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Abstract

Modelling water quality within complex, man-made and natural environmental

systems can represent a challenge to practitioners. Many conventional modelling

tools are not capable of representing the complexities of physical and chemical

processes often observed in these systems. Consequently, there has been a great

deal of interest in the application of computational intelligence techniques, such

as artificial neural networks (ANNs). However, “black-box” approaches, such as

ANN modelling, are often criticised due to a perceived lack of transparency in

the model development methodology. This research has therefore focussed on

improving the tools and techniques that are used in the development of ANN

models for water quality prediction and forecasting.

The body of research presented in this thesis is described by several peer reviewed

articles. These articles describe the theoretical basis and practical context for the

ANN model development techniques that have been proposed and applied as a

part of this research. Specifically, the ANN development framework has been

further enhanced by this research through the development of novel approaches

to perform two key tasks: input variable selection (IVS) and data splitting.

The IVS problem is to select variables as ANN inputs from a number of potential

candidates, so as to minimise the number of inputs, but maximise the predictive

performance of the model. A forward-selection approach for IVS has been ex-

amined that is based on partial mutual information (PMI), which can identify an

optimal set of variables to use as inputs to ANN models, given a set of candidate

variables. Of particular concern is that the use of MI in place of the more tradi-

tionally used correlation, provides a more appropriate basis for the selection of

inputs based on non-linear relevance. Moreover, the accuracy of MI estimates for

a given sample size is difficult to determine. Quantifying the accuracy of MI es-

timates is necessary to determine critical values of MI, since this forms the basis

for of the termination criterion that stops the forward selection process.

Novel termination criteria were developed that alternatively determine the op-

timum number of candidate input variables. In comparison to the existing ap-
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proach, which is based on a computationally expensive, yet potentially inaccu-

rate bootstrap approach, the alternative criteria were found to both reduce the

computational requirements and increase selection accuracy of the PMI-based

IVS approach, resulting in a much improved algorithm.

Data splitting is an essential part of ANN model development, as the available

modelling data must be partitioned into subsets for training, testing and valida-

tion. Depending on the data splitting method employed, the data split can have

a significant effect on model performance, or reduce confidence in performance

assessment. A popular method based on clustering of the self-organizing map

(SOM) was examined. The approach was found to be sensitive to SOM size and

the manner in which samples are drawn from within the SOM units. However,

despite an optimal number of partitions, the SOM can generate partitions that

are non-uniformly distributed, and which differ in size and shape. Although con-

ventional rules to increase the sampling rate within larger clusters can reduce

variance, the remaining variance can still be significant.

A hybrid algorithm called SOMPLEX was developed, which combines clustering

on the SOM, and the DUPLEX algorithm used to perform intra-cluster sampling.

DUPLEX is a fully deterministic algorithm that generates a representative sample,

regardless of the size or distribution of data within a SOM cluster. For several ex-

ample applications to predicting water quality, SOMPLEX was found to generate

representative data for training, testing and validation, with no variation. The

hybrid SOMPLEX approach combines the strengths of the two individual data

splitting algorithms, in that the clustering on the SOM reduces the operational

complexity, and the DUPLEX sampling improves on random sampling of SOM

units to reduce sample variability and increase the representativeness of datasets

generated.

In terms of the overall ANN development framework, the outcomes of this re-

search have been an increased understanding of how to best implement ANN

techniques, and an appreciation for their place within the context of a water qual-

ity modelling toolkit, which comprises both conventional and non-conventional

modelling approaches. It was also observed that although the ANN modelling

paradigm is quite powerful, it is not without limitations. Many of the limitations

and problems encountered with ANN model development are more indicative of

the application, rather than the modelling approach itself.
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Chapter 1

Introduction

“Trying to predict the future is a mug’s game. But
increasingly it’s a game we all have to play because the

world is changing so fast and we need to have some sort of
idea of what the future’s actually going to be like because we

are going to have to live there, probably next week.”

Douglas Adams, The Salmon of Doubt (2002)

1.1 Research Background

The development of mathematical models of physical and chemical processes is

essential for representing real-world environmental systems. Models permit us to

experiment and explore system behaviour, which subsequently enables us to in-

crease understanding or make predictions to guide decisions that encompass all

aspects such as policy, management, operation, planning and design. In the wa-

ter resources field, modelling and analysis underpins a range of water resources

applications, including prediction and forecasting of water quality in surface wa-

ters, rainfall-runoff modelling in catchment hydrology, water and wastewater

treatment process modelling and control, and modelling of hydraulics and water

quality within water distribution networks.

Model development can follow two distinct approaches: conceptual, or empirical.
The conceptual modelling approach is based on the hypothesises of a mathemat-

ical model, which is derived from an understanding or assumption of the nature

of the physical processes at work within a system. Conceptual models can be

constructed from first principles in a bottom-up approach, or by breaking a sys-

tem into successively smaller components, in a top-down approach. For example,

water distribution system (WDS) simulation models are widely used based on
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mathematical terms for pipe hydraulics, and kinetic reaction terms for decay or

formation of chemicals within the water. Conceptual models are widely accepted,

as the parameters of the model generally have a physical interpretation, and the

behaviour of the model can be reconciled with the real-world system. However,

the required understanding is not always available, especially in the case of large

scale, complex systems. In this case, the number of different mechanisms and

their interactions may not be fully understood or known; or, although an ade-

quate conceptual model is available, there may be insufficient data to calibrate

the potentially large number of model parameters. Consequently, during concep-

tual model development, many assumptions or simplification are made, which

can often oversimplify complex phenomena, and decrease the accuracy of the

model.

The alternative approach to modelling is the empirical or, inductive approach,

where the model is determined by finding the function that provides the best-

fit to a set of data, which comprises observations of system inputs and corre-

sponding outputs. In this case, the goal is simply to find a suitable function to

describe the observed behaviour rather than understand it. Classic examples of

the empirical approach are multiple linear regression and polynomial regression.

The advantage of empirical modelling is that errors introduced by uncertainty,

simplifications and assumptions are avoided, and can lead to a more accurate

representation of the system, which is more desirable when understanding the

processes is less important. Furthermore, the ability to determine an expression

from a set of data, without the supposition of a physical mechanism, provides a

more expedient approach to model development. A drawback is that the form of

the expression is often arbitrary, and therefore the empirical modelling approach

is often criticised for having no relationship to the physical process. The model is

conventionally referred to as a “black-box”. However, this is not always the case,

and it is possible to gain new insight into the behaviour of a previously unknown

process by examining the structure of an empirical model that is induced from

the data (Jain et al., 2004; Kingston, 2006).

Conventional regression and classification techniques have been used in many

modelling applications with great success. Linear regression analysis tools, such

as the auto-regressive moving-average (ARMA) model, auto-regressive with ex-

ogenous inputs (ARX) model, and other similar types of statistical models have

been the foundation of time-series forecasting and process system identification

for over half a century (Box and Jenkins, 1976). However, their main limitation is

that many environmental processes are inherently complex and non-linear, and

so many of these techniques are found to be inadequate. The recent advent of

modern computing, which has provided affordable access to computing power,
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has allowed more sophisticated statistical modelling paradigms to be explored.

Consequently, there has been interest in the application of tools such as artificial

neural networks (ANNs) for the development of statistical models of complex

environmental processes.

1.2 Artificial Neural Networks

Artificial neural networks (ANNs) are a mathematical modelling paradigm that

is inspired by the mechanics of mammalian cognition. The basis for the ANN

paradigm is the perceptron, which represents the biological neuron. The biolog-

ical neuron and its mathematical counterpart are shown in Figure 1.1. In the

biological neuron (Figure 1.1(a)), chemical signals are received by the dendrites

either from the synapse other neurons, or from sensory cells in response to some

external stimulus. The relative strength of each synaptic signal is regulated by

the receptors at the terminal end of the dendrites. The combined effect of signals

from all dendrites translates to an activation level within the body of the cell (or

soma). The degree of activation in the soma results in an output signal that is

transmitted via the axon to the synapse, which itself may connect to the dendrites

of other neurons. The perceptron (Figure 1.1(b)) mathematically represents the

biological neuron. Inputs signals are summated to determine an overall stimulus.

A transfer function then determines the corresponding degree of activation that

results in the output from the perceptron. In this case, the sensitivity to each

input signal is determined by corresponding connection weights.

In the case of the perceptron, an input vectorX denotes the multiple input signals

that are connected to the perceptron by connection weights. The connection

weights determine the sensitivity to each input variable. The first component of

the perceptron receives the signals, and generates an overall input signal, z, that

is the weighted sum of all inputs into the neuron, which is given by:

z =
p∑

i=1

wixi. (1.1)

The second component of the perceptron then applies a transfer function, f ,

to transform the input signal into an activation, or output. Individually, a single

perceptron can discriminate one input state from another. However, the immense

potential of artificial neural networks (ANNs) is derived from utilising many per-

ceptrons within an interconnected network in a similar fashion to the mammalian
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Dendrite 
Soma 

Synapse Axon 

Axonial response 

Synaptic/sensory 
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f (z) z = Σwixi 

f (z) 
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Figure 1.1: Biological neuron and the mathematical perceptron. In the biological neuron
(a), chemical signals are received by the dendrites either from the synapses of other neu-
rons, or from sensory cells in response to some external stimulus. The relative strength
of each synaptic signal is regulated by the receptors at the terminal end of the dendrites.
The combined effect of signals from all dendrites translates to an activation level within
the body of the cell (or soma). The degree of activation in the soma results in an output
signal that is transmitted via the axon to the synapse, which itself may connect to the
dendrites of other neurons. The perceptron (b) mathematically represents the biological
neuron. Inputs signals are summated to determine an overall stimulus. A transfer func-
tion then determines the corresponding degree of activation that results in the output
from the perceptron. In this case, the sensitivity to each input signal is determined by
corresponding connection weights.
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brain.

Given the infinite scope for constructing ANNs using this simple basis, many types

of ANNs exist. However, generally the following are true about all ANNs:

• Connectivity. The structure of an ANN is a connected network of nodes, or

neurons, that will individually respond to an input signal. The connection-

ist framework of ANNs defines the mathematical and computational analogy

for features of the human brain, and is responsible for the seemingly infinite

flexibility and robustness that are often considered to be the most desirable

qualities of ANNs.

• Mapping. An ANN elicits a global output, based on the interaction between the

connected nodes, in response to one or more input stimuli. The ability of ANNs

to provide a mapping of input-output relationships is the fundamental basis for

their role in tasks such as pattern recognition, signal processing, classification

and regression.

• Adaptation and Learning. An ANN possesses the ability to adjust its local sen-

sitivity, and hence its global response, based on information that is provided

to the network. It is this quality that best defines ANNs as tools for machine

learning and artificial intelligence (AI) (Narendra, 1991).

In modelling applications, the utility of an ANN is that it can be developed to

represent the transfer function F for some otherwise unknown process

y = F (x1, x2, . . . , xd;W) (1.2)

where y is the output variable, and x1, . . . xd represent the set of input variables,

and W denotes the matrix whose elements are the connection weights wij . Given

a set of training data (X, y), the machine learning paradigm is that the ANN can

be trained so that the weights W are adjusted to achieve the overall function, F ,

that most accurately describes the data generating process.

In the case that y takes a categorical value, or class descriptor, then the ANN will

perform classification; and for scalar y, the ANN performs regression. Indeed,

many parallels can be drawn between ANN learning and conventional statistical

regression, since ANN training is essentially a form of parameter fitting. How-

ever, in comparison to conventional regression and classification techniques, ANN

models offer several distinct advantages, which are namely:
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• Universal function approximation. Arguably the most important advantage of

using ANN models is that they are capable of mapping any conceivable func-

tion, and are therefore capable of performing non-linear regression. This im-

mediately makes them an attractive options for modelling complex processes,

which conventional linear regression-based models do not fully describe.

• Flexible architecture. Flexibility can be easily incorporated by changing the

network architecture, which provides a simple framework for developing an

infinite number of different types of network. Additionally, equivalent ANN

architectures can be derived for conventional models, including linear regres-

sion.

• Robustness. ANNs are able to learn relationships with noisy data and the ability

to incorporate redundancy allows ANNs to perform classification using either

partial or incomplete data. These attributes make ANN models highly suitable

for deployment in many real-world applications.

Consequently, there has been growing interest in the application of artificial neu-

ral networks (ANNs) to water quality modelling. Many water quality processes

are inherently complex and conventional models are often too simplistic to ad-

equately describe their behaviour. In other cases, it is difficult to attempt to

determine a functional relationship, since there is an inadequate understanding

of the processes involved. For these reasons, modelling practitioners are find-

ing that ANN models provide a suitable solution to these problems. Table 1.1

presents several examples, and illustrates that ANN models are being explored

as an approach in a diverse range of applications across the entire field of water

resource management.

1.3 Research Objectives

Despite the many potential applications that have been reported, the issue of

how to develop ANN models remains an ongoing debate within the research

community (Maier and Dandy, 2000). A major obstacle in the uptake of ANN

modelling is that model development is not transparent, or rigorous. Many of

the choices made by ANN modellers tend to be subjective, or not sufficiently

justified, which leads to a lack of confidence in the approach. Confounding this

issue is that many practitioners in the field of environmental engineering are not

experts in the areas of computer science, machine learning, or statistical learning,

which leads to the dangerous situation of a little knowledge. This situation often

leads to a blind application of ANN tools without an appreciation for the more

6



1 Introduction

Table 1.1: Examples of ANN applications within the water resources field

Reference Application

Cote et al. (1995) Modelling an activated sludge process

Rodriguez and Serodes
(1996)

Disinfectant residual forecasting

Maier and Dandy (1997) Water quality time-series forecasting

Brasquet and Le Cloirec
(1999)

Quantitative structure-activity relationship (QSAR)
for adsorption of chemicals by activated carbon

Damas et al. (2000) Water supply network modelling and control

Charef et al. (2000) Remote sensing of chemical oxygen demand

Serodes et al. (2001) Forecasting disinfectant residuals within a water sup-
ply network

Baxter et al. (2001) Real-time ANN control of coagulation process

Milot et al. (2002) Predicting disinfection by-product formation in water
supply networks

Bowden (2003) Forecasting cyanobacterial and salinity time-series in
rivers

Jain et al. (2004) Prediction of catchment rainfall-runoff

Cigizoglu (2004) Prediction of suspended sediments in river water

Zhang (2004) Real-time forecasting of treated water colour

Maier et al. (2004) Modelling coagulation jar-tests

Cigizoglu (2005) Forecasting river flow

Fogelman et al. (2005) Prediction of chemical oxygen demand with UV spec-
troscopy

Broad et al. (2005) Metamodelling for water distribution systems for op-
timisation speed-up

Kingston (2006) Forecasting cyanobacteria and salinity in rivers

Alp and Cigizoglu (2007) Forecasting WTP suspended sediment load

Raduly et al. (2007) Wastewater treatment plant modelling

May et al. (2008b) Forecasting disinfectant residual within a water dis-
tribution network

Welk (2008) Forecasting chlorophyll-a within an open reservoir

7



1.3 Research Objectives

subtle issues relating to ANN model development, which can have a significant

(negative) influence on the modelling outcomes (Sarle, 1997; Bowden, 2003).

This thesis is therefore concerned with the methodology that is applied to the

development of ANN models for water quality modelling. In applications that

utilise ANN models, 90% of the required effort is during the model development

stages (Morari and Lee, 1999). It is therefore sensible that efforts are directed to

ensuring that (i) the effort required to build ANN models is reduced; (ii) appro-

priate techniques are employed, so that the ANN developed makes the best use of

the data that are available; and (iii) that the development methodology be made

as transparent as possible to ensure confidence in the models.

A proposed framework for ANN model development is illustrated in Figure 1.2

(May et al., 2009a), which describes each of the stages from data collection

through to model deployment. The most important aspect to note is that there

are several important stages of model development either side of ANN training. It

is important to equally consider each stage of ANN development, since the qual-

ity of the stages preceding ANN training will affect the quality of training, and

the performance of the resulting model. This framework is consistent with sta-

tistical learning theory, which is as equally concerned with aspects of necessary

data transformations (pre-processing), variable selection and data splitting, as it

is with parameter estimation. A more detailed summary of the considerations at

each step is given in Chapter 10, however the stages can be briefly summarised

as follows:

1. Data collection. A common step in the development of any model is the ob-

servation and measurement of variables to generate a set of input and output

data that describe the behaviour of the system. Data collection may use ex-

isting historical databases, or may require monitoring especially for the pur-

pose of model development. Where possible, experimental manipulation of

the system can also provide datasets that represent a wider range of system

behaviour.

2. Data pre-processing. This stage refers to the necessary cleansing of raw data

to remove errors and in-fill missing data. It may also include mathematical

transformations such as smoothing to a consistent time-interval, scaling to a

consistent range and generating time-series delays, as required.

3. Input variable selection. This step involves the screening of input variables to

identify and eliminate redundant or irrelevant variables to achieve the most

parsimonious set of input variables (i.e. maximum information with the min-

imum number of variables).
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4. Data splitting. In any model development, at least two data sets are required:

calibration and validation. Because only one dataset is available for model

development, splitting the modelling data is necessary to create these inde-

pendent datasets. However, in ANN model development, the calibration data

proportion is generally further divided into training and test portions, so that

three independent samples are generated.

5. Training. The ANN learns the optimal mapping of inputs to outputs through

training. During training, the initially random connection weights are itera-

tively changed, according to the chosen training algorithm, in response to the

prediction error for training observations. This stage is analogous to param-

eter estimation in regression, or calibration of conceptual model parameters.

Since an ANN can be trained to eventually fit the training data perfectly, train-

ing is generally terminated based on optimal performance on the test data, so

that the ANN adequately generalises. Hence, the requirement for the addi-

tional set of test data.

6. Model Selection. Since the optimal form of an ANN (e.g. number of hidden

nodes) is unknown, it is often necessary to compare ANNs with different ar-

chitectures to fine tune the degree of complexity. The application of model

selection criteria identifies the best performing ANN architecture based on

test performance, and considers trade-offs between model complexity and ac-

curacy, which forms an important aspect of model assessment in statistical

modelling.

7. Validation. This stage includes the validation of ANN predictive performance

on previously independent data not used in the training or test stages, to

provide an assessment of the model’s likely performance when deployed. This

is also a required step during the development of any type of model: statistical,

or physical.

8. Model deployment. Once the model is validated, it is ready for deployment

in its intended application. Since the model is initially constructed using a

limited sample of data, it is often useful to retrain the model as novel data be-

come available; which are not represented in the original set of data collected

for model development. This is similar to re-calibration, and can ensure that

model accuracy does not degrade over a long-term deployment.

Methodologies for undertaking the training stage (Stage 5) of development—

ANN architectures and learning algorithms—have been investigated extensively

within the literature, although interestingly this forms just one of eight steps in

model development. This is not surprising, given that the greater proportion of
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literature on ANNs is written from a machine learning and cognition perspec-

tive, rather than from a statistical learning perspective. However, the latter is

more appropriate when considering that the intended application is to develop a

statistical model for regression or classification. The same issue is also reflected

in the functionality of popular software tools that implement ANN development,

but which do not always adopt state-of-the-art methods. Many practitioners and

researchers lack the necessary skills or resources to develop ANN modelling tools,

and rely instead on readily available tools to learn, teach or apply ANN modelling

techniques. Consequently, many of the ANN modelling paradigms commonly em-

ployed are influenced by the limitations and restrictions of current software. In

comparison to ANN architectures and learning algorithms, the stages of input

variable selection (IVS) (Stage 3) and data splitting (Stage 4) tend to be con-

sidered relatively less in the majority of reported ANN applications. Although

it considered by most practitioners that these are necessary steps during ANN

development, it is how to perform these tasks, which remains most unclear.

Recent interest in methods for IVS that are applicable for ANN development has

resulted in a variety of different algorithms proposed within the literature. How-

ever, few comparisons of different ANN approaches are made that consider the

benefits or similarities of each approach, making it difficult to determine the

most appropriate approach. As will be discussed, the development of IVS meth-

ods based on estimation of mutual information, which is based on information

theory, has become a popular focus of ANN research. Using this relatively new

approach seems quite appropriate for ANN development, but potential improve-

ments on current algorithm designs are necessary to address reliability and com-

putational performance limitations. Consequently, the specific objectives of this

research, with respect to the issue of input variable selection, are to:

1. Comprehensively review IVS algorithms for ANN development,

2. Provide a benchmark comparison of MI-based approaches against conven-

tional correlation,

3. Further develop the use of mutual information for input variable selection,

and

4. Validate the IVS approach and demonstrate its benefit for real-world examples.

Data splitting, which is the fourth stage of the framework in Figure 1.2 is an im-

portant aspect of ANN development. Not only are independent training and test

data required for ensuring trained ANN models can adequately generalise, but a

separate set of data must also be available to validate ANN performance. Data
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splitting is the most widely adopted approach for generating three representative

samples from the available modelling dataset. However, as is discussed in Chap-

ter 3, data splitting is often poorly implemented, which can have a significant im-

pact on the subsequent stages of training, model selection and model validation.

The case against randomly splitting data—the approach that is most commonly

employed—is evident, although it needs to be reinforced. A number of alterna-

tive algorithms have been proposed within the literature to overcome the issues

with random sampling. In particular, an approach using the self-organizing map

(SOM) has been suggested. However, there is no consensus on how this approach

should specifically be implemented to achieve the best results. Consequently, the

specific objectives of this research, with respect to data splitting, are to:

1. Perform a broad review and comparison of sampling algorithms suitable for

data splitting,

2. Identify a suitable definition and methodology for quantifying data splitting

quality,

3. Further develop the methodology for data splitting using the SOM,

4. Compare the performance of different approaches from the perspective of

sample quality,

5. Determine guidelines for selecting the most appropriate data splitting algo-

rithm, and

6. Validate the outcomes through the application to real-world examples.

1.4 Thesis Structure

This thesis is presented as a collection of articles, which have arisen from the

research undertaken. The contents of the thesis are logically ordered to first

present all of the necessary background, and the then present each of the arti-

cles. Chapters 2 and 3 provide comprehensive reviews of literature pertaining

to input variable selection and data subset selection, respectively. These reviews

provide a basis for the arguments that are later presented in the published work.

It is worthwhile providing such reviews, as although many articles have been

published in this area, there are relatively few that have critically reviewed and

compared the wide range of different approaches that have been reported for

these two important components of the ANN development framework.

12
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Chapter 4 provides a synopsis of the publications that subsequently form the re-

mainder of this thesis, and which present the core of the research undertaken.

The synopsis provides a summary of the contributions of each individual article

to provide an overall cohesive context. Six publications are presented as chap-

ters Chapter 5 through 10. The first three publications are concerned with the

issue of input variable selection. The first two present the theory relating to the

development of a novel algorithm, and the third presents the application of the

algorithm within an applied context. Chapter 8 and 9 present the fourth and

fifth papers, which are concerned with the subject of data splitting. The fourth

paper discusses the issues surrounding the application of the self-organizing map

(SOM) to data splitting. The fifth paper presents a novel data splitting algorithm

called SOMPLEX, and compares its performance with a range of approaches for

a set of water resources case studies. Finally, Chapter 10 presents the sixth arti-

cle, which is published book chapter that summarises the state-of-the-art of ANN

development and application.

Concluding remarks summarising the key contributions of the thesis, discussion

on limitations and recommendations for future research directions are given in

Chapter 11.

13



Chapter 2

Input Variable Selection

“If variable elimination has not been sorted out after two
decades of work assisted by high-speed computing, then

perhaps the time has come to move on to other problems.”

R. L. Plackett, discussion in Miller (1984)

2.1 Introduction

The choice of input variables is a fundamental, and yet crucial consideration in

identifying the optimal functional form of statistical models. The task of select-

ing input variables is common to the development of all statistical models, and

is largely dependent on the discovery of relationships within the available data

to identify suitable predictors of the model output. In the case of parametric, or

semi-parametric empirical models, the difficulty of the input variable selection

task is somewhat alleviated by the a priori assumption of the functional form of

the model, which is based on some physical interpretation of the underlying sys-

tem or process being modelled. However, in the case of ANN and other similarly

data-driven statistical modelling approaches, there is no such assumption made

regarding the structure of the model. Instead, the input variables are selected

from the available data, and the model is developed subsequently. The difficulty

of selecting input variables arises due to (i) the number of available variables,

which may be very large; (ii) correlations between potential input variables,

which creates redundancy; and (iii) variables that have little or no predictive

power.

Variable subset selection has been a longstanding issue in fields of applied statis-

tics dealing with inference and linear regression (Miller, 1984), and the advent
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of ANN models has only served to create new challenges in this field. The non-

linearity, inherent complexity and non-parametric nature of ANN regression make

it difficult to apply many existing analytical variable selection methods. The diffi-

culty of selecting input variables is further exacerbated during ANN development,

since the task of selecting inputs is often delegated to the ANN during the learn-

ing phase of development. A popular notion is that an ANN is adequately capable

of identifying redundant and noise variables during training, and that the trained

network will use only the salient input variables. ANN architectures can be built

with arbitrary flexibility and can be successfully trained using any combination of

input variables (assuming they are good predictors). Consequently, allowances

are often made for a large number of input variables, with the belief that the abil-

ity to incorporate such flexibility and redundancy creates a more robust model.

Such pragmatism is perhaps symptomatic of the popularisation of ANN models

through machine learning, rather than statistical learning theory. ANN models

are too often developed without due consideration given to the effect that the

choice of input variables has on model complexity, learning difficulty, and perfor-

mance of the subsequently trained ANN.

The following review presents the IVS problem within the context of ANN model

development for time-series forecasting and function approximation applications,

such as are typically encountered by environmental modellers. Although the need

to adopt a methodical approach to IVS for ANN development is well-justified, the

importance of the task is not as well recognised by environmental modellers as

it is elsewhere (Maier and Dandy, 2000; Bowden, 2003). This is evident from

the myriad of methods that are employed to undertake the IVS task within other

reported ANN modelling applications. Consequently, the first part of this chapter

presents a comprehensive review of IVS approaches that have been developed

to address the issue, which draws from recent innovations that have been pre-

sented in fields such as signal processing, pattern recognition, gene expression

data analysis and classification.

2.2 The Input Variable Selection Problem

Recall that for an unknown, steady-state input-output process, the development

of an ANN provides the non-linear transfer function

Y = F (X) + ε, (2.1)

where the model output Y is some variable of interest, X is a k-dimensional

input vector, whose component variables are denoted by Xi(i = 1, . . . , k), and ε
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is some small random noise. Let C denote the set of d variables that are available

to construct the ANN model. The Id−k problem of input variable selection (IVS)

is to choose a set of k variables from C to form X (Kwak and Choi, 2002; Battiti,
1994) that leads to the optimal form of the model, F .

Dynamic processes will require the development of an ANN to provide a time-

series model of the general form

Y (t+ k) = F (Y (t), . . . , Y (t− p), X(t), . . . , X(t− p)) + ε(t). (2.2)

Here, the output variable is predicted at some future time t + k, as a function

of past values of both input X and output Y . Past observations of each variable

are referred to as lags, and the model order p defines the maximum lag of the

model. The model order reflects the persistence of dynamics within the system.

In comparison to the steady-state model formulation, the number of variables

in the candidate set C is now multiplied by the model order. Consequently, for

systems with strong persistence, the number of candidate variables is often quite

large.

ANN models may be specified with insufficient, or uninformative input variables

(under-specified); or more inputs than is strictly necessary (over-specified), due

to the inclusion of superfluous variables that are uninformative, weakly infor-

mative, or redundant. Defining what constitutes an optimal set of ANN input

variables first requires some consideration of the impact that the choice of input

variables has on model performance. The following arguments summarise the

key considerations:

• Relevance. Arguably the most obvious concern is that too few variables are

selected, or that the selected set of input variables is not sufficiently informa-

tive. In this case, the outcome is a poorly performing model, since some of

the behaviour of the output remains unexplained by the selected input vari-

ables. In most cases, it is reasonable to assume that a modeller will have some

expert knowledge of the system under consideration; will have surveyed the

available data, and will have arrived at a reasonable set of candidate input

variables. The a priori assumption of model development is that at least one

or more of the available candidate variables is capable of describing some, if

not all, of the output behaviour, and that it is the nature and relative strength

of these relationships that is unknown (which is, of course, the motivation be-

hind the development of non-parametric models). Should it happen that none
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of the available candidates are good predictors, then the problem of model de-

velopment is intractable, and it may be necessary to reconsider the available

data and the choice of model output, and to undertake further measurements

or observations before revisiting the task of model development.

• Computational Effort. The immediately obvious effect of including a greater

number of input variables is that the size of an ANN increases, which increases

the computational burden associated with querying the network—a significant

influence in determining the speed of training. In the case of the MLP, the input

layer is likely to have an increased number of nodes, and in a fully connected

network, the number of connection weights can increase dramatically, since

each additional input adds another connection to each of the j nodes in the

first hidden layer (excluding the bias node). In the case of GRNN and RBF net-

works, the computation of distance to prototype vectors is more expensive due

to higher dimensionality. Furthermore, additional variables place an increased

burden on any data pre-processing steps that may be undertaken during ANN

development.

• Training difficulty. The task of training an ANN becomes more difficult due to

the inclusion of redundant and irrelevant input variables. The effect of redun-

dant variables is to increase the number of local optima in the error function

that is projected over the parameter space of the model, since there are more

combinations of parameters that can yield locally optimal error values. Algo-

rithms such as the back-propagation algorithm, which are based on gradient

descent, are therefore more likely to converge to a local optimum resulting in

poor generalisation performance. Training of the network is also slower be-

cause the relationship between redundant parameters and the error is more

difficult to map. Irrelevant variables add noise into the model, which also hin-

ders the learning process. The training algorithm may expend resources adjust-

ing weights that have no bearing on the output variable, or the noise may mask

the important input-output relationships. Consequently, many more iterations

of the training algorithm may be required to determine a near-global optimum

error, which adds to the computational burden of model development.

• Dimensionality. The so-called curse of dimensionality (Bellman, 1961) is that,

as the dimensionality of a model increases linearly, the total volume of the

modelling problem domain increases exponentially. Hence, in order to map a

given function over the model parameter space with sufficient confidence, an

exponentially increasing number of samples is required (Scott, 1992). Alterna-

tively, where a finite number of data are available (as is generally the case in

real-world applications), it can be said that the confidence or certainty that the

true mapping has been found will diminish. ANN architectures like the MLP
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Table 2.1: Growth of sample size with increasing dimensionality required to maintain
a constant standard error of the probability of an input estimated in the GRNN pattern
layer (Silverman, 1986).

Dimension, d Sample size, N

1 4

2 19

3 67

4 223

5 768

6 2790

7 10 700

8 43 700

9 18 700

10 842 000

are particularly susceptible to the curse due to the rapid growth in the num-

ber of connection weights as input variables are added. Table 2.1 illustrates

the growth in the sample size required to maintain a constant error associated

with estimates of the input probability, as determined by the pattern layer of a

GRNN. Some ANN architectures can also circumvent the curse of dimension-

ality through their handling of redundancy and their ability to simply ignore

irrelevant variables (Sarle, 1997). Others, such as RBF networks and GRNN ar-

chitectures, are unable to achieve this without significant modifications to the

behaviour of their kernel functions, and are particularly sensitive to increasing

dimensionality (Specht, 1991).

• Comprehensibility. In many applications, such as in the case of ANN transfer

functions for process modelling, it will often suffice to regard an ANN as a

“black-box”’ model. However, ANN modellers are increasingly concerned with

the development of ANN models for knowledge discovery from data (KDD)

and data mining (Craven and Shavlik, 1998). The goal of KDD is to train an

ANN based on observations of a process, and then interrogate the ANN to gain

further understanding of the process behaviour it has learned. Rule-extraction

from ANN models can be useful for a number of purposes, including: (i) defin-

ing input domains that produce certain ANN outputs, which can be useful

knowledge in itself; (ii) validation of the ANN behaviour (e.g. verifying that

input-output response trends make sense), which increases confidence in the

ANN predictions; and (iii) the discovery of new relationships, which reveals

previously unknown insights into the underlying physical process (Craven and
Shavlik, 1998; Darbari, 2000). Reducing the complexity of the ANN architec-
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ture, by minimising redundancy and the size of the network, can significantly

improve the performance of data mining and rule extraction algorithms.

Based on the arguments presented, a desirable input variable is a highly informa-

tive explanatory variable (i.e a good predictor) that is dissimilar to other input

variables (i.e. independent). Consequently, the optimal input variable set will

contain the fewest input variables required to describe the behaviour of the out-

put variable, with a minimum degree of redundancy and with no uninformative

(noise) variables. Identification of an optimal set of input variables will lead to a

more accurate, efficient, cost-effective and easily interpretible ANN model.

The fundamental importance of the IVS issue is evident from the depth of lit-

erature surrounding the development and discussion of IVS algorithms in fields

such as classification, machine learning, statistical learning theory, and many

other fields where ANN models are applied. In a broad context, reviews of IVS

approaches have been presented by Kohavi and John (1997), Blum and Langley
(1997) and more recently, by Guyon and Elisseeff (2003). However, in many

examples of the application of ANNs to environmental modelling and data anal-

ysis applications, the importance of IVS is often understated. In other cases, the

task is given only marginal consideration and this often results in the application

of ad hoc or inappropriate methods. Reviews by Maier and Dandy (2000) and

Bowden (2003) examined the IVS methods that have been applied to ANN ap-

plications in water engineering and concluded that there was a need for a more

considered approach to the IVS task. Certainly, no consensus has been reached

regarding suitable methods for undertaking the IVS task in the development of

ANN regression or time-series forecasting models (Bowden, 2003).

2.3 Strategies and Algorithms

A broader review of relevant literature reveals that numerous approaches have

been described for undertaking IVS, including a wide range of algorithms for au-

tomating the IVS task. The IVS problem has been an ongoing area of research that

has evolved based on regression, statistical learning theory, and more recently

machine learning. Figure 2.1 presents a taxonomy of the various approaches

that has been defined on the basis of the literature review.

It should be noted that the IVS problem is synonymous with feature selection,

variable selection, feature extraction, dimensionality reduction etc. Often the

differences in these applications are simply the nomenclature and other conven-

tions that are influenced by the field in which they are discussed (i.e. statistics or
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machine learning). In this thesis, a distinction is made between feature selection

and variable selection. The notion of feature selection in classification considers

datasets where classes of objects are defined by attributes or features, which take

on discrete numeric or categorical values. Many algorithms for feature selection

have also been described, however this thesis is focused on algorithms that are

applicable to datasets of continuous variables, for which some feature selection

approaches are not directly applicable.

