

Developing Artificial Neural Networks for Water Quality Modelling and Prediction

Robert James May BEng (Chem) Hons, BSc

Thesis submitted to The University of Adelaide School of Civil, Environmental & Mining Engineering in fulfilment of the requirements for the degree of Doctor of Philosophy

Copyright[©] October 2009.

Abstract

Modelling water quality within complex, man-made and natural environmental systems can represent a challenge to practitioners. Many conventional modelling tools are not capable of representing the complexities of physical and chemical processes often observed in these systems. Consequently, there has been a great deal of interest in the application of computational intelligence techniques, such as artificial neural networks (ANNs). However, "black-box" approaches, such as ANN modelling, are often criticised due to a perceived lack of transparency in the model development methodology. This research has therefore focussed on improving the tools and techniques that are used in the development of ANN models for water quality prediction and forecasting.

The body of research presented in this thesis is described by several peer reviewed articles. These articles describe the theoretical basis and practical context for the ANN model development techniques that have been proposed and applied as a part of this research. Specifically, the ANN development framework has been further enhanced by this research through the development of novel approaches to perform two key tasks: input variable selection (IVS) and data splitting.

The IVS problem is to select variables as ANN inputs from a number of potential candidates, so as to minimise the number of inputs, but maximise the predictive performance of the model. A forward-selection approach for IVS has been examined that is based on partial mutual information (PMI), which can identify an optimal set of variables to use as inputs to ANN models, given a set of candidate variables. Of particular concern is that the use of MI in place of the more traditionally used correlation, provides a more appropriate basis for the selection of inputs based on non-linear relevance. Moreover, the accuracy of MI estimates for a given sample size is difficult to determine. Quantifying the accuracy of MI estimates is necessary to determine critical values of MI, since this forms the basis for of the termination criterion that stops the forward selection process.

Novel termination criteria were developed that alternatively determine the optimum number of candidate input variables. In comparison to the existing approach, which is based on a computationally expensive, yet potentially inaccurate bootstrap approach, the alternative criteria were found to both reduce the computational requirements and increase selection accuracy of the PMI-based IVS approach, resulting in a much improved algorithm.

Data splitting is an essential part of ANN model development, as the available modelling data must be partitioned into subsets for training, testing and validation. Depending on the data splitting method employed, the data split can have a significant effect on model performance, or reduce confidence in performance assessment. A popular method based on clustering of the self-organizing map (SOM) was examined. The approach was found to be sensitive to SOM size and the manner in which samples are drawn from within the SOM units. However, despite an optimal number of partitions, the SOM can generate partitions that are non-uniformly distributed, and which differ in size and shape. Although conventional rules to increase the sampling rate within larger clusters can reduce variance, the remaining variance can still be significant.

A hybrid algorithm called SOMPLEX was developed, which combines clustering on the SOM, and the DUPLEX algorithm used to perform intra-cluster sampling. DUPLEX is a fully deterministic algorithm that generates a representative sample, regardless of the size or distribution of data within a SOM cluster. For several example applications to predicting water quality, SOMPLEX was found to generate representative data for training, testing and validation, with no variation. The hybrid SOMPLEX approach combines the strengths of the two individual data splitting algorithms, in that the clustering on the SOM reduces the operational complexity, and the DUPLEX sampling improves on random sampling of SOM units to reduce sample variability and increase the representativeness of datasets generated.

In terms of the overall ANN development framework, the outcomes of this research have been an increased understanding of how to best implement ANN techniques, and an appreciation for their place within the context of a water quality modelling toolkit, which comprises both conventional and non-conventional modelling approaches. It was also observed that although the ANN modelling paradigm is quite powerful, it is not without limitations. Many of the limitations and problems encountered with ANN model development are more indicative of the application, rather than the modelling approach itself.

Statement of Originality

I, *Robert James May*, hereby declare that this work contains no material which has been accepted for the award of any other degree or diploma in any university or other tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text.

I give consent to this copy of my thesis when deposited in the University Library, being made available for loan and photocopying, subject to the provisions of the Copyright Act 1968.

The author acknowledges that copyright of published works contained within this thesis resides with the copyright holder(s) of those works.

