the GABA shunt to malate, or be associated with the regulation of GAD, 393 which produces GABA from glutamate [4]. Negative regulation of malate flux 394 from cells will result in the conservation of an energy rich C source for the cell to 395 use during stress. 396 397


References

400		
401	1.	Fait, A. <i>et al.</i> (2008) Highway or byway: The metabolic role of the GABA
402		shunt in plants. Trends Plant Sci. 13, 14-19
403	2.	Fait, A. et al. (2011) Targeted enhancement of glutamate-to-gamma-
404		aminobutyrate conversion in Arabidopsis seeds affects carbon-nitrogen
405		balance and storage reserves in a development-dependent manner. <i>Plant</i>
406		<i>Physiol.</i> 157 , 1026-1042
407	3.	Carroll, A.D. <i>et al.</i> (1994) Ammonium assimilation and the role of gamma-
408		aminobutyric-acid in pH homeostasis in carrot cell-suspensions. <i>Plant</i>
409		<i>Physiol.</i> 106 , 513-520
410	4.	Shelp, B.J. <i>et al.</i> (1999) Metabolism and functions of gamma-aminobutyric
411		acid. Trends Plant Sci. 4 , 446-452
412	5.	Bouche, N. <i>et al.</i> (2003) Mitochondrial succinic-semialdehyde
413	01	dehydrogenase of the gamma-aminobutyrate shunt is required to restrict
414		levels of reactive oxygen intermediates in plants. Proc. Natl. Acad. Sci.
415		<i>U.S.A.</i> 100 , 6843-6848
416	6.	Bouche, N. and H. Fromm (2004) GABA in plants: Just a metabolite?
417		<i>Trends Plant Sci.</i> 9 , 110-115
418	7.	Renault, H. <i>et al.</i> (2010) The Arabidopsis <i>pop2-1</i> mutant reveals the
419		involvement of GABA transaminase in salt stress tolerance. <i>BMC Plant</i>
420		<i>Biol.</i> 10 , 20
421	8.	Chevrot, R. <i>et al.</i> (2006) GABA controls the level of quorum-sensing signal
422		in Agrobacterium tumefaciens. Proc. Natl. Acad. Sci. U.S.A. 103 , 7460-7464
423	9.	Shelp, B.J. <i>et al.</i> (2006) Extracellular gamma-aminobutyrate mediates
424		communication between plants and other organisms. <i>Plant Physiol.</i> 142 ,
425		1350-1352
426	10.	Park, D.H. <i>et al.</i> (2010) Mutations in γ -aminobutyric acid (GABA)
427		transaminase genes in plants or <i>Pseudomonas syringae</i> reduce bacterial
428		virulence. <i>Plant J.</i> 64 , 318-330
429	11.	Shelp, B.J. <i>et al.</i> (2003) Gamma aminobutyrate: From intellectual curiosity
430		to practical pest control. Can. J. Bot. 81, 1045-1048
431	12.	Kinnersley, A.M. and F.J. Turano (2000) Gamma aminobutyric acid
432		(GABA) and plant responses to stress. Crit. Rev. Plant Sci. 19, 479-509
433	13.	Palanivelu, R. <i>et al.</i> (2003) Pollen tube growth and guidance is regulated
434		by <i>pop2</i> , an Arabidopsis gene that controls GABA levels. <i>Cell</i> 114 , 47-59
435	14.	Roberts, M.R. (2007) Does GABA act as a signal in plants?: Hints from
436		molecular studies. Plant Signal. Behav. 2, 408-409
437	15.	Kinnersley, A. and F. Lin (2000) Receptor modifiers indicate that 4-
438		aminobutyric acid (GABA) is a potential modulator of ion transport in
439		plants. Plant Growth Regul. 32, 65-76
440	16.	Michaeli, S. and H. Fromm (2015) Closing the loop on the GABA shunt in
441		plants: Are GABA metabolism and signaling entwined? Front. Plant Sci. 6,
442		149
443	17.	Cholewa, E. <i>et al.</i> (1997) Cold-shock-stimulated gamma-aminobutyric
444		acid synthesis is mediated by an increase in cytosolic Ca ²⁺ , not by an
445		increase in cytosolic H ⁺ . Can. J. Bot. 75 , 375-382