IVS algorithms can be broadly classified into two main classes: wrapper or fil-
ter algorithms (Kohavi and John, 1997; Blum and Langley, 1997), as shown in

Figure 2.1. The two main conceptual approaches to IVS algorithm design are il-

lustrated in Figure 2.2. Wrapper algorithms, as shown in Figure 2.2(a), approach

the IVS task as part of the optimisation of model architecture. The optimisa-

tion searches through the set, or a subset, of all possible combinations of input

variables, and selects the set that yields the optimal generalisation performance

of the trained ANN. In contrast, IVS filters (Figure 2.2(b)) distinctly separate

the IVS task from ANN training and instead adopt an auxiliary statistical analy-

sis technique to measure the relevance of individual, or combinations of, input

variables.

Given the general basis for the formulation of both IVS wrapper and filter de-

signs, the diversity of implementations that can possibly be conceived is immedi-

ately apparent. However, designs for wrappers and filters share the same overall

components, in that, in addition to a measure of the informativeness of input

variables, each class of selection algorithms requires:

• an optimality criterion to determine when the optimal set of input variables

has been selected, and

• a strategy for searching through the available candidates.

2.3.1 Optimality Criteria

The optimality criterion defines the interpretation of the arguments presented in

Section 2.2 into an expression for the optimal size k and composition of the input

vector, X. Optimality criteria for wrapper selection algorithms are derived from,

or are exactly the same as, criteria that are ultimately used to assess the predictive

performance of the trained ANN. Essentially, the wrapper approach treats the IVS

task as a model selection exercise, where each model corresponds to a unique

combination of input variables. Recall that the most commonly adopted measure
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Dimension Reduction

Rotation

Linear

Principal component analysis (PCA)

Partial Least-Squares (PLS) (Wold, 1966)

Non-Linear

Independent component analysis (ICA)

Non-linear PCA (NLPCA)

Clustering

Learning vector quantisation (LVQ)

Self-organizing map (SOM) (Bowden et al., 2002)

Variable selection

Wrapper (model-based)

Error-based

Incremental search

Forward selection (constructive ANNs)

Backward elimination

Nested subset (e.g. increasing delay order)

Global search

Exhaustive search

Heuristic search (e.g. GA-ANN)

Variable ranking

Single-variable Ranking (SVR)

GRNN Input Determination Algorithm (GRIDA)

Weight-based

Stepwise regression

Connection weight pruning

Filter (model-free)

Correlation (linear)
Rank (maximum) Pearson correlation

Ranked (maximum) Spearman correlation

Forward partial correlation selection

Time-series analysis (Box and Jenkins, 1976)

Information theoretic (non-linear)
Entropy

Entropy (minimum) ranking

Minimum entropy

Mutual Information (MI)

Rank (maximum) MI

MI feature selection (MIFS) (Battiti, 1994)

MI w/ICA (ICAIVS) (Back and Trappenberg, 2001)

Partial mutual information (PMI) (Sharma, 2000)

Joint MI (JMI) (Bonnlander and Weigend, 1994)

Figure 2.1: Taxonomy of IVS Strategies and Algorithms
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Figure 2.2: Conceptual IVS algorithm based on (a) a wrapper and (b) filter design.
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of predictive performance for ANNs is the mean squared error (MSE), which is

given by

MSE =
1
n

n∑
j=1

(yj − ŷj)
2 (2.3)

where yj and ŷj are the actual and predicted outputs, which correspond to a set

of test data. Following the development of m models, a simple strategy is to

select the model that corresponds to the minimum MSE. However, the drawback

of this criterion is that the “best”’ performing model, in terms of the MSE, is

not necessarily the “optimal”’ model, since models with a large number of input

variables tend to be biased as a result of over-fitting. Consequently, it is more

common to adopt an optimality criterion such as Mallows’ Cp (Mallows, 1973), or

the Akaike information criterion (AIC) (Akaike, 1974), which penalise overfitting.

Both Mallows’ Cp and the AIC determine the optimal number of input variables

by defining the optimal trade-off between model size and accuracy by penalising

models with an increasing number of parameters. In fact, the Cp criterion is

considered to be a special case of the AIC.

Mallows’ Cp is is defined as

Cp =

∑n
j=1 (yj − ŷj(k))

2

σ2
d

− n+ 2p, (2.4)

where yj(k) are the outputs generated by a model using p parameters, and σ2
d are

residuals for a full model trained using all d possible input variables. Cp measures

the relative bias and variance of a model with p variables. The theoretical value

of Cp for an unbiased (optimal) model will be p, and in model selection, the

model with the Cp value that is closest to p is selected.

The AIC is defined as

AIC = −n log

∑n
j=1 (yj − ŷj(k))

2

n
+ 2(p+ 1). (2.5)

Here, the accuracy is determined by the log-likelihood, which is a function of the

MSE. The complexity of the model is determined by the term p + 1, where p is
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the number of model parameters. Typically, the regression error decreases with

increasing p, but since the model is more likely to be over-fit for a fixed sample

size, the increasing complexity is penalised. At some point an optimal AIC is

determined, which represents the optimal trade-off between model accuracy and

model complexity. The optimum model is determined by minimising the AIC with

respect to the number of model parameters, p.

Other model selection criteria have also been similarly derived, such as the Ba-

yesian information criterion (BIC) (Schwarz, 1978), which is similar to the AIC,

although it applies a more severe penalty of (k lnn) to the number of model pa-

rameters. The expression for the AIC in (2.5) assumes a linear regression model,

but can be extended to non-linear regression. However, it should be noted that in

this case, p + 1 no longer sufficiently describes the complexity of the model and

other measures are required. Such measures include the effective number of pa-
rameters, or Vapnik-Chernovenkis dimension. The values of these measures are a

function of the class of regression model that is estimated and the training data.

The effective number of parameters, d can be determined by trace(S), where S

is a matrix defined by the expression

ŷ = Sy. (2.6)

For kernel regression, the hat matrix, S, is equal to KTK, where the elements

of K correspond to each Kj(x, h), and the complexity is therefore given by

trace(KTK). Factors affecting complexity include the number of data, the di-

mension of the data, and the number of basis functions. The VC-dimension

is similarly defined as the number of data points that can be shattered by the

model (i.e. how many points in space can be uniquely separated by the regres-

sion function). However, calculating the VC-dimension of complex regression

functions can be difficult (Hastie et al., 2001). For MLP architectures, the VC-

dimension is related to the number of connection weights, and for RBF networks

the VC-dimension depends on the number of basis functions and their respective

bandwidths, if different value is used for each basis function. Both the effective

number of parameters and the VC-dimension revert to the value of p+1 for linear

models.

In filter algorithm designs, the optimality criterion is embedded in the statistical

analysis of candidate variables, which defines the interpretation of “good”’ input

variables. In general, selection filters search amongst the candidate variables and

identify suitable input variables according to the following criteria:
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• maximum relevance (MR),

• minimum redundancy (mR), and

• minimum redundancy–maximum Relevance (mRMR).

The criterion of maximum relevance ensures that the selected input variables are

highly informative by searching for variables that have a high degree of correla-

tion with the output variable. Input ranking schemes are a prime example of MR

techniques, in which the relevance is determined for each input variable with the

output variable. Greedy selection can be applied to select the k most relevant

variables, or a threshold value can be applied to select inputs that are relevant,

and reject those which are not.

The issue with MR criteria is that the selection of the k most relevant candidate

variables does not strictly yield an optimal ANN. Here, Kohavi and John (1997)

make the distinction between relevance and usefulness by observing that redun-

dancy between variables can render highly relevant variables useless as predic-

tors. Consequently, a criterion of minimum redundancy aims to find inputs that

are maximally dissimilar from one another, in order to select the most useful set

of relevant variables. The application of an additional mR criterion with the ex-

isting MR criterion leads to mRMR selection criteria, where input variables are

evaluated with the dual consideration of relevance, with respect to the output

variable; and independence (dissimilarity), with respect to the other candidate

variables (Ding and Peng, 2005).

2.3.2 Search Strategies

Search strategies applied to IVS algorithms seek to provide an efficient method

for searching through the many possible combinations of input variables and de-

termining an optimal, or near optimal set, while working within computational

constraints. Searches may be global, and consider many combinations; or lo-

cal methods, which begin at a start location and move through the search space

incrementally. The latter are also commonly referred to as nested subset tech-

niques, since the region they explore comprises overlapping (i.e. nested) sets by

incrementally adding variables.
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Exhaustive Search

Exhaustive search simply evaluates all of the possible combinations of input vari-

ables and selects the best set according to the predetermined optimality criteria.

The method is the only selection technique that is guaranteed to determine the

optimal set of input variables for a given ANN model (Bonnlander and Weigend,

1994). Given the combinatorial nature of the IVS problem, the number of pos-

sible subsets that form the search space is equal to 2d, with subsets ranging in

size from single input variables to the set of all available input variables. Ex-

haustive evaluation of all of these possible combinations may be feasible when

the dimensionality of the candidate set is low, but quickly becomes infeasible as

dimensionality increases.

Heuristic Search

Heuristic search techniques are widely used in optimisation problems where the

search space is large. Heuristic search algorithms are particularly adept at ef-

ficiently finding global, or near-global optimum solutions within large search

spaces by exploiting the common attributes of good solutions. In general, the

various algorithms each implement a search that combines random evaluation of

solutions throughout the entire search space, with a mechanism to increase the

focus of the search in regions that lead to good solutions. Examples of heuris-

tic search algorithms applied to IVS include evolutionary algorithms (EAs), such

as genetic algorithms (GAs) (Bowden, 2003) and ant colony optimization (ACO)

(Izrailev and Agrafiotis, 2002; Marcoulides and Drezner, 2003; Shen et al., 2005).

GAs are a sub-class of evolutionary algorithms that are inspired by natural evolu-

tionary mechanisms such as breeding (crossing), mutation and selection (Gold-
berg, 1989). In a basic GA wrapper formulation, the decision to include a can-

didate variable may be encoded as a binary digit 1 (included), or 0 (excluded),

so that each possible input set is represented by a string (chromosome) of d dig-

its. Starting with an initial random population represented by m chromosomes,

an optimal set of input variables naturally evolves through iterative evaluation of

the model error associated with each chromosome, removal of bad solutions, and

formulating new chromosomes by crossing previously good ones. The objective

function for evaluation of chromosomes is minimisation of the cross-validation

error of the trained ANN.

ACO algorithms are a search technique based on the ability of ants to collec-

tively determine the optimal (shortest) pathway to gather resources, such as food
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(Dorigo and Sutzle, 2004). In the formulation of an IVS search strategy, ACO al-

gorithms define the possible input variable sets as pathways formed by the suc-

cessive decision to include or exclude each candidate variable (Marcoulides and
Drezner, 2003). Ant pheromone levels associated with each pathway define the

probability of selecting a given path (i.e. combination of input variables), which

is initially equal. Pheromone is increased along pathways that yield good input

variable sets (as evaluated by cross-validation). The probability of selecting good

pathways increases so that, over time, an optimal solution iteratively evolves as

the pathway with the highest pheromone level.

The application of heuristic optimisation techniques to IVS wrapper design over-

comes the significant computational requirement of exhaustive search, while

maintaining the desirable characteristic of providing a global (or, near-global)

optimum. Moreover, EA-based IVS wrappers are an attractive option because

they can also be included as part of evolutionary ANN training algorithms, which

also seek to determine optimal ANN parameter values by minimising the ANN

cross-validation error. However, the application of heuristic search techniques

requires calibration of search algorithm parameters, which is itself not a triv-

ial task. In general, setting the search parameters involves a trade-off between

the amount the search space that is explored, and the rate at which the algo-

rithm converges to a final solution. Finally, heuristic algorithms retain a certain

degree of randomness, and although they search more solutions in comparison

to sequential selection algorithms, there is still no guarantee that the sub-space

explored will include the globally optimal solution.

Forward Selection

Forward selection is a linear incremental search strategy that selects individual

candidate variables one at a time. In the case of wrappers, the method starts by

training d single-variable ANN models and selecting the input variable that max-

imises the model performance-based optimality criterion. Selection then contin-

ues by iteratively training d − 1 bivariate ANN models, in each case adding a

remaining candidate to the previously selected input variable. Selection is ter-

minated when the addition of another input variable fails to improve the perfor-

mance of the ANN model. In filter designs, the single most relevant candidate

variable is selected first, and then forward selection proceeds by iteratively iden-

tifying the next most relevant candidate and evaluating whether the variable

should be selected, until the optimality criterion is satisfied.

The approach is computationally efficient overall, and tends to result in the se-
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lection of relatively small input variable sets, since it considers the smallest pos-

sible models, and trials increasingly larger input variable sets until the optimal

set is reached. However, because forward selection does not consider all of the

possible combinations, and only searches a small subset, it is possible that the

algorithm may encounter a locally optimum set of input variables and terminate

prematurely. Also, due to the incremental nature of the forward search, the al-

gorithm may ignore highly informative combinations of input variables that are

only marginally relevant individually (Guyon and Elisseeff , 2003).

Step-wise Selection

Forward selection is said to have fidelity, in that once an input variable is selec-

ted, the selection can not be undone. Step-wise selection is an extension of the

forward selection approach, however, input variables may also be removed at any

subsequent iteration. The formulation of the step-wise approach is aimed at han-

dling redundancy between candidate variables. For example, a variable Xa may

be selected initially due to high relevance, but is later found to be inferior to the

combination of two other variables, Xb and Xc, which only arises at a subsequent

iteration. The initially selected input variable Xa is now redundant, and can be

unselected in favour of the pair Xb and Xc.

A common example of this approach is step-wise regression, which is widely used

for the development of linear regression models. In this wrapper approach, lin-

ear models are iteratively constructed by adding an input variable to the model,

and re-estimating the model coefficients. Input variables are retained based on

analysis of the coefficients of the newly developed model. The selection process

continues until the model satisfies some optimality criterion, such as the AIC (see

Section 2.3.1), that is, when k+1 input variables are no better than the preceding

k variables.

Backward Elimination

Backward elimination is essentially the reverse of the forward selection approach.

In this case, all d input variables are initially selected, and then the most unim-

portant variables are eliminated one-by-one. In wrapper selection strategies, the

relative importance of an input variable may be determined by removing an input

variable Xi and evaluating the effect on the model that is retrained without it; or,

by examining the influence of each of the input variables on the output y through

some sensitivity analysis. In filter strategies, the least relevant candidates are it-
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eratively removed until the optimality criterion is satisfied.

A common example of backward elimination is the pruning strategy applied in

ANN model development, wherein the connection weights of a network are as-

sessed, and insignificant weights are removed from the network. Pruning algo-

rithms were originally developed to address the computational burden associ-

ated with fully connected networks, given that many of the weights may be only

marginally important due to redundancy within the ANN architecture. However,

the strategy also offers the means of selectively removing inputs by eliminating

connection weights between the input and hidden layers.

In general, backward elimination is inefficient in comparison with forward se-

lection, as it can require the development and evaluation of many large ANN

models before reaching the optimal model. Since all input variables are initially

included, it may be more difficult to determine the relative importance of an in-

dividual input variable than in forward selection, which starts with a single input

variable. Also, wrapper algorithms based on backward elimination may poten-

tially be biased by overfitting of large models in the same manner as wrappers

that utilise global search strategies.

2.3.3 Dimensionality Reduction

The taxonomical classification in Figure 2.1 shows dimensionality reduction al-

gorithms as the first class of algorithms reducing the number of variables within

a dataset. Dimensionality reduction is closely related to the task of input variable

selection, and is regularly employed as a form of data pre-processing in many

multivariate data analysis applications. Dimensionality reduction is performed in

order to reduce the computational effort associated with data processing, or to

identify a suitable subset of variables to include in the analysis. Comprehensive

surveys of dimensionality reduction techniques can be found in Carreira-Perpinan
(1997) and Fodor (2002). However, it is worth highlighting several of these di-

mensionality reduction techniques, since several hybrid IVS algorithms have been

proposed within the literature that make use of them as a pre-processing step

ahead of variable selection. The potential benefit is that the identification of a set

of informative, yet independent variables, can improve the performance of the

input variable selection algorithm.
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Principal Component Analysis

Principal component analysis (PCA) is a commonly adopted technique for reduc-

ing the dimensionality of a dataset X. PCA achieves dimensionality reduction by

expressing the p variables (x1, . . . , xp) as d feature vectors (or, principal compo-
nents (PCs)), where d < p. The PCs are a set of orthogonal, linear combinations

of the original variables within the dataset. Essentially, PCA can be considered a

data pre-processing algorithm that determines an optimal rotational transforma-

tion of the dataset, X, that maximises the amount of variance of the output Y

that is explained by the PCs (Fodor, 2002).

Considering a given dataset X, PCA is performed as follows:

i. Subtract the mean value of each variable, to ensure that x̄i = 0 for each

xi ∈ X.

ii. Find the covariance matrix Σ = Cov(X) = XTX.

iii. Determine the unit eigenvectors e1, . . . , ep of Σ.

iv. Determine the corresponding eigenvalues λ1, . . . , λp.

v. Rank the eigenvectors according to their eigenvalues.

vi. Select the d PCs according to their eigenvalues.

Selection of PCs is based on examining the eigenvalues of each PC, which cor-

respond to the amount of variance explained by each PC, and thereby including

only the significant PCs as input features. A common selection method is to rank

the PCs and select all PCs whose eigenvalues exceed some threshold λ0, or gener-

ate a plot of the cumulative eigenvalue as a function of the number of PCs, k, to

ensure the selected components explain the desired amount of variance of Y . An-

other technique is to use and generate a scree plot of the percentage contribution

of each kth PC and to visually identify an optimal value of k (Fodor, 2002).

PC regression is a popular application of PCA, where a linear regression model

is developed based on the selected PCs. The reduced dimensionality and orthog-

onality of the PCs substantially improve model parameter estimation. PCA has

also been used as the basis for IVS for the development of ANN models (see, for

example, Olsson et al. (2004), Gibbs et al. (2006), and Bowden (2003)). How-

ever, the mixing of input variables is assumed to be linear, as is the relationship

between principal components and the output. Consequently, the application of

PCA in this case is flawed, since it will fail to identify any non-linear relationships

31



2.3 Strategies and Algorithms

within the data. Although non-linear versions of the PCA algorithm exist, the

transformations of the data can be highly complex, and interpretation of the PCs

is much more difficult.

An additional disadvantage of PCA is that the algorithm identifies only important

component vectors, rather than variables. Consequently, although PCA may be

useful in removing noise from the data, it is not possible to distinguish the unique

contributions of individual variables to the variance in the output.

Independent Component Analysis

Independent component analysis (ICA) seeks to determine a set of d indepen-

dent component vectors within a dataset X. The approach is conceptually similar

to PCA, although it relaxes the orthogonality constraint on component vectors.

Furthermore, where PCA determines the optimal transformation of the data by

considering covariance and identifying uncorrelated PCs based on covariance,

ICA considers statistically independent combinations of variables where the or-

der of the statistic that is used can be arbitrary (Fodor, 2002). ICA is therefore

not restricted to linear correlations, and is more widely applicable to non-linear

datasets (Back and Trappenberg, 2001). However, like PCA, ICA cannot discrimi-

nate unique variables as predictors, and is restricted to determining independent

feature vectors.

Vector Quantization

Vector quantization (VQ) refers to techniques that describe a larger set of n vec-

tors by c codebook, or prototype vectors. VQ is closely associated with data

clustering and is more commonly associated with algorithms for data compres-

sion, in terms of length n. However, Bowden (2003) demonstrates the potential

for VQ algorithms to be used as an alternative to PCA for data dimensionality

reduction. In this case, the d vectors of the candidate set are represented by pro-

totype vectors. Similar candidate variables will be identified by the formation of

groups, which have the closest proximity (defined by some distance measure) to

the same prototype vector. Note that the algorithm is unsupervised and does not

assert which of the groups of variables have a strong correlation with the output,

merely that candidate variables are associated in some way with each other.

Bowden (2003) implements VQ using the self-organizing map (SOM) (described

in detail in Section 8.3). The advantage of VQ algorithms, such as the SOM,
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over PCA for dimensionality reduction is that they can identify a reduced set of

independent variables, rather than feature vectors. An additional advantage is

that VQ algorithms, such as the SOM, are non-linear. However, care should be

taken in how non-linearity is defined, since it can be interpreted incorrectly, as in

Bowden et al. (2005). The SOM is considered a non-linear algorithm due to the

topological mapping of multidimensional data into a low dimensional space (Ko-
honen, 1995). Non-linear dimensionality reduction could be claimed by analysing

the data within this low dimensional space. However, according to the definition

of VQ, it is the distance measure that defines the nature of association between

two vectors in the SOM algorithm. In the basic SOM algorithm, the Euclidean

distance is used, by which the degree of superposition (overlap) of two vectors

defines the notion of similarity, rather than correlation. In fact, two vectors may

lie far from each other, but be perfectly correlated (for example, consider two

parallel lines separated by a distance, D; or, two perfectly, auto-correlated time-

series with a phase delay, d). In this case, variables will be grouped according

to superposition, rather than correlation, which suggests that only perfect, pos-

itive linear correlation between variables will be identified, which in fact makes

the algorithm less useful than PCA. In order to claim non-linear dimensionality

reduction, it would be necessary to modify the SOM algorithm, by adopting a

non-linear measure of correlation as the distance metric. One suitable metric is

mutual information, which has been applied previously to clustering algorithms

(Maier et al., 2006).

2.3.4 Wrappers

Wrapper algorithms are the first of the two main classes of variable selection

algorithm shown according to Figure 2.1. Wrapper algorithms are the simplest

IVS algorithm to formulate. Essentially, the algorithm that results is defined by

the choice of the induction algorithm (i.e. model architecture). The efficiency

of the algorithm will depend largely on the ability of the model to represent

relationships within the data and how quickly trial models can be constructed

and evaluated.

Single Variable Regression (SVR)

The notion of ranking individual candidate variables according to correlation

can be extended by implementing a wrapper approach in order to relax the as-

sumption of linearity in correlation analysis (Guyon and Elisseeff , 2003). In this
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approach, a single variable regression1 (SVR) is constructed using each candi-

date variable, which is then ranked according to the model performance-based

optimality criterion, such as the cross-validation error. In comparison to ranking

filters, SVR can potentially suffer from overfitting due to the additional flexibility

in the regression model.

The GRNN input determination algorithm (GRIDA) (Bowden et al., 2006) is a

recent example of an SVR wrapper for input variable ranking, which proceeds as

follows:

i. Let X → C. (Initialisation)

ii. For each x ∈ X,

iii. Train a GRNN and determine MSEx.

iv. For b = 1 to 100, (Bootstrap)

v. Randomly shuffle x→ ε.

vi. Estimate MSEε,b.

vii. Estimate MSE(95)
ε .

viii. If MSEx > MSE(95)
ε or MSEx > Θ (Selection),

ix. Remove x from X.

x. Return X.

where MSE(95)
ε is the 95th percentile, and Θ is some threshold value.

Considering each variable in turn, a GRNN is trained, and then the MSE of the

model is determined for a set of test data. However, rather than greedy selection

of the k best variables, each variable is compared to a bootstrap estimate of a

confidence bound for the randomised model error, MSE(95)
ε . A variable is rejected

immediately if the model error exceeds the randomised error, since it is no better

predictor than a random noise variable. Further strictness on selections is im-

posed through the heuristic error threshold, Θ. However, a suitable value for Θ
needs to be determined first. The number of variables selected for a given value

of Θ will be dependent on several factors, including the degree of noise in the

data, the error function used, and the distribution of the error over the candidate

variables. Conseqently, optimal values for Θ can only be determined for each

dataset by trial and error.
1The term has been adapted from the term single variable classifier (SVC), which is more often

referred to within literature due to its application in classification
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The estimation of the confidence bound on the error for each SVR is a significant

computational requirement. Given the assumed constraint 0 < Θ < MSE(95)
ε , the

estimation of the bootstrap may not even be necessary to perform IVS. However,

the method does provide useful information in discriminating noise variables

from weakly informative ones.

Like all MR filters, the SVR approach does not account for interractions between

variables. In order to overcome this, Bowden et al. (2006) utilise SOM-based

dimensionality reduction, in order to obtain an independent set of candidate

variables, prior to selection. However, as discussed previously in Section 2.3.3,

the application of the SOM can potentially result in unexpected results.

GRNN Wrappers

Bowden et al. (2005) utilised an evolutionary wrapper strategy for IVS that com-

bined a GA optimisation with a GRNN architecture. The method exploits the

fast GRNN training times, and the fixed architecture of the GRNN, which avoids

the need to optimise the internal architecture and training algorithm parame-

ters. These are required for the development of other architectures, such as the

MLP. A simple binary GA (a GA with decisions encoded as 1 or 0 within a bi-

nary string) was utilised, with the objective of minimising the MSE obtained by

hold-out validation on a set of test data. In order to overcome the inability of

the wrapper methodology to detect interractions between candidate variables, as

with GRIDA, Bowden et al. (2005) adopted SOM-based dimensionality reduction

as a pre-processing stage to reduce the candidate variables to a set of indepen-

dent variables.

The Chlorcast©methodology (Serodes et al., 2001) for ANN development also

utilises a GRNN wrapper approach to optimise the input variables for a GRNN.

However, the search space is restricted to nested subsets formed by increasing

the order for all candidate variables and an exhaustive search is undertaken

to determine the optimal model order, d, for a time-series model. The Chlor-

cast©methodology does not consider differences in persistence, differences in

delays with respect to the model output variable, and redundancies that might be

observed within the candidates. Consequently, the method is likely to yield a sub-

optimal set of input variables in comparison to the GA wrapper, which searches

through many more combinations of variables. Model performance is gauged

only on the MSE of the trained GRNN, and although Serodes et al. (2001) con-

clude that the increase in performance of the model for increasing model order

was due to capturing more of the process dynamics, it could also be concluded
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that the models were increasingly over-fitted.

2.3.5 Filters

In the taxonomy shown in Figure 2.1, filter algorithms represent the second sub-

class of variable selection algorithms and represent an alternative to the wrapper

approach. The design of filter algorithms is typically defined by the measure of

relevance that is used to distinguish the important input variables, as well as

the optimality criteria, as they have been previously defined for filters in Sec-

tion 2.3.1. Incremental search strategies tend to dominate filter designs, since

the relevance measure is usually a bivariate statistic, which necessitates evalu-

ating each candidate-output relationship. Currently, two broad classes of filters

have been considered: those based on linear correlation, and those based on

information theoretic measures, such as mutual information.

Rank Correlation

Arguably the most commonly used relevance measure in multivariate statistics is

the Pearson correlation. The Pearson correlation (also called linear correlation,

or cross-correlation), R, is defined by

RXY =
∑n

i=1 (xi − x̄)(yi − ȳ)√∑n
i=1 (xi − x̄)2

∑n
i=1 (yi − ȳ)2

(2.7)

where RXY is the short-hand notation for R(X,Y ). In (2.7), the numerator is

simply the sample covariance, V ar(X,Y ); and the two terms in the denominator

are the square-root of the sample variances, V ar(X) and V ar(Y ). The applica-

tion of correlation analysis to variable selection originates from linear regression

analysis. The squared correlation, R2
XY , is the coefficient of determination, and

if X and Y have been standardised to have a zero mean, R2 is the equivalent to

the coefficient of a linear fit between X and Y .

Input variable ranking based on the Pearson correlation is one of the most widely

used IVS methods. The selection of candidate variables that are sorted by order of

decreasing correlation is based either on greedy selection of the first k variables,

or upon all variables for which the correlation is significantly different from zero.

The significance of the Pearson correlation can be determined directly, since the

error associated with estimation of correlation from a sample is defined by the
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t-distribution. A rule of thumb (for large n) is that variables with an absolute

correlation greater than 2/
√
n are significant.

Identification of significant correlations is a common technique in data mining

applications, such as gene expression analysis, where the goal is simply to mark

potentially important genes for further investigation. However, in terms of IVS

algorithms, the method is classed as an MR filter, and does not consider interac-

tions between variables. Redundancy is particularly problematic for multivariate

time-series forecasting, which considers lagged values that are often highly cor-

related (auto-correlated).

Partial Correlation

In the case where candidate variables are themselves correlated, redundancy be-

comes an issue, and a correlation ranking approach is likely to select too many

variables, since many candidates will each provide the same information regard-

ing the output variable. Given three variablesX, Y and Z, the partial correlation,

R′(X,Y |Z) measures the correlation between X and Y after the relationship be-

twen Y and Z has been discounted. The partial correlation can be determined

from the Pearson correlation using the equation:

RXY ·Z
RXY −RXZRY Z√
(1−R2

XZ)(1−R2
Y Z)

(2.8)

where RXY ·Z and RXY etc. are the short-hand notation for R′(X,Y |Z) and RXY

etc.

Partial correlation is similar to stepwise multiple linear regression. The subtle

difference is that in stepwise MLR, successive models are fitted with additional

input variables, and variables are selected (or later rejected) based on the esti-

mated model coefficients. However, in partial correlation analysis, the magnitude

of R′ for each variable is not necessarily equal to the regression coefficients for

a fitted MLR model, since redundancy between variables means that the solution

to the MLR parameter estimation is a line (two redundant coefficients) or a sur-

face, that is, there will be infinite combinations of equivalent model coefficients.

The partial correlations obtained are in fact one specific solution to the MLR pa-

rameter estimation. Another difference is that forward selection is used in partial

correlation analysis, because once the most salient variable has been selected, it

will not be rejected later, and the partial correlations of subsequent variables will
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be dependent on those already selected.

Box-Jenkins

Box-Jenkins time-series analysis (Box and Jenkins, 1976), which considers the

development of linear auto-regressive, moving-average (ARMA) models to rep-

resent dynamic processes, is the most common approach to the development of

time-series and process transfer functions. ARMA models are described by the

general form

y(t+ 1) =
p∑

k=0

αky(t− k) +
q∑

k=0

βku(t− k) (2.9)

where αk and βk are coefficients and p and q denote the order of the auto-

regressive (AR) and moving-average (MA) components of the model, respec-

tively. Identification of the optimal model parameters p and q forms the goal

of Box-Jenkins model identification, and hence variable selection. The autocor-

relation function (ACF), R (Y (t− k), Y (t)), determines q and the partial auto-

correlation function (PACF) determines p. The ACF is determined for a given

time-series sample by

Rk =
∑n−k

i=1 (xi − x̄)(xi−k − x̄)∑n
i=1(xi − x̄)2

(2.10)

where Rk is the short-hand notation for the auto-correlation of a time-series with

a delay of k. The PACF at a delay of k is denoted by φkk, and is estimated from

the ACF based on the following series of equations

φ11 = R1 (2.11)

φ22 =
R2 −R2

1

1−R2
1

(2.12)

φkj = φk−1,j − φkkφk−1,k−j , for k ≥ 2 and j ≥ 1, (2.13)

φkk =
Rk −

∑k−1
j=1 φk−1,jRk−j

1−
∑k−1

j=1 φk−1,jRj

, for k ≥ 3. (2.14)
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The Box-Jenkins methodology can be used to similarly identify optimal linear

autoregressive with exogenous inputs (ARX) models. In this case, the partial

cross-correlation is used to identify the relevant lags of the exogenous variables.

Box-Jenkins and partial autocorrelation analysis have been used as the basis for

IVS in the development of ANN models. In some examples, ANNs have been

developed based on an optimal set determined for an ARX model. The ANNs

were found to produce better predictions than the ARX model, and this has often

provided the justification for ANN modelling in favour of conventional time-series

techniques (Rodriguez et al., 1997). However, although this demonstrated the

additional flexibility of ANN architectures to describe more complex behaviour,

the ANN developed may not have been optimal, since the selection of inputs was

based on the identification of a linear model. It may be the case that variables

that are highly informative, but non-linearly correlated with the output variable,

will be overlooked and excluded from the ANN model.

Mutual information feature selection (MIFS)

The limitations of linear correlation analysis have created interest in alterna-

tive statistical measures of dependence, which are more adept at identifying and

quantifying dependence that may be chaotic or non-linear; and which may there-

fore be more suitable for the development of ANN models. Mutual information

(MI) is a measure of dependence that is based on information theory and the

notion of entropy Shannon (1948), and is determined by the equation

I(X;Y ) =
∫∫

p(x, y) log
p(x, y)
p(x)p(y)

dxdy, (2.15)

where I denotes the MI between X and Y . Further details on the definition and

estimation of MI are provided in Chapter 5. MI measures the quantity of infor-

mation about a variable Y that is provided by a second variable X. However, it is

often convenient to simply regard MI as a more general measure of correlation,

since despite originating from information theory, rather than statistics, MI is not

entirely unrelated to Pearson correlation. In fact, it can be shown that in the case

of noise-free, Gaussian data, MI will be related to linear correlation according the

relationship:

I(X;Y ) =
1
2

log
(
1−R2

XY

)
. (2.16)
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The advantage of MI over linear correlation is that MI is based solely on proba-

bility distributions within the data and is therefore an arbitrary measure, which

makes no assumption regarding the structure of the dependence between vari-

ables. It has also been found to be robust due to its insensitivity to noise and

data transformations (Battiti, 1994; Darbellay, 1999; Soofi and Retzer, 2003).

Consequently, MI has recently been found to be a more suitable measure of de-

pendence for IVS during ANN development. Torkkola (2003) also discusses the

merit of analysing MI, given that it provides an approximation to the Bayes error

rate. Bayes’ theorem, which gives the most general form of statistical inference,

is given by

p(y|x ∈ X) =
p(y ∈ Y )p(x ∈ X|Y )

p(x ∈ X)
(2.17)

Bayes’ theorem can be used to determine the expectation E (y|x ∈ X), assuming

the probability distributions are known. MI provides an approximation to the er-

ror associated with the Bayes estimate of E(y|X ∈ X), since it can be shown that

the minimum estimation error will be achieved for a maximal value of I(X;Y ).
Consequently, MI provides a generic estimation of the modellability of an output

variable Y , which therefore makes MI an attractive measure of relevance in de-

termining an optimal set of input variables, since we would seek the set of input

variables that maximises the JMI, that is, the MI between the output and the

input variable set.

The MIFS algorithm is a forward selection filter proposed by Battiti (1994) to ad-

dress shortcomings with algorithms based on linear correlation. Considering the

candidate set C and output variable Y , the MIFS algorithm proceeds as follows:

i. Let X → φ.

ii. While |X| < k,

iii. For each c ∈ C,

iv. Estimate I(c, Y |X) = I(c, Y )− β
∑

x∈X I(c;x).

v. Find cs that maximises I(c, Y |X).

vi. Move cs to X.

vii. Return X.
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MIFS defines a MR filter and identifies suitable candidates according to the es-

timated bivariate MI between candidate variables and the output variable. The

MI between the most salient candidate cs and the already selected variables in

X is estimated and subtracted from the relevance in order to achieve minimum

redundancy. The heuristic weighting β determines the degree of redundancy

checking within MIFS. If β = 0, then MIFS will neglect relationships between

candidates and MIFS is reduced to a MI ranking filter. Increasing β increases the

influence of candidate redundancy on selections, however if β is too large, then

the redundancy is overstated and candidate interactions dominate the selection

of variables, rather than the input-output relationships (Kwak and Choi, 2002).