I also give permission for the digital version of my thesis to be made available on the web, via the Universitys digital research repository, the Library catalogue, the Australasian Digital Theses Program (ADTP) and also through web search engines, unless permission has been granted by the University to restrict access for a period of time.

Signed: Date:

Acknowledgement

Above all, I wish to express my profound gratitude towards my supervisors, Professor Graeme Dandy and Professor Holger Maier, for their invaluable guidance, support and encouragement throughout the course of this research.

The author is grateful for the financial support provided by the CRC for Water Quality and Treatment, the technical assistance from the research team for Project 2.5.0.1, and the project leadership of Mr Michael Holmes and Dr Christopher Chow. I thank United Water for their support of this research, in particular Dr John Nixon for his contribution as my industry supervisor, and Dr Stephanie Rinck-Pfeiffer, for her patience while I completed this thesis.

Thanks to the all the staff within the School of Civil, Environmental & Mining Engineering, in particular Dr Stephen Carr for his assistance with software development. The author also wishes to acknowledge that a significant part of this research was aided by the facilities provided by the South Australian Partnership for Advanced Computing.

Many thanks to all of my fellow post-graduate students within the School, for the Friday afternoon drinks and carpet bowls—I blame you all for making the experience so enjoyable that I lost all motivation to finish. Thanks especially to Ms. Gayani Fernando, for sharing a mutual love of neural networks; Dr Matthew Gibbs and Mr Darren Broad, for the more than occasional Tuesday drinks; and I am truly indebted to Mr Michael Leonard for a year of Saturdays spent writing up, and many other enjoyable discussions over the years.

Finally, I acknowledge that credit for any of my past, current and future achievements must be shared with my parents, brother, sister, and my partner, Shannon; for I could accomplish very little without their love and support.

> Robert May Adelaide, 14 October 2009

Contents

	Abst	ii	i
	Statement of Originality		
	Acknowledgement		i
	Contents		
	Publications		
	List of Figures xv		
	List of Tables x		ζ
	List of Abbreviations x		i
	List of Symbols xxi		i
1	Intro	oduction 1	L
	1.1	Research Background	L
	1.2	Artificial Neural Networks	3
	1.3	Research Objectives	5
	1.4	Thesis Structure	2
2	Inpu	It Variable Selection 15	5
	2.1	Introduction	5
	2.2	The Input Variable Selection Problem	5
	2.3	Strategies and Algorithms)
		2.3.1 Optimality Criteria	L
		2.3.2 Search Strategies	5
		2.3.3 Dimensionality Reduction)
		2.3.4 Wrappers	3
		2.3.5 Filters	5
	2.4	Comparison of Approaches	1

3	Data	a Splitting 49
	3.1	Introduction
	3.2	Generalisation and Over-fitting
		3.2.1 Cross-validation
		3.2.2 Ensemble Training
		3.2.3 Regularisation
	3.3	The Hold-out Bias and Variance Dilemma
	3.4	Sampling Techniques
		3.4.1 Probability Sampling
		3.4.2 Non-probability Sampling
	3.5	Comparison of Approaches
4	Syn	opsis of Publications 79
5	Pub	lication 1: Critical values of mutual information 87
	5.1	Introduction
	5.2	Preliminaries
		5.2.1 Estimation of Mutual Information
		5.2.2 Distribution of Mutual Information
	5.3	Determining Critical Values of Mutual Information
		5.3.1 Methodology
		5.3.2 Approximate Distribution of Mutual Information 98
		5.3.3 Critical Values
	5.4	Example Application
		5.4.1 Selection Algorithm
		5.4.2 Dataset
		5.4.3 Selection Results
	5.5	Concluding Remarks
6	Pub	lication 2: Non-linear IVS for ANNs Using PMI 107
	6.1	Introduction
	6.2	Theoretical Overview
		6.2.1 Input variable selection techniques
		6.2.2 Estimation of partial mutual information
		6.2.3 Description of the PMIS algorithm
	6.3	Formulation of Alternative Termination Criteria
		6.3.1 Modified bootstrap
		6.3.2 Tabulated critical values
		6.3.3 AIC-based criterion
		6.3.4 Hampel test criterion
	6.4	Experimental Methods
		6.4.1 Comparison to IVS based on the correlation coefficient 132