446	18.	Shelp, B.J. <i>et al.</i> (2012) Strategies and tools for studying the metabolism
447 448		and function of gamma-aminobutyrate in plants. I. Pathway structure. <i>Can. J. Bot.</i> 90 , 651-668
440 449	19.	Bormann, J. (2000) The 'ABC' of GABA receptors. <i>Trends Pharmacol. Sci.</i>
450	19.	21 , 16-19
450 451	20.	Bettler, B. <i>et al.</i> (2004) Molecular structure and physiological functions of
452	20.	GABA _B receptors. <i>Physiol. Rev.</i> 84 , 835-867
453	21.	Chebib, M. and G.A.R. Johnston (1999) The 'ABC' of GABA receptors: A
454	21.	brief review. <i>Clin. Exp. Pharmacol. Physiol.</i> 26 , 937-940
455	22.	Miller, P.S. and T.G. Smart (2010) Binding, activation and modulation of
456		cys-loop receptors. <i>Trends Pharmacol. Sci.</i> 31 , 161-174
457	23.	Barragan, A. <i>et al.</i> (2015) GABAergic signalling in the immune system.
458	_0.	Acta Physiol. 213 , 819-827
459	24.	Michard, E. <i>et al.</i> (2011) Glutamate receptor-like genes form Ca^{2+}
460		channels in pollen tubes and are regulated by pistil <i>D</i> -serine. <i>Science</i> 332 ,
461		434-437
462	25.	Mousavi, S.A.R. <i>et al.</i> (2013) Glutamate receptor-like genes mediate leaf-
463		to-leaf wound signalling. <i>Nature</i> 500 , 422-426
464	26.	Forde, B.G. (2014) Glutamate signalling in roots. J. Exp. Bot. 65, 779-787
465	27.	Renault, H. et al. (2011) GABA accumulation causes cell elongation defects
466		and a decrease in expression of genes encoding secreted and cell wall-
467		related proteins in Arabidopsis thaliana. Plant Cell Physiol. 52 , 894-908
468	28.	Yu, G.H. et al. (2006) Quantum dot-mediated detection of gamma-
469		aminobutyric acid binding sites on the surface of living pollen protoplasts
470		in tobacco <i>. Chem. Biol.</i> 13 , 723-731
471	29.	Swarbreck, S.M. <i>et al.</i> (2013) Plant calcium-permeable channels. <i>Plant</i>
472		<i>Physiol.</i> 163 , 514-522
473	30.	Vincill, E.D. <i>et al.</i> (2012) Ca ²⁺ conduction by an amino acid-gated ion
474		channel related to glutamate receptors. <i>Plant Physiol.</i> 159 , 40-46
475	31.	Tapken, D. <i>et al.</i> (2013) A plant homolog of animal glutamate receptors is
476		an ion channel gated by multiple hydrophobic amino acids. Science
477		Signaling 6 , ra47
478	32.	Ramesh, S.A. <i>et al.</i> (2015) GABA signalling modulates plant growth by
479		directly regulating the activity of plant-specific anion transporters. <i>Nat.</i>
480		<i>Commun.</i> 6 , 7879
481	33.	Ryan, P.R. <i>et al.</i> (2011) The identification of Aluminium-resistance genes
482		provides opportunities for enhancing crop production on acid soils. J. Exp.
483	24	Bot. 62, 9-20
484	34.	Kopittke, P.M. <i>et al.</i> (2015) Identification of the primary lesion of toxic
485	25	aluminum in plant roots. <i>Plant Physiol.</i> 167 , 1402-1411
486	35.	Žárský, V. (2015) Signal transduction: GABA receptor found in plants. <i>Nat.</i>
487 499	26	Plants 1, 15115 Bergmann R, et al. (2012) A unified model of the CARA, resenter
488 489	36.	Bergmann, R. <i>et al.</i> (2013) A unified model of the GABA _A receptor
	27	comprising agonist and benzodiazepine binding sites. <i>PLoS One</i> 8 , 13 Reileau AL at al. (1999) Mapping the agonist binding site of the CARA.
490 491	37.	Boileau, A.J. <i>et al.</i> (1999) Mapping the agonist binding site of the GABA _A receptor: Evidence for a beta-strand. <i>J. Neurosci.</i> 19 , 4847-4854
491 492	38.	Watanabe, M. and A. Fukuda (2015) Development and regulation of
492 493	50.	chloride homeostasis in the central nervous system. <i>Front. Cell. Neurosci.</i>
493 494		9, 14
TT		2, 1 I