Battiti (1994) recommends that a weighting of 0.5–1.0 is appropriate. A criticism

of the forward selection approach is that the JMI of the input variable set must

be considered in order to correctly determine the optimality of the input vari-

ables (Bonnlander and Weigend, 1994). However, in MIFS, the forward selection

procedure considers variables individually, and optimality of the JMI is inferred

by the mRMR selection. The heuristic redundancy parameter β provides only an

approximation to the conditional dependence and does not necessarily relate to

the JMI.

Partial Mutual Information

Sharma (2000) proposed an IVS filter that is structured similarly to MIFS, but is

based instead upon direct estimation of partial mutual information (PMI). The

kernel estimation of PMI makes the algorithm ideally suited for application to

datasets of continuous variables, and is therefore applicable to environmental

modelling applications. The algorithm has been successfully applied to select

predictors for hydrological models (Sharma, 2000) and ANN water quality fore-

casting models (Bowden et al., 2002; Kingston, 2006).

The PMI-based filter also incorporates a mechanism for testing the significance

of candidate variables, so that the termination point of the algorithm is optimally

determined, which is an improvement over the greedy selection of k variables

in MIFS. In this case, the termination criterion is based upon the distribution of

the error in PMI estimation, which is numerically approximated by a bootstrap

approach (Sharma, 2000). The significance of the most relevant candidate is de-

termined by direct comparison to the upper confidence bound on the estimation

error.

The PMI filter algorithm also has advantages over other MI filter designs, such as

MIFS, since it is able to identify redundancy and optimize the JMI indirectly via
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the estimation of PMI. The optimality of the input variable set is ensured because

PMI is directly estimated, and the JMI can be determined as a result of the MI

chain-rule decomposition, which is given as (Cover and Thomas, 1991)

I(x1, . . . , xp; y) = I(x1; y) + I(x2; y|x1) + · · ·+ I(xp; y|x1, . . . , xp−1). (2.18)

Recall that in MIFS, the JMI cannot be directly approximated because redundancy

is only approximated by a heuristic weighting factor. The termination criterion

in PMIS automatically determines the optimal number of input variables, since

the increase in JMI is additive, and once the contribution of an additional in-

put variable is insignificant, the selection process terminates and the JMI will be

maximised.

An additional benefit of PMIS is that the information yield during IVS provides

a useful indication of the contribution of each input variable to the prediction

of the output variable. Several methods for determining the usefulness of in-

put variables based on analysis of the trained model have been described and

range from sensitivity analysis, to aggregation of the weights associated with

each input variable. However, the relative importance of an input variable can be

determined statistically from the MI between each input and the output variable

(Soofi and Retzer, 2003). The PMI estimated for a given variable can potentially

also be used to classify input variables as informative, or weakly informative, as

defined by Kohavi and John (1997), by considering the conditional relevance.

Kingston (2006) considered several techniques for determining the relative im-

portance (RI) of input variables and found that the method based on PMI yielded

similar estimates of RI as methods based on analysis of the connection weights

for a trained MLP. The method for estimating RI was based on the formula

RI(i) =
I ′(xi; y)∑

x∈X I ′(x; y)
, (2.19)

where I ′ denotes the PMI estimated for candidate variable x during PMIS.

The usefulness of RI is that it provides an indication of the way in which the

ANN generates predictions. Although it is assumed that the ANN is using all of

the input variables, it may in fact only require some small subset of the available

input variables to generate predictions. In this case, further refinements to the

ANN can be made based on this interpretation. Such considerations might be

important when considering the cost of data collection that is associated with
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ongoing deployment of ANN models. One might consider sacrificing model accu-

racy in favour of cost reductions in ANN maintenance by reducing the number of

input variables even further, which would reduce data requirements. The RI of

variables may also encourage increased efforts toward the development of mea-

surement techniques to ensure data quality for important variables.

The main limitation of the PMI filter is the computational effort associated with

the bootstrap estimation of MI. Even obtaining a single estimate of MI is a nat-

urally expensive computation due to the O{n2} density estimation, and compu-

tational efficiency is therefore influenced by the sample size, n. The bootstrap

therefore significantly adds to the overall burden by increasing the number of

estimations of MI required to implement IVS. Sharma (2000) restricts the size of

the bootstrap to 100 in order to maintain reasonable analysis times. However,

a small bootstrap of this size might compromise the accuracy of the termination

criterion, since potentially the confidence bounds may be poorly estimated.

Hybrid ICA and IVS filter (ICAIVS)

A hybrid ICA and IVS filter algorithm (ICAIVS) was proposed by Back and Trap-
penberg (2001), which considers the combined statistical relevance of input vari-

ables in deciding whether or not a variable should be included. ICAIVS consists

of two main steps: (Trappenberg et al., 2006)

i. ICA: Produce a set of candidates which are as statistically independent as

possible.

ii. IVS: Perform a set of statistical tests between the independent candidate vari-

ables and the desired output variables.

Here, the statistical analysis is based on estimation of the joint dependence of

combinations of input variables and considers all combinations from c(xp
1, y)

through to c(xp
1, . . . , x

p
n, y), where p denotes the order of the dependence that

is measured. The IVS procedure then compares the relevance for each subset of

variables, with respect to the average dependence for all subsets, and a subset is

selected if the dependence exceeds some threshold value K.

The drawback of ICAIVS is that the algorithm does not scale well, given the

large number (3n − 1) of statistical tests that must be performed, considering

only second-order statistics. Recently, an improved version of ICAIVS was de-

scribed that utilised MI as the statistical measure of dependence (Trappenberg
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et al., 2006). This reduced the number of statistical tests by considering only

first order MI. However, the problem of specifying a suitable threshold value still

remains. Both Back and Trappenberg (2001) and Trappenberg et al. (2006) used

a value of 0.2 for this threshold. However, in this case the threshold value is

heuristically determined and a suitable value may vary depending on the dataset

(pers. comm. A. Back, 2007).

2.4 Comparison of Approaches

The benefits and limitations of various IVS strategies or algorithms are sum-

marised in Table 2.2. Here, the different algorithms are evaluated and compared

according to a number of criteria. Firstly, whether the algorithm is suitable for

identifying non-linear relationships—a fundamental requirement for the devel-

opment of ANN models. The choice between model-free and model-based IVS

algorithms may also be a consideration, given the restriction imposed by wrap-

per designs on the choice of model architecture. The computational efficiency

and scalability of the algorithm are also important, in particular where there are

computational constraints due to available hardware. Finally, the optimality of

the selected variables and the degree of redundancy checking represent the qual-

ity of the solution that is obtained by the algorithm is also important. Recall

from Section 2.2 that the goal of IVS is to achieve the best possible subset of

input variables, with minimum redundancy. Furthermore, models with increased

redundancy are likely to be more difficult to interpret.

Analysis of linear dependence forms the basis of many ranking schemes, linear

model identification, and PCA—which have all been previously applied to the

development of ANN models of environmental processes. In these IVS algorithm

designs, the correlation, R, is the adopted measure of dependence between vari-

ables. The correlation coefficient is very straightforward and fast to compute.

PCA is the least scalable of the linear algorithms in Table 2.2, due to the d2 com-

putation of the covariance matrix, Σ. Otherwise, the linear IVS algorithms are

highly efficient, and can be used to determine the saliency of large numbers of

candidate variables. Box–Jenkins or partial correlation would be used in pref-

erence to correlation ranking schemes because of the improved quality of the

input variable set that is achieved by handling redundancy through the estima-

tion of R′. However, key issues relating to linear IVS filters are the sensitivity of

the linear correlation coefficient to noise, and to data transformations during pre-

processing, which can influence the apparent relevancy of input variables (Battiti,
1994). Most important, however, is the questionable suitability of these methods
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for ANN development, since the underlying assumption of linearly structured de-

pendence is contradictory to the development of statistical models of non-linear

systems.

Table 2.2 compares four IVS wrapper designs (GA, GRIDA, forward and back-

ward selection), which are representative of the many different wrappers that

can be formed using different combinations of ANN models, search methods and

optimality criteria. GRIDA is a relatively efficient wrapper design that exploits

the speed of GRNN development, however the error-based termination criterion

is somewhat arbitrary, which makes it difficult to apply. The GA-based approach

is arguably the most promising of the IVS wrapper approaches, in comparison to

other standard wrapper designs such as forward selection and backward elimina-

tion. It provides an efficient means of automating the trial-and-error evaluation

of different input variable sets, since the GA can efficiently search the potentially

large number of combinations of input variable sets to determine a near-globally

optimum set. However, the approach is subject to scalability constraints. Here,

the scalability refers to the growth in the search space, which is exponential with

respect to the dimensionality of the candidate set, which may affect the number

of solutions that must be evaluated to have confidence that the final solution is

the global, or at least near global, optimum.

Regardless of the implementation, the potentially high computational expense of

the trial calibration and evaluation of a large number of models is considered to

be the predominant weakness of using any IVS wrapper (Kwak and Choi, 2002;

Chow and Huang, 2005). Furthermore, optimal performance of the trained ANN

does not strictly imply optimality of the input set, since this is also dependent on

additional factors such as the type of ANN architecture, training algorithm, and

the optimality criteria adopted. The appropriateness of a set of inputs obtained

for a particular model architecture is therefore not guaranteed for another, and

restricts the applicability of any input set obtained using a wrapper technique

(Battiti, 1994). Furthermore, wrapper strategies are essentially holistic in their

evaluation of the input variables, since they only consider the performance of

the network trained with the variables. It is difficult to determine the effect of

an individual input variable on the output, especially when there is redundancy

within the candidate data, which is considered to be another disadvantage of this

approach.

In contrast to the model-based wrapper approach, model–free filter techniques

utilise a statistical measure of the degree of dependence between the candidates

and output variables as the basis for input variable selection. The separation of

the IVS task from the model calibration and selection tasks not only yields a more

efficient algorithm overall, but the resulting input set has wider applicability to

45



2.4 Comparison of Approaches

different model architectures (Kohavi and John, 1997; Guyon and Elisseeff , 2003).

However, the performance of IVS filters is largely dependent on selection of a

suitable statistical dependency measure for the application at hand.

Information theoretic dependency measures, such as MI, offer a highly suitable

measure of relevance for IVS filter designs that can be applied successfully to ANN

development. In particular, the underlying generality of the measure of depen-

dence provides a sound basis for model-free estimation of the relevance of input

variables. Here, four filter designs are compared: MIFS, PMIS, JMI and ICAIVS,

which are all based on the estimation of MI. However, several issues have arisen

in the formulation of MI-based IVS algorithms, which are: the additional compu-

tational effort in estimating MI, the ability of the selection algorithm to consider

the inter-dependencies between candidates (i.e. redundancy checking); and the

lack of an appropriate analytical method for determining when the optimal set

has been selected (Chow and Huang, 2005). The IVS filter design proposed by

Sharma (2000) overcomes several of these difficulties using the concept of PMI.

The PMIS algorithm is a relatively efficiently structured forward selection algo-

rithm, and the usefulness of PMI to provide a model-free measure of the relative

importance of input variables is an added advantage of this approach, as the se-

lected input variables can be analysed to determine the important relationships

within a given process. ICAIVS is similarly a suitable approach, but is less prefer-

able due to the high computational requirement, the need for ICA pre-processing,

and poor scalability.

On the basis of this review and evaluation of IVS strategies, it is proposed that

further investigation of the PMIS filter design is warranted. Although it is a

relatively new approach, several studies have found that the application of this

algorithm to ANN development in environmental modelling applications has sig-

nificant merit (Bowden et al., 2005). In comparison to all other IVS strategies,

the PMIS method compares favourably in all aspects, with the possible exception

of computational efficiency. In this resepect, the main drawback of PMIS is re-

lated to the expense of PMI estimation and accurately determining the optimum

number of input variables. However, it is likely that further improvements to

the existing algorithm, such as the use of the average-shifted histogram (ASH)

for density estimation (Fernando et al., 2009), can yield further reductions in the

computational requirement, which will add increased efficiency to an already

flexible and informative IVS design.
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Chapter 3

Data Splitting

“In God we trust, the rest have to bring data.”

W. Edwards Deming (1900–1993)

3.1 Introduction

Generalisation is a central issue in defining appropriate methods for the devel-

opment of all statistical models, including ANNs. Statistical models of all type

are invariably developed based on a finite set of training data. It is rare that

data collected through observation of a process will be noise-free, and the data

available for model development are likely to contain a small proportion of fea-

tures that are not representative of the underlying system. Generalisation refers

to the ability of a statistical model to accurately represent the underlying data

generating process, rather than the idiosyncratic features of the training data.

The latter phenomenon is referred to as over-fitting because it is characterised by

a high goodness-of-fit to the training data, yet poor performance when querying

previously unseen data. Despite their many advantages over conventional statis-

tical models, artificial neural networks remain susceptible to poor generalisation,

which can largely be attributed to the complexity of the model architecture (i.e.

the number of estimated parameters) relative to the number of training data.

This chapter addresses the issue of generalisation by considering the sampling

methods used for selecting ANN training data. Although various ANN training

methods can be used to ensure good generalisation is achieved, the sampling of

training data can have a significant effect on the quality of training, and on per-

formance assessment. However, the impact of this sampling task on the quality

of ANN developed is rarely appreciated by ANN modellers.
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3.2 Generalisation and Over-fitting

In order to increase understanding surrounding this issue, a review of ANN gen-

eralisation methods is briefly presented to highlight the importance of data sam-

pling in implementing generalisation techniques, in particular the highly popu-

lar hold-out validation approach. Methods for sampling ANN training data are

then reviewed and a stratified sampling design is developed, with significant im-

provements to an implementation based on the self-organizing map (SOM). The

improved stratified design is then compared to alternative sampling methods by

comparing results for a number of experimental problems. Although ANN data

sampling methods are presented individually in many papers, a comparison be-

tween different methods has not been extensively undertaken, and the review

and subsequent experimental investigation in this chapter goes some way to pro-

viding such an evaluation. Ultimately, the comparison of sampling methods and

experimental investigation yields some guidelines for choosing an appropriate

technique for generating data samples for ANN training.

3.2 Generalisation and Over-fitting

The focus of this chapter is on poor ANN generalisation in the sense of over-

fitting, and the notion that poor use of the available modelling data can lead to

poor generalisation, or a biased model due to the phenomenon of “over-fitting”.

Sarle (1997) observes that poor generalisation is also symptomatic of a model

with insufficient complexity to describe all behaviour of the data generating pro-

cess. The reasons for this may be either an over simplistic model architecture

(i.e. too few internal parameters), or an insufficiently informative set of model

input variables. Methods for input variable selection are discussed in Chapter 2

that can ensure an optimal degree of model complexity with respect to the input

variable set.

Figure 3.1 illustrates the concept of over-fitting by considering a simple univariate

regression problem. In this case the data generating function is f(x) =
√
x + ε

where ε ∼ N(0, 0.01) and 50 samples are generated uniformly on the domain

[0,3]. As shown in Figure 3.1(a), a model architecture with many parameters

potentially can fit not just the underlying
√
x process, but also will fit the noise

in the sample of training data. Consequently, the error of estimates from the true

process – the validation error – is expected to be high, and the model is said to

have poor generalisation performance. A model with fewer parameters is shown

in Figure 3.1(b). The degree of over-fitting in this case is reduced, although there

remains some influence of the model and it is slightly over-fit. A generalised fit

is shown in Figure 3.1(c), in which the fitted model has sufficient complexity to
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represent the data generating process without over-fitting. Figure 3.1(d) illus-

trates an under-fit model, which has insufficient complexity to wholly describe

the relationship within the data.

An over-fit model has a low error, or bias, but the error achieved will be highly

dependent on the data, that is, the model error has high variance. The opposite

is true for the generalised model, which has a higher bias, but which will be less

sensitive to the data and will therefore have reduced variance. Ideally, the best

model would have both a low error and low variance, but usually for statistical

models based on a finite sample of noisy data, this is not possible. Instead, model

development is required to trade-off the relative amount of bias and variance,

and this is referred to as the bias-variance dilemma (Geman et al., 1992). Gen-

eralisation for ANN models built on noisy data typically represents a trade-off in

which the finite-sample variance is lowered by allowing for a bias that reflects

the error due to the naturally occurring noise in the data.

A number of alternative techniques can be adopted during model calibration to

ensure that the calibrated model is able to generalise, and does not over-fit the

training data. The methods fall into the broad categories:

• cross-validation,

• ensemble training, and

• regularisation.

3.2.1 Cross-validation

In general, cross-validation refers to techniques in which one portion of the avail-

able data is used to estimate model parameters, and the remaining data are used

to independently test the generalisation performance of the trained model. Pro-

vided that the training and test data are equally representative of the modelling

domain, cross-validation can ensure that over-fitting is avoided.

Hold-out cross validation

In machine learning, the hold-out method of cross-validation is commonly asso-

ciated with stop-training (or early-stopping). Given a sufficient number of con-

nection weights (i.e. internal parameters) and sufficient training time, an ANN

can represent exactly the data within the training set. However, this is not desir-

able and consequently, hold-out validation is commonly employed in the form of
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Figure 3.1: Phenomenon of over-fitting. An overly complex model (a) will have a small
error (low bias), but will be highly dependent on the sample (high variance). The degree
of overfitting decreases for fewer parameters (b) until the most generalised model (c) is
determined. Insufficient complexity (d) can underfit the data.

52



3 Data Splitting

ErrTrain

C

ErrTest

A

B

t

E
rr

Figure 3.2: Stop training (early-stopping) using test data to ensure generalisation during
ANN training.

stop-training. In this approach, the training data are used to guide the learning

process and the test error is periodically determined to ensure that the model

remains general. As shown in Figure 3.2, at A the initial error for both training

and test data will be poor for a randomly initialised ANN. During training, the

error reduces as the ANN learns the relationships within the data until, at some

point (B), the optimal generalisation performance is achieved. Further training

will reduce the training error of the network, but the test error will not improve

and may in fact increase as the ANN begins to over-fit the training data. Given

sufficient time, the ANN will be trained to perfectly represent the cases within the

training data (C), but will poorly represent the underlying process. The training

is therefore stopped at B, and hence the method is referred to as stop-training or

early-stopping.

ANN development requires that two hold-out datasets are generated for testing

and validation. The test data are used to implement hold-out validation to avoid

over-fitting. However, because the minimisation of the test error is used to de-

termine the optimal training and model parameters, the trained model is said to

be optimistically biased towards the test data, that is, the error for the test data

may in fact be better than the true validation error. Consequently, it is necessary

to undertake an additional validation of the final ANN model, to ensure that true

generalisation has been achieved, and hence validate the ANN model (Maier and
Dandy, 2000).
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k-fold cross-validation

In k-fold cross-validation, the data are sampled into k subsets of equal size. The

ANN is trained k times using each kth subset as the test data, and the remaining

data are used for training. After training has been repeated for all k cases, ANN

model performance is estimated by the average for all tests, and an aggregate

set of parameters is determined in order to construct the final ANN model. The

benefit of the k-fold approach is that all of the data are used as training data,

which eliminates the potential for hold-out bias since all available information

is utilised. In particular, k-fold is considered a highly suitable cross-validation

technique for small datasets, or where training data is sparse.

The choice of k can affect the performance of the technique in terms of both

statistical properties of the model error, and the computational effort required.

Typically k = 10 is considered to be a suitable choice, representing a trade-off

between improved model performance and the number of training sets used. The

special case of k = n is more commonly known as leave-one-out cross-validation

and is also a common choice for small datasets.

3.2.2 Ensemble Training

Ensemble training techniques refer to methods that involve the training of a col-

lection of ANN models, rather than a single model. Each individual component

ANN model is trained on a sample of the available training data. These are then

later combined or aggregated to give an overall model prediction. The two most

common of these approaches are bagging and boosting (Zhou et al., 2002; Anctil
and Lauzon, 2004). Bagging refers to bootstrap random sampling (with replace-

ment) of multiple training data sets that are each used to train a component

network. Boosting aims to improve the performance of ANNs by resampling the

training data with increased weighting given to data that correspond to a high

prediction error. Initially a random sample is drawn and used to train the first

component model and then each subsequent component network in the ensem-

ble is trained on data that are sampled according to the error of the previous

model. The aggregation of ensembles in both bagging and boosting typically

uses the mean prediction for all models, although some methods for determining

an optimal subset of the models have also been described (Zhou et al., 2002).

Ensemble techniques generally extend existing cross-validation methods, and can

be applied to either k−fold or hold-out validation. The benefit of ensemble tech-

niques is that all of the available data are used at some stage during training,
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and that no data are omitted. Resampling effectively increases the statistical

efficiency of ANN learning, since during cross-validation there is a loss of in-

formation due to the hold-out portion of data that is never presented during

training. Secondly, since multiple training sets are considered, any bias and vari-

ance introduced for each instance of a training set is aggregated over all cases,

and consequently resampling methods are able to yield ANN models with higher

precision, and less variability. Another advantage of ensemble techniques is that

the bootstrap training of multiple ANN models allows computation of confidence

bounds on predictions.

The main limitation of ensemble techniques is, of course, the computational ef-

fort required to train the ensemble of ANN models. The computational issues and

considerations are similar to those of wrapper strategies for input variable selec-

tion (discussed in Section 2.3), especially for complex ANN architectures where

training an individual model may take some time. It is also unclear how an ANN

model built using ensemble methods is to be validated, unless there is an initial

portion of data removed that is not used in ensemble training. If this were not

the case, there is a chance that the training of the ANN model will include data

that are later used to validate the performance of the model.

3.2.3 Regularisation

Bayesian regularisation or weight decay aims to minimise the magnitude of con-

nection weights within a neural network. Since large weights often correspond to

erratic changes in output values for small changes in the input variables, keeping

the connection weights small yields a smoother response, and therefore reduces

the variance of the model output. In weight decay, the decrease in value of

the weights over successive learning iterations offsets large increases due to the

training error. In Bayesian regularisation, the training minimises a modified cost

function that includes both the mean prediction error and the squared-sum of the

connection weights, such as

E =
∑

w∈W

w2 +
1
n

n∑
i=1

(yi − ŷi)2, (3.1)

where w is an individual connection weight, W denotes the set of all connection

weights in the ANN model, and second term on the right-hand side is simply the

mean squared-error (MSE).
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3.3 The Hold-out Bias and Variance Dilemma

Hold-out validation is by far the most common approach to ANN training, as it

offers the simplest approach for ensuring that generalisation is achieved when de-

veloping ANN models. Recall that the motivation behind hold-out validation is to

achieve good generalisation in ANN modelling by addressing the traditional bias

and variance dilemma. The magnitude and variability of error due to the estima-

tion of parameters can be optimally balanced by selecting representative training

and test data and implementing hold-out validation. However, in implementing

hold-out validation, the dilemma is that the hold-out itself may prove to be an-

other possible source of bias and variance. If data are selected inappropriately,

then the training, test and validation data may not be equally representative of

the problem domain, and this will be manifest as bias in the test and validation

errors; or, the results may be sensitive to the specific data used, in which case

the test and validation results will be highly variable and will lower the degree of

confidence in the developed model. The hold-out is a particular challenge when

data are sparse, and hence the growing interest in techniques such as k-fold cross-

validation, ensemble ANNs, or regularisation. However, none of these methods

can truly avoid the need for at least one hold-out sample to perform a valida-

tion of the ANN model. Cross-validation techniques and ensemble techniques

should still use hold-out data to validate the performance of the final ANN model

that is developed, and regularisation addresses the variance of a model, but not

the bias due to the training sample. Consequently, all ANN model development

methods will be influenced to some degree by the sampling of data, regardless

of the approach to training that is adopted. It is therefore important that the

issues surrounding the hold-out bias and variance dilemma are addressed during

model development—particularly when implementing a conventional hold-out

test and validation approach, since the test and validation samples are generated

only once.

In order to overcome potential bias and variance, the two issues to address when

implementing the hold-out approach are:

• the proportion of the data in each data subset, and

• how to best allocate the data into subsets.

The relative proportion of each set of data will influence how much data the

ANN can utilise during training to reinforce the relationships within the data,

and how much variance could be expected due to the specific data in the test and

validation sets. Bias and variance analysis has been undertaken for many ANN
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validation techniques to assess the impact that the proportion of data has on the

variance and bias of cross-validation (Twomey and Smith, 1998). Too few data in

either set can bias the training process, or the performance assessment, towards

the particular data in the respective data set. Furthermore, since greater weight

is given to each particular observation within in a smaller set, the approach will

be more sensitive to the specific data that are used, and the variability of the

results will therefore be greater.

In general, a hold-out proportion of 20–50% is used for allocating data (Bowden
et al., 2002). The simplest form of allocation is to divide the data evenly be-

tween all subsets. If an even proportion (50% hold-out for training and testing,

or 1/3 each for training, testing and validation) is allocated, there is less likely

to be bias either way. However, an ANN can benefit from additional information

during training, and more data can be allocated to training to improve learning,

provided that this can be done without comprising the test or validation sets. The

additional data in the training set provide extra examples that can reinforce the

underlying relationships, which may help in the case when data are noisy, or the

relationship being modelled is highly complex. In most applications that allo-

cate more data to training, the proportion of training data is only slightly above

50% of all available data, with the remainder divided evenly between test and

validation data. For example, Baxter et al. (2001) suggest that 60% of data are

allocated to training, with 20% each allocated as test and training data. Bowden
et al. (2002) recommend that a hold-out of 20% for validation, and a further

hold-out of 20% of the remaining data (16% overall) be used as test data.

The second issue of how to allocate data into subsets is arguably more important,

since even though appropriate proportions of data might be used, the respective

samples for training, testing and validation might be allocated inappropriately.

The most important aspect in this regard, is that of representativeness of the data,

in that each of the subsets contains examples of the entire modelling domain. In

particular, training is likely to be less useful if the training data do not contain

the necessary examples to describe all input-output relationships, and the ANN

will be required to extrapolate—something that ANNs do not do very well (Sarle,

1997). A related concern is the bias of a model due to the relative frequency of

different conditions that occur within the training data. Sparse data (i.e. less

frequent training examples) will have less of an influence on ANN training than

samples that occur more frequently. The result is that the ANN will learn to

predict the majority of cases accurately, but will not perform as well in rarer

instances, and the model is considered to be biased towards the more “average”

conditions in the training data. However, it is often the case that the less frequent

examples are of equal, if not greater, importance and such poor predictions are
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therefore unacceptable. Such issues are often encountered in the development

of ANN classifiers in medical diagnosis applications (Tourassi and Floyd, 1997),

although this has relevance to environmental applications dealing with ANN-

based prediction of rare or infrequent events, such as algal blooms and floods.

Finally, it is important that all subsets for training, testing and validation are

equally representative of the modelling domain so that there is no bias in the

assessment of model performance (Maier and Dandy, 2000).

On the subject of selecting training data for ANN development, Sarle (1997)

simply notes that

“Methods for selecting training data can be found in statistical text-

books.”

However, ANN modellers are rarely statisticians, and despite the strong similari-

ties between ANN and conventional forms of statistical regression, the methods

employed during ANN development are rarely considered with the same rigour.

The selection of training data is no exception. In many applications, the sampling

of data for ANN hold-out validation has been at best random or judgemental,

with a general disregard for the effect of unrepresentative samples on training

and performance assessment (Maier and Dandy, 2000).

Sampling theory is a branch of applied statistics, which considers the effect of

sampling on the performance of statistical estimators and regression. Analysis of

the dependence of a statistical estimate on the sample can ensure that suitable

sampling techniques are devised to yield optimal estimators. However, although

sampling methods for survey design and analysis are well-established in this area,

the application of similar theory to ANN training data selection is less prevalent.

The main limitation is that ANN models are a form of non-parametric regres-

sion, and therefore the analysis of sample effects on ANN estimates is not always

as straightforward as for conventional statistics, such as the mean and variance.

Perhaps another more practical limitation is that many of the available software

packages for ANN development do not currently implement many of the sam-

pling algorithms. One plausible reason for this is that a major focus has been on

ANN architectures and learning algorithms, and that it is often assumed that the

necessary training, test and validation data are available; certainly, this is evident

in view of the statement given by Sarle (1997).

The purpose of this chapter is to review the hold-out bias variance dilemma by

considering the methods employed for the selection of training data within the

context of data sampling. In particular, this chapter considers the following ques-

tions:
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1. What sampling techniques could be used for data splitting?

2. Which sampling methods are most suitable for ANN training data selection?

3. How should data splitting be implemented to achieve the best quality sample

(hence, best quality ANN training)?

Note that the definition of the holdout bias dilemma given here immediately im-

plies the notion of sample quality, since a desirable sampling method will achieve

both low bias and low variance. In other words, the technique used to generate

ANN training data should consistently select a sample that results in a highly ac-

curate, generalised model. It is also possible that the sample efficiency could be

improved by careful selection of training data, such that the information in the

training data is maximised with the fewest number of examples, which would

reduce the computational requirement of training.

3.4 Sampling Techniques

In the following section, sampling methods for the selection of training, test and

validation subsets required for ANN model development are reviewed. Figure 3.3

presents a taxonomy of the various techniques that have been described for data

sampling, either for general sampling and survey design, or specifically for the

selection of ANN training data. Sampling methods fall into one of two broad cat-

egories: probability sampling (random), or non-probability (deterministic) sam-

pling (Cochran, 1977).

3.4.1 Probability Sampling

Probability sampling includes sampling methods where each sample is selected

with a known probability. In general, probability sampling can select a sample

with reduced bias, however, the randomness does create variability of the sample

taken. A feature of these sampling methods is that the probability of sample

selection can be calculated for each unit within the available data, which allows

inference of the potential sample bias and variance of estimates. Hence, for

probabilistic sampling, the quality of the sampling method can be determined.
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Figure 3.3: Taxonomy of sampling methods for the selection of ANN training data.
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Simple Random Sampling (SRS)

Simple random sampling (SRS) is the most basic form of sampling. Given a set

of N data, the data are drawn with uniform probability n/N , where n is the total

number of samples drawn. Computationally, SRS can be extremely efficient to

implement, and some algorithms exist that can generate samples with a single

pass over the data (Knuth, 1997).

SRS is the most common random sampling technique used in ANN development.

In addition to the efficiency and simplicity of the method, SRS can generate an

unbiased sample, since the chance of taking any point is equal. Yet, as many

researchers are becoming aware, SRS can often result in a poor sample. The pure

randomness of the sampling technique also results in a chance that the datasets

for training, testing and validation are not representative of each other due to

the chance allocation of data amongst the samples. Furthermore, the sampling

method is actually naturally biased, by virtue of the probability distribution of the

data, towards data with a higher probability i.e. dense regions. Consequently,

the sampling may exclude important patterns that occur with less than average

frequency, which may impact on model performance.

Importance Sampling

One of two common probability-proportional-to-size (PPS) sampling techniques

is importance sampling. In this case, the probability of sampling is determined

by the notion of the importance of a given unit, with samples selected with prob-

ability proportional to importance. The limitation of importance sampling is that

the importance must be evaluated, which requires some knowledge of the data

in order to perform the sampling.

Dynamic subset selection (DSS) is a training technique that adopts importance

sampling to reduce the computational load associated with supervised learning

algorithms (Gathercole and Ross, 1994). In DSS, the prediction error for each

training observation provides the importance weighting. It is considered more

efficient for the learning algorithm to focus on examples that are contributing the

most to the overall prediction error. At each epoch during training, the training

data are ranked in order of importance. The importance is higher for cases where

the model gives a high error. The next phase of training considers only a sample

of the most important observations. Periodically, the errors of all training data

are determined to re-evaluate the importance rankings for all data to generate

subsets for subsequent training iterations.
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Density Biased Sampling (DBS)

Density biased sampling (DBS) (Kollios et al., 2003; Palmer and Faloutsos, 2000;

Nanopoulos et al., 2002) is a form of PPS sampling where the probability of se-

lection is biased according to the local density of the data surrounding each sam-

pling unit. DBS is a generalised form of uniform sampling, and can also be

considered a form of importance sampling, where the density of the data defines

the notion of importance. Given an estimator for the density function f for X,

DBS samples each point with probability ps defined by

ps(x ∈ X) =
n

N
(f(x ∈ X))a (3.2)

where n is the desired sample size, N is the dataset size, and a is the density

bias. The bias controls the sampling, and the following biases can be considered:

(Kollios et al., 2003)

• a = 0. DBS reduces to SRS, since data are sampled with uniform probability

n/N .

• a > 0. Over-samples regions of high density, since ps(x) > ps(y) if and only if

f(x) > f(y), and less dense regions are under-sampled. Sampling probability

will be greater than uniform sampling for f(x) > f̄(x). Noise and outliers can

be effectively ignored by applying a positive bias.

• a < 0. The exact opposite of a > 0, the bias increases the sampling rate of

sparse regions. A bias on [−1, 0) allows increased sampling of sparse data.

Essentially, the bias function is equivalent to a transformation of the distribution

of the data prior to sampling. Kollios et al. (2003) proves that provided that

a > −1, the sampling rate can be adjusted as desired while preserving the relative

distribution of the data. Hence, high density data withinX remain proportionally

dense within the sample. The adjustable bias in DBS offers greater flexibility,

since the sampling can be tuned depending on the needs of the application at

hand (Kollios et al., 2003).

DBS is considered to be superior to simple random sampling in applications

where the distribution of data is non-uniform, which is likely to be the case in

most real-world datasets (Palmer and Faloutsos, 2000). DBS has been found to

improve the performance of ANN classifiers in medical diagnosis, where the oc-

currence of interesting cases may only be few. The biased sampling was found
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to add weight to these cases during training to ensure that the ANN was able to

fit these data with greater accuracy (Tourassi and Floyd, 1997). In hydrological

applications, the same considerations could be applied to rainfall events, which

are infrequent and of relatively short duration. In water quality datasets, excur-

sions outside of compliance targets are typically rare, however, obtaining accu-

rate predictions for these events is paramount. In each of these cases, training

data quality may be improved by implementing DBS to increase the proportion

of interesting data.

Like importance sampling, the main limitation of DBS is that it requires that the

density of the data is either known exactly, or can be approximated efficiently.

Kollios et al. (2003) utilise a kernel density estimation (KDE) approach that sep-

arates density estimation and sampling, which allows for flexibility and simple

implementation. However, the KDE approach may be inefficient for high dimen-

sions, or very slow for lengthy datasets. In the case of the latter, some speed up

can be achieved by estimating the density on a random sample of the data (Kol-
lios et al., 2003). A more computationally efficient method is based on a novel

technique that utilises hash tables to combine efficient density estimation, and

implements sampling in a single pass of the dataset. However, this method is

somewhat difficult to implement (Palmer and Faloutsos, 2000).

Cluster sampling

In cluster sampling, the data are allocated into groups and the sampling is then

based on the random selection of whole groups, rather than taking samples from

all groups. The distinction here is that the clustering does not identify homoge-

neous groups, but rather individual groups of data that are distributed identically

to the entire database. A typical example is spatially defined groups, such as in-

dividual populations in geographical areas. An example of how cluster sampling

might be grouped is in sampling hydrographs according to the occurrence of

rainfall events. Time-series data corresponding to similar rainfall events may be

considered equivalent groups, and therefore it may be more efficient to sample

several characteristic events, rather than the complete hydrograph.