	6.5	Result	s and Discussion	132
		6.5.1	Selection Accuracy	133
		6.5.2	Computational efficiency	142
		6.5.3	Linear versus non-linear input variable selection	144
		6.5.4	Effect of sample size	145
	6.6	Conclu	usions	146
7	Pub	licatior	n 3: Application of PMI to ANN Water Quality Forecasting	149
	7.1	Introd	luction	155
	7.2	Backg	round	157
	7.3	Metho	odology	160
		7.3.1	Model architecture	160
		7.3.2	Input variable selection	162
		7.3.3	Data sampling	164
		7.3.4	GRNN training	165
		7.3.5	Performance criteria	166
	7.4	Cherry	y Hills–Brushy Plains WDS Example	168
		7.4.1	System Description	168
		7.4.2	Synthetic data generation	169
		7.4.3	Selected input variables	170
		7.4.4	Model performance	170
	7.5	Муроі	nga WDS Example	175
		7.5.1	System Description	177
		7.5.2	Data collection and pre-processing	177
		7.5.3	Selected input variables	178
		7.5.4	Model performance	181
	7.6	Discus	ssion	182
		7.6.1	Model parsimony	182
		7.6.2	Comparison of developmental frameworks	184
		7.6.3	Interpretability of forecasting models	185
	7.7	Conclu	usions	187
8	Pub	licatior	n 4: Data Splitting Using SOM-based Stratified Sampling	189
	8.1	Introd	luction	195
	8.2	Data S	Splitting Methods	196
	8.3	SOM-l	based Stratified Sampling	199
		8.3.1	Choice of Variables	199
		8.3.2	Location of Strata Boundaries	200
		8.3.3	Sample Allocation	201
		8.3.4	Number of Strata	203
		8.3.5	Proposed SBSS Algorithm	207

	8.4	Experimental Study Design		• • •	. 207
		8.4.1 Datasets		•••	. 208
		8.4.2 Bias and Variance Estimation		• • •	. 209
		8.4.3 Neural Network Training		• • •	. 210
		8.4.4 Data Splitting Algorithms			. 210
	8.5	Results			. 212
	8.6	Discussion			. 219
		8.6.1 Factors influencing data splitting performance		• • •	. 219
		8.6.2 Selecting a suitable data splitting approach .		•••	. 220
		8.6.3 Specification of SOM Parameters			. 222
		8.6.4 Effect of SOM initialisation			. 223
	8.7	Conclusions		• • •	. 223
0	Dub	lication 5. SOMPLEY: A hybrid SOM DUDLEY data	enlittin	م عامد	\ _
7	rith	m	spittin	g aigu	225
	9.1	Introduction			. 231
	9.2	Data Splitting Methods			. 232
	<i>,</i> .=	9.2.1 Uniform random			. 233
		9.2.2 Stratified			. 234
		9.2.3 Convenience			. 235
		9.2.4 Judgement			. 236
		9.2.5 Systematic			. 236
		9.2.6 Kennard-Stone			. 236
		9.2.7 Search-based			. 237
		9.2.8 Multi-stage			. 237
	9.3	The SOMPLEX Algorithm			. 238
	9.4	Methodology			. 240
	9.5	Datasets			. 243
		9.5.1 Pre-processing			. 243
		9.5.2 Coagulation			. 244
		9.5.3 Salinity			. 244
		9.5.4 Chlorine			. 246
	9.6	Results and Discussion			. 246
	9.7	Software			. 252
	9.8	Conclusions			. 252
10	Dub	lication 6. Development of ANNs for Water Quality	Modell	ina	255
10	10.1	Introduction	moucil	шg	. 259
	10.2	Applications in Water Ouality Modelling			. 260
		10.2.1 Prediction and Forecasting			. 260
		10.2.2 Process control			. 261