495	39.	Dreyer, I. et al. (2012) Molecular evolution of slow and quick anion
496		channels (SLACs and QUACs/ALMTs). Front. Plant Sci. 3 , 263
497	40.	Meyer, S. <i>et al.</i> (2010) AtALMT12 represents an R-type anion channel
498		required for stomatal movement in Arabidopsis guard cells. <i>Plant J.</i> 63,
499		1054-1062
500	41.	Allan, W.L. and B.J. Shelp (2006) Fluctuations of gamma-aminobutyrate,
501		gamma-hydroxybutyrate, and related amino acids in arabidopsis leaves
502		as a function of the light-dark cycle, leaf age, and N stress. <i>Can. J. Bot.</i> 84 ,
503		1339-1346
504	42.	Espinoza, C. <i>et al.</i> (2010) Interaction with diurnal and circadian
505		regulation results in dynamic metabolic and transcriptional changes
506		during cold acclimation in Arabidopsis. <i>PLoS One</i> , e14101
507	43.	Yu, G.H. <i>et al.</i> (2014) Exogenous gamma-aminobutyric acid (GABA) affects
508		pollen tube growth via modulating putative Ca ²⁺ -permeable membrane
509		channels and is coupled to negative regulation on glutamate
510		decarboxylase. J. Exp. Bot. 65, 3235-3248
511	44.	Tavares, B. <i>et al.</i> (2011) The essential role of anionic transport in plant
512	1 1.	cells: The pollen tube as a case study. J. Exp. Bot. 62 , 2273-2298
512	45.	Pina, C. <i>et al.</i> (2005) Gene family analysis of the Arabidopsis pollen
514	10.	transcriptome reveals biological implications for cell growth, division
515		control, and gene expression regulation. <i>Plant Physiol.</i> 138 , 744-756
516	46.	Kovermann, P. <i>et al.</i> (2007) The Arabidopsis vacuolar malate channel is a
517	40.	member of the ALMT family. <i>Plant J.</i> 52 , 1169-1180
517	47.	De Angeli, A. <i>et al.</i> (2013) AtALMT9 is a malate-activated vacuolar
510	47.	
		chloride channel required for stomatal opening in Arabidopsis. <i>Nat.</i>
520	40	Commun. 4, 1804
521	48.	Shabala, S. <i>et al.</i> (2014) Membrane transporters mediating root signalling
522		and adaptive responses to oxygen deprivation and soil flooding. <i>Plant Cell</i>
523	10	Environ. 37 , 2216-2233
524	49.	Lancien, M. and M.R. Roberts (2006) Regulation of <i>Arabidopsis thaliana</i>
525		14-3-3 gene expression by gamma-aminobutyric acid. <i>Plant Cell Environ.</i>
526	50	29 , 1430-1436
527	50.	Kathiresan, A. <i>et al.</i> (1997) Gamma-aminobutyric acid stimulates ethylene
528	_ .	biosynthesis in sunflower. <i>Plant Physiol.</i> 115 , 129-135
529	51.	Tian, Q.Y. et al. (2014) Ethylene negatively regulates Aluminium-induced
530		malate efflux from wheat roots and tobacco cells transformed with
531		TaALMT1. J. Exp. Bot. 65 , 2415-2426
532	52.	Renault, H. <i>et al.</i> (2013) Gamma-aminobutyric acid transaminase
533		deficiency impairs central carbon metabolism and leads to cell wall
534		defects during salt stress in Arabidopsis roots. <i>Plant Cell Environ</i> . 36 ,
535		1009-1018
536	53.	Batushansky, A. et al. (2014) Combined transcriptomics and
537		metabolomics of Arabidopsis thaliana seedlings exposed to exogenous
538		GABA suggest its role in plants is predominantly metabolic. <i>Mol. Plant</i> 7,
539		1065-1068
540	54.	Finkemeier, I. et al. (2013) Transcriptomic analysis of the role of
541		carboxylic acids in metabolite signaling in Arabidopsis leaves. <i>Plant</i>
542		Physiol. 162 , 239-253

543 544	55.	Warren, C. (2015) Wheat roots efflux a diverse array of organic N compounds and are highly proficient at their recapture. <i>Plant Soil</i> , 1-16
545	56.	Meyer, A. <i>et al.</i> (2006) AtGAT1, a high affinity transporter for gamma-
546		aminobutyric acid in Arabidopsis thaliana. J. Biol. Chem. 281, 7197-7204
547	57.	Chung, I.D. <i>et al.</i> (1992) The production and efflux of 4-aminobutyrate in
548		isolated mesophyll-cells. <i>Plant Physiol.</i> 99 , 659-664
549	58.	Batushansky, A. <i>et al.</i> (2015) The transporter GAT1 plays an important
550		role in GABA-mediated carbon-nitrogen interactions in arabidopsis. Front.
551		Plant Sci. 6
552	59.	Curtis, D.R. et al. (1970) GABA, bicuculline and central inhibition. Nature
553		226 , 1222-1224
554	60.	Defeudis, F.V. (1975) Amino-acids as central neurotransmitters. Annu.
555		Rev. Pharmacol. Toxicol. 15 , 105-130
556	61.	Christensen, R.K. et al. (2014) Fast detection of extrasynaptic gaba with a
557		whole-cell sniffer. Front. Cell. Neurosci. 8 , 9
558	62.	Zheng, X.Y. et al. (2012) Electrochemical sensor of 4-aminobutyric acid
559		based on molecularly imprinted electropolymer. Anal. Methods 4, 482-
560		487
561	63.	Shelp, B.J. et al. (2012) Compartmentation of GABA metabolism raises
562		intriguing questions. Trends Plant Sci. 17, 57-59
563	64.	Sweetlove, L.J. <i>et al.</i> (2010) Not just a circle: Flux modes in the plant TCA
564		cycle. Trends Plant Sci. 15, 462-470
565		
566		