Provided that suitable groups can be defined, cluster sampling can quickly draw

a representative sample, since a few groups can be equivalent to the entire

database. However, the omission of entire groups can potentially reduce the rep-

resentativeness of the sample taken. Cluster sampling may result in holes within

the training data due to the omission of large regions of data, and consequently

the trained ANN will be required to extrapolate into these regions, and is likely
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to perform poorly (Sarle, 1997).

Stratified Sampling

In stratified sampling, the database T is divided intoH groups, which are referred

to as strata, where the data within each stratum are relatively homogeneous, and

distinct from data in other strata (Cochran, 1977; Mulvey, 1983; Kpedekpo, 1973).

The formation of strata is such that all data belong to one, and only one, stratum

(i.e the groups are disjoint). Hence, the stratification satisfies the condition

N = N1 +N2 + · · ·+NH , (3.3)

whereNj denotes the number of data within stratum j, and is commonly referred

to as the stratum size (Cochran, 1977).

The benefits of stratified sampling over SRS are that estimates based on the sam-

ple can be weighted according to the number of data within each stratum, which

can improve the accuracy of results. The method is also said to be more efficient,

since for a sample of n data, estimates from a stratified sample will have a lower

error than an equivalent size sample generated by SRS, which means that poten-

tially fewer samples need to be taken. According to Kpedekpo (1973), effective

implementation of stratified sampling considers the following:

• number of strata,

• location of strata boundaries,

• allocation of samples from strata, and

• choice of stratification variables.

Figure 3.4 describes the two approaches for defining strata boundaries. The sim-

plest way is to partition the sample by cutting each individual axis of one or more

variables, as in Figure 3.4(a). In the case where variables take discrete attributes,

the choice of where to locate the cut-points may be obvious (e.g. male or female

sex, discrete pipe diameters etc.). However, cut-point stratification of continu-

ous variables is more difficult. Although several methods for defining optimal

strata have been devised based on the theoretical properties of sample estimates

of conventional statistics (Kpedekpo, 1973), such as the mean and variance, sim-

ilar analysis cannot be applied to non-parametric regression. Furthermore, since
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the cut-point stratification forms hypercubes, many empty strata may be formed

and the average stratum size may decrease due to the increasing dimensionality,

which could adversely affect sampling.

In the case of multivariate stratification, clustering algorithms may be applied to

generate strata, which is referred to as cluster-based stratified sampling (CBSS)

(Gill et al., 2004). Partitioning algorithms are often used to perform the clus-

tering, in which data are grouped according to their nearest prototype vector, as

shown in Figure 3.4(b). In clustering terms, the volume surrounding a proto-

type vector is referred to as the Voronoi space, and this defines boundaries of the

stratum. The CBSS approach is considered highly suited to the sampling of mul-

tivariate data for ANN development, since the partitioning of the database into

homogeneous groups increases the representativeness of the sample. Stratified

random sampling for ANN data selection has been described in several exam-

ples, based on partition clustering algorithms. Examples of algorithms include

the k-means, self-organizing map (SOM) and the fuzzy c-means. Svozil et al.
(1995) and Bowden et al. (2002) applied a partitioning of data based on the self-

organizing map prior to sampling. The methodology has since been adopted in

several similar ANN applications to water resources modelling (Anctil and Lau-
zon, 2004; Zhang et al., 2004a; Kingston, 2006). Shahin et al. (2004) utilise fuzzy

c-means clustering to partition the data, although the benefit of a fuzzy approach

is only marginal, since ultimately hard (as opposed to soft) clustering is required

due to the unique stratum membership constraint. Alternatively, hierarchical or

agglomerative clustering could also be used to form the strata.

Regardless of the type of clustering used, the important benefit is that an optimal

stratification can be obtained, which avoids the need to specify cluster boundaries

(Mulvey, 1983) However, the challenge is that clustering algorithms typically re-

quire that the number of clusters (i.e. the number of strata) is known, or at least

specified, and it is often necessary to determine a suitable number. As previously

mentioned, the task of choosing the number of strata may be a simple task in

the case of discrete variables, but is more difficult for continuous variables. In

clustering algorithms, the same challenge also exists, and suitable methods for

determining the optimal number of partitions need to be identified in order to

successfully apply the CBSS approach.

The allocation of samples has also yet to be examined in detail for CBSS methods

applied to ANN training data sampling. Both Svozil et al. (1995) and Bowden
et al. (2002) draw a single sample for training, test and validation. Of course,

this implies that there are a sufficient number of small, homogeneous groups.

Consequently, the sample size and representativeness is directly a function of the

number of partitions. Svozil et al. (1995) ensures that at least n partitions are
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(b) Stratification by clustering in p dimensions

Figure 3.4: Multivariate stratification can be achieved by (a) cut-points that divide strat-
ification variables along each axis to form strata, or by (b) clustering the data to define
strata according to naturally occurring groups.
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used to draw approximately the required sample size in this manner. Conversely,

Bowden et al. (2002) concludes that if the clustering is optimised and the data

are sufficiently homogeneous, then the number of partitions essentially deter-

mines the sample size, which can result in a smaller sample. However, Bowden
et al. (2002) concedes that determining the optimal number of partitions poses a

considerable challenge. Kingston (2006) randomly samples all data within each

partition in proportion to the desired sample sizes for training, test and valida-

tion, although little justification for this is provided. Neither of these examples

have fully considered the importance of sampling from within the partitions, and

the suitability of the approaches has yet to be thoroughly assessed, or compared.

The choice of stratification variables is also important, since improvements will

only be observed if there are distinct groupings in the data, or groups can be

found that are sufficiently homogeneous. Stratification on variables that are

uniformly distributed will not yield an improvement in the quality of the sam-

ple in comparison with SRS (Cochran, 1977). Clustering in multiple dimensions

may result in an increased number of sparse strata, which may affect sampling

performance. Consequently, the choice of stratification variables may require a

trade-off to optimise the benefits of stratification, by minimising stratification

on marginally structured variables. Induction based stratified sampling (IBSS)

is a variation of CBSS in which only the most salient variable is stratified (Gill
et al., 2004). It is argued that IBSS can provide some improvement by reducing

the dimensionality of the clustering, although the saliency of the input variables

must be known. The application of IVS filter algorithms can provide this kind of

information. However, Gill et al. (2004) do not discuss the case where one or

more variables are equally informative, which is quite possible. Given that IVS

has removed both noise and uninformative variables, it is expected that unless

one variable is particularly dominant, stratification on all input variables will be

required to capture a representative sample of input-output data.

Multi-stage sampling

Multistage sampling generally refers to grouped sampling methods that utilise

non-SRS sampling within groups, but potentially could involve any combination

of single-stage methods. Common examples are stratified and cluster sampling,

in which the per stratum sampling is not SRS, but some other form of sampling

(often systematic) instead. The idea is that the sampling method imposed can

account for heterogeneity within each cluster to yield an even more representa-

tive sample. The efficiency of this method will depend on the stratification or

clustering, since homogeneous clusters will yield little additional improvement.
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A multi-stage design was applied to the sampling of geotechnical data for ANN

prediction of foundation settlement (Shahin et al., 2004). In this case, the fuzzy c-

means clustering algorithm was used to perform the stratification and the degree

of cluster membership was then used to determine which samples were drawn

from each stratum. Systematic samples could be drawn by taking samples in

order of increasing distance from the prototype vector (i.e. from the centre of

the cluster outwards) (Bowden et al., 2002). However, there is no guarantee

that the sample would be better than a random sample, since the distance is

not necessarily related to the spatial distribution of data within the cluster. For

example, two points may be the same distance from the prototype vector, but far

from each other in opposite regions of the cluster. If stratification or clustering is

not performed on all dimensions, multi-stage sampling can potentially offer some

improvement of stratified random sampling, since there may still be some intra-

cluster heterogeneity. However, provided all available dimensions are considered

during the stratification stage, then the groups are likely to be homogeneous and

stratified random sampling would be expected to draw an equally representative

sample.

3.4.2 Non-probability Sampling

Non-probability sampling, by definition, implies that probability of selection of

data is undefinable. Unlike probabilistic methods, the selection frequency of

some data can be zero, and the exclusion of these data from the sample, or the

impossibility of selecting certain samples by the sampling method, potentially

results in bias. Non-probability sampling may be easier to implement in many

cases. However, it is considered less rigorous and it is more difficult to determine

the quality of the sample obtained.

Convenience Sampling

Convenience sampling refers to methods where samples are selected based on

ease of sampling. In survey design or data collection, this is a common choice due

to the expense or difficulty in obtaining data. However, the method is strongly

biased by the factors that determine the convenience of sampling and it is not

always possible to obtain representative data.

In ANN development, convenience sampling is often observed in time-series mod-

elling. Many practitioners will use successive intervals of data for training, testing

and validation, respectively. The motivation is that the time-series order of data
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is preserved, which makes it convenient to plot, visualise and interpret the data

and model predictions. However, the danger is that trends or uncharacteristic

behaviours might not be observed throughout the data record, and consequently

the data samples will not be representative of each other. For example, a hy-

drological database might contain data for a recent flood event that is used as

test data, where older data were used for training. Consequently, the model will

perform poorly due to a lack of sufficient training data.

Judgement Sampling

In the case where some expert knowledge is available regarding the system or

process under consideration, it is often considered appropriate to use this ad-

ditional information to guide the selection of training data. In environmental

time-series modelling applications, it is not uncommon for judgement sampling

to consider seasonality of the data, where data spanning one or more whole sea-

sonal cycle are used as training data, and data from other corresponding seasonal

cycles are used as test and validation data. However, without any data analysis to

support the sampling, there is the potential for errors in judgement to create bias.

It may be the case that other unknown patterns exist in the test or validation data

that are not contained in the training data due to other states of the system.

Quota Sampling

Quota sampling is often used in the case where data may belong to one of a

set of c classes, and it is required that specific instances or proportions of each

class are included in the sample. Quota sampling overlaps several other sampling

techniques, and can be considered a special case of multistage sampling involving

stratification and judgement sampling. Stratification groups the data according

to class, and then a specified quota from each class are sampled based on expert

judgement.

Quota sampling is often used for survey design and a common example is the

50:50 sampling of gender in surveys. The drawback is that the sample is likely

to be highly biased by the defined quotas for each class. The method also implies

that there is some extensive knowledge of the classes within the data, and a

rationale behind the formulation of quotas. The bias and non-randomness are

considered to be a disadvantage in comparison to stratified random sampling,

which can essentially achieve a similar sample with less bias, and less a priori
knowledge of the data.
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Systematic Sampling

Systematic sampling is a non-probability sampling method, in which a starting

point is selected and then every kth sample onward is selected (Cochran, 1977).

Given a sample size, n, the sampling interval k = N/n is determined. The first

sampling location is chosen by drawing a random location m ∈ [1, k] and then

sampling locations m+k,m+2k, . . . etc. If the data are unordered, then system-

atic sampling effectively yields a uniformly random sample. Systematic sampling

is therefore an even more efficient means of implementing SRS, since there is no

need to generate random numbers.

Systematic sampling can also be used to efficiently implement a form of stratified

sampling. If the data are somehow sorted, then systematic sampling is implicitly

stratified due to the alignment between the sampling interval and the structure

within the data. Baxter et al. (2000) used systematic stratified sampling for sam-

pling ANN training data for a water quality model, in which the data were sorted

in order of the output variable.

The drawback of systematic sampling is that if the data are unknowingly ordered,

or if care is not taken during sampling, then sampling can be biased due to struc-

ture in the data. An example is the systematic sampling of a periodic time-series,

in which the sampling interval coincides with the period of the data. In this case,

the sample will contain only data corresponding to the same point within the

period.

Duplex Sampling

Kennard and Stone (1969) developed the CADEX and DUPLEX data splitting algo-

rithms for split-sample validation of regression, and these approaches are some-

times collectively referred to as Kennard-Stone (K-S) data splitting. CADEX ini-

tially selects data that lie farthest from all other points within the database. Train-

ing and calibration data are alternately selected by selecting data that lie farthest

from any previously selected points. DUPLEX is a modified form of CADEX in

which data are selected in pair-wise manner in order to reduce the optimism of

the test data (Snee, 1977), which proceeds as follows:

DUPLEX:

i. Find xi and xj that maximise ‖xi − xj | and move from T to training set.

ii. Find xi and xj that maximise ‖xi − xj | and move from T to test set.
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iii. Find next sampled pair xi and xj , such that |x− c| is maximised, where c is

the centroid of the sample S

iv. Repeat, alternating allocation to training and test samples, until smallest set

is filled.

Here, in order to initialise each sample, the initialisation sequentially finds the

pair of data that lies farthest from each other within the database; the first pair

allocated to training, the second to the test data.

The approach has zero variance, as it is fully deterministic and only one split

is possible for any given database. Although Kennard-Stone sampling generates

a 50:50 split into two datasets, it is possible to generate data sets of arbitrary

proportions by allocating data to the smaller set until it is filled, and allocating

all remaining data to the larger set (Snee, 1977). Both CADEX and DUPLEX

algorithms have been used widely in the field of chemometrics, including several

applications to ANN development (Despagne and Massart, 1998). However, in

comparison to other approaches, they are relatively unknown within the field of

water resources or environmental modelling and analysis.

Supervised Sampling

Supervised sampling techniques describe sampling methods where data are se-

lected based on some criteria regarding the quality of the sample. The allocation

of data into samples is treated as an optimisation problem, in which the aim

is to ensure that the samples are maximally representative (or, minimally dis-

similar) of each other so that the bias in model validation due to the hold-out

is minimised. The two most important considerations for this approach are the

method for iteratively searching through the many combinations of samples, and

the objective function that evaluates the similarity of the samples.

Bowden et al. (2002) notes several examples where supervised sampling has been

achieved using a manual trial-and-error approach to optimally allocate samples.

However, very few details are given as to the exact implementation of the meth-

ods used, and consequently, these are difficult to reapply. Furthermore, although

statistically similar datasets may be found that satisfy hypothesis tests, the result

may not be optimal given that only relatively few combinations will be explored.

Consider sampling of n data into three disjoint samples of sizes a, b and c. The
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number of unique combinations of samples is

Cn
aC

n−a
b Cn−a−b

c , (3.4)

where a+ b+ c ≤ n. Exhaustive search is not feasible for large datasets, since the

number of possible samples that could be generated is very large. Random search

could be applied to automate the procedure. However, given the size of the

search space, a large number of trial samples will need to be evaluated, otherwise

the result may not be optimal given that only relatively few combinations will be

explored.

A natural refinement of the random search approach is the application of heuris-

tic optimisation algorithms, such as genetic algorithms. The potential application

of genetic algorithms (GA) to this sampling problem has been demonstrated by

both Reeves and Taylor (1998) and Bowden et al. (2002). The former use the re-

combination and reassortment (RAR) operator (Radcliffe, 1993) as the basis for

cross-over and mutation, which is designed for GAs applied to number set prob-

lems. Given two samples of length n, RAR places ω copies of data that occur in

both samples, and one copy of data that are unique to either sample, into a pool

or bag. A new sample is then drawn by simple random sampling of n data from

the pool, ensuring that the sample does not contain multiple copies. Using the

RAR operator, the relative degree of recombination can be set to tune the con-

vergence characteristics of the algorithm. The parameter w (usually set to 1 or

2) controls the relative degree of recombination to reassortment. A high value

of w increases the probability of sampling data that are common to both origi-

nal samples and leads to faster convergence. So far, the RAR GA has only been

considered for the selection of data for training and out-of-sample testing. Al-

though it seems highly suitable, the application to the selection of three samples

for training, testing and validation has yet to be examined.

Bowden et al. (2002) utilised a more conventional floating-point GA with a ran-

dom number seed, which generates a unique pseudo-random sort-key to permute

the ordering of data, as the single decision variable. Samples are generated by

fixed, contiguous partitions of the required size, where the composition of the

samples depends on the order of data. However, the formulation seems ineffi-

cient in comparison with the RAR GA for several reasons. First, each random

number seed gives a unique sort key, but does not strictly result in a unique

permutation of the data. Second, unique permutations of the data themselves do

not necessarily give rise to unique samples, since the ordering may simply reorder
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data within the same partitions. Consequently, many unique number seeds will

correspond to equivalent samples, reducing the efficiency of the search. Finally,

and perhaps more importantly, is that the encoding of the optimisation problem

in this manner does not utilise the full potential of GAs, since there is, in fact, no

functional relationship between the random number seed value the composition

of the sample. The fundamental basis for evolutionary search strategies is that

characteristics of good solutions are preserved through subsequent iterations to

allow convergence as a result of cross-over and selection. Consequently, the al-

gorithm developed by Bowden et al. (2002) only finds an optimal solution due to

the random search behaviour that results from cross-over and mutation.

Formulation of the objective function is a critical consideration in the formulation

of a GA, as it mathematically defines the notion of quality. Various methods for

evaluating the sample quality have been proposed in order to define a suitable

objective function. Reeves and Taylor (1998) evaluated the quality of the training

sample based on the validation performance of a trained model. In this sense,

the method for evaluation is similar to wrapper algorithms for input variable

selection (see Section 2.3.4). Here, the drawbacks of computational efficiency

and the need to develop many ANN models are the same.

Statistical analysis can be applied to define the quality of the sample, for which

similar comparisons can be made to IVS filter algorithms. The definition of qual-

ity is invariably based on the representativeness of training, test and validation

data, which is usually defined by measuring the statistical similarity of the sam-

ples (Bowden et al., 2002). Conventional statistical tests include the t-test for the

similarity between the means of samples, and the analysis of variance (ANOVA)

F -test for comparing the spread of data samples. However, both the t and F

statistics are highly influenced by the centres of the respective distributions, and

as such do no provide detailed information regarding the tails of the distribution.

The Kolmogorov-Smirnov (K-S) statistic has also been used to compare the dis-

tribution of the samples (Bowden et al., 2005). The K-S statistic measures the

similarity as the maximum deviation between the cumulative frequencies of two

distributions. The K-S statistic is considered a robust method of comparing two

samples, since it considers the entire distribution. A similar criticism to the con-

ventional t and ANOVA F tests can be made of the Kolmogorov-Smirnov (K-S)

statistic, which is known to favour matching of the mean of two distributions

where the rate of change in the cdf is the greatest. Given that the sampling

variance is often due to poor sampling in the sparser regions of the data, it

would seem that the application of statistics based on the mean could potentially

provide a false indication of the representativeness of the data. The Andersen-

Darling statistic (Stephens, 1974) might prove a better choice, as it places more
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emphasis on matching the tails than the K-S test.

Regardless of the statistical test used, there are several hitherto unresolved issues

with the GA sampling approach. First, each dimension of the data is invariably

considered separately, and therefore only univariate statistics are computed. It

is assumed that statistical similarity, as inferred by univariate hypothesis tests on

each dimension, corresponds to the selection of truly representative samples. The

sampling method should consider obtaining representative samples of the joint

distribution, that is to say, there is equal representation of all input-output tuplets

in the training, test and validation samples. Since a suitable investigative study

has yet to be undertaken, there has been no conclusive evidence provided that

optimisation of statistical similarity measures produces optimal data samples.

It has been demonstrated that the objective function produces similar training,

test and validation samples, but there is no evaluation of their quality in terms

of bias, or variance. Furthermore, the deliberate sampling of validation data (by

including properties of the validation data in the objective function) suggests that

these studies are optimistically biased, and an out-of-sample test is necessary to

truly validate the approach.

3.5 Comparison of Approaches

Table 3.1 presents a qualitative comparison of the different approaches to sam-

pling ANN data. Several criteria are used to differentiate between the different

approaches based on the quality of the sample, and the effort required to draw a

sample. In terms of quality, the bias and variance characteristics of samples are

considered to reflect the ability of the sample to consistently draw good samples.

Differences between training, test and validation samples will also be manifest as

bias (i.e. model error). Representativeness refers to the ability of the sampling

method to provide coverage of all parts of the modelling domain. Computational

constraints may also be important, and in Table 3.1, the two criteria considered

are speed and scalability. Methods differ in speed, but there will also be variation

in the increase in computational effort as the number of samples to be drawn

increases, or the length of the available dataset increases. Finally, the amount

of a priori information regarding the data is important, as this will determine

how easily different methods can be implemented. Some methods can be imple-

mented without any knowledge, such as SRS; but other methods, like importance

sampling, may only be implemented based on pre-existing or determined knowl-

edge of the available data.

Simple random sampling (SRS) is the most basic, and possibly the easiest prob-
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3.5 Comparison of Approaches

ability sampling technique. On average, SRS will not yield a good sample, due

to the poor representation of non-uniformly distributed data. The method is un-

biased in the traditional sense, that any sample has an equal chance of being

selected. However, the quality of the sample has a high variance, and can be

very poor. Despite the widespread application of SRS to ANN data sampling, it is

not a good choice, as it is unable to reliably generate a good hold-out sample for

any real-world application, for which data are naturally distributed (Palmer and
Faloutsos, 2000).

Convenience sampling and judgement have often been used to select training

data for ANN development. The methods are very quick to implement, since there

is essentially little to no computation required. However, there is no easy way to

determine the quality of the sampling, since the amount of bias due to sampling is

generally unknown, although with both methods, the bias is usually significant.

In this sense, the bias is due to the selection of specific data, and exclusion of

others, which leads to a difference between the ANN model based on the sample

and the true model. Transferral of the method from one application to another

is also very difficult, as it relies on expert understanding of the idiosyncrasies of

the problem at hand, making the use of judgement a necessity.

Genetic algorithms or heuristic search can guarantee that a near-optimal sample

can be drawn, to ensure representativeness. However, the sampling is heavily

biased by the objective function that is used to evaluate sample quality, and it is

difficult to estimate the impact of such bias. Wrapper-like approaches to sampling

ANN data are computationally intensive and are undesirable for the same rea-

sons wrappers are less favoured than filters for IVS (see Section 2.4). However,

methods for the statistical assessment of sample quality are possibly insufficient

to determine true sample quality, nor has a conclusive demonstration of sample

similarity and sample quality been established.

DBS is one of the better sampling methods for ANN development. DBS can be

used to increase the frequency of sampling for sparse data so that the variability

of sampling is reduced, which has been demonstrated to improve the perfor-

mance of ANN models for the prediction of rare events. However, the drawback

of the approach is that significant computational effort may be required to esti-

mate the necessary pdf for determining the sample probabilities. Although some

computational improvements can be implemented for discrete data, for continu-

ous data the DBS method will only be a feasible option if the pdf of the data is

already known, or the dimensionality and length of the data is sufficiently low to

permit density estimation.

Stratified sampling is one of the best methods for drawing a quality sample. The
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stratification partitions the data so that samples are drawn from the entire data

space, which ensures that the data are representative and the ANN will less likely

need to extrapolate during testing or validation. Cluster-based stratified sam-

pling has been found to be ideally suited for the development of ANN models.

The scalability of the algorithm relates more to the clustering than the sampling,

and provided the number of clusters is kept small, the computational effort re-

quired to perform stratification will be feasible. The computational requirement

of clustering is a significant factor in the overall effort, but is typically less inten-

sive than the pdf estimation required for DBS. Despite the several demonstrations

of CBSS of ANN training data, the issues of determining the number of strata and

how to best draw samples from within them are hitherto unresolved.
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Chapter 4

Synopsis of Publications

“Hackworth was a forger, Dr. X was a honer. The distinction
was at least as old as the digital computer. Forgers created a

new technology and then forged on to the next project,
having explored only the outlines of its potential. Honers

got less respect because they appeared to sit still
technologically, playing around with systems that were no
longer start, hacking them for all they were worth, getting

them to do things the forgers had never envisioned.”

Neal Stephenson, The Diamond Age (1995)

This chapter discusses the contributions of the six publications presented in sub-

sequent chapters, which form the core of this thesis. Overall, this thesis is fo-

cussed on increasing understanding of the methodology for ANN development

and Figure 4.1 illustrates the relevance of the publications and their context

within a framework for ANN model development. In particular, two aspects of

ANN development are examined: input variable selection (IVS), and data split-

ting. As highlighted in the review of literature (Chapters 2 and 3), the impor-

tance of both of these issues for ANN model development is arguably greater

than for conventional modelling approaches, and can severely impact on model

performance. Despite the emergence of rules and considerations to guide other

aspects of ANN development, it is apparent that there are significant, yet unre-

solved issues in these areas, which are consequently addressed in the publications

presented herein.

The important issue of IVS is discussed in Publications 1, 2 and 3; which follow

on from the review of IVS approaches in Chapter 2. Central to these papers is the

IVS approach of Sharma (2000) described within the literature review, and the

issues discussed with regard to the reliability and accuracy of the selection, and
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4 Synopsis of Publications

the computational requirements. Publications 1 and 2 are concerned with the

theoretical development of an improved implementation of the algorithm, and

Publication 3 provides a contextual application of the algorithm.

Publication 1 describes a Monte Carlo simulation (MCS) approach for determin-

ing critical values of the kernel density estimation of MI that underpins the PMI-

based IVS algorithm. This paper presents the motivation for adopting MCS as

a pragmatic solution in the absence of a theoretical expression for the error in

finite-sample estimates of MI, and illustrates the use of MCS-based confidence

bounds in the IVS algorithm. In this case, termination is based on the evaluation

of the significance of MI measured between a candidate input and the output.

Sharma’s original implementation relied upon a bootstrap estimation of MI esti-

mation error, and consequently the algorithm was shown to potentially be both

computationally intensive and unreliable. The IVS example given in the paper

clearly demonstrates the behaviour of the more robust MCS-based estimates of

confidence bounds, which are more stable; in comparison to those based on a rel-

atively small and computationally intensive bootstrap, which are highly variable

and therefore unreliable.

Estimation of critical values of MI is a central issue in applications that utilise MI

as a measure of relevance. A major contribution of this work is the production of

a table of critical values of MI computed for the case I(x; y). The computation of

MCS estimates necessary to generate these tables represents a considerable usage

of CPU time, especially for estimates where the sample length becomes large, and

so these tables provide a reference for future work. Previously unpublished tables

of MI estimates for multivariate cases were also computed during this research,

and are presented in Appendix A of this thesis. An important result is the quan-

tification of the increase in errors for MI estimates of increasing dimensions. This

result adds further justification for IVS based on bivariate PMI estimates, rather

than multivariate joint mutual information (JMI), because multivariate estimates

of JMI have significantly greater uncertainty; which would potentially obscure

relationships between variables.

Publication 2 presents the development of the improved version of the IVS algo-

rithm, which is based upon the estimation of partial mutual information (PMI).

The paper describes the development and evaluation of the algorithm using sev-

eral alternative criteria for terminating the selection process. Three alternative

termination criteria are formulated:

1. termination using off-line estimates of MI confidence bounds determined us-

ing Monte Carlo simulation;
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2. termination using the Akaike information criterion, which finds the optimum

trade-off between dimensionality and information content in the set of input

variables; and

3. use of the Hampel outlier test to terminate selection when the remaining can-

didates are equally insignificant, and presumably irrelevant.

The first criterion, developed in Publication 1, is potentially limited by an as-

sumption of Gaussianity in the data used to estimate the critical values of MI.

Consequently, the second two criteria provide alternative approaches to termi-

nating selection, which each address this potential limitation.

Publication 2 also describes the evaluation of algorithm performance using each

termination criterion, based on the selection of inputs for a suite of linear and

non-linear datasets. The paper critically evaluates Sharma’s original implemen-

tation, and quantifies the sensitivity of the algorithm to the bootstrap size used.

Resulting comparisons with the original implementation show clearly that the al-

ternative criteria can significantly improve the ability of the algorithm to select

the optimal set of input variables. Furthermore, by avoiding the bootstrap, the

computational effort involved in performing the selections is reduced by the or-

der of 90%. Overall, each of the criteria presents a solution to implementing the

algorithm, without requiring a trade-off between accuracy and effort.

Importantly, the use of linear relevance measures, such as correlation, in IVS

filter design is conclusively shown to be a flawed approach when developing ANN

models through comparisons of the performance of a correlation-based approach

and the MI-based approach. The correlation-based approach only identifies the

correct input variables when linear relationships are present, and fails to identify

all variables when the dependence is non-linear. This is considered an important

result to emphasise, since the use of MI comes at considerable computational

expense, in comparison to correlation. However, although more computationally

intensive, the use of MI is obviously more appropriate than linear correlation

when the underlying assumption of non-linearity is implicit to the development

of ANN models.

In Publication 3, the application of the PMI algorithm to ANN model development

is demonstrated within the context of two water quality modelling examples:

an ANN meta-model of a well-known water distribution system simulation, and

an ANN model to forecast water quality within a real-world water distribution

system. Importantly, this paper provides a comparison between the approach to

model development using the PMI-based algorithm for IVS, and an existing state-

of-the-art approach (Chlorcast©), which adopts a greedy approach by selecting
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all inputs within a given time window. In each of the examples, the IVS approach

is shown to be able to identify an optimal subset of input variables for the ANN,

and therefore produce a more parsimonious ANN with an equivalent prediction

performance. Furthermore, this paper demonstrates how the analysis of selected

input variables can provide an understanding of the relative importance of rela-

tionships that reside within the data, and how the ANN makes predictions; which

is otherwise obscured by the “black-box” approach.

Publications 4 and 5 examine the problem of data splitting, which is the fourth

stage of the ANN model development framework, as shown in Figure 4.1. As

stated in the literature review in Chapter 3, hold-out validation is the most com-

mon methodology used in ANN development to avoid over-training the network

and ensure good generalisation. Methods for generating training, test and vali-

dating data vary within the literature, and as with IVS, there is little consensus

of what is an appropriate technique for a given ANN application. In many cases,

the importance of data splitting is understated or overlooked completely. In other

cases, although the data splitting approach is described, there is no justification

for the approach given, and no assessment of the impact on model performance.

Consequently, there is a need to quantify and compare the utility of various sam-

pling algorithms used for ANN development.

Publication 4 presents an investigation of a data splitting method based on strati-

fied random sampling of the self-organizing map (SOM). Several examples within

the literature have suggested the SOM as a tool for selecting training, test and val-

idation data. Several of the reported applications within the literature highlight

the potential benefits of this approach, which is essentially a form of stratified

sampling. The experimental study presented in Publication 4 considers the spe-

cific implementation of so-called SOM-based stratified sampling (SBSS), given

that the applications to date utilise different variations on the approach, which

differ with respect to how data are drawn from the SOM. Additionally, the pa-

per considers the impact of SOM attributes, namely the size of the map, on the

quality of the data sets that are produced; and also the contribution of random

initialisation of the SOM to variance in the samples.

Comparisons between different SOM-based methods are made in Publication 4 to

show that some of the approaches within the literature tend to produce subsets

that generate models that exhibit high variance and bias in the test and validation

error. These include drawing a single random sample, and drawing data in pro-

portion to the cluster size. On the other hand, the Neyman allocation rule, which

had previously been untested, is found to significantly reduce both the bias and

variance of the SBSS approach. The contribution of SOM initialisation is found

to be negligible, and could be eliminated as a significant source of the observed
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variation in sample quality.

The experiments undertaken in this research demonstrate that the application

of cluster validity indices (CVIs) to determine the optimal SOM size is poten-

tially flawed. Experiments indicate that larger grid sizes tend to result in good

sampling, whereas CVIs tend to suggest one or two clusters. It is evident in the

research undertaken that an optimal grid size exists, which minimises the vari-

ability and size of model error, which is much larger than that predicted using

CVIs. The problem with using CVIs is that datasets in regression are not always

strongly clustered globally, nor is global clustering relevant to sample quality.

Moreover, the partitioning required to ensure representation of the data with

reasonable precision is more dependent on local structures. The size of SOM

specified according to a popular heuristic rule was found to correspond closely to

the optimal grid size, in terms of sample quality, which offers a more convenient

way to determine the grid size to implement SBSS.

Finally, and arguably more importantly, the quality of the sample drawn using

the SBSS approach was benchmarked against several other popular approaches

from the literature. To the author’s knowledge, a comparison of multiple sam-

pling strategies such as this has not been undertaken prior to this research. This

is an important comparison to make, since many reports of ANN development

include unsupported claims of superior data splitting based on the reported tech-

nique. These results also support the qualitative comparisons that are made

within Chapter 3. Furthermore, this study has introduced the DUPLEX algorithm,

which is a popular deterministic data splitting algorithm in analytical chemistry,

but is rarely used in ANN water resources modelling applications. Although this

algorithm is traditionally used to generate only train and test sets, this paper il-

lustrates how DUPLEX can be used to generate the three datasets required for

training, testing and validating ANN models.

On the basis of the comparative study in Publication 4, some broad guidelines

were developed for choosing a sampling technique for data splitting. It is evident

that the distribution of data will influence the relative effectiveness of differ-

ent sampling techniques. First, the case against simple random sampling (SRS)

is clear and as a general rule should not be used for data splitting—especially

when the distribution of available data is skewed in some way (which is gener-

ally the case in real-world datasets used in model development). SBSS provides

a sampling technique that generates a more balanced data splitting approach for

multivariate data, as it takes into account the distribution of data. However, due

to the inherent issues related to the specification of the SOM size and learning

parameters, the SBSS approach can be difficult to implement. Two simpler ap-

proaches might be considered more suitable in the case of lower dimensions, or

84



4 Synopsis of Publications

when data are less skewed. In particular, Systematic stratified sampling, that

is, systematically sampling data that are sorted along the output variable, was

found to yield a simple and effective way of implicitly stratifying the sample,

but is only justified for datasets of one or two dimensions. The DUPLEX algo-

rithm (Snee, 1977), which selects data based on maximal distance, was found to

outperform SBSS. The approach is fully deterministic (i.e. no variation) and is

relatively straightforward to implement and can be applied to any dataset. How-

ever, the DUPLEX algorithm is restricted to moderately sized datasets, due to its

poor computational scalability.

Publication 5 presents the development of a novel hybrid SOM-DUPLEX data

splitting algorithm, which is called SOMPLEX. The combination of SOM clus-

tering with DUPLEX intra-cluster sampling is found to provide an excellent ap-

proach to data splitting. The DUPLEX sampling can overcome the variation in

performance due to random sampling of large clusters when using the SBSS ap-

proach, and improves the overall reliability of the data splitting approach. The

conventional DUPLEX algorithm also has high computational complexity, and the

computation requirement grows rapidly with increasing number of data. Conse-

quently, the additional benefit of the SOM clustering is to significantly reduce the

computational requirements.

Publication 5 also validates the arguments presented previously in Publication 4

by considering the application of data splitting algorithms to real-world applica-

tions in water resources, including: salinity forecasting, chlorine forecasting and

coagulation process modelling. This presents the first example of the use of the

DUPLEX algorithm within a water resources context, where the algorithm gener-

ated good results. Comparisons of bias and variance for resampled training, test

and validation data are used to further reinforce the benefits of the SOMPLEX

approach.