	10.2.3 Integrated Modelling	52
	10.2.4 Metamodelling	53
	10.2.5 Knowledge Extraction	53
	10.3 Neural Architectures	54
	10.3.1 Multilayer Perceptron	54
	10.3.2 Generalised Regression Neural Network	66
	10.4 Model Development	58
	10.4.1 Data Collection	58
	10.4.2 Data Pre-processing	71
	10.4.3 Input Variable Selection	74
	10.4.4 Data Subset Selection	31
	10.4.5 Training	39
	10.4.6 Model Selection	94
	10.4.7 Validation	95
	10.5 Summary	99
11	Conclusions 30	1
11	Conclusions3011.1 Contributions of Persoarch30)1
11	Conclusions 30 11.1 Contributions of Research)1)2
11	Conclusions 30 11.1 Contributions of Research)1)2)2
11	Conclusions 30 11.1 Contributions of Research)1)2)2)4
11	Conclusions 30 11.1 Contributions of Research)1)2)2)4)6
11	Conclusions 30 11.1 Contributions of Research)1)2)2)4)6)8
11	Conclusions3011.1 Contributions of Research3011.1.1 Input Variable Selection3011.1.2 Data Splitting3011.1.3 Water Quality Forecasting3011.1.4 Field Research3011.1.5 Software3011.2 Paragraph Limitations30	91)2)2)4)6)8)8
11	Conclusions3011.1 Contributions of Research3011.1.1 Input Variable Selection3011.1.2 Data Splitting3011.1.3 Water Quality Forecasting3011.1.4 Field Research3011.1.5 Software3011.2 Research Limitations3011.3 Future Research30)1)2)2)4)6)8)8
11	Conclusions3011.1 Contributions of Research3011.1.1 Input Variable Selection3011.1.2 Data Splitting3011.1.3 Water Quality Forecasting3011.1.4 Field Research3011.1.5 Software3011.2 Research Limitations3011.3 Future Research3011.3 Future Research31	91)2)2)4)6)8)8)8
11 Ret	Conclusions3011.1 Contributions of Research3011.1.1 Input Variable Selection3011.1.2 Data Splitting3011.1.3 Water Quality Forecasting3011.1.4 Field Research3011.1.5 Software3011.2 Research Limitations3011.3 Future Research31ferences31	91 ()2 ()4 ()6 ()8 ()8 ()8 ()8 ()8 ()8 ()8 ()8 ()8 ()8
11 Ret A	Conclusions3011.1 Contributions of Research3011.1.1 Input Variable Selection3011.1.2 Data Splitting3011.1.3 Water Quality Forecasting3011.1.4 Field Research3011.1.5 Software3011.2 Research Limitations3011.3 Future Research3011.3 Future Research31ferences31Critical Values of I and R32	91 ()2 ()2 ()4 ()6 ()8 ()8 ()8 ()8 ()8 ()8 ()8 ()8 ()8 ()8

Publications

Book chapters

 May, R. J., H. R. Maier, and G. C. Dandy, Development of artificial neural networks for water quality modelling and analysis, in *Modelling of Pollutants in Complex Environmental Systems*, edited by G. Hanrahan, vol. 1, pp. 27–62, ILM Publications, London, UK, 2009.

Journal articles

- May, R. J., G. C. Dandy, H. R. Maier, and T. M. K. G. Fernando, Nonlinear variable selection for artificial neural networks using partial information, *Environmental Modelling and Software*, *23*, 1312–1326, 2008.
- May, R. J., H. R. Maier, G. C. Dandy, and J. B. Nixon, Application of partial mutual information-based variable selection to ANN forecasting of water quality within water distribution systems, *Environmental Modelling and Software*, *23*, 1289–1299, 2008.
- May, R. J., H. R. Maier, and G. C. Dandy, Data Splitting for Artificial Neural Networks Using SOM-based Stratified Sampling, *Neural Networks*, *20*, 283–294, 2010.

Journal articles under review

• May, R. J., H. R. Maier, and G. C. Dandy, SOMPLEX: a hybrid SOM-DUPLEX data splitting algorithm for ANN development, *Submitted to Water Resources Research*

Peer-reviewed conference articles

 May, R. J., G. C. Dandy, H. R. Maier, and T. M. K. G. Fernando, Critical values of a kernel-density based mutual information estimator, in *IEEE International Joint Conference on Neural Networks*, pp. 9997–10,002, Sheraton Vancouver Wall Centre Hotel, Vancouver, BC, Canada, 2006.