Publication 6, the final publication in this thesis, presents an overall review of

ANN model development. Despite a history of applications dating back to the

mid-1990s, the application and development of ANN models is still relatively

new to the water industry. The vast amount of ANN literature can intimidate or

confound many practitioners. The contribution of this book chapter is to provide

some guidance in the area of ANN development, and disseminate the knowledge

and insights gained through this research.

The overall motivation for this research was to improve techniques for ANN de-

velopment, and to provide guidance on appropriate modelling choices. A frame-

work is proposed, summarising the current state-of-the-art in ANN development.

The framework is presented as a data-flow diagram, and better illustrates the
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flow of data through the stages of model development, including the iterative

feedback loops during model training. The ANN framework also highlights the

interaction and choices available to the modeller at each stage of development.

Although this thesis focussed on input variable selection and data splitting, it is

important to emphasize that ANN development is a series of stages, from data

collection through to model validation, and that each of these steps can influence

the quality of model development.

Much of ANN literature is concerned with comparisons between ANN architec-

tures, and the development of novel learning paradigms for ANN training. The

main viewpoint presented in Publication 6 is that although machine learning

paradigms and ANN architectures are undoubtedly important areas of research,

the specific flavour of ANN or training algorithm are not necessarily the foremost

consideration during ANN model development. Indeed, many ANN architectures

are fundamentally similar and will most likely give satisfactory results, provided

that the auxiliary stages of development are implemented correctly. It is how the

ANN model is developed—namely the consideration of data collection, data pre-

processing, input variable selection, data splitting and performance criteria—are

likely to have a more significant impact on the utility and quality of the ANN

model that is developed, consequently it is these stages of development that

should be the foremost concern.
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Abstract

Artificial networks (ANNs) have been widely used to model environmental processes.
The ability of ANN models to accurately represent the complex, non-linear behaviour
of relatively poorly understood processes makes them highly suited to this task. How-
ever, the selection of an appropriate set of input variables during ANN development
is important for obtaining high-quality models. This can be a difficult task when
considering that many input variable selection (IVS) techniques fail to perform ade-
quately due to an underlying assumption of linearity, or due to redundancy within
the available data.

This paper focuses on a recently proposed IVS algorithm, based on estimation of
partial mutual information (PMI), which can overcome both of these issues, and is
considered highly suited to the development of ANN models. In particular, this paper
addresses the computational efficiency and accuracy of the algorithm via the formu-
lation and evaluation of alternative techniques for determining the significance of
PMI values estimated during selection. Furthermore, this paper presents a rigorous
assessment of the PMI-based algorithm, and clearly demonstrates the superior per-
formance of this non-linear IVS technique in comparison to linear correlation-based
techniques.
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6.1 Introduction

The development of statistical models is a well established technique for repre-

senting, and even predicting, the dynamic state of environmental systems. In

the case of many environmental systems, there is an abundance of available

data for model development, but a relatively poor understanding of the com-

plex underlying processes that generate the observed system dynamics, and this

favours the statistical modelling paradigm. In particular, the application of artifi-

cial neural network (ANN) architectures to environmental modelling has become

widespread in recent years (Maier and Dandy, 2000; Maier, 2006). This has been

mainly due to increased recognition of their superior ability to represent complex,

non-linear behaviour in comparison to more conventional modelling techniques.

The development and use of ANNs for environmental modelling and data analysis

has received much attention. Some examples include: real-time forecasting of air

quality (Finardi et al., 2008; Pires et al., 2008; Al-Alawi et al., 2008; Ionescu and
Candau, 2007; Dutot et al., 2007; Sousa et al., 2007), ecological modelling and

remote sensing (Iglesias et al., 2007; Shanmuganathan et al., 2006), modelling

of methane biogas production (Ozkaya et al., 2007), modelling and control of

wastewater processes (Raduly et al., 2007; Machon et al., 2007) and wastewater

networks (Darsono and Labadie, 2007), water treatment process control (Maier
et al., 2004), and water quality forecasting within rivers (Alp and Cigizoglu, 2007)

and distribution systems (Serodes et al., 2001; Rodriguez and Serodes, 1999).

Various frameworks have been proposed within the literature for the develop-

ment of ANN models, based on their application to a range of environmental sys-

tems (Maier and Dandy, 2000; Dawson and Wilby, 2001; Bowden, 2003; Kingston,

2006). In particular, a common component within these emergent frameworks

is the selection of an appropriate set of input variables from within the avail-

able data. However, although there is a well-justified need to carefully consider

input variable selection (IVS), there is currently no consensus on how this task

should be undertaken. Many of the described methods for IVS are based on trial-

and-error, heuristics, expert knowledge, statistical analysis, or a combination of

these. The statistical approach appears to offer an efficient methodology that is

not confined to specific applications. Hence, there is a potential for suitable al-

gorithms to become an integral component within a more robust framework for

ANN development—a framework that relies more upon analysis of the data, and

less upon heuristics and expert knowledge; and hence, is more in keeping with

the overall ANN modelling paradigm (Maier, 2006).

This paper is focused on the use of a recently proposed algorithm for non-linear
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IVS based on the estimation of partial mutual information (PMI). Originally pro-

posed by Sharma (2000), the algorithm is highly suited to the development of

ANN models due to the inherent properties of mutual information (MI); and is

one of only a few non-linear IVS algorithms reported for the development of ANN

models in environmental modelling applications (Bowden et al., 2005). However,

it should be noted that although the motivation in this paper is primarily ANN

development, the nature of the proposed IVS algorithm is such that it can be

used to identify inputs for any class of regression. This paper describes improve-

ments in the existing algorithm achieved through the formulation of alternative

termination criteria to improve computational efficiency and accuracy of the al-

gorithm. It also provides a rigorous assessment of the ability of the PMI-based

algorithm to outperform linear correlation-based IVS techniques when applied to

non-linear systems.

The remainder of this paper is structured as follows. Section 6.2 provides a the-

oretical overview of IVS and the estimation of PMI, which leads to the algorithm

that is subsequently described. Section 6.3 presents the formulation of several

alternative termination criteria for the IVS algorithm, and Section 6.4 describes a

benchmarking study, in which the termination criteria were evaluated based on

the application to experimental IVS problems. Results of the study are presented

in Section 6.5, and concluding remarks are given in Section 6.6.

6.2 Theoretical Overview

6.2.1 Input variable selection techniques

The IVS problem is defined as the task of appropriately selecting a subset of

k variables, S, from an initial candidate set, C, which comprises the set of all

potential inputs to a model (i.e. candidates). Defining what constitutes an ap-

propriate subset of input variables takes into consideration the effect the choice

of input variables ultimately has on the performance of models that are either

incorrectly over-specified or under-specified.

An inaccurate model results when the input set is under-specified, as the selected

variables do not fully describe the observed behaviour within the system under

consideration. On the other hand, the inclusion of input variables that are either

irrelevant or redundant (i.e. over-specification) increases the size of the model.

This not only adds to the data processing time required for model development

and deployment, it also adds noise, rather than information, to the model inputs
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and thus reduces the accuracy of the model. Furthermore, as the dimensionality

of the input variable set increases for a given model, the number of data sam-

ples required for training increases exponentially. This may pose a difficulty for

practitioners with limited data, or may prohibitively increase the computational

requirement of model development and deployment. Given these considerations,

an appropriate set of model inputs is considered to be the smallest set of input

variables required to adequately describe the observed behaviour of the system.

Algorithms for IVS can be considered broadly as either wrapper or filter algo-

rithms. Wrappers essentially treat the selection of inputs as an optimisation of

the model structure. The optimisation compares and evaluates either all, or a

subset of, the possible input sets and selects the set that yields optimal perfor-

mance of the calibrated model. Implementation of IVS wrappers can be achieved

in several ways, including: forward selection, where the input set increases from

a single input until model performance is no longer improved; backward elim-

ination, where the input set initially includes all candidates and candidates are

removed one at a time; or global optimisation (e.g. evolutionary ANNs and ge-

netic programming), where the decision to include each input is encoded as a

variable within the overall model optimisation.

Considering the combinatorial nature of the IVS problem, the number of possible

subsets that could be selected from a set of d potential input variables is equal to(
2d − 1

)
. The computational requirement of the trial calibration and evaluation

of a potentially large number of models is considered to be a weakness of using

IVS wrappers (Kwak and Choi, 2002; Chow and Huang, 2005). Furthermore,

optimal performance of the trained ANN does not strictly imply optimality of the

input set, since this is also dependent on additional factors such as the type of

ANN architecture, training algorithm, and the performance criteria adopted. The

appropriateness of a set of inputs obtained for a particular model architecture is

therefore not guaranteed for another, and restricts the applicability of any input

set obtained using a wrapper technique (Battiti, 1994).

In contrast to the model-based wrapper approach, model-free filter techniques

utilise a statistical measure of the degree of dependence between the candidates

and output variables as the basis for input variable selection. This separation of

the IVS task from the model calibration and selection tasks not only yields a more

efficient algorithm overall, but the resulting input set has wider applicability to

different model architectures. However, the performance of IVS filters is largely

dependent on the statistical dependency measure that is used.

The linear correlation coefficient, R, is a commonly adopted measure of depen-

dence between variables. It forms the basis of such selection schemes as correla-
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tion analysis and principal component analysis; both of which have been applied

extensively to the development of ANN models of environmental processes (Ols-
son et al., 2004; Sousa et al., 2007). Two key issues for these (and similar) IVS

techniques are the sensitivity of the linear correlation coefficient to noise, and

to data transformations during preprocessing, which can influence the appar-

ent relevancy of input variables (Battiti, 1994). However, more importantly, the

underlying assumption of linearly structured dependence is contradictory to the

development of statistical models of non-linear systems.

Mutual information has recently been found to be a more suitable measure of

dependence for IVS during ANN development, since it is an arbitrary measure,

and makes no assumption regarding the structure of the dependence between

variables. It has also been found to be robust due to its insensitivity to noise and

data transformations (Battiti, 1994; Darbellay, 1999; Soofi and Retzer, 2003).

However, several issues have arisen in the formulation of MI-based IVS algo-

rithms, which are: the ability of the selection algorithm to consider the inter-

dependencies between candidates (redundancy handling); and the lack of an

appropriate analytical method for determining when the optimal set has been

selected (Chow and Huang, 2005). One particular algorithm has been developed

that overcomes these difficulties by using the concept of partial mutual infor-

mation (Sharma, 2000). However, it relies upon a computationally intensive

bootstrap estimation technique to implement an automatic termination criterion,

which necessitates a trade-off between efficiency and the accuracy of selection.

6.2.2 Estimation of partial mutual information

Given a random output variable Y , there will be some uncertainty surrounding

an observation y ∈ Y , which can be defined according to the Shannon entropy,

H (Shannon, 1948). Now, given a random input variable X, which Y is depen-

dent upon, then the mutual observation of (x, y) reduces this uncertainty, since

knowledge of x allows inference of the value of y, and vice versa. By definition,

the mutual information, I(X;Y ), is the reduction in uncertainty with respect to

Y due to observation of X (Cover and Thomas, 1991). This is represented by

the intersecting region in Figure 6.1, where the reduced uncertainties surround-

ing X and Y are denoted by the conditional entropies H(X|Y ) and H(Y |X),
respectively.
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H(Y) 

H(X) 

H(X |Y) 

I(X;Y) 

H(Y |X) 

Figure 6.1: Venn diagram representation of the relationship between MI and entropy for
output Y and single input variable X.

Mutual information can be determined directly using

I(X;Y ) =
∫∫

p(x, y) log
p(x, y)
p(x)p(y)

dxdy, (6.1)

where p(y) and p(x) are the marginal probability density functions (pdfs) of X

and Y , respectively; and p(x, y) is the joint pdf. However, within a practical con-

text, the true functional forms of the pdfs in (6.1) are typically unknown. Hence,

estimates of the densities are used instead. Substitution of density estimates into

a numerical approximation of the integral in (6.1) gives

I(X;Y ) ≈ 1
n

n∑
i=1

log
[
f(xi, yi)
f(xi)f(yi)

]
, (6.2)

where f denotes the estimated density based on a sample of n observations of

(x, y). Note that the base of the logarithm varies within the literature, and use of

either 2 or e is often reported, although the natural logarithm is assumed in this

study, unless otherwise stated.

Given the form of (6.2), it follows that efficient and accurate estimation of MI

is largely dependent on the technique employed to estimate the marginal and
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joint pdfs. Non-parametric density estimation techniques are typically considered

suitably robust and accurate. In particular kernel density estimation (KDE) is used,

although it is somewhat computationally intensive compared to alternatives, such

as the histogram (Scott, 1992). The simple Parzen window forms the basis for

this approach, in which an estimator for f is given by

f̂ (x) =
1
n

n∑
i=1

Kh (x− xi) , (6.3)

where f̂(x) denotes the estimate of the pdf at x; xi{i = 1, . . . , n} denote sample

observations of X; and Kh is some kernel function (Scott, 1992) for which h

denotes the kernel bandwidth (or, smoothing parameter). A common choice for

Kh is the Gaussian kernel,

Kh =
1

(
√

2πh)
d√|Σ|

exp
(
−‖x− xi‖

2h2

)
. (6.4)

Here, d denotes the number of dimensions of X, Σ is the sample covariance

matrix, and ‖x− xi‖ is the Mahalanobis distance metric, which is given by

‖x− xi‖ = (x− xi)T Σ−1(x− xi). (6.5)

Substituting the expression for the kernel into (6.3), the estimator for f becomes

f̂ (x) =
1

n(
√

2πh)
d√|Σ|

n∑
i=1

exp
(
−‖x− xi‖

2h2

)
. (6.6)

Other choices of kernel may be adopted for reasons of computational efficiency

(Bonnlander and Weigend, 1994), however the performance of the kernel estima-

tor, in terms of accuracy, is dependent more on the choice of bandwidth, than on

the choice of kernel itself (Scott, 1992).

The optimal choice of bandwidth will depend largely on the distribution of the

available data sample. A bandwidth that is too small may be sensitive to noise
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within the data sample (under-smooth), resulting in a highly variable estimate of

MI. On the other hand, a bandwidth that is too large will tend to over-smooth the

complex features of the pdf and MI will be underestimated (high bias). Several

algorithms, including cross-validation (CV) and plug-in (PI) bandwidth selection,

can be used to optimise the kernel bandwidth, but at significant computational

expense. Sharma (2000), Bowden et al. (2005), and Huang and Chow (2005)

adopted the Gaussian reference bandwidth, hG for MI estimation as an efficient

choice, and Harrold et al. (2001) empirically found that a bandwidth of ∼ 1.5hG

gave stable estimates of MI. The Gaussian reference bandwidth is determined by

the following rule (Silverman, 1986)

hG =
(

1
d+ 2

)1/(d+4)

σn−1/(d+4), (6.7)

where σ is the standard deviation of the data sample. The optimality of hG

for a given set of data might be questionable if the data are not Gaussian, and

the Gaussian bandwidth can also tend to over-smooth (Scott, 1992). However,

it has been noted that the bandwidth can vary by as much as 20% before any

degradation in the accuracy of the density estimation becomes noticeable (Scott,
1992). Consequently, the reference bandwidth appears to be a reasonable first

choice, given its efficiency and widespread use within the literature, and has

therefore been adopted in this paper.

The notion of MI is easily extended to systems where the response variable Y is

dependent on multiple input variables (Cover and Thomas, 1991; Soofi and Ret-
zer, 2003). An example of such a system is depicted in Figure 6.2 for the case

of two input variables, X and Z. Given X and the already reduced uncertainty

H(Y |X) represented in Figure 6.1, the partial mutual information is defined as

the further reduction in the uncertainty surrounding Y that is gained by the ad-

ditional mutual observation of Z.

In fact, PMI is analogous to the partial correlation coefficient, R′
ZY ·X , which

quantifies the linear dependence of Y on variable Z that is not accounted for

by the input variable X. This is calculated by first filtering both Y and Z via

regression on X to obtain residuals u and v, respectively. The Pearson correlation

R (u, v) can then be used to determine R′
ZY ·X . Using this analogy, the PMI can

be estimated provided that a suitable regression technique is applied to filter the

arbitrary, rather than linear, dependence between variables.

Based on the KDE approach, an estimator for the regression of Y on X is written
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H(Y) 

H(X)  H(Z) 

H(X |Z,Y) H(Z |X,Y) I(X;Z |Y) 

I(X;Y |Z) I(Z;Y |X) 

H(Y |X,Z) 

Figure 6.2: Venn diagram representation of the relationship between PMI and entropy
for output Y and input variables X and Z.

as

m̂Y (x) = E [y|X = x] =
1
n

∑n
i=1 yiKh (x− xi)∑n
i=1Kh (x− xi)

(6.8)

where m̂Y (x) denotes the regression estimator; n is the number of observed val-

ues (yi, xi); Kh is as given in (6.5) and E[y|X = x] denotes the conditional expec-

tation of y given an observed x. An estimator m̂Z(x) can be similarly constructed,

and the residuals u and v can be subsequently obtained using the expressions

u = Y − m̂Y (X) (6.9)

and

v = Z − m̂Z(X). (6.10)

Using the residuals obtained in (6.9) and (6.10), the PMI is then calculated as

I ′ZY ·X = I(v;u), (6.11)
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where the subscript notation I ′ZY ·X is used to denote the PMI, otherwise written

as I (Z;Y |X). This notion of PMI allows for the evaluation of the dependence

between variables that takes into consideration any information already provided

by a given variable X.

6.2.3 Description of the PMIS algorithm

The PMI-based input selection (PMIS) algorithm proposed in this study was origi-

nally developed by Sharma (2000) for the identification of inputs for hydrological

models. Given a candidate set, C, and output variable, Y , the PMIS algorithm

proceeds at each iteration by finding the candidate cs that maximises the PMI

with respect to the output variable, conditional on the inputs that have been

previously selected. The statistical significance of the PMI estimated for cs is

assessed based on confidence bounds drawn from the distribution generated by

a bootstrap loop. If the input is significant, cs is added to X and the selection

continues; otherwise, there are no more significant candidates remaining and the

algorithm is subsequently terminated. The details of the algorithm are as follows:

i. Let X → φ (Initialisation)

ii. While C 6= φ (Forward selection)

iii. Construct kernel regression estimator m̂Y (X)

iv. Calculate residual output u = Y − m̂Y (X)

v. For each c ∈ C

vi. Construct kernel regression estimator m̂c(X)

vii. Calculate residual candidate v = c− m̂c(X)

viii. Estimate I(v;u)

ix. Find candidate cs (and vs) that maximises I(v;u)

x. For b = 1 to B (Bootstrap)

xi. Randomly shuffle vs to obtain v∗s

xii. Estimate Ib = I(v∗s ;u)

xiii. Find confidence bound I(95)
b

xiv. If I(vs, u) > I
(95)
b (Selection/termination)
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xv. Move cs to X

xvi. Else

xvii. Break

xviii. Return selected input set X.

Here, B is the bootstrap size; and I
(95)
b denotes the 95th percentile bootstrap

estimate of the randomised PMI, Ib.

The PMIS algorithm is structured in a similar fashion to earlier MI-based IVS

algorithms, such as mutual information feature selection (MIFS) (Battiti, 1994),

but has two advantages. First, PMIS inherently handles redundancy within the

candidate set through the direct estimation of PMI, whereas MIFS approximates

the effect of selected inputs by means of a heuristic weighting factor. Second,

while MIFS uses greedy selection of a pre-specified number of input variables,

PMIS includes a criterion that automatically determines the optimum point at

which to terminate the selection procedure.

The bootstrap is a statistical tool that is often used to test the quality of statistical

estimates based on a finite sample of data (Hastie et al., 2001). Given a statistic

S(x), the bootstrap involves drawing B samples x1, . . . , xB from the distribution

of x and estimating S(xi) to determine the influence of the sample on S. The

properties of the distribution p(S), such as the mean, variance and percentiles,

can be empirically determined based on the B sample estimates Ŝ. In most re-

spects, the bootstrap is equivalent to Monte Carlo simulation and analysis (Hastie
et al., 2001). In PMIS, the goal of the bootstrap is to determine an upper bound

on the estimate of MI between independent v∗s and output y. The bootstrap is

performed by drawing B independent, uniform random shuffles of vs, estimating

each Ib, and then determining I(95)
b . This value represents an approximation to

the critical value of I (at a 5% confidence level) for the corresponding sample

size, which is used to decide whether the most salient variable at each iteration

is statistically relevant, or irrelevant.

The size of the bootstrap, B, is an important consideration in the implementa-

tion of PMIS, since it can influence both the accuracy and overall computational

efficiency of the algorithm. A large body of literature exists on the bootstrap,

which discusses the effect of bootstrap size on the accuracy of confidence bounds

for sample-estimates of statistics. The number of bootstraps required can depend

on the variability of sample estimates, which will itself depend on the statistic.

The quality of data and degree of noise will also determine how large the boos-

trap size should be to accurately estimate the uncertainty of a given estimate. It
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has been suggested that a bootstrap size as large as 5 000 may be required for a

suitably reliable estimate (Chernick, 1999).

In the case of the PMIS algorithm, a bootstrap size of 100 has been used previ-

ously to estimate confidence bounds on the error in MI estimates, for reasons of

computational efficiency (Sharma, 2000; Bowden et al., 2005). However, a boot-

strap this small might not provide reliable estimation of the confidence bound,

which could result in unreliable and/or sub-optimal input variable set selection.

The reliability of PMIS with 100 bootstraps has not yet been ascertained, nor has

a reliable bootstrap size been determined for this application. However, given the

computational requirement for a single estimate of MI, any significant increase in

the bootstrap size beyond 100 is undesirable, as the computation time required

to implement PMIS would become excessive. Hence, what is needed is either

an alternative to the bootstrap, which yields a more accurate estimate of the MI

error without increasing the computational effort required, or possibly a termi-

nation criterion that is not based upon a direct comparison with the critical value

of MI.

6.3 Formulation of Alternative Termination Criteria

The remainder of this paper describes an assessment of the sensitivity of the exist-

ing PMIS termination criterion to the size of the bootstrap, and the novel formu-

lation of several alternative termination criteria. The motivation for formulating

a suitable alternative to the existing termination criterion was to improve the se-

lection accuracy and overall computational efficiency of the PMIS algorithm. In

total, three new termination criteria are proposed that each overcome the limita-

tions of the bootstrap in the existing algorithm.

6.3.1 Modified bootstrap

The performance of the bootstrap, in terms of accuracy and computational re-

quirement, is largely observed to be a function of the bootstrap size, B, and of

the confidence bound selected. The original implementation adopted B = 100
and I

(95)
b (Sharma, 2000), however, there has been relatively little examination

of the performance of the PMIS algorithm using either a larger bootstrap size, or

a stricter confidence bound. Consequently, an investigation into the performance

of the PMIS algorithm with modified bootstrap parameters was undertaken to

provide some benchmark results of the efficiency and accuracy of the bootstrap-
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based approach.

In this study, a confidence level of I(99)
b was trialled to compare with the origi-

nal I(95)
b confidence bound. It was expected that a more strict confidence bound

could potentially reduce the degree of over-specification because it was a more

difficult test to pass. An increased bootstrap size of 1 000 was investigated to

assess the potential improvement in the accuracy of estimations of both I
(95)
b

and I(99)
b this would provide. A ten-fold increase in bootstraps was considered a

suitable increase to gauge the effect of bootstrap size on accuracy, while main-

taining reasonable analysis times. The performance of PMIS using the increased

bootstrap size provided a useful benchmark for a more accurate bootstrap-based

termination criterion, against which the accuracy and reliability of alternative

criteria investigated in this paper could be compared.

6.3.2 Tabulated critical values

Tables of the critical values of the correlation coefficient, R, are readily avail-

able, which are based on the analytical formula for the distribution of the error

of an estimate for a given sample size. In the case of the linear correlation coef-

ficient, R, the distribution of a sample-estimate follows a t-distribution. Based

on the t-distribution, tables of the critical value of the correlation coefficient, R,

are easily constructed, as in David (1966), which provide the critical value of R

for the number of samples, and a given confidence level. However, unlike the

linear correlation coefficient, an equivalent analytical expression for I cannot be

derived due to the form of the expression in (6.2) (Goebel et al., 2005). Hence,

practitioners must resort to bootstrapping in order to estimate f(Î) (such as in

Granger et al. (2004) and Sharma (2000)). However, a recent study undertaken

by Granger et al. (2004), in which the distribution of a kernel-based informa-

tion estimator ŝp was examined for a number of time-series models, suggests a

practical alternative to the bootstrap.

Instead of using analytical values, a method for constructing tables of estimated

critical values of I using Monte Carlo simulation is described by May et al. (2006).

Monte Carlo simulation was used to empirically determine the distribution for the

MI estimator described in Section 6.2 as the first step in developing a termination

criterion based on approximate critical values. In each simulation, the MI was

estimated for a dataset comprising i.i.d Gaussian white-noise data, with sample

size n ranging from 50 to 5000 samples, in order to obtain a set of critical values

that could be used for testing for independence based on MI. For each sample

size, a series εy ∼ N(0, 1) was generated first and the marginal pdf fεy estimated.
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A total of 100 000 independent replicates of series εx ∼ N(0, 1) were generated,

independent of εy. For each instance of εx the pdfs fεx and fεxεy were estimated

and Î(εx, εy) was subsequently evaluated.

The resulting critical values of I are given in Table 6.1 for different confidence

levels. Two alternative termination criteria were formulated whereby, at each

iteration, the estimated I ′CsY ·S is compared to the respective critical values I(95)

and I(99) obtained from Table 6.1, rather than those directly estimated by the

bootstrap, in order to decide whether the candidate variable should be selected,

or the algorithm terminated. The elimination of the computationally expensive

bootstrap loop resulted in a much faster overall IVS procedure.

6.3.3 AIC-based criterion

An alternative termination criterion was formulated in this study that was based

on analysis of the output variable residual, u, that results from regression of Y

on the newly formed set, X. This criterion is based on the assumption that, as

the optimal set S is constructed incrementally during successive iterations of the

forward selection loop, the non-parametric regression m̂Y (X) will increasingly

filter more of the information contained within Y . Eventually, when the optimal

input variable set is reached, the kernel regression will show no further reduction

in the information contained in u, and selection is terminated.

The Akaike information criterion (AIC) (Akaike, 1974) was adopted as a measure

of the trade-off between accuracy of the regression filter and the size of the input

set X, for the purposes of formulating this termination criterion. Measures such

as the AIC are commonly used as a basis for comparison in model selection. The

AIC is given as

AIC = n loge

(
1
n

n∑
i=1

u2
i

)
+ 2p, (6.12)

where n is the number of observations, ui denote n residuals, and p is the number

of model parameters. In the case of linear regression, the term p is equal to k+1,

where k is the number of variables. However, for non-parametric regression,

it is necessary to use a measure of complexity such as the effective number of
parameters, or the Vapnik-Chernovekis (VC) dimension. The effective number of

parameters, d can be determined by trace(S), where S is the n × n hat-matrix
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Table 6.1: Critical values of the KDE-based mutual information estimator (after May
et al. (2006)).

n Ī I(90) I(95) I(99)

50 0.1323 0.1990 0.2224 0.2705

60 0.1236 0.1825 0.2031 0.2452

70 0.1166 0.1694 0.1879 0.2254

80 0.1106 0.1592 0.1756 0.2091

90 0.1057 0.1506 0.1657 0.1973

100 0.1013 0.1429 0.1572 0.1858

120 0.0943 0.1309 0.1434 0.1688

140 0.0883 0.1211 0.1321 0.1546

160 0.0839 0.1138 0.1237 0.1444

180 0.0798 0.1072 0.1166 0.1356

200 0.0763 0.1019 0.1103 0.1276

220 0.0735 0.0975 0.1055 0.1215

240 0.0707 0.0932 0.1005 0.1158

260 0.0682 0.0894 0.0965 0.1108

280 0.0661 0.0862 0.0928 0.1062

300 0.0642 0.0834 0.0896 0.1022

400 0.0567 0.0724 0.0775 0.0876

500 0.0513 0.0646 0.0689 0.0775

600 0.0473 0.0589 0.0627 0.0702

700 0.0441 0.0544 0.0578 0.0644

800 0.0415 0.0509 0.0539 0.0597

900 0.0393 0.0479 0.0507 0.0563

1000 0.0375 0.0455 0.0481 0.0531

2000 0.0270 0.0318 0.0333 0.0361

3000 0.0222 0.0257 0.0268 0.0289

4000 0.0192 0.0221 0.0230 0.0247

5000 0.0172 0.0196 0.0204 0.0218
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defined by the expression

ŷ = Sy, (6.13)

where the elements Sij correspond to Kh(xi, xj). It would be expected that dif-

ferent complexity measures (such as AIC, Bayesian information criterion (BIC),

minimum description length (MDL)), which each penalise model complexity dif-

ferently, could potentially result in different selections. However, comparisons

of model selection criteria are beyond the scope of this paper, and the AIC was

therefore adopted.

During PMIS, the behaviour of the AIC will initially be dominated by a reduction

in the magnitude of the residual terms, and decreases with increasing k before

reaching some minimum value. Beyond this point, the AIC increases due to the

2p term, which penalises the selection of additional variables. Hence, the optimal

value of k corresponds to the minimum AIC. Using this termination criterion, the

PMIS algorithm no longer includes the bootstrap, nor is the PMI compared to a

critical value. Rather, the AIC is determined for the input set that includes Cs and

if the AIC decreases, then Cs is selected; otherwise Cs is rejected and the forward

selection procedure is terminated.

6.3.4 Hampel test criterion

Outlier detection methods are a robust statistical approach for determining if a

given value, x, is significantly different from others within a set of values X. Out-

lier detection is commonly used to identify interesting data for further analysis,

or remove spurious data prior to analysis. In the case of PMIS, having identified

the most relevant candidate at each round using the outlier test, the decision can

subsequently be made to either select such a candidate and continue if the candi-

date is classified as an outlier (i.e. the PMI is significantly higher than all others),

or terminate selection if the candidate is not classified as an outlier, that is, it is

not significant. This forms the basis for the third proposed termination criterion.

The Z-test is commonly adopted for the detection of outliers within a given pop-

ulation of observed values of a given variable. The test compares the deviation of

a single observation from the sample mean of all observations. An observed value

with a Z-score greater than three is typically considered to be an outlier based

on the 3σ rule for Gaussian distributions (i.e. outliers lie greater than three stan-
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dard deviations from the population mean). However, the presence of multiple

outliers within a population can significantly alter the robustness of this test. The

reason for this is that the mean is sensitive to the number of outliers within the

population, since just one very distant outlier can significantly increase the mean

and variance sufficiently to make the outliers seem less different, relative to the

whole population. The effect is referred to as masking since this effectively hides

outliers. In statistical literature, the sensitivity of outlier detection methods to

masking is determined by the breakdown point of the test, which simply refers to

the proportion of outliers that must be present to significantly alter the location

(i.e. mean) and spread (i.e. variance) of the population. The breakdown point

of the Z-test is 1/n, since only one sufficiently large outlier will cause the test to

breakdown (Davies and Gather, 1993).

In formulating an outlier detection-based termination criterion for PMIS, the un-

derlying assumption is that a set of candidates will initially contain some propor-

tion of redundant and irrelevant variables, and significant variables will be de-

tected. However, potential masking of outliers was an important consideration,

given that the candidate set is likely to contain more than one relevant variable.

Hence, a modified Z-score, which utilises the Hampel distance, was adopted in-

stead to increase the robustness of the approach. The Hampel distance (Davies
and Gather, 1993) is based upon the population median. The breakdown point

of the Hampel-test is n/2, and is considered to be one of the most robust out-

lier tests in the presence of multiple outliers (Davies and Gather, 1993; Pearson,

2002). The Hampel test begins by calculating the absolute deviation from the

median PMI for all candidates according to

dj =
∣∣∣IXjY ·S − I

(50)
XjY ·S

∣∣∣ , (6.14)

where dj denotes the absolute deviation; and I(50)
XjY ·S denotes the median PMI for

candidate set C. The Hampel distance can then be determined by

Zj =
dj

1.4826d(50)
j

, (6.15)

where Zj denotes the Hampel distance (modified Z-score) for candidate Xj; and

d
(50)
j denotes the median absolute deviation (MAD), dj . The factor of 1.4826

scales the distance such that the rule Z > 3 can be applied, as is the case for the

conventional Z-test (Pearson, 2002).

Using this termination criterion, the PMIS algorithm again no longer includes the
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bootstrap loop, nor is the PMI compared to any critical value of I. Instead, the

value Zs is determined for candidate Cs and if Zs > 3, the candidate is selected

and added to S; otherwise the forward selection algorithm is terminated.

6.4 Experimental Methods

The task of selecting the correct input variables for a suite of benchmark data-

generating processes formed the basis of evaluation of the alternative termination

criteria, which is consistent with previous studies, where synthetic datasets were

used to test the performance of novel IVS algorithms (Chow and Huang, 2005;

Huang and Chow, 2005; Bowden et al., 2005; Sharma, 2000; Battiti, 1994; Kwak
and Choi, 2002; Bonnlander and Weigend, 1994). The datasets generated in this

study, although synthetic, are typical of environmental modelling applications in

that they represent a range of time-series and input-output functions of varying

degrees of non-linearity and persistence. Use of synthetic data for benchmark-

ing and analysis is useful since a comparison can be made between the specified

variables and the known set of “true” input variables. Furthermore, features of

synthetically generated data, such as signal-to-noise ratio, dimensionality, and

sample size can be adjusted to allow for a more comprehensive analysis of the

factors that influence IVS techniques. The application of PCIS and PMIS to both

linear and non-linear data serves as a basis for comparison of the relative abil-

ity of the dependence measures considered (R and I, respectively) to identify

relevant relationships.

The models shown in Table 6.2 were used to generate data sets of varying sample

length, linearity, and noise, where in all cases the term ε ∼ N(0, 1) denotes the

additive noise. The suite of models comprises a mixture of time-series models, for

which the output xt is a function of the set of past observations {xt−1, . . . , xt−d};
and input-output models, where the output variable y is represented by some

transfer function f(x1, . . . , xd). These models therefore represent test cases for

such data-driven applications as time-series forecasting and function approxima-

tion.

Models AR4 and AR9 denote linear auto-regressive time-series models (fourth

and ninth order, respectively). TAR1 and TAR2 are both non-linear threshold

auto-regressive time-series models. Data generated by these four models have

been used previously (Sharma, 2000). Datasets for the time-series models were

generated with 15 lagged observations (i.e. d = 15) to form the candidate set.

The Friedman model is a five-dimensional input-output function that is recom-

mended for benchmarking non-linear regression (Friedman, 1988). The Fried-
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Table 6.2: Benchmark data-generating models.

Linear auto-regressive time-series

1. AR4 xt = 0.6xt−1 − 0.4xt−4 + εt

2. AR9 xt = 0.3xt−1 − 0.6xt−4 − 0.5xt−9 + εt

Non-linear threshold auto-regressive time-series

3. TAR1 xt =

{
−0.9xt−3 + 0.1εt if xt−3 ≤ 0,
0.4xt−3 + 0.1εt otherwise.