List of Figures

1.1	Biological neuron and the mathematical perceptron 4
1.2	Framework for ANN model development
2.1	Taxonomy of IVS algorithms
2.2	Wrapper and filter IVS algorithm designs
3.1	Phenomenon of over-fitting
3.2	Stop training (early-stopping) using test data
3.3	Taxonomy of sampling methods
3.4	Multivariate stratification by cut-points and clustering 66
4.1	Contribution of publications presented within this thesis 80
5.1	Approximate distribution of MI estimator
5.2	Critical values of the MI estimator
5.3	PMIS for the ADD10 model
5.4	Comparative run-time for selection with and without MCS 104
6.1	Mutual information
6.2	Partial mutual information
6.3	Application of PMIS termination criteria for the AR9 time-series 134
6.4	Performance of PCIS for linear data
6.5	Performance of PMIS for linear data
6.6	Performance of PCIS for non-linear data
6.7	Performance of PMIS for non-linear data
6.8	Computational requirement of PMIS with a bootstrap
7.1	Conceptual approach to time-series regression using a historical window 159
72	Architecture of the CRNN 172
7.2 7.2	Cherry Hills_Brushy Plains WDS 172
7.J	Forecast time series at Node 36 of Charmy Lills Brushy Lills MDS 176
/.4	release time-series at node 50 of Cherry fills-brushy fills WD5 . 1/0

7.5	24-hour test and validation forecasts of free chlorine residual gen-
	erated by Model B for an instance of training, test and validation
	data
8.1	Partitioning of data on a 7×5 SOM
8.2	Effect of SOM size on SBSS
8.3	Silhouette and quantisation error versus SOM size
8.4	Guidelines for choosing a sampling technique
9.1	Taxonomy of sampling techniques
9.2	Codebook vectors and resulting Voronoi regions for the partition-
	ing of the Salinity dataset by a $1\times90~\text{SOM}$
9.3	Training, test and validating data selected from the Salinity dataset
	using SOMPLEX
10.1	Multi-layered perceptron
10.2	The general regression neural network
10.3	Framework for the development of ANN models
10.4	The input variable selection task
10.5	Wrapper and filter approach to selecting input variables
10.6	Generalisation and over-fitting
10.7	Stop training (early-stopping) using test data
10.8	Stratified sampling based on the SOM
10.9	Error surface with multiple local optima

List of Tables

1.1	Examples of ANN applications within the water resources field 7
2.1 2.2	Curse of dimensionality19Comparison of Various IVS algorithms47
3.1	Qualitative comparison of sampling methods
5.1	Critical values of the KDE-based mutual information estimator 99
6.1	Critical values of the KDE-based mutual information estimator (after <i>May et al.</i> (2006))
6.2	Benchmark data-generating models
6.3	Summary of termination criteria
7.1	Historical data for the Cherry Hills–Brush Plains WDS
7.2	PMIS analysis for the Cherry-Hills—Brushy Plains WDS
7.3	Variables for GRNN models of the Cherry Hills–Brushy Plains WDS 174
7.4	1-hour test forecasts of chlorine in the Cherry Hills—Brushy Plains
	WDS
7.5	Validation forecasts within the Cherry Hills–Brushy Plains WDS $~$. . 175 $~$
7.6	Historical data collected for the Myponga WDS
7.7	Input variales for the Myponga WDS
7.8	Variables for GRNN models of the Myponga WDS
7.9	24-hour test forecasts of chlorine within the Myponga WDS \ldots . 181
7.10	Validation forecasts of chlorine within the Myponga WDS 182
8.1	Interpretation of the silhousette coefficient
8.2	SOM parameters for implementing SBSS
8.3	Generalisation error for uncorrelated datasets (($n/N)$ = 80%) 213
8.4	Generalisation error for uncorrelated datasets (($n/N)$ = 80%) 214
8.5	Generalisation error for correlated datasets ($n/N=40\%$) $~$ 215
8.6	Generalisation error for correlated datasets (($n/N)$ = 80%) $\ .$ 215
9.1	Specifications of the SOM