4. TAR2 xt =

{
−0.5xt−6 + 0.5xt−10 + 0.1εt if xt−6 ≤ 0,
0.8xt−10 + 0.1εt otherwise.

Non-linear input-output functions

5. Friedman y = 5
(
2 sin(πx1x2) + 4(x3 − 0.5)2 + 2x4 + x5

)
+ ε

6. Mexican Hat y =
sin

(√
x2
1+x2

2

)
√

x2
1+x2

2

+ ε

man dataset nominally includes five additional noise variables. However, a mod-

ified form of the Friedman dataset was also considered, in which an additional

five dimensions of noise variables (ten in total) were added to the input variables

to form the candidate set. This was to investigate the sensitivity of the Hampel

test criterion to the relative proportion of irrelevant candidate variables. The

Mexican Hat function, which is a well-known two-dimensional non-linear func-

tion, provided a third input-output case. Data were generated for the Mexican

Hat model with an additional 13 noise variables to create a total of 15 candidate

input variables.

In this study, 30 independent instances of each model were used to generate data

sets of 50, 100, 500, and 1 000 observations of X(t) (or, (X, y)). Using each of

the termination criteria described in Section 6.3, IVS algorithms were applied to

select the input variables for each model. For the purpose of this study, all models

were implemented as C++ classes, which allowed the instantiation of models at

run-time to simultaneously generate multiple data sets, as required. Time-series

models were initialised with the initial conditions of x0 ∼ N(0, 1) and xt =
0 {∀t < 0}, and the first 20 observations were discarded to avoid initialisation

effects. In the case of the input-output functions, each of the candidate variables
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were uncorrelated Gaussian ∼ N(0, 1) noise.

6.4.1 Comparison to IVS based on the correlation coefficient

The implementation of MI filters comes at considerable computational effort

compared with correlation-based filters, due to the effort involved in pdf esti-

mation. Although Sharma (2000) gives possible examples where correlation will

fail, the overall performance of correlation and MI is yet to be thoroughly exam-

ined. Consequently, a selection scheme, based on partial correlation, serves as a

basis for comparison between the linear and non-linear approaches to IVS. The

algorithm, hereafter referred to as partial correlation input selection (PCIS), is

structured as for PMIS, but with the linear correlation coefficient used to mea-

sure the relevance of the candidates. Furthermore, generalised linear regression

(GLR) is used to estimate the residuals rather than kernel regression. GLR de-

scribes a linear filter of the form

y = Bx + ε, (6.16)

where B is a vector of linear regression coefficients and ε is the residual noise.

The least-squares estimate of the coefficients B, for a sample (X,Y ), can be

determined as

B = (XTX)−1XTY. (6.17)

Based on the original implementation of PMIS, the linear PCIS algorithm pro-

ceeds as follows:

i. Let X → φ (Initialisation)

ii. While C 6= φ (Forward selection)

iii. Construct GLR estimator m̂Y (X)

iv. Calculate residual output u = Y − m̂Y (X)

v. For each c ∈ C

vi. Construct GLR estimator m̂c(X)
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vii. Calculate residual candidate v = c− m̂c(X)

viii. Estimate R(v;u)

ix. Find candidate cs (and vs) that maximises |R(v;u)|

x. For b = 1 to B (Bootstrap)

xi. Randomly shuffle vs to obtain v∗s

xii. Estimate Rb = R(v∗s ;u)

xiii. Find confidence bound R(95)
b

xiv. If R(vs, u) > R
(95)
b (Selection/termination)

xv. Move cs to X

xvi. Else

xvii. Break

xviii. Return selected input set X

Similarly to PMIS, alternative termination criteria were implemented for PCIS.

Critical values of the linear correlation coefficient were obtained from tables in

David (1966) to implement the critical value-based termination criteria.

6.5 Results and Discussion

Figure 6.3(a), which plots the estimated I ′CjY ·S and the I(95)
b confidence bound

estimated from 100 bootstraps, illustrates the use of the bootstrap-based termi-

nation criteria. Here, the forward selection, based on estimation of PMI, correctly

selects the “true” input variables for the AR9 model, in their order of relative im-

portance: x(t − 4), x(t − 9) and x(t − 1). However, due to under-estimation of

the confidence bound, the estimated value of I ′CjY ·S does not satisfy the termi-

nation criterion until the eighth iteration, thus resulting in the selection of an

additional five variables. A better result was observed for the I99
b , which is shown

in Figure 6.3(b). Due to the under sampling of the tails of the error distribu-

tion, there is only a small difference between the estimated I95
b and I99

b , but this

was sufficient to achieve termination at the correct number of input variables.

Use of the I(95) and I(99) confidence bounds obtained from Table 6.1 (shown in

Figure 6.3(c) and 6.3(d), respectively), which were more accurately estimated,

resulted in the correct selection of input variables. This result highlights the
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potential sensitivity of the bootstrap-based criteria to bootstrap size, and demon-

strates the potentially unreliable nature of PMIS when an insufficient number of

bootstraps is used to implement the termination criterion.

Figure 6.3(e) illustrates the use of the AIC-based termination criterion. The mini-

mum AIC of 215 is clearly obtained following the selection of the third input, and

subsequently the algorithm terminates at this point, having correctly selected the

required inputs. Application of the Hampel distance-based termination criterion

for the AR9 example is shown in Figure 6.3(f). The Hampel distance falls be-

low three during the fourth iteration of the algorithm, and hence also terminates

at the optimal point, having rejected the most relevant candidate at the fourth

iteration.

6.5.1 Selection Accuracy

The application and assessment of the criteria, as shown in Figure 6.3, was

repeated for 30 datasets independently generated by each of the models, and

for each sample size. The overall results of the benchmarking study are sum-

marised in Figure 6.4–6.7, which show the average selection accuracy achieved

on datasets generated by linear models (Figure 6.4 and 6.5) and non-linear mod-

els (Figure 6.6 and 6.7) by PMIS and PCIS, respectively, on datasets of length 50,

100, 500 and 1 000.

Each graph indicates the average frequency of under-specified, correct, and over-

specified models for each of the two groups of models (linear or non-linear) that

was achieved by each algorithm (PMIS and PCIS) using the different termination

criteria (A–H). Under-specification was defined as an incomplete set of inputs,

and therefore represented a failure of the algorithm to identify all of the relevant

variables. Correct specification meant that only the exact input variables for each

of the respective functions were selected. Over-specification of the model was

defined as the selection of either irrelevant, or redundant, variables in addition

to the required input variable set. For each model, the frequency was determined

from the selections obtained for the 30 independent tests. A summary of the

alternative termination criteria is provided in Table 6.3.

A clear trend in the performance of PMIS when using the different termination

criteria was observed, as indicated in Figure 6.5(d) and Figure 6.7(d). Neglecting

differences in performance due to sample size, which is discussed later in Section

6.5.4, the results for a sample size of 1 000 typify the relative performance of

each algorithm. It was found that the least accurate selections were obtained

for criteria A–D, which were based on bootstrap estimates of confidence bounds.
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Figure 6.3: Application of alternative PMIS termination criteria for the AR9 time-series
example.
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Figure 6.4: Overall performance of PCIS for linear datasets
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Figure 6.5: Overall performance of PMIS for linear datasets
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Figure 6.6: Overall performance of PCIS for non-linear datasets
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Figure 6.7: Overall performance of PMIS for non-linear datasets
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Table 6.3: Summary of termination criteria assessed in benchmarking study.

Criterion Description Notes

A I ′ > I
(95)
b Small bootstrap estimate, B = 100.

B I ′ > I
(99)
b R′ for PCIS

C I ′ > I
(95)
b Large bootstrap estimate, B = 1 000.

D I ′ > I
(99)
b

E I ′ > I(95) Critical I taken from Table 6.1 (from David
(1966) for R).F I ′ > I(99)

G Minimum AIC(k)
H Z > 3

In particular, the use of criteria A and C resulted in comparably poor selections,

and showed a tendency to over-specify the input variable set. This showed that

the confidence bound was consistently underestimated in these cases, and that

a bootstrap size of 100 was insufficient. Increasing the bootstrap size to 1 000

reduced the frequency of over-specification. However, the improvement was only

marginal (5–10%), given the increased computational effort incurred. This result

suggests that the under-estimation of confidence bounds has a significant influ-

ence on the performance of these criteria and that irrespective of the data, too

few bootstraps will most likely lead to over-specification. In terms of the choice

of confidence bound, the use of I(99)
b resulted in more accurate selections (see

criteria B and D), which indicates that use of the higher value confidence bound

was able to partially compensate for the under-estimation.

The criteria based on tabulated critical values of MI (E and F) resulted in the best

performance with 95–98% selection accuracy overall, with correct selection of

100% of input variable sets for some individual cases. There was no significant

difference in performance between use of I(95) and I(99), and both were consid-

ered to be appropriate termination criteria based on these results. However, it

should be noted that use of the tabulated critical values inherently makes an as-

sumption regarding the distribution of the data (May et al., 2006). In this case,

the criteria performed well because the assumed Gaussian distribution matches

the data closely, but deviations from the assumed distribution may impact on the

appropriateness of the tabulated values. Comparisons between different confi-

dence bounds also show a different trend to those estimated by the bootstrap. By

definition, a smaller significance level (higher upper bound) tolerates less uncer-

tainty in the estimation of I. In particular, at smaller sample sizes, where there

is greater uncertainty in estimates of I, and a smaller signal-to-noise ratio, the

apparent relevance is lower and use of the I99 threshold typically selected fewer

variables than I95. This trend would be expected to be observed in real-world

data, with similarly few data or a high degree of noise.
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The results in Figure 6.7(d) show that the AIC-based termination criterion (G)

achieved selection accuracy that was comparable with that achieved by using the

tabulated critical values (criteria E and F) for the non-linear datasets, indicating

that this is also a suitable termination criterion. Sharma (2000) observed that

the estimation of residuals is only approximate, given that the kernel bandwidth

may be sub-optimal, and this may possibly have contributed to the relatively poor

performance observed for the linear datasets when this termination criterion was

used.

An interesting result was the relatively poor performance of PMIS when the crite-

rion based on the Hampel test was used (criterion H), which resulted in only 63%

cases of correct specification overall for the non-linear datasets in Figure 6.7(d).

However, the Hampel outlier test is significantly influenced by the proportion

of irrelevant variables within the candidate set due to its n/2 breakdown point.

In the case of the Friedman model, with only five noise variables, the criterion

failed to identify the complete set of inputs to the models. Since in this case the

relative proportion of noise variables was only 50%, this poor performance was

attributed to the masking effect described in Section 6.3.4. In contrast, when the

number of noise dimensions was increased to ten (67%), the use of the same

termination criterion yielded excellent performance, with PMIS achieving 97%

correct specification (for n = 1 000). The results correspond to the value of the

Hampel distance determined for the most salient candidate during the first round

of selection. In the case where the model was underspecified, the value was less

than 3, which terminated selection with zero input variables selected.

The results obtained for PMIS demonstrate the sensitivity of the Hampel out-

lier criterion to potential masking effects caused by the presence of more than

one relevant candidate. The sensitivity is dependent on the relative proportion

of irrelevant variables, since outliers are determined by comparison to a large

population of irrelevant candidates. If the proportion of irrelevant candidates is

sufficiently small (i.e. proportion of relevant candidates is large), then the Ham-

pel test will potentially be affected by masking and become less able to identify

significantly relevant candidates as outliers. The risk of masking is minimised,

since the Hampel test has the highest breakdown point of any statistical outlier

detection test, and therefore this termination criterion is as robust as can be ex-

pected. However, it is conceded that in some cases the issue of masking may

be unavoidable, and must be considered when implementing PMIS using the

Hampel-test termination criterion.

One solution to the problem has been implicitly presented, in that it is possible

to overcome the issue of masking by simply adding noise variables to the can-

didate set. The addition of “dummy” noise variables can improve the stability
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of the Hampel test over successive iterations, as the influence of outliers (highly

relevant candidates) on the median relevance of all candidates is reduced, and

this is evident from the improved performance when the number of noise vari-

ables was increased in the experimental Friedman dataset. The problem with

such an approach is that the exact number of dummy noise variables that should

be added to the candidate set will usually be unknown, since the number of

salient variables would need to be known first. It can at least be said that adding

d + 1 dummy noise variables to the candidates will guarantee that more than

50% of the candidates are irrelevant variables. The drawback with seeding the

candidates with so many irrelevant variables is that the number of PMI estimates

(and hence, computational effort) that is required will potentially be significantly

greater (i.e. double) than for other criteria, such as the AIC-based criterion (G)

and the Monte Carlo-derived critical values of I ′ (E and F).

Recall that, in Section 6.3.2, Monte Carlo estimates of MI for synthetically gener-

ated noise variables were generated to derive confidence bounds for the error in

MI estimation as a function of sample size. Consequently, an alternative to seed-

ing the candidate set with dummy noise variables to improve the reliability of the

Hampel test would be to add MI scores already determined for noise variables,

rather than re-estimating them during selection. By using this approach, the

median value of the distribution of MI scores for candidates could be made suffi-

ciently stable to avoid any masking effects that might be caused by a high number

of relevant candidates, but without requiring any additional computation. This

approach essentially follows the same rationale as replacing the bootstrap with

the Monte Carlo derived confidence bounds. In fact, if a large enough number of

MI estimates for noise variables were added to those of the candidates, it would

be expected that the distribution of candidate scores would simply be that of the

noise variables, since the MI estimates for the relatively small number of candi-

dates would have less of an influence on the overall distribution. In this case, the

only difference between the Hampel and critical Monte Carlo tests would be the

method for determining the critical value by analysing the location and spread

of the data. The I(90) and I(99) noise thresholds represent an MI that is 3 and 4

standard deviations from the mean, respectively (assuming normally distributed

data), while the Z-test is based on the scaled MAD, which is equivalent to 3
standard deviations from the mean.

Wilcox (2001) provides a number of suitable approaches to refining estimates of

the median and MAD in the presence of outliers. One simple method for robus-

tifying outlier detection is to use a clean population to estimate the distribution

parameters (i.e. the median and MAD). By definition, a clean population is free

of outliers, and is therefore more indicative of the true properties of the distri-
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bution of data, without the undesirable influence of outliers. A clean population

may be derived by removing 5% of the data that potentially correspond to out-

liers, which is an approach that is widely used (Pearson, 2002). In PMIS, this

would correspond to eliminating the top 5% scoring candidates from the compu-

tation of the median PMI and the MAD. This approach seems easy and efficient

to implement, and can be applied to any dataset. Alternatively, other methods

described by Wilcox (2001), such as M -estimators, would be equally as useful in

improving the Hampel test. Determining if the population needs to be cleaned

can also be based on analysis of selections without cleaning, since masking will

result in early termination at the first round of selection.

The influence of masking on the overall performance of PMIS is exaggerated in

the specific case of the Friedman model, as it is a synthetic example that repre-

sents the worst case, in terms of masking. It is expected that in most real-world

applications, where there are usually many variables to consider, it will be un-

likely that the issue of masking will be as signficant as in this particular synthetic

example. Based on the results for the other datasets, the Hampel outlier test per-

forms efficiently and is likely to work well in most applications. Consequently,

the PMIS algorithm with the Hampel-test criterion will be expected to perform

well for most real-world datasets. This is particularly true for time-series appli-

cations, where the number of candidate inputs is likely to be large as a result of

the inclusion of lagged variables. It is expected that with a sufficient number of

lags, there will be a majority of variables that are irrelevant after the first round

of selection, and more that become irrelevent (due to redundancy) as selections

are made. Note that the PMIS algorithm is easily modified to select the candidate

with the highest MI during the first round of selection, and then apply the ter-

mination criterion to all subsequent rounds, which can minimise masking when

selecting lags.. However, in the event that masking remains an issue, diagnosing

the problem is straightforward, since no selections will be made, and the Hampel

test can be easily modified to address the issue, as discussed above.

6.5.2 Computational efficiency

In addition to improved accuracy of PMIS, in comparison with the original im-

plementation of the algorithm, the use of criteria E, F, G, and H also achieved

a significant improvement in the overall computational efficiency of the forward

selection loop. This was specifically due to the elimination of the requirement

for the computationally expensive bootstrap. The proportion of computational

effort involved in the implementation of the bootstrap can be estimated on the

basis that the O{n2} estimation of PMI dominates the computation. Given the
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Figure 6.8: Comparison of cumulative computational requirement of PMIS implemented
with a bootstrap size of 0, 100, and 1 000.

selection of k input variables from an initial set of d candidates, the overall com-

putational requirement of PMIS can be expressed in terms of the number of PMI

evaluations as

O{(kd− k(k + 1)
2

+Bk)n2}. (6.18)

Consider, for example, the application of PMIS to the Friedman model datasets (5

and 6), which involved the selection of 5 of 10 candidate variables. The cumula-

tive number of PMI evaluations over the six iterations of the PMIS algorithm are

shown graphically in Figure 6.8, in terms of PMI evaluations for bootstrap sizes

of 0, 100, and 1 000. The algorithm required only 45 evaluations to complete

the selection without bootstrapping. For B = 100, this increased to a total of

645 evaluations of which 600 (93%) were performed as part of the bootstrap.

This proportion increased to 99% of evaluations when the bootstrap size was

increased to 1 000. This example represents the potential reduction in computa-

tional effort that could be achieved by using any of criteria E–H, since the com-

putational effort of implementing each of these termination criteria is negligible

compared to PMI estimation. In contrast, previous studies that have examined

the improvement in the efficiency of PMIS gained by modifying the kernel used in

density estimation, only reported a computational saving of 12% (Bowden et al.,
2005).
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6.5.3 Linear versus non-linear input variable selection

PCIS performed well in terms of the frequency of correct selections, when applied

to datasets generated by the linear models. In fact, the results in Figure 6.5(d)

and Figure 6.4(d) show that PCIS yielded a higher frequency of correct selections

than PMIS for each of the bootstrap-based criteria (A, B, C and D). It was also

observed for these cases that the termination criteria that performed best overall

were based on the I(99)
b , rather than the more conventionally adopted I(95)

b . PCIS

performed worse than PMIS when the termination criteria based on analytical

critical values were used (criteria E and F), though the results are consistent with

those obtained for PCIS using the bootstrap-based criteria. Accuracy of bootstrap

estimation of PMI aside, the result is perhaps indicative of the superiority of PMI

for discerning conditional dependence in noisy data, which was mentioned in

Section 6.2.

Another issue with PCIS was the poor performance of the Hampel test criterion

(H). For nearly all instances of datasets generated by time-series models, this cri-

terion failed to identify the first input and selection terminated, which resulted in

a high frequency of under-selection. This result was attributed to potential mask-

ing due to the spread of (absolute) correlation. The absolute value of Pearson

correlation is bounded on [0,1], and this made outliers more difficult to detect,

since the distribution is less skewed. In contrast, I is bounded on [0, inf] so

that outliers differ far more significantly from the median. This is evident in the

comparison between PMIS and PCIS for the time-series models, for which PMIS

achieved a high frequency of correct specification, and PCIS under-selected. A

simple solution to this problem is to use a logarithmic transformation to add

skewness, and for Gaussian data this would be an equivalent to estimating, I, as

the following relationship holds:

I = −1
2

log (1−R2). (6.19)

However, this is not an important issue, since the Hampel termination criterion

was devised specifically for PMIS (for which the test worked well), and other

termination criteria, such as analytic expressions for critical values of R used in

criteria E and F, are considered more appropriate in this case of PCIS.

The justification for using a non-linear IVS algorithm for ANN development was

evident from the comparison of the performance of PCIS for linear and non-linear

datasets. As expected, PCIS performed relatively poorly in comparison to PMIS
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when applied to the datasets generated by non-linear models, as indicated by

the high frequency of under-specification in Figure 6.6(d). Although not shown,

the results for individual models showed that PCIS attained up to 70% correct

selections when applied to data generated by the TAR2 time-series function. This

surprising result was explained by further examination of the TAR1 and TAR2

time-series data. The degree of non-linearity of these time-series was assessed

based on the Kaboudan fuzzy classification system (Kaboudan, 1999). Based

on this analysis, the TAR1 time-series data were classified as non-linear with

high level noise (NL-HN), and the TAR2 time-series classified as weakly linear,

with white-noise (WL-WN). Hence, despite being nominally included as a non-

linear test case, the TAR2 time-series proved to be quasi-linear, and PCIS actually

performed worse on truly non-linear datasets than Figure 6.6 would suggest.

Overall, the results clearly revealed the unsuitability of PCIS as an IVS algorithm

for the development of ANN models. Its use resulted in a high frequency (∼70%)

of under-specification, regardless of the termination criterion, when applied to

non-linear datasets, which was an indication that the linear correlation coef-

ficient was unable to identify one or more of the salient variables within the

dataset. This provides a clear justification for the use of IVS algorithms based

on non-linear measures of dependence for statistical models that are intended

to represent non-linear processes, such as those found in many environmental

systems.

6.5.4 Effect of sample size

It was evident from the overall results across the range of sample sizes, that sam-

ple size can have a significant effect on the accuracy of both PMIS and PCIS.

Results for the smallest sample of size 50 indicate that the frequency of under-

specified models was, on average, approximately 50%. Under-specification was

most likely due to the apparent irrelevance of a “true” input variable for which

the I ′ orR′ was under-estimated. The equally poor performance of both IVS algo-

rithms suggested that both statistical measures (PMI and linear correlation) were

not able to reliably detect the relationships within the datasets based on such a

small, noisy sample. As the length of datasets increased to 100–500 samples, the

performance of the PCIS and PMIS algorithms improved significantly, in terms of

selection accuracies, with a higher frequency of correct specification.

Differences between the relative performance of each criterion were also ob-

served for small sample size, and this was considered to indicate the potential

sensitivity of the criteria to the signal-to-noise ratio of the data. The tendency for
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most criteria was to under-specify the model. The results for the bootstrap based

criteria (A–D) were highly variable, which can be attributed to the high variabil-

ity of both relevance estimates and confidence bounds. The results for the AIC

and Hampel criteria were also variable, and this can be similarly attributed to

small-sample variance affecting the relative MI scores for candidates for individ-

ual experiments. Criteria E and F showed the least variability for small sample

sizes, and consistently under-selected, which indicates clearly that the MI of rele-

vant variables was under-estimated and failed to exceed the confidence bounds.

In conclusion, the application of filter-style IVS algorithms to smaller datasets

should therefore consider the noise level in the data, since this will affect how

well the statistical measures perform. However, this should not be regarded

specifically as a weakness of the filter approach. The ability to determine re-

lationships within data using MI is an estimate of the ability to construct a model

to represent the relationship. Poor performance of PMIS may indicate that the

development of an ANN model may also be problematic, and such considera-

tions would need to be made during model development, because the degree of

noise will also affect the ability of regression techniques to model the existing

relationships.

6.6 Conclusions

The motivation behind this research was to formulate a more efficient means of

correctly selecting input variables for artificial neural network (ANN) models of

environmental processes. This has been achieved by the formulation of alterna-

tive termination criteria for an existing input variable selection (IVS) algorithm

based on estimation of partial mutual information. Based on the performance of

partial mutual information-based selection (PMIS) for the synthetic examples in

this study, it was concluded that use of any of the three novel termination crite-

ria provided a more accurate selection procedure than the traditional bootstrap

approach. Furthermore, use of the novel criteria also substantially reduced the

computational effort required to implement the IVS technique, to yield a more

efficient selection procedure.

The relative merits and shortcomings of the different termination criteria intro-

duced in this paper have a strong influence on the recommendation of the use of

one of the novel criteria in favour of the others for a given situation. Given suffi-

cient confidence that the data are known to be Gaussian, then the criteria based

on the estimated critical values of mutual information would provide accurate

selections, with the simplest implementation.
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However, in real-world applications, the distributions may be unknown and the

assumption of Gaussian data may not hold, so for this reason the AIC or Hampel

criteria are considered to be more widely applicable. The AIC method provides

a general measure of the trade-off between information gain and the complex-

ity introduced to the modelling domain by the addition of input variables. This

criterion lends itself to clear and simple interpretation, and is expected to pro-

vide consistent and reliable selection for any dataset. The method based on the

Hampel outlier test was found to be sensitive to the relative number of salient

variables among the candidates. Seeding the candidate set with noise variables

overcomes this issue, although this is potentially creating additional computa-

tional burden rather than reducing it. In any case, provided masking does not

interfere with the detection of outliers, as would be expected in most real-world

time-series applications where the number of redundant variables is large, the

Hampel outlier test-based termination criterion is expected to perform equally as

well as the AIC-based termination criterion.

This study has also added further justification to the application of non-linear IVS

techniques during the development of ANN models. The comparison between

IVS selection techniques based on linear and non-linear measures of dependence

clearly showed that linear measures failed to identify the complete set of input

variables when the relationships are non-linear. Consequently, the application of

linear IVS algorithms to the development of ANN models may potentially result

in the omission of variables that are important for describing the behaviour of a

given environmental process, and thus produce sub-optimal model performance.
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Abstract

Recent trends in the management of water supply have increased the need for mod-
elling techniques that can provide reliable, efficient, and accurate representation of
the complex, non-linear dynamics of water quality within water distribution sys-
tems. Statistical models based on artificial neural networks (ANNs) have been
found to be highly suited to this application, and offer distinct advantages over
more conventional modelling techniques. However, many practitioners utilise some-
what heuristic or ad hoc methods for input variable selection (IVS) during ANN
development.

This paper describes the application of a newly proposed non-linear IVS algorithm
to the development of ANN models to forecast water quality within two water dis-
tribution systems. The intention is to reduce the need for arbitrary judgement and
extensive trial-and-error during model development. The algorithm utilises the con-
cept of partial mutual information (PMI) to select inputs based on the analysis of
relationship strength between inputs and outputs, and between redundant inputs.
In comparison with an existing approach, the ANN models developed using the IVS
algorithm are found to provide optimal prediction with significantly greater par-
simony. Furthermore, the results obtained from the IVS procedure are useful for
developing additional insight into the important relationships that exist between
water distribution system variables.
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7.1 Introduction

Maintenance of a residual chlorine concentration within a water distribution sys-

tem (WDS) is a widespread strategy for ensuring the delivery of clean, safe drink-

ing water to consumers. A chlorine residual provides a secondary barrier against

harmful microbial pathogens, which may otherwise persist downstream of a wa-

ter treatment plant. Furthermore, secondary disinfection inhibits the growth of

biofilms and other microorganisms that degrade the quality of the water. How-

ever, recent trends in water quality management have resulted in stricter op-

erational guidelines, with respect to allowable disinfectant concentrations; and

consumer expectations have increased, with respect to taste and odour. Con-

sequently, there has been an increased need for more effective management of

WDS disinfectant residuals. The development of mathematical tools for describ-

ing the dynamics of WDS disinfectant residuals will undoubtedly be useful in this

regard.

Forecasting the dynamics of disinfectant residual within a WDS can be a difficult

task. Systems are typically large-scale with rapidly changing hydraulic condi-

tions, which leads to significant spatial and temporal variation in detention time.

The complex and non-linear behaviour of disinfectant residuals is also the result

of multiple, interacting processes (Serodes et al., 2001). Conventionally, disin-

fectant residual modelling has been based on a deterministic, simulation-based

approach, in which a hydraulic model is coupled with a mathematical model of

the intrinsic water quality processes. Water quality simulation models are useful

for undertaking scenario (what-if) analysis and for design applications (Walski
et al., 2003). However, their successful application to operational management

of water quality is often limited by several factors, including:

• Hydraulic model. The development of an accurate hydraulic model requires a

combination of expertise and detailed information regarding the topology and

hydraulic behaviour of a WDS (Walski et al., 2003). In the absence of data, sim-

plifying assumptions are often made regarding key hydraulic parameters (e.g.

consumer demand patterns and mixing regimes within storage reservoirs).

• Decay model. Simple expressions, such as the first-order rate equation, are typ-

ical of models that have been developed to describe the kinetics of disinfectant

decay within bulk water (Kastl et al., 1999). Although increasingly sophisti-

cated models have also been developed, these models still do not adequately

represent water quality behaviour observed within water distribution systems.

This may be due to the uncharacterised effects of biofilms, corrosion or other

unobserved processes that occur within the WDS (Clark and Haught, 2005).
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• Computational constraints. The computational effort required to undertake an

extended-period simulation, especially when water quality is considered, can

lead to long simulation times for even relatively small hydraulic systems. Many

applications, such as real-time management, require model output within a

much shorter time-frame than the simulation time. Furthermore, much of the

computational effort expended is often wasted, since the simulation model

fully describes the WDS, but it is only the input-output relationships at critical

control locations that are required (Polycarpou et al., 2002).

• Demand forecasting model. Forecasting water quality can become problematic

using the simulation-based approach, since future demands need either to be

known, or predicted with some certainty.

Polycarpou et al. (2002) conclude that “What is needed is a simple analogy to the
input-output simulation model that reflects the important physical and chemical
processes, but without requiring a complex algorithm and a priori knowledge of the
network hydraulics.” Hence, statistical modelling methods have attracted interest

as a more expedient alternative to traditional, simulation-based techniques. Sta-

tistical modelling methods applied to disinfectant residual forecasting have been

found to be highly suitable for this application, as well as for other applications

in the field of water treatment and supply (Rodriguez and Serodes, 1999; Bax-
ter et al., 1999, 2001; Milot et al., 2002; Maier et al., 2004; Gibbs et al., 2006;

Bowden et al., 2006). The relative abundance of hydraulic and water quality

data generated by routine WDS monitoring, in contrast to the incomplete under-

standing regarding the processes that govern disinfectant decay, provides a great

deal of justification for adopting the statistical modelling approach in preference

to more traditional deterministic methods for the development of input-output

water quality models.

Models based on various time-series forecasting techniques have been devel-

oped to forecast disinfection residuals, including: auto-regressive moving aver-

age (ARMA) (Polycarpou et al., 2002), auto-regressive with exogenous inputs

(ARX) and multiple linear regression (MLR) (Rodriguez and Serodes, 1999; Gibbs
et al., 2006; Bowden et al., 2006), logistic regression (LR) (Milot et al., 2002) and

artificial neural network (ANN) models (Rodriguez and Serodes, 1999; Serodes
et al., 2001; Gibbs et al., 2006; Bowden et al., 2006). In particular, ANN models

have proven to represent non-linear water quality dynamics more accurately and

efficiently than their linear counterparts in a number comparison studies (see Ro-
driguez and Serodes (1999), Bowden (2003), or Gibbs et al. (2006) for examples).

This paper is concerned with the methodology that is applied to the development

of ANN models for WDS disinfectant residual forecasting. In particular, the paper
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addresses the important issue of input variable selection (IVS). The importance

of this task corresponds to the considerable negative impact on ANN performance

that can result from the inclusion of variables that are either irrelevant, or redun-
dant. However, although there is a well-justified case for careful consideration

of the input variables that are chosen for ANN development, there is currently

no consensus on how this task should be undertaken. An IVS algorithm based

on the estimation of partial mutual information (PMI), which was introduced by

Sharma (2000) and further developed by Bowden et al. (2005) and May et al.
(2008a), is presented here as an improved methodology for performing the IVS

task and is shown to lead to an improved overall framework for the development

of ANN chlorine residual forecasting models.

The remainder of this paper is structured as follows. Section 7.2 describes the

IVS problem and reviews current methods for the development of ANN models

within the context of WDS disinfectant residual forecasting. A method for ANN

development that includes the proposed IVS methodology is then described in

Section 7.3. Sections 7.4 and 7.5 provide illustrative examples of the application

of the methodology to the development of ANN models for forecasting chlorine

residuals. Discussion of the results obtained is provided in Section 7.6. Finally,

concluding remarks are given in Section 7.7.

7.2 Background

In statistical modelling, non-linear dynamic processes are approximated by a re-

gression model of the general form

y(t+ k) = F (y(t), . . . , y(t− p),x(t), . . . ,x(t− q)). (7.1)

Here, the model output y is predicted at some time, t + k, where k > 0. The

model input comprises past observations (or, lags) of y and x, which represents a

multivariate set of exogenous input variables. The parameters p and q denote the

model order (i.e. number of lags) with respect to the endogenous and exogenous

variables. The functional form of F is initially unknown, and the goal of model

development is to identify a suitable form based on a set of representative data.

Input variable selection is an important part of the identification of ANN models,

since the form of the model is derived purely from the available data. In real-

world applications, such as WDS analysis, there are potentially many variables

that could be used as inputs to the ANN model. For example, a representative set
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of data for a typical WDS may contain observations of water quality parameters

such as pH, turbidity, temperature, applied chlorine dose, and residual chlorine

concentration; and hydraulic parameters such as flowrate, pump and valve sta-

tus, and tank levels at points throughout the system. Considering the develop-

ment of a dynamic model (i.e. including lags), the number of potential input

variables can be quite large. However, for the development of ANN models, the

minimum number of variables should be used as inputs to the ANN in order

to: (i) increase computational efficiency; (ii) minimise redundancy; (iii) reduce

noise; and (iv) increase the interpretability of the model (Sindelar and Babuska,

2004; Back and Trappenberg, 2001).

Past applications of ANNs to chlorine residual forecasting have utilised a vari-

ety of methods for undertaking IVS (Rodriguez and Serodes, 1999; Serodes et al.,
2001; Gibbs et al., 2006; Bowden et al., 2006). The Chlorcast© methodology of

Serodes et al. (2001) is arguably the most comprehensive approach, and is simi-

lar to methodologies described in other closely related water supply applications

such as coagulation process modelling (Baxter et al., 2001). The Chlorcast©

approach is shown conceptually in Figure 7.1(a), where the input variables com-

prise a window of endogenous and exogenous lags up to the optimal model order,

d. The methodology implements a wrapper approach to model specification, in

which the most appropriate model order, forecasting horizon and data interval

are systematically determined based on trial-and-error analysis of trained ANN

models. Given the many combinations of parameters, the implementation of

Chlorcast© requires the training and evaluation of a potentially large number of

ANN models. Although the use of the general regression neural network (GRNN)

used in Serodes et al. (2001) reduces this requirement somewhat, the compu-

tational effort required for the more conventional multi-layer perceptron (MLP)

would be significant due to both increased training times, and the requirement

for additional experimentation to optimise the model architecture.

Furthermore, Serodes et al. (2001) observed “that the larger the learning window
the better the results...” since an increased model order “...conveys system dynam-
ics in more detail”. However, increasing the model order quickly increases the size

of the input variable set, since lags of all parameters are added. For the example

shown in Figure 7.1(a), an increase in model order from one to five increases the

number of potential inputs from 5 to 25. Although the optimal model order is

found (with respect to model prediction error), the larger window is more likely

to contain many irrelevant or redundant input variables. The holistic analysis of

the input variable set fails to consider that the optimum order with respect to in-

dividual parameters may differ, or that successive lags may be highly correlated.