9.2	Algorithms included in the comparative study
9.3	Summary of modelling datasets used for the comparative study of
	data splitting algorithms
9.4	Performance of data splitting algorithms on the water resources
	datasets
A.1	Critical values of the KDE estimate $I(x_1; y)$
A.2	Critical values of the KDE estimate $I(x_1, x_2; y)$
A.3	Critical values of the KDE estimate $I(x_1, x_2, x_3; y)$
A.4	Critical values of the KDE estimate $I(x_1, x_2; y_1, y_2) \dots \dots 333$
A.5	Critical values of the KDE estimate $I(x_1, x_2, x_3, x_4; y)$
A.6	Critical values of the KDE estimate $I(x_1, x_2, x_3; y_1, y_2) \dots 335$
A.7	Critical values of the Pearson correlation coefficient
B.1	Model specifications for PMIS and PCIS (50-sample datasets) 338
B.2	Model specifications for PMIS and PCIS (100-sample datasets) 339
B.3	Model specifications for PMIS and PCIS (500-sample datasets) 340
B.4	Model specifications for PMIS and PCIS (1000-sample datasets) 341

List of Abbreviations

ACF	Auto-correlation function
ACO	Ant colony optimisation
AIC	Akaike Information Criterion
ANN	Artificial neural network
ARMA	Auto-regressive moving-average
ARX	Auto-regressive with exogenous inputs
BIC	Bayesian Information Criterion
BPA	Back-propagation algorithm
CV	Cross-validation
CVI	Cluster validity index
DBS	Density biased sampling
DSS	Data subset selection
EA	Evolutionary algorithm
EANN	Evolutionary neural network
GA	Genetic algorithm
GRIDA	GRNN input determination algorithm
GRNN	Generalised regression neural network
ICA	Independent component analysis
IMC	Inverse model control
IVS	Input variable selection
JMI	Joint mutual information
KDE	Kernel density estimation
MAD	Median absolute deviation from the median
MAE	Mean absolute error
MPC	Model predictive control
MCS	Monte Carlo simulation
MI	Mutual information
MIFS	Mutual information feature selection
MLP	Multi-layer perceptron
MR	Maximum relevance

continued on next page

Minimum redundancy
Minimum redundancy–maximum relevance
Mean relative error
Mean squared error
Partial auto-correlation function
Principal component
Principal component analysis
Probability density function
Partial mutual information
Partial mutual information-based selection
Quantisation error
Relative importance
Root mean squared error
SOM-based stratified sampling
Shuffled complex evolution
Self-organizing map
Simple random sampling
Single variable regression
Ultra-violet absorbence
Vector quantisation
Water distribution system

List of Symbols

General

$a(z_j)$	Activation function
d	Number of variable dimensions
E	Expectation
$f(z_j)$	Hidden node transfer function
$\hat{f}(x), \hat{f}(x,y)$	Density function estimate
$\mathbf{F}(x)$	Process/model transfer function
р	Number of model parameters
r	Coefficient of determination
R	Linear correlation
R'	Partial correlation
V	Variance
W	ANN weight matrix
w_i	ANN weight
X	Random independent/ANN input variable
x	Realisation/observation of X
\hat{x}	Model estimate of <i>x</i>
Y	Dependent/ANN output variable
y	Realisation/observation of output variable Y
\hat{y}	Model estimate of y
z_j	training input vector (GRNN) / hidden node input (MLP)

Input Variable Selection

<i>B</i> Bootstrap siz	ze
------------------------	----

- C Candidate input variable
- *G* Gaussian kernel function
- *h* Kernel bandwidth

continued on next page

Scott reference bandwidth
Mutual information
Partial mutual information
Number of selected input variables
Kernel function
Probability density function
Hat matrix defined by $\hat{y} = S(y)$

Data Splitting

$C^{(i)}$	i^{th} cluster
\mathcal{D}	Modelling data set
Н	Number of strata
k	Number of SOM units $= m \times n$
m	Number of SOM rows
N	Length of dataset D
n	Number of sampled data / number of SOM columns
$n_{\mathcal{S}}$	Number of training data
n_T	Number of test data
$n_{\mathcal{V}}$	Number of validation data
S	Silhouette coefficient
S	Test data set
Τ	Training data set
\mathcal{V}	Validating data set

Greek Symbols

Error term
Partial auto-correlation
Golden Ratio (~1.6)
Standard deviation / GRNN smoothing parameter
Mean