A lack of interpretability also results from the inclusion of irrelevant and redun-
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Figure 7.1: Conceptual approach to statistical regression, with inputs comprising (a) a
complete window of endogenous and exogenous lags (after Serodes et al. (2001)), and
(b) an optimal subset of selected variables.

dant input variables, which is often a criticism of the ANN modelling approach in

general (Baxter et al., 2001; Serodes et al., 2001).

Finally, methodologies like Chlorcast© do not provide guidelines as to which

WDS parameters are relevant for a given forecasting application. Rather, this de-

cision is usually based on experience and judgement (Baxter et al., 1999; Serodes
et al., 2001). Applying the methodology is therefore difficult when there is in-

sufficient a priori information available, or the system under consideration is too

complex for the modeller to grasp intuitively. Necessary parameters could easily

be excluded, or superfluous parameters included mistakenly, by an inexperienced

modeller—either of which would reduce model performance. However, the aim

of establishing ANN development frameworks is to reduce the need for judge-

ment as much as possible, and instead rely more upon analytical approaches

(Maier, 2006).

In conclusion, it is proposed that the overall development of ANN water quality

models can be improved by applying a suitable algorithm for IVS as the first step

in model development. The application of an analytical approach, such as the

PMI-based algorithm presented previously by May et al. (2008a), would enable
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the selection of only input variables that are significant (i.e. useful for modelling

the output) and the exclusion of variables that are redundant. The amount of

trial-and-error during model development would be significantly reduced, and

the resulting parsimonious input variable set—which is shown conceptually in

Figure 7.1(b)—would yield improved performance. Furthermore, the informa-

tion gained regarding the significant input variables and their relative influence

on the output variable can provide valuable insight into how predictions are gen-

erated by the ANN, and can be used to better direct ongoing monitoring and data

collection efforts.

In this paper, the above benefits are demonstrated by examining two case study

examples, where the PMI-based algorithm, hereafter referred to as partial mu-

tual information-based selection (PMIS), is incorporated into the development of

ANN models for forecasting residual chlorine concentrations. The utility of the

algorithm is determined from the results of the case studies, and the overall ANN

development is compared with the Chlorcast© ANN development methodology

by considering factors such as (i) the impact of IVS on ANN performance, in

terms of both prediction accuracy and parsimony; (ii) the relative ease of model

development; and (iii) the interpretability of models.

7.3 Methodology

In this paper, the application of the IVS methodology to two example case studies

is described to illustrate the utility of the PMIS algorithm in the development of

ANN residual chlorine forecasting models. The first example is the development

of ANNs for 1-hour ahead forecasting of chlorine within the simulated Cherry

Hills–Brushy Plains WDS, which features complex dynamics due to multiple chlo-

rine sources and intermittent raw water supply. In the second example, the IVS

methodology is further validated on the task of 24-hour ahead ANN forecasting

of chlorine within a real-world WDS in Myponga, South Australia. The following

describes the methodology that was applied to develop ANN models for both case

studies.

7.3.1 Model architecture

The ANN architecture adopted in this case study was the general regression neu-

ral network (GRNN), which is a class of ANN that was first introduced by Specht
(1991) as a neural network paradigm for kernel regression. The GRNN is a prob-
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abilistic neural network (PNN), and is similar to radial basis function (RBF) net-

works. In fact, the GRNN can be considered to be a special case of a normalised

RBF network, in which a basis function is centered on each training data input

vector, and weighted by the corresponding training output (Sarle, 1997).

The architecture of the GRNN is shown in Figure 7.2. The input x is fully con-

nected to each pattern layer node j, for which an activation aj(x) is determined

based on a kernel function centered on a training input vector zj . The Gaussian

kernel function, in which the Euclidean distance metric determines the activa-

tion, is typically used as the activation function in the pattern layer. In this case

the activation is given as

aj(x) = exp
−‖x− zj‖2

2h2
(7.2)

where h1 is the GRNN bandwidth, or smoothing parameter. The activation of

each pattern layer node is passed to the two nodes in the summation layer, which

each generate weighted sums of the pattern node activations. The connection

weights between the num summation node and the pattern layer are the values

yj that correspond to each zj , so that the activation of the num summation node

is given as

num =
n∑

j=1

yjaj (7.3)

The connection weights between the pattern layer and the den summation node

are equal to 1, and the activation at this node is given as

den =
n∑

j=1

aj (7.4)

In the output layer, the ratio of the activations of the num and den nodes de-

termines the network output, so that the global transfer function G(x) that is

1Often the GRNN bandwidth is referred to as σ, however the notation adopted here is kept
consistent with kernel regression literature, and to avoid confusion with the standard deviation.
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achieved by the GRNN can be written as,

G(x) =

∑n
j=1 yjaj∑n
j=1 aj

, (7.5)

which is simply the kernel estimate forE(y|x), that is, the conditional expectation

of y given x.

In comparison to the more conventional multi-layer perceptron (MLP), the GRNN

has both advantages and disadvantages. The GRNN uses memory based (or, lazy)

learning, and therefore has an increased memory requirement to store the train-

ing data and a greater computational requirement when querying the network

than a MLP, which more efficiently stores the relationship learnt during train-

ing within the architecture. However, the GRNN is much faster to develop, as

it has only a single parameter—the kernel bandwidth—that needs to be learnt

during training; and the network architecture is fixed, which avoids the need to

train multiple models to optimise the network architecture (Specht, 1991; Sarle,

1997). The GRNN is best suited to applications where the distribution of the

data is smooth and continuous. Hence, the GRNN has previously been found to

be a suitable ANN architecture for the modelling of water quality within water

distribution systems (Serodes et al., 2001; Bowden et al., 2006). Given its suit-

ability for the type of data, and its simple and efficient development, the GRNN

was considered a good choice for this application. Finally, the use of the GRNN

provides a direct basis for comparison with the Chlorcast© methodology, which

also utilised this network architecture.

7.3.2 Input variable selection

PMIS was applied to determine an optimal subset of the candidates to use as in-

puts to the GRNN model. The development of ANN models implicitly assumes a

degree of non-linearity within the relationships between variables, and PMIS is

therefore highly suited to this application, as it uses mutual information (MI) to

measure the relevance of candidates. As has been demonstrated previously, more

conventional methods that are based on linear correlation may fail to identify

important input variables due to their inability to identify non-linear relation-

ships, and are therefore considered unsuitable for ANN development (May et al.,
2008a).

In PMIS, the candidate set initially contains all lags of hydraulic and water qual-
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ity parameters that may potentially be included as inputs to the ANN model.

The selected input variable set is initialised to the null set (i.e. no input vari-

ables are initially selected). The PMIS algorithm then proceeds by iteratively

selecting inputs that have the maximum relationship strength with the output

variable, conditional on any previously selected inputs. Full details of the partial

mutual information-based selection (PMIS) algorithm are presented in May et al.
(2008a). However, the procedure can be briefly summarized as follows:

i. Initialise candidate and selected input variable sets.

ii. Filter observations of the output by subtracting relationship with currently

selected inputs.

iii. For each candidate input

a) Filter candidate by subtracting relationship with currently selected inputs.

b) Estimate the PMI between the filtered output and candidate.

iv. Find the candidate that maximises PMI.

v. Determine significance of the candidate-output PMI.

vi. If the candidate is significant then

a) Move candidate to input variable set.

b) Return to Step ii.

Else terminate selection.

The PMIS termination criterion, which determines whether a given candidate is

significant, can influence the number of selected variables. Two recently devel-

oped criteria, based on the Akaike Information Criterion (AIC) and Hampel test

(full details of which are given by May et al. (2008a)) were applied to determine

when to terminate selection. Benchmarking on synthetic problems has found that

these two criteria are both efficient and do not require assumptions regarding the

underlying distribution of the data. Hence they were adopted for this study to

further validate their suitability for this application.

The PMIS approach offers a simpler, and yet more flexible model development

framework, in comparison to existing methods, such as Chlorcast©. Firstly, the

algorithm effectively removes any uncertainty regarding the relevance of avail-

able WDS parameters that might be included as ANN input variables. Such pa-

rameters can be initially included as candidates, since irrelevant parameters will

ultimately be identified and ignored by the selection algorithm.
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Second, in terms of selecting lag variables, the modeller only needs to specify the

maximum order of lag to be included in the candidate set. Provided that suffi-

cient lags are initially included, the order of the system will be identified through

the selection of relevant lag variables. This not only results in a more parsimo-

nious model overall, but also eliminates the need to determine the optimal size of

the lagging window by trial-and-error. Furthermore, the proposed IVS approach

can allow for some initial conservatism in the face of uncertainty regarding the

order of the system under consideration, without sacrificing model performance.

Conservatism in the conventional ANN approach would dictate that variables be

considered if there is a chance that they might yield some required information

regarding the output variable, as the ANN will either use or disregard variables

as a result of the learning. This detracts from the performance of the model due

to a larger input space and a more complex network architecture. If the pro-

posed IVS algorithm is used, performance of the model is not compromised by

conservatism, since although many irrelevant candidates can be initially included

without prior knowledge of their informativeness, they will ultimately be rejected

by the IVS algorithm, leaving the optimal input variable set.

Finally, the optimal set of available input variables is guaranteed to be selected

for any forecast disinfectant residual, regardless of the location and forecasting

horizon. Although the accuracy of ANN models is expected to differ as the fore-

cast horizon changes, the IVS approach allows the development of the best ANN

model for the application at hand. Such added flexibility is an attractive bene-

fit of adopting this approach, since various modelling applications may demand

different forecasting horizons.

In order to demonstrate the benefits of applying PMIS, input variables sets were

also defined for models based on the range of inputs that would be selected

using the Chlorcast© methodology. The minimal number of input variables cor-

responds to all parameters at time t, that is, using no lagged variables. The

maximum number of inputs possible corresponds to all lagged variables within a

pre-defined window. The hypothesis is that the inclusion of more input variables

improves model performance, although sufficient performance is quite possible

using the minimalist input variable set. In this study, these extreme sets are used

as a basis for comparing the selections that are generated by the PMIS algorithm.

7.3.3 Data sampling

Like other ANN architectures, the GRNN network is susceptible to over-fitting,

since a perfect fit to the training data can be obtained with a sufficiently small
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bandwidth. Hence, hold-out cross-validation was used during training, in which

the optimal bandwidth was determined by minimisation of the prediction er-

ror for the testing data, to ensure that the best degree of generalisation was

achieved. However, since the test data are used to determine the optimal band-

width for the GRNN, the model is potentially optimistically biased towards the

test results, and another hold-out is required to perform final validation of the

model performance, to confirm the model is able to generalise. Consequently,

the development of ANN models required that the available modelling data be

sampled into three smaller subsets for training, testing, and validating the net-

work. In this study, the respective proportions of samples allocated to each of

these subsets were:

• 64% training,

• 16% testing, and

• 20% validation.

In order to eliminate any potential variance or bias in model performance that

could be attributed to the sampling procedure, ensemble training was used, in

which an ensemble of GRNN models was trained based on independent resam-

plings of the data. Uniform random sampling of the data was used to sample 100

instances of data subsets according to the specified proportions. A GRNN was

then trained on each instance of training and test data, and queried against the

corresponding validation set. The aggregate (mean) validation performance for

all models then provided an indication of the expected model performance, and

the variance could confirm the confidence bounds to allow comparisons between

different models. Ensemble training is an effective means of minimising sample

bias and variance in the performance of models, which can potentially be intro-

duced by the hold-out cross-validation procedure (Anctil and Lauzon, 2004). All

data are used during training, including extreme cases, so that no information is

lost due to the hold-out.

7.3.4 GRNN training

The training of the GRNN essentially represents a one-dimensional optimisation

problem, in which the network error, E, is minimised with respect to the band-

width, h, where E is the test error since, in this case, hold-out cross-validation

is used. This one-dimensional optimisation of the bandwidth was performed us-

ing an implementation of Brent’s algorithm (Press et al., 1992), which arrives at
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an optimal bandwidth faster than techniques such as gradient descent or hill-

climbing. Similar to interval halving and other bracketing optimisation algo-

rithms, Brent’s algorithm shrinks the interval between a bracketing pair of points

(points that lie either side of the optimum bandwidth) by iteratively guessing

the optimum based on a parabolic fit to the error function evaluated at these

points. In this regard, Brent’s algorithm is able to exploit the smoothness of the

GRNN error function, E(h) near the optimal value of h (Bowden et al., 2006).

The advantage of Brent’s algorithm, in comparison to conventional techniques,

is that the GRNN can be trained within a very few iterations. However, an initial

bracketing of the optimal bandwidth is required to initialise the algorithm.

Previously, Bowden et al. (2006) utilised a trial-and-error based on Golden search

to determine this initial bracketing. In this study, the interval [ε, ϕh∗] was used,

where ε is a small value near, but greater than, zero; ϕ is the Golden ratio2

(∼ 1.618); and h∗ is the Gaussian reference bandwidth (Scott, 1992). Since h∗

is often close to, and typically greater than the optimal value, this was found to

be a suitable means of intialising Brent’s algorithm that avoided the need for a

trial-and-error approach.

7.3.5 Performance criteria

A multi-criteria approach was adopted for assessing the models developed, in

which model performance was evaluated using several statistical error functions

and goodness-of-fit measures, including the root mean squared error (RMSE),

the mean absolute error (MAE), the mean relative error (MRE), the coefficient of

determination (r2), and the Akaike information criterion (AIC) (Akaike, 1974):

RMSE =

√√√√ 1
n

n∑
i=1

(yi − ŷi)
2, (7.6)

MAE =
1
n

n∑
i=1

|yi − ŷi|, (7.7)

2The optimisation initialisation is essentially the first iteration of the Golden search algorithm
(see Press et al. (1992)) with h∗ as the initial trial solution.
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MRE =
1
n

n∑
i=1

∣∣∣∣yi − ŷi

yi

∣∣∣∣ , (7.8)

r2 =
∑n

i=1 (yi − ȳ) (ŷi − ỹ)√∑n
i=1 (yi − ȳ)2

∑n
i=1 (ŷi − ỹ)2

, (7.9)

AIC = n log

(
1
n

n∑
i=1

(yi − ŷi)
2

)
+ 2p. (7.10)

Here yi and ȳ are the observed and mean values of the actual chlorine time-series,

resepectively; ŷi and ỹ are the corresponding observed and mean values of the

predicted chlorine time-series, respectively; n is the total number of observations;

and p is the number of model parameters.

The first four are typical performance criteria used in existing frameworks for

statistical model development to evaluate the forecasting accuracy of the models

(Serodes et al., 2001; Baxter et al., 2000). In this study, the RMSE was the primary

measure of forecasting error, as it was also used as the training error. The MAE

provided a secondary indication of the expected magnitude of the error in terms

of the units of the output. The MRE is also calculated, as it provides a more

moderate indication of the error, due to its reduced sensitivity (in comparison to

the RMSE) to errors at either extreme of the output variable range (Karunanithi
et al., 1994). The r2 provides an indication of the similarity between actual

chlorine residuals and model forecasts (Serodes et al., 2001).

The AIC was adopted as an additional performance criterion, given the focus of

this paper on comparisons between the composition of the input set and model

accuracy. The AIC is a function of the RMSE, however it penalises the selection of

superfluous input variables that do not significantly improve model performance.

The set of input variables corresponding to the minimum AIC represents the opti-

mal trade-off between the size of the input variable set and forecasting accuracy.

Reducing the size of the input set is particularly important for the GRNN architec-

ture, since kernel regression estimation rapidly becomes less accurate for a finite

training data sample as the number of dimensions (i.e. inputs) increases beyond

the range of six to ten variables (Scott, 1992).
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7.4 Cherry Hills–Brushy Plains WDS Example

The following example describes the application of the methodology described in

Section 7.3 to a simulated water distribution network. In this meta-modelling ap-

proach, the simulation model represents an unknown process, which is observed

during operation to generate pseudo-historical data, that can then be used to

develop a statistical model to represent the process. The simulated model is real-

istic enough to generate data with the inherent complexity of data for the actual

water distribution system. However, “historical” data can be readily generated

in order to test and demonstrate the GRNN development methodology. In ad-

dition, it enables variables to be varied over their full range, which is generally

not feasible for a real WDS. Such an approach has been used previously for ANN

development, and can allow testing of GRNN deployment and development of

control applications, which often need to be tested within a simulated environ-

ment prior to deployment within the physical system (Broad et al., 2005; Raduly
et al., 2007).

7.4.1 System Description

The Cherry Hills–Brushy Plains WDS is shown in Figure 7.3. This network was

selected as a test case as it has been used previously for the evaluation of other

hydraulic and water quality optimisation applications (Boccelli et al., 1998). The

main features of the WDS are: the pumping station, which operates on a six-hour

cycle (i.e. six hours on, six hours off) to supply water to the system at sufficient

flowrates to meet the average daily demand; a common inlet-outlet storage tank,

which provides a buffering capacity for demand when the pumping station is off;

and six potential booster chlorination points (A–F), to maintain the minimum

required residual chlorine concentration at the extremeties of the WDS.

In this example case study, GRNN models of the network were developed to pro-

vide a 1-hour forecast of chlorine concentration at Node 36, using a historical

database generated by simulation of the network. This case study therefore rep-

resents the application of ANN models to a complex multiple-input/single-output

(MISO) system, where the aim is to map the relationship between the chlorine

concentration at a single downstream location and injection rates at multiple,

upstream booster locations.
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7.4.2 Synthetic data generation

In order to generate data for model development, a quasi-dynamic water quality

simulation of the Cherry Hills–Brushy plains network was undertaken. During

the simulation the rate of chlorine injection into the system was allowed to vary

with time, and the input-output response data with respect to chlorine concen-

trations were observed to generate data for ANN development. Optimal chlorine

injection schedules for each booster location within this system have been deter-

mined previously by Boccelli et al. (1998). Based on these schedules, the chlorine

injection rates at each booster location were randomly adjusted every six hours

to lie within ±20% of the optimal dose for the given period. Bulk chlorine decay

within the network was modelled as a first-order decay function, with a decay

coefficient of -0.5 days−1; and wall decay was neglected.

Simulation of 30 days of operation was performed using the object-oriented

toolkit for EPANET (OOTEN) (Van Zyl et al., 2003). For the purpose of this ap-

plication, a Query class was added to the existing OOTEN library to facilitate the

generation of data in a format suitable for ANN model development. During the

simulation, multiple Query objects were used to poll individual water quality and

hydraulic parameters at a short, regular time-interval of five minutes; and report

an aggregate value (in this case, the average) at a longer time-interval of one

hour.

Although the simulated WDS could be fully observed, queries were restricted in

this case study to a set of key hydraulic and water quality parameters in order

to reflect monitoring practices that are typical of real-world water distribution

systems. This set of parameters included chlorine concentrations immediately

downstream of booster locations A, B, C and F (i.e. the applied dose at each

location), pumping station flow, trunk main flow at the mid-point of the system

(Pipe 12) , and tank level.

Due to the nature of the metamodelling approach, very little data processing was

required. However, the first 48 hours of data were discarded to account for any

effects caused by the initialisation of the simulation model. Lags of each parame-

ter for up to 48 hours into the past were considered to sufficiently capture deten-

tion times within the system, and a corresponding lead value of chlorine at Node

36 was also generated to provide forecast targets. Consequently, the processed

database available for model development comprised a total of 720 observations

of 384 candidate input variables and one forecast target. A statistical summary

of the data collected for each of the unique WDS parameters observed is given in

Table 7.1, which formed the historical database used for the development of the
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ANN forecasting model.

7.4.3 Selected input variables

The results of input variable selection using the PMIS algorithm are summarised

in Table 7.2, which shows the input variable selected and the corresponding PMI

at successive iterations of the selection procedure. The AIC-based criterion ter-

minated selection after four selections, as indicated in Table 7.2, and the Hampel

test resulted in the selection of a total of six input variables.

Models with inputs selected by PMIS are denoted as Models A and B, where the

AIC or Hampel test termination criteria were used, respectively. Input variable

sets comprising of all available parameters at time t only, and for all available lags

(t, . . . , t−48) were considered for comparison purposes. The models correspond-

ing to the these input variable sets are denoted as Models C and D, respectively.

These sets of inputs represented the smallest and largest input variable sets that

would be selected according to the Chlorcast© methodology—given the initial

candidate set; and which corresponded to the minimum and maximum amount

of available information regarding the dynamics of the WDS, respectively. The

input sets corresponding to all models are summarised in Table 7.3.

7.4.4 Model performance

Table 7.4 summarises the performance of the GRNN models for the test data.

The values correspond to the mean observed for all individual GRNN networks

within the ensemble of 100 networks, which were each trained on independent

instances of training, test and validation data. The corresponding variability of

these results is indicated by the standard deviations, which are the values in

parentheses.

Model B, for which inputs were selected using PMIS in conjunction with the Ham-

pel test-based termination criterion, performed the best, in terms of accuracy,

with the lowest average prediction error for all error measures. Model A, for

which inputs were selected using PMIS with the AIC-based termination criterion,

was the third best model in terms of accuracy, but this model also utilised the

fewest inputs and represented the optimal trade-off between the size of the input

set and model accuracy measured by the AIC. It should be noted that, in general

terms, all models performed well (with the exception of Model C), although the

historical data generated by the meta-modelling approach are free of noise and
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Figure 7.2: Architecture of the general regression neural network (GRNN).

Table 7.2: PMIS analysis of input variables for the Cherry Hills—Brushy Plains WDS case
study.

Iteration Candidate PMI Termination

1 C36(t− 47) 1.758

2 C36(t− 23) 0.292

3 CC(t− 42) 0.260

4 CA(t− 20) 0.223 AIC

5 CA(t− 43) 0.214

6 CC(t− 33) 0.198 Hampel test
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Figure 7.3: Topology of the Cherry Hills–Brushy Plains WDS.
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Table 7.3: Summary of input variables for GRNN models of the Cherry Hills–Brushy
Plains WDS

Model # Inputs Inputs

A 4 C36(t−23), C36(t−47), CC(t−42), CA(t−
20)

B 6 C36(t−23), C36(t−47), CC(t−42), CA(t−
20), CA(t− 43), CC(t− 33)

C 8 C36, CA, CB, CC, CF, H, Q1, Q2 ∀(t)
D 384 C36, CA, CB, CC, CF, H, Q1, Q2

∀(t, . . . , t− 48)

Table 7.4: Test performance for 1-hour forecasts of residual chlorine within the Cherry
Hills–Brushy Plains WDS.

Model RMSE∗ MAE∗ MRE∗ r2∗ AIC

(mg/L) (mg/L)

Model A
0.0067

(0.0013)
0.0043

(0.0006)
0.0541

(0.0038)
0.9958

(0.0014)
5.7

Model B
0.0039

(0.0016)
0.0028

(0.0004)
0.0427

(0.0038)
0.9983

(0.0027)
9.2

Model C
0.0175

(0.0080)
0.0088

(0.0058)
0.0981

(0.0982)
0.9542

(0.0974)
14.5

Model D
0.0050

(0.0013)
0.0031

(0.0005)
0.0395

(0.0040)
0.9977

(0.0010)
765.4

∗Values in parentheses denote standard deviation.

therefore results are expected to be of a high quality. In relative terms, there were

significant differences in the performances of the four models. Similar ranges in

model accuracy were reported in previous studies by Serodes et al. (2001) and

Bowden et al. (2006) who reported r2 values of 0.95–0.98 for test and validation

data. A t-test based on the trials conducted in this study confirmed that the ob-

served differences in the mean performance of each model were significant at a

5% (two-tailed) confidence level.

The need to include dynamic variables is evident from the relatively poor per-

formance of Model C, for which the average RMSE (0.0175) was significantly

greater than for all other models. In fact, a consistent trend was observed across

all performance criteria, which clearly confirms the improved quality of forecasts

generated by Model B when compared with Model C.

Model D, which utilised all available lags, was the second best performing model
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Table 7.5: Validation performance for 1-hour forecasts of residual chlorine within the
Cherry Hills–Brushy Plains WDS.

Model RMSE∗ MAE∗ MRE∗ r2∗ AIC

(mg/L) (mg/L)

Model A
0.0092

(0.0083)
0.0048

(0.0018)
0.0561

(0.0067)
0.9854

(0.0496)
5.9

Model B
0.0060

(0.0059)
0.0032

(0.0009)
0.0450

(0.0052)
0.9932

(0.0188)
9.5

Model C
0.0197

(0.0089)
0.0095

(0.0059)
0.1043

(0.0918)
0.9516

(0.0747)
14.6

Model D
0.0056

(0.0025)
0.0033

(0.0006)
0.0418

(0.0051)
0.9968

(0.0047)
765.5

∗Values in parentheses denote standard deviation.

in terms of prediction accuracy, with an RMSE (0.0050), whic is comparable to

that of Model B. However, a comparison between Models B and D demonstrates

the advantage of using the PMIS algorithm to select a subset from within the

available sliding window to more efficiently represent the dynamic system. The

high AIC obtained for Model D (∼ 765) indicates the low efficiency of this partic-

ular GRNN due to the large number of input variables.

Results for the validation data are summarised in Table 7.5. It can be seen that

the validation errors are similar to the test errors, indicating that the GRNN mod-

els developed have achieved good generalisation. It can be concluded that the

assessment of the models based on the test results is therefore valid. A compar-

ison of the validation time-series plots for Models B and C (Figure 7.4) provides

a clearer indication of the difference in performance between these two models.

The forecast time-series plot for Model C (Figure 7.4(b)) shows several regions

(labelled I–V) of poor performance. In particular, it was observed that Model C

had difficulty forecasting the sharp daily peaks (II, III, and IV) in chlorine con-

centration. In contrast, the trend for Model B (Figure 7.4(a)) shows that the

inclusion of additional input variables, specifically selected using PMIS, resulted

in improved forecasts in the labelled regions.

7.5 Myponga WDS Example

The following describes the application of the GRNN development methodology

described in Section 7.3 to an actual water distribution system.
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Figure 7.4: Actual and forecast validation time-series for chlorine at Node 36 of the
Cherry Hills–Brushy Plains WDS for (a) Model B, for which input variables were selected
using PMIS, and (b) Model C, for which no lags were selected as input variables.
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7.5.1 System Description

The Myponga water treatment plant is managed and operated by United Water

International Pty Ltd under contract with the regional regulatory authority, SA

Water. The plant is situated 60 km to the south of Adelaide, South Australia,

adjacent to the Myponga Reservoir, from which the plant is supplied with raw

water. The treatment process combines alum floculation with dissolved air flota-

tion and rapid dual-media filtration. Post-filtration, the pH is corrected by caustic

dosing, and the filtered water is then disinfected by a chlorine injection system

that is flow-paced to achieve a set-point free chlorine concentration, which is

specified by the plant operator. Following a short detention time in a contact

tank, the finished water flows into the filtered water storage tanks, from which

the water flows under gravity via a trunk main, which supplies several branched

reticulation systems. The plant does not have provision for booster chlorination

at the outlet of the filtered water storage tanks. However, the primary chlorinator

set-point, which is determined by the WTP operators, is considered to provide a

sufficient dose to maintain minimum free chlorine residuals at the extremities of

the distribution system. Due to this configuration, fluctuations in detention time

within the filtered water storage tanks can have a significant impact on the free

chlorine residuals that are observed downstream.

In this case study, ANN models were developed to forecast residual concentra-

tions of free chlorine 24-hours in advance, at a monitoring location that was sit-

uated at a branch location on the trunk main, approximately 20 km downstream

of the filtered water storage tanks.

7.5.2 Data collection and pre-processing

A six-month period of monitoring and data collection was undertaken between

December 2002 (Summer) and July 2003 (Winter) to obtain a database for model

development. Several sources of on-line operational data were available from

routine monitoring, including: turbidity of the filtered water, corrected pH, free

chlorine residual immediately downstream of the primary injection point (surro-

gate for applied primary dose), free chlorine downstream of the filtered water

storage tanks, filtered water storage outlet flow, and filtered water storage level.

An additional sensor was temporarily installed at the downstream forecasting

location on the trunk main, which provided on-line measurement of both free

chlorine and water temperature. A statistical summary of the data collected for

each of the monitored hydraulic and water quality parameters is provided in Ta-

ble 7.6. Although the data do not span the full year as recommended by Serodes
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et al. (2001), the period was considered sufficient to build a training database

that captured both summer and winter seasonal operational conditions, that is,

the range of the data collected encompassed all possible extreme operating con-

ditions.

The raw data interval varied across different parameters from 10 to 15 minutes,

although in this study the data were aggregated during pre-processing to the av-

erage over an hourly interval for all variables. The data were then examined to

check for any erroneous values, or gaps, that may have been caused by instru-

ment or telemetry failure. For singular erroneous values, and for small gaps of

one to two records in length, data were infilled using the average of values either

side of the break, or by extrapolating previous values. In the event of longer pe-

riods of missing data, the entire record was deemed unusable and was removed

from the database. After constructing the 24-hour forecast time-series of the

downstream chlorine residual, and lags of up to 48 hours for each parameter, the

available modelling data comprised a total of 2 773 hourly records.

7.5.3 Selected input variables

The modified PMIS algorithm developed was applied to select a set of input vari-

ables from the 384 candidate variables available for inclusion. The results of the

analysis are summarised in Table 7.7, which indicates the PMI corresponding to

the most salient variable identified at each iteration. The AIC-based termination

criterion resulted in the selection of 10 input variables. Use of the Hampel-test

based termination criterion resulted in the selection of the first four input vari-

ables, with subsequent variables failing the significance test. An immediate ob-

servation is that neither set of input variables includes flowrate, pH, or turbidity.

Rather, the selected input sets describe a predominantly auto-regressive time-

series structure within the data, with a small contribution from exogenous lags

of upstream chlorine and temperature.

Models developed using the input sets selected using PMIS with the AIC-based

and Hampel test-based termination criteria are denoted as Models A and B, re-

spectively. As for the Cherry Hills–Brushy Plains WDS case study, additional input

variable sets—one consisting of all available parameters at time t only, and the

other comprising all available lags (t, . . . , t − 48)—were considered for compar-

ison purposes. The models corresponding to the these input variable sets are

denoted as Models C and D, respectively. The input sets corresponding to all

models are summarised in Table 7.8.
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Table 7.7: PMIS analysis of input variables for the Myponga WDS case study.

Iteration Candidate PMI Termination

1 CWDS(t) 1.087

2 CFWS(t) 0.105

3 T (t− 13) 0.106

4 CWDS(t− 24) 0.090 Hampel test

5 CWDS(t− 47) 0.074

6 CWDS(t− 3) 0.070

7 CWTP(t) 0.065

8 CFWS(t− 17) 0.062

9 CWDS(t− 27) 0.062

10 CWDS(t− 1) 0.071 AIC

Table 7.8: Summary of input variables selected for GRNN models of the Myponga WDS

Model # Inputs Inputs

A 10 CWDS(t), CFWS(t), T (t − 13), CWDS(t −
24), CWDS(t− 47), CWDS(t− 3), CWTP(t),
CFWS(t− 17), CWDS(t− 27), CWDS(t− 1)

B 4 CWDS(t), CFWS(t), T (t−13), CWDS(t−24)

C 7 CWTP(t), pH(t), Tu(t), CFWS(t), Q(t),
T (t), CWDS(t)

D 384 CWTP, pH, Tu, CFWS, Q, T , CWDS
∀(t, . . . , t− 48)
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Table 7.9: Test performance for 24-hour forecasts of residual chlorine within the My-
ponga WDS.

Model RMSE∗ MAE∗ MRE∗ r2∗ AIC

(mg/L) (mg/L)

Model A
0.0550

(0.0108)
0.0330

(0.0077)
0.0531

(0.0123)
0.9862

(0.0056)
13.5

Model B
0.0657

(0.0060)
0.0385

(0.0033)
0.0628

(0.0058)
0.9808

(0.0039)
7.6

Model C
0.1027

(0.0149)
0.0610

(0.0101)
0.1000

(0.0181)
0.9525

(0.0136)
14.0

Model D
0.1022

(0.0562)
0.0724

(0.0149)
0.0823

(0.0381)
0.8952

(0.0251)
768.0

∗Values in parentheses denote standard deviation.

7.5.4 Model performance

The performance of GRNN models developed using the inputs in Table 7.8 are

summarised in Table 7.9 and Table 7.10 for test and validation data, respectively.

Each table shows the average error for the ensemble of GRNN models trained

on independent data subsets. The standard deviation of results in both test and

validation results was low, which indicates the results for each individual GRNN

in the ensemble trained on independent samples has low sample variability. A

two-tailed t-test indicated that the variance of the model performance had no

statistical bearing on the comparison of relative performance based on the mean

performances of each model. The results for test and validation data show a high

degree of consistency, which confirms the good generalisation performance of the

models achieved by the ensemble training.

In terms of accuracy alone, the best performance was obtained by Model A, which

used ten input variables selected by PMIS with the AIC-based termination crite-

rion. This model had the lowest average RMSE (0.055 mg/L). However, compar-

ison of the corresponding AIC values indicates that the smaller set of inputs used

in Model B resulted in a more efficient model. The results for Model C indicate

that the GRNN with no lagged input variables performed poorly, with an error

approximately twice that of models A and B. Model D had the worst validation

performance, with the highest MAE (0.0724 mg/L) and the lowest r2 value of

0.8952, which shows that, for real-world data that contain noise, models using

a large input variable set can perform more poorly than those with fewer inputs,

and that inclusion of superfluous variables can reduce model performance.
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Table 7.10: Validation performance for 24-hour forecasts of residual chlorine within the
Myponga WDS.

Model RMSE∗ MAE∗ MRE∗ r2∗ AIC

(mg/L) (mg/L)

Model A
0.0654

(0.0142)
0.0342

(0.0062)
0.0550

(0.0103)
0.9805

(0.0095)
13.6

Model B
0.0695

(0.0075)
0.0388

(0.0024)
0.0634

(0.0044)
0.9784

(0.0046)
7.7

Model C
0.1159

(0.0185)
0.0633
(0.009)

0.1024
(0.0188)

0.9390
(0.02)

14.1

Model D
0.1061

(0.0595)
0.0746

(0.0133)
0.0844

(0.0391)
0.8879
(0.025)

768.1

∗Values in parentheses denote standard deviation.

The ability of Model B to forecast chlorine disinfectant residuals 24 hours in

advance is illustrated in Figure 7.5, which shows a portion of the original time-

series, CWDS(t), as a solid line, with corresponding test and validation forecasts

generated by Model B (for one instance of training, test and validation data)

indicated by unfilled and filled markers, respectively. It should be noted that it

is necessary to plot the forecasts in this way, as the time-series order of data was

not preserved in test and validation data subsets due to the random sampling

procedure used for hold-out validation.

Overall, the results obtained are comparable to those reported previously by

Serodes et al. (2001) and Bowden et al. (2006) for similar applications, and sup-

port the suitability of sparse ANN models, which utilise a minimum set of input

variables, for generating forecasts of residual chlorine within distribution sys-

tems. Potential applications include the development of early warning systems

that are able to predict fluctuations in downstream water quality in advance, in

order to allow operators to make any necessary adjustments to the chlorine dose.

7.6 Discussion

7.6.1 Model parsimony

The results of the case studies presented in this paper support the finding by

Serodes et al. (2001) that maximising the available information regarding the dy-

namics of the WDS leads to optimal model performance. The process delays and
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detention times within a WDS can be long (up to several days), and the ANN

needs to contain sufficient input variables to capture the dynamics over this pe-

riod to generate the best possible forecasts. However, the case studies presented

in this paper have also demonstrated that, while the inclusion of dynamic vari-

ables is important, there are many redundant and irrelevant parameters that can

be excluded from the ANN model without sacrificing forecasting accuracy. Given

the importance of selecting as few inputs as possible, there is a clear case for

utilising an algorithm such as PMIS during ANN development.

Based on the results, neither of the two PMIS termination criteria used were

found to clearly perform better than the other, and the use of each criterion

resulted in an accurate model that incorporated a relatively efficient subset of

the entire lagging window. Models that were developed with inputs selected

using PMIS compared favourably with models that utilised no lagged variables,

and those using all lagged variables, although there were differences in each

case study between the number of input variables selected. Given the potential

size of the lagging window and the large number of candidate input variables,

the difference in efficiency will be relatively small in comparison to the overall

efficiency gained by the use of PMIS. This study has demonstrated that the criteria

are suitable for real-world IVS applications, and supports the results previously

presented in May et al. (2008a), which were based on synthetic examples that

were used to develop and evaluate the novel PMIS termination criteria.

7.6.2 Comparison of developmental frameworks

Current methods for ANN development require trial-and-error procedures to con-

struct an optimal ANN model. In the approach presented in this paper, the IVS

procedure yields an optimal model through statistical analysis of the input-output

relationships that exist within the data. In the examples given, ANN models were

developed for unique water distribution systems using the same approach, with-

out the need for a priori expert knowledge or heuristics. Even where the input

variables selected are consistent with previous approaches, the methodology is

based on analysis of the data, rather than on heuristics, and thus provides a more

rigorous basis for the inclusion of input variables.

The importance of a consistent, data analysis-oriented framework for ANN devel-

opment becomes more apparent when considering the future application of ANN

models to more complex water distribution systems. The relatively simple case

studies considered thus far involved up to 500 candidate variables. For larger sys-

tems, the number of variables to consider could quickly increase to the order of
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1 000 as the number of available parameters and the number of lags increase. As

the complexity of the water distribution systems under consideration increases,

the decision of which variables to include as inputs will become less intuitive,

and modellers will find algorithms such as PMIS to be of immense value.

7.6.3 Interpretability of forecasting models

A perceived shortcoming of the ANN modelling approach is that the forecasts

generated by an ANN model are somewhat inexplicable. Although an ANN model

is able to generate accurate forecasts, Serodes et al. (2001) state that “. . . owing
to its black-box nature, the results obtained cannot be explained.” The lack of in-

terpretability is not surprising, since current methods for ANN development are

somewhat holistic in that they do not consider the contribution of individual in-

put variables to the model. However, from the results of the IVS implemented

during model development using PMIS, it is apparent that the ANN can provide

efficient and accurate predictions based on specific relationships that are identi-

fied within the data.

A review of the selected input variables can provide a simple, qualitative analysis

of the specific patterns that are identified within the data by the IVS algorithm,

and are then able to be used by the ANN to generate predictions. Water distri-

bution systems are known to exhibit a strong periodicity due to diurnal patterns

in demand, which are a major contributing factor in observed water quality be-

haviour (Polycarpou et al., 2002). Periodic behaviour was evident in both case

studies, as observed for the chlorine time-series shown in Figs. 7.4 and 7.5.

It would appear, based on the input variables selected, that 24-hour cyclic be-

haviour is an important component within the data. For example, consider the

input variables selected in the second case study, which included past values of

the output at time t, t− 24, and t− 47. The result is consistent with the notion of

tendency in periodic, or oscillatory systems that has been defined elsewhere for

similar forecasting applications where trends exist over homologous observations

within the period of oscillation (Santos et al., 2005). The selection of sequences

of endogenous variables (e.g. CWDS at time t, t − 1, and t − 3) suggests that the

current state, and immediate rate of change of the system, are also necessary for

prediction. Interestingly, a similar pairing of endogenous variables at t − 24 and

t− 27 was also selected as input variables, which suggests further reinforcement

of short-term behaviour due to the 24-hour periodicity of the system.

Further insight regarding the mechanisms by which the forecasts are generated

could be gained by a more quantitative method, such as sensitivity analysis of
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the models post-development. However, information regarding the importance

of each input variable can be inferred based on the statistical measurement of

input-output strength that forms the basis of the IVS approach. A measure of

relative importance (RI) has been proposed based on analysis of the PMI for

individual input variables (Soofi and Retzer, 2003), and which has been found to

give results that are in good agreement with methods based on analysis of the

trained ANN (Kingston, 2006). The RI is determined directly from the PMI by the

expression

RIi =
I ′CiY ·X∑k

j=1 I
′
CjY ·X

× 100%, (7.11)

where I ′CiY ·X is the PMI between candidate Ci and Y conditional of selected

input variable set X, which is estimated at each iteration of the PMIS algorithm.

The relative importance measures the relative contribution provided by each in-

put variable, which indicates which relationships are likely to be predominantly

used by the ANN model. The cost of monitoring and collecting data for a large

number of variables can be a significant factor when evaluating the cost-to-

benefit ratio of model development. A quantitative measure of RI is therefore

useful in estimating the expected trade-off between model accuracy and the num-

ber of input variables used.

Based on the selected input variables in Table 7.7, it is apparent that the ANN

developed is predominantly an auto-regressive time-series model, since it is dom-

inated by endogenous lagged variables. The model is a highly accurate represen-

tation of the time-dynamics of water quality within the WDS, and as such can

provide an early indication of downward trends in free chlorine residual that

may warrant corrective action by the WTP operators. However, the PMI of ap-

plied chlorine dose, CWTP (t) is relatively low, as is the PMI for residual at the

FWS outlet CFWS(t), indicating that only a weak statistical relationship was es-

tablished between upstream and downstream chlorine. In the case of the data

collected for the Myponga WDS, it is evident that the residual free chlorine data

are simply either too noisy, or the data contain insufficient variance to determine

a relationship between applied dose and future downstream residual. This is

likely, given the expected dampening of chlorine residual fluctuations over the

span of the trunk main. Furthermore, it was not permissible to manipulate the

chlorine injection rate, which meant that adjustments to the applied chlorine

dose were typically small and infrequent, which resulted in the relatively low

variability of chlorine residual within the system. It would be difficult to rec-
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ommend use of the GRNN model to directly determine the influence of changes

in applied dose. The development of control-oriented ANN models will need to

consider other factors such as limited observability of the water distribution sys-

tem (i.e. low variability of chlorination), noise, and process delays. In particular,

due to the restricted scope for experimentation with disinfection parameters, the

collection of operational data with sufficient variability for modelling chlorine

disinfection presents a key area for future efforts, which should aim to define ap-

propriate experimental protocols for undertaking WDS identification in a manner

that ensures water quality is not compromised.

It is worth noting that, in view of the additional information regarding the signifi-

cance of input variables, a forecasting model may not be suitable for some model-

based control applications; which presents an important limitation in terms of

potential applications. Based on the selected input variables in Table 7.7, it is ap-

parent that the ANN developed is predominantly an auto-regressive time-series

model, since it is dominated by endogenous lagged variables. The model is a

highly accurately representation of the time-dynamics of water quality within

the WDS, which may be of some use to operators, although it would be difficult

to recommend the use this particular model to directly determine the influence

of changes in applied dose. This results highlights that the development of anal-

ysis and diagnostic tools that can to assess the functionality of ANN models is

also important, since inappropriate assumptions regarding the utility of black-

box models could be misleading.

7.7 Conclusions

This paper has reported the application of the modified PMIS algorithm, intro-

duced by May et al. (2008a), to the development of ANN models for forecasting

disinfectant residual within water distribution systems. The algorithm identifies

an optimal subset of candidate ANN input variables by analysing partial mutual

information (PMI). The performance of ANN models developed using this ap-

proach was found to be favourable in comparison with those developed using a

current methodology reported in the literature, which is based on expert knowl-

edge and trial-and-error. The primary benefit of the approach is that it identifies

the minimum number of ANN input variables required to forecast disinfectant

residual, without loss of prediction accuracy.

In terms of ease of development, the selection of input variables based on analysis

of the data, rather than application of specific heuristics, has considerable appeal.

Studies presented thus far have considered IVS for ANN models of simple distri-

187



7.7 Conclusions

bution systems. In this research, the application of a consistent, analysis-oriented

approach to IVS has been shown to yield highly accurate ANN models for two dif-

ferent water distribution systems. Consequently, as modellers seek to apply ANN

models to increasingly complex water distribution systems, or begin to consider

additional water quality variables, the approach presented in this paper offers a

more systematic way of selecting input variables without the loss of accuracy.

Finally, the identification of a set of specific input variables goes some way to

increasing the transparency of the ANN modelling methodology. This is because

the subset of variables selected during PMIS provides an indication of the specific

relationships within the data that are necessary for the ANN to learn in order to

generate predictions. As a result, the ANNs produced are simpler and more easily

interpreted. Furthermore, the statistical analysis of input-output relationships

that form part of the IVS procedure provides additional insight into the relative

importance of each of the ANN input variables. Understanding the importance of

variables is extremely useful for assessing the relative cost-benefit of establishing

and maintaining monitoring systems for generating modelling data.
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Abstract

Data splitting is an important consideration during artificial neural network (ANN)
development where hold-out cross-validation is commonly employed to ensure gener-
alisation. Even for a moderate sample size, the sampling methodology used for data
splitting can have a significant effect on the quality of the subsets used for training,
testing and validating an ANN. Poor subset selection can result in an inaccurate and
highly variable model performance, however the choice of sampling methodology is
rarely given due consideration by ANN modellers.

This paper provides a comprehensive review of the various sampling algorithms for
data splitting, and the quality of subsets that are obtained. An algorithm for strat-
ified sampling, based on the self-organising map (SOM) is then developed, with
several guidelines for implementing the approach to minimise bias and variance in
the datasets. Results for an example problem show that a stratified sampling tech-
nique with Neyman allocation consistently yields high quality samples and can be
used with greater confidence than other sampling techniques, especially in the case
of non-uniform multivariate datasets. Increased confidence in the sampling is of
paramount importance, since the hold-out sampling is performed only once in de-
velopment.
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8.1 Introduction

Statistical models of all types are invariably built using a finite set of data. It is

rare that data collected through observation of a process will be noise-free, and

available data are likely to contain a small proportion of features that are not

representative of the underlying process. Generalisation is therefore a central

issue for the development of all statistical models. Generalisation refers to the

ability of a model to accurately represent the underlying data generation process,

rather than the idiosyncratic features of the training data. The latter case is re-

ferred to as over-fitting, because it is characterised by a high goodness-of-fit to the

training data, yet poor accuracy when applied to previously unseen data. Despite

their many advantages over conventional statistical models, artificial neural net-

works (ANNs) are particularly susceptible to over-fitting due to the complexity

of the model architecture (i.e. the number estimated parameters) relative to the

number of training data. In statistical learning theory, this is referred to as the

bias/variance dilemma, since there is a trade-off between minimising the model

error (bias) and minimising the dependence of the estimated parameters on the

training data (variance) (Geman et al., 1992).

Methods commonly used during the development of statistical models to ensure

good generalisation include hold-out cross-validation, k-fold cross-validation, en-

semble training, and Bayesian regularisation (Sarle, 1997). In ANN applications,

the hold-out is most commonly employed, and is synonymous with stop-training
or early stopping. In this approach, a subset of data is reserved to periodically test

the performance of the network during training. Training is stopped when the

test error reaches an optimum value, as further training will result in over-fitting,

and hence ensures a generalised fit. Furthermore, when model selection is em-

ployed to compare alternative models or optimise ANN architectures, the models

can potentially be optimistically biased towards the test data. In order to avoid

testing bias, a second hold-out is required for validating the optimal ANN model

(Maier and Dandy, 2000).

Regardless of the number of data subsets required, the issue for modellers is that

the hold-out of data itself can prove to be yet another source of bias and variance.

If the data subsets are selected inappropriately, then training, test and validation

data may not be equally representative of the problem domain, and will generate

inaccurate test or validation performance. Variation in test and validation error

may be observed for repeated instances of sampling, which creates uncertainty

regarding the model performance that is gauged based on a single instance of

training, test and validation data. The uncertainty due to sampling variance may

be significantly greater than other sources of model uncertainty such as network
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initialisation, training and architecture (LeBaron and Weigend, 1998).

On the subject of selecting training data for ANN development, Sarle (1997)

remarks only that: “Methods for the selection of training data can be found in sta-
tistical textbooks.” However, ANN practitioners working within the context of

machine learning are not necessarily conversant with statistical sampling theory.

The result is that in many applications, random sampling or some other arbitrary

method is used. The importance of data splitting is ignored or understated, with

more attention given to the model architecture and learning algorithm. The po-

tential bias and variance in model performance due to sampling is often never

tested, and data splitting is generally performed only once during ANN devel-

opment. The final point here highlights the importance of understanding the

implications of the data splitting technique on subsequent model development,

given that the assessment of model performance will be dependent on a single

data split.

This paper compares data splitting algorithms for ANN development in terms

of their relative bias and variance. In particular, a data splitting method based

on stratified sampling of the self-organizing map (SOM) is introduced to reduce

the bias and variance of ANN performance, relative to other approaches. The

remainder of the paper is structured as follows: Section 8.2 briefly reviews the

different approaches for data splitting that have been applied to ANN develop-

ment. Section 8.3 discusses the issues surrounding the implementation of the

SOM-based data splitting approach. Details of the experimental study are given

in Section 8.4 and results are given in Section 8.5. Finally, concluding remarks

are given in Section 8.7.

8.2 Data Splitting Methods

Data splitting for ANN development is essentially a sampling problem where,

given a database D comprising N data, the goal is to sample the data into disjoint

subsets T , S and V of size NT , NS and NV , for training, testing and validating,

respectively. Within ANN literature, this task has been performed using many

different approaches, each with their advantages and disadvantages.

Simple random sampling (SRS) is the most common method for data splitting

in ANN development, where data are selected with uniform probability, which is
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determined as

p(x ∈ ST ) =
NS
N
, (8.1)

and similarly for x ∈ SS and x ∈ SV . Simple random sampling is easy to perform,

and can be efficiently implemented in just a single pass over the data using algo-

rithms such as Knuth’s algorithm (Knuth, 1997). However, the problem with this

approach is that there is a chance that the splitting of data suffers from variance,

or bias, especially when the data are non-uniformly distributed (Tourassi et al.,
2001).

More arbitrary sampling methods include the splitting of datasets according to

discrete blocks. Sampling methods such as these are traditionally classed as con-
venience sampling, for which the introduction of unknown bias is a common crit-

icism. For example, splitting data according to discrete time intervals is common

in time-series model development (Bowden et al., 2002). However, unless the

time-series is stationary, the presence of long-term trends within the data, or

differences in the features and events observed during the different time inter-

vals, can lead to unrepresentative training and testing data, which results in poor

model performance (Bowden et al., 2002).

Simple trial-and-error methods have been proposed on the basis that equally rep-

resentative datasets will have similar statistics. More sophisticated approaches

have utilised an optimisation loop to automate the search through the combi-

nation of potential splits (Reeves and Taylor, 1998; Bowden et al., 2002, 2006).

Various approaches have aimed to minimise the difference in statistics such as the

mean, µ, and standard deviation, σ (Bowden et al., 2002; Shahin et al., 2004);

or, have used the Kolmogorov-Smirnov statistic to match the distributions of each

variable across the sampled datasets (Bowden et al., 2005). To the authors’ knowl-

edge, the validity of this assumption has yet to be thoroughly tested. However,

global statistics of subsets will not indicate an unbalanced representation of local

features of the database within each, which might then require extrapolation;

and ANNs are known to perform poorly in these circumstances.

CADEX, or Kennard-Stone sampling, (Kennard and Stone, 1969) is one of the

earliest algorithms designed for data splitting. The approach iteratively draws

samples based on distance, selecting points farthest away from those already in-

cluded in the sample, and ensures maximum coverage of the data. An improved

version called DUPLEX was proposed by Snee (1977), which is used widely in the
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field of chemometrics, including several ANN applications (Despagne and Mas-
sart, 1998; Sprevak et al., 2004). However, the computational complexity of this

algorithm may prohibit its use on large datasets.

Systematic sampling is another deterministic approach in which every kth obser-

vation is sampled. If the data are ordered in some way, this implicitly generates

a stratified sample, with stratification on the ordinal variable. One approach is

to sort the data along the output variable dimension to obtain a representative

sample of the output variable distribution (Baxter et al., 2000). This approach

is easy to implement, as it assumes that the output variable can be mapped to

a unique input state. However, this assumption may not hold in multivariate

datasets where multiple input states might give rise to the same output, where

the method cannot ensure that representative input-output combinations will be

sampled, since only the output variable is considered.

Stratified sampling partitions the data into H homogeneous groups (or, strata)

of size Nh, and data are sampled from within each stratum (Cochran, 1977). The

partitioning of the data forces sampling to be distributed throughout all regions

of the input-output space, and ensures that adequate representation of input-

output tuplets can be achieved. For multi-variate data it is convenient to use

partitioning or clustering algorithms to generate the strata (Mulvey, 1983). Gill
et al. (2004) refer to this as cluster-based stratified sampling (CBSS). Several

examples of data splitting have been described using different clustering algo-

rithms, including k-means clustering, the self-organizing map (SOM) (Kohonen,

1995) and fuzzy c-means clustering (Kaufman and Rousseeuw, 1990). Svozil et al.
(1995), Daszykowski et al. (2002) and Bowden et al. (2002) applied a partitioning

of data based on the self-organizing map prior to sampling. The methodology has

since been adopted in several similar ANN applications to water resources mod-

elling (Anctil and Lauzon, 2004; Zhang et al., 2004a; Kingston, 2006). Shahin
et al. (2004) used fuzzy c-means clustering to partition the data for ANN model

development, where the membership values were used to guide sampling.

The approach based on the SOM appears to be an attractive method for data

splitting, since it is a relatively robust clustering algorithm (de Bodt et al., 2002).

Given that it is another class of ANN, it also may already be relatively familiar to

ANN modellers. However, despite being used in several examples within the lit-

erature, there are marked differences in the specific manner in which this type of

data splitting is performed. In particular, the best method for selecting the SOM

size, and the manner in which samples are selected from SOM units is unclear

(Daszykowski et al., 2002). Furthermore, the approach has yet to be compared to

existing approaches, such as DUPLEX. More importantly, no study so far has con-

sidered the implications of the approach in terms of bias and variance of model
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performance, and so the relative benefits of the approach for ANN development

have not yet been fully assessed.

8.3 SOM-based Stratified Sampling

The self-organizing map (SOM) (Kohonen, 1995) is a class of unsupervised ANN

that is represented as an array of p-dimensional vectors. The SOM can generate

a partitioning of data by learning the optimal distribution of the weight vectors.

This forms the basis of SOM-based stratified sampling (SBSS), where the SOM

is used to generate a partitioning of data, and then samples are drawn from

the SOM partitions. Conceptually, SBSS provides a convenient method for im-

plementing stratified sampling. However, as mentioned there are currently no

guidelines for how to best implement the approach. In particular, there are sev-

eral key considerations (Kpedekpo, 1973):

1. choice of stratified variables;

2. number of strata;

3. location of strata boundaries; and

4. allocation of samples.

The first three considerations are essentially analogous to the following decisions

that are normally considered when partitioning data using the SOM: choosing

the variables to cluster (input variables to the SOM), the number of SOM map

units, and how the SOM can optimally determine clusters. The final considera-

tion (sample allocation) is unique to the data splitting application of the SOM,

however, all four are interdependent and will influence the quality of the sam-

pling.

8.3.1 Choice of Variables

Gill et al. (2004) suggest that stratification on the most relevant variable can

yield better results than clustering on all results, and refer to this technique as

induction based stratified sampling (IBSS). However, this does not account for

the situation of multiple variables of equal importance, although we can suggest

that in this case, all informative variables should be used. Extending this notion

to the most general case, it can be simply said that the key consideration here is
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Figure 8.1: Partitioning of data by an 7 × 5 SOM, where the Voronoi regions denote
the boundaries of partitions created by the weights of the trained SOM. The shading of
the regions corresponds to rows of the SOM grid, indicating the alignment of the map
through the data.

to avoid clustering on irrelevant or redundant variables. To this end, we observe

that good ANN model development adopts an input variable selection (IVS) step

that precedes the data splitting (May et al., 2008a, 2009a). The result is that

the set of available data will contain only input variables relevant to the output

variable, and will be free of noise variables. Consequently, partitioning over all

dimensions should discriminate all distinct regions of input-output tuplets.

8.3.2 Location of Strata Boundaries

The use of the SOM provides a robust method for stratification, since the learn-

ing algorithm determines the optimal positioning of the SOM prototype vectors

throughout the data space. The boundaries of strata are then formed by the

boundaries of the Voronoi regions that are formed by the partitioning, as shown

in Figure 8.1. The reliability of SOM partitioning is influenced in varying degrees

by the SOM parameters i.e. map size, learning rate, number of training iterations,

of which map size is the predominant parameter (de Bodt et al., 2002).
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8.3.3 Sample Allocation

Sample allocation refers to the sampling within each stratum, and is an important

aspect of SBSS in terms of selecting data for ANN development. In past applica-

tions of SBSS, the sample allocation has varied. Svozil et al. (1995), Daszykowski
et al. (2002) and Bowden et al. (2002) draw single samples from each cell for

training, test and validation, although these are based on different grid sizes. Al-

ternatively, Kingston (2006) randomly samples all data within each partition in

proportion to the desired sample sizes for training, testing and validation, so that

all of the available data are used. It remains unclear which, if any, is the most

appropriate approach to take.

In stratified random sampling, the sampling within strata is usually uniform ran-

dom sampling, and an allocation rule identifies the number of samples drawn

per stratum, which is referred to as the quota. Three basic rules can be consid-

ered for determining the sample quota (Kpedekpo, 1973; Cochran, 1977): equal

allocation, proportional allocation, and Neyman allocation.

Equal allocation

Equal allocation is the simplest way to allocate samples, and takes an equal num-

ber of points from within each stratum. The number of samples drawn per stra-

tum, nh is given as

nh =
n

H
, (8.2)

where n is the required sample size, andH is the number of strata. The allocation

rule implies that Nh ≥ nh, otherwise the rule will break down, and the SOM

map size may need to be restricted to ensure that sufficient data are available in

each cluster to draw data for training, testing and validation. The method used

by Svozil et al. (1995); Daszykowski et al. (2002) and Bowden et al. (2002) is

essentially the case of equal allocation where nh = 1.

Proportional allocation

The allocation of samples from within strata can also be determined based on

the size of individual strata, Nh, to yield proportional allocation. In this case, the
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number of samples nh to be taken from stratum h can be determined according

to

nh =
Nh∑H
j=1Nj

n, (8.3)

which results in the overall selection of n samples.

Neyman allocation

Neyman allocation considers both the size of the stratum, Nh, and the intra-

stratum standard deviation σh. The Neyman allocation for stratum h is deter-

mined according to

nh =
Nhσh∑H
j=1Njσj

n, (8.4)

where σj is the intra-stratum standard deviation. Here, the sample allocation is

increased for strata that are either large, or have increased variance. Neyman

allocation yields an optimal sample when used to draw a stratified sample for the

estimation of conventional statistics (Cochran, 1977). It should be noted that σj

conventionally refers to the within-stratum standard deviation of the variable for

which statistical estimates are later generated, since this defines the optimality

of the sample allocation rule. However, in this study the standard deviation is

based on the multivariate form,

σ =
√
σ2

x1
+ · · ·+ σ2

xp
+ σ2

y (8.5)

where σ2
xi

is the intra-stratum variance of component xi, and σ2
y is the variance of

the output variable, y. The multivariate standard deviation describes the within

stratum variability with respect to input-output tuplets, which is for sampling

data for regression. In this case the sampling rate is expected to be greater where

there is greater variance in either the inputs, output, or both.

Consider the partitioning of data generated by a mixture model, as shown in

Figure 8.1, which shows the Voronoi tesselation of the data space due to a SOM
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partitioning. The Voronoi regions each define the region in <d where points

inside lie closest to a given prototype vector, ci. Here, the data are non-uniformly

distributed, and as can be seen by the Voronoi regions, the SOM clusters are

non-uniformly distributed. In fact, due to the behaviour of the SOM learning

algorithm, the distribution of SOM partitions approximates that of the data, and

the SOM does not necessarily generate clusters of equal size or width. Equal

allocation and proportional allocation may potentially overlook this aspect of the

SOM clustering, and under-sample some regions that would ideally be allocated

a greater sample quota. On the other hand, Neyman allocation allows for the

sample quota to be adjusted according to the width of the clusters. Neyman

allocation will increase the sample quota in sparse map units, and this would

result in a similar sampling approach to density biased sampling with a negative

bias.

8.3.4 Number of Strata

Determining the number of strata is analogous to the problem of determining

the size of the SOM, which is usually an m × n grid. Selecting the most ap-

propriate size SOM is generally a non-trivial task for which no conclusive rule

has been determined, and certainly different approaches have been taken in var-

ious applications of SBSS. For example, Daszykowski et al. (2002) used a SOM

with ∼ N units, and selected one datum each per cluster. Bowden et al. (2002)

used enough map units to capture all clusters, and reported successful clustering

using a 10×10 map. Mulvey (1983) observes that optimal clustering can yield

an optimal sample. In clustering applications, two approaches for determining

the optimal number of SOM units are: cluster validity (Kaufman and Rousseeuw,

1990; Halkidi et al., 2001), and a heuristic rule size (Vesanto, 1999).

Cluster Validity

Cluster validity describes the quantitative evaluation of the output of a cluster-

ing algorithm, based on a cluster validity index (CVI) that defines an expression

for the relative intra-cluster similarity (or cluster compactness) and inter-cluster

dissimilarity (or cluster separation). Good clustering creates clusters that are com-

pact and well separated from each other (Kaufman and Rousseeuw, 1990). Nu-

merous CVIs have been described (see Gunter and Bunke (2003), Halkidi et al.
(2001) for examples), but are generally based on estimation of the ratio of clus-

ter compactness to cluster separation. Compactness and separation are invariably

measured by some analysis of distances between points within the same cluster,
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and distances between points in different clusters.

The application of cluster validity to stratified sampling of ANN data subsets has

been considered in only a few examples. Shahin et al. (2004) demonstrated

the application of the silhouette coefficient to optimising the number of fuzzy

c-means clusters. Kingston (2006) similarly extended the approach described by

Bowden et al. (2002) by optimising the SOM dimensions based on the silhouette

coefficient (Kaufman and Rousseeuw, 1990), but also considered the quantisation

error and the number of singleton clusters (clusters containing a single datum).

The quantisation error (QE) is the basic measure of how accurately the prototype

vectors (i.e. SOM weights) represent the data during and after training. The QE

is defined as

QE(k) =
1
n

k∑
i=1

∑
x∈Ci

‖x− ci‖2 , (8.6)

which is the MSE between data points in cluster Ci and their respective pro-

totype vector, ci. The QE is dependent on the number of map units and the

neighbourhood size during learning, and a small QE can be achieved by using

a small neighbourhood during training (i.e. tuning) and increasing the number

of map units. The latter is more or less intuitive, and potentially a QE of zero

could be achieved by setting k = n, (i.e. letting C = X). However, generally it

is assumed that k << n, otherwise there is little to be gained by the clustering.

The limitation of QE for assessing cluster validity is that it only measures cluster

compactness, and not cluster separation.

The silhouette coefficient, S, (Kaufman and Rousseeuw, 1990) measures the de-

gree of membership of individual points to their respective clusters. S is defined

as

S(k) =
1
n

n∑
i=1

si, (8.7)

which is the average silhouette for a given partitioning into a set of k clusters
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Table 8.1: Guidelines for interpretation of the silhouette coefficient (Kaufman and
Rousseeuw, 1990)

S(k) Interpretation

0.70–1.00 Strongly clustered data
0.50–0.70 Reasonably clustered data
0.25–0.50 Only weakly clustered data. Another clustering method might

need to be considered.
< 0.25 No structure within the data (i.e. are unclustered)

C1, . . . , Ck. The silhouette si(k), is determined for each xi ∈ Ci as

si = 1− bi − ai

max {ai, bi}
(8.8)

where ai and bi are given as

ai =
1
|Ci|

∑
xj∈Ci

xj 6=x

‖xi − xj‖, and (8.9)

bi = min
l 6=i

1
|Cl|

∑
xj∈Cl

‖xi − xj‖ (8.10)

Here, ai is the average intra-cluster distance from point xi, bi is the minimum

average inter-cluster distance, and |Ci| is the size (number of objects) of the ith

cluster. The silhouette is bounded on (−1, 1), where si = 1 indicates that a point

x is, on average, much closer to points within the same cluster, than points within

the closest neighbouring cluster, Cl. Note that for the special case of singletons,

si = 0. The optimal number of clusters is determined by maximising the sil-

houette coefficient. Kaufman and Rousseeuw (1990) provide some guidelines for

interpreting the silhouette coefficient for a data partitioning, which are given in

Table 8.1.

The difficulty in applying a CVI is that modelling datasets may not necessarily be

clustered, in which case it is unclear how useful the analysis is, or how optimal

the sampling will be. The approach has not been rigorously assessed, in terms of

minimising bias and variance of the sampling. Although defining optimal clusters

can optimise sampling bias and variance of parametric estimates of statistics, the

same has not been demonstrated for ANN model validation.
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Heuristic SOM Grid Size Formula

Vesanto (1999) suggests a heuristic rule for determining the size of the SOM grid

based on the number of samples to be clustered on the map. In this case, the grid

size is determined as

k = βn0.54 (8.11)

Values of 0.2, 1 and 5 are used for the constant β, which correspond to a small,

normal and a large SOM, respectively (Vesanto, 1999). Using this heuristic for-

mula, the grid size can be efficiently determined without trial and error. The SOM

algorithm also remains scalable, since the number of map units is proportional to
√
n and reasonable computation times can be maintained for large datasets.

The dimensions of the grid can also affect the quality of the mapping that is

achieved by the SOM. It has been observed that an r × c SOM, with one side

greater in length than the other, is better than a square r×r SOM, since the former

is more easily able to align with the training data, which may be distributed along

a dominant axis. Given some ratio of the SOM dimensions, γ, it is possible to

specify the dimensions of the SOM in terms of the number of rows, by considering

that r = γc. Since k = rc, the number of map units can be therefore be written,

in terms of r, as

k =
r2

γ
, (8.12)

which can then be substituted into (8.11) to give the number of SOM rows as

r =
√
γβn0.54. (8.13)

In comparison to the application of a CVI, this heuristic rule is a much simpler and

more convenient way to specify the grid size, and does not require the trial-and-

error evaluation of clusterings with a potentially large number of SOMs. How-

ever, unlike CVIs, the rule in (8.11) has no underpinning theoretical basis and

the suitability of this rule for ANN sampling has yet to be determined.
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8.3.5 Proposed SBSS Algorithm

An overall methodology for the implementation of SBSS is proposed in this pa-

per, based on the considerations discussed in the previous sections. The SBSS

algorithm proceeds as follows:

SOM clustering:

i. Specify SOM map dimensions r and c using (8.13), and r/c = 1.6.

ii. Randomly initialise SOM and train on D, using the learning parameters in

Table 8.2.

iii. Cluster dataset D onto the trained SOM.

Sampling:

iv. For each cluster C(m),

v. Calculate the standard deviation σ(m) from (8.5).

vi. Determine training quota n(m)
T and test quota n(m)

S using the allocation rule

in (8.4).

vii. Randomly sample data without replacement into T and S.

viii. Allocate remaining data to V.

Here, a rectangular SOM is used to perform the partitioning, and the conven-

tional SOM learning algorithm adopted, with a short global ordering phase, fol-

lowed by a longer tuning phase (see Kohonen (1995) for details). The Neyman

allocation rule is used so that the number of data selected from within each clus-

ter is determined based on their size
∣∣C(m)

∣∣ and spread σ(m). Alternatively, the

approach could be implemented using different allocation rules (single or pro-

portional) to determine the number of data to be sampled.

8.4 Experimental Study Design

The purpose of the experimental study was to determine the most appropriate

methodology for implementing SBSS, given that several different approaches to

SBSS have been described. The two key considerations were the size of the SOM,

and the sample allocation technique. The influence of these parameters was

investigated based on the estimation of bias/variance of an ANN regression using
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Table 8.2: SOM parameters for implementing SBSS

Parameter Ordering Tuning

Initial learning rate 0.9 0.01
Initial neighbourhood size r 1
Neighbourhood function Gaussian Gaussian
Epochs 2 20
Decay function Linear Linear

independent data splits. Additionally, the study aimed to provide a comparison

between the SOM-based approach and several sampling algorithms within the

literature, and to benchmark them against simple random sampling. Finally, the

impact of sampling fraction, that is, the overall proportion of data sampled for

training and testing, was also taken into consideration, and experiments were

undertaken using 40% and 80% of the data for this purpose.

8.4.1 Datasets

The Friedman regression function (8.14) was used as the basis for assessing the

performance of ANN models developed using each data splitting algorithm. The

function is given as

y = 5
(
2 sin(πx1x2) + 4(x3 − 0.5)2 + 2x4 + x5

)
+ ε (8.14)

where ε is Gaussian noise ∼ N(0, 0.8). The Friedman function provides a suitable

test case for regression applications as it is a well-known function that is a suit-

ably difficult function to approximate, and has a high-dimensional input space.

The use of synthetic data was useful for controlling the characteristics of the in-

put domain, such as skewness, noise and correlation between input variables,

and number of data.

Datasets of 1 000 observations were generated by independently sampling xi

from an input distribution, and calculating the Friedman function value at each

x. Three datasets (Dataset I, II and III) were generated, where the distribution of

input variables was varied for each dataset, in order to generate input distribu-

tions that represented differing degrees of skewness. Dataset I was a mixture of

two Gaussian clusters, generated by sampling 90% of data from the distribution

xi ∼ N(1, 0.6), and 10% of data from the distribution xi ∼ N(−1, 0.6). The dis-
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tribution of data in Dataset I was representative of naturally occurring datasets

that are highly skewed. Dataset II was generated by sampling inputs drawn from

the N(0, 0.8) distribution, representing a case of more moderate skewness than

Dataset I. Dataset III was generated by sampling the input domain using a uni-

form distribution, xi ∼ U(−3, 3).

Datasets IV, V and VI denote three datasets, corresponding to Datasets I, II and

II, respectively; but with correlated input variables. In each case, data were

generated by sampling x1 as before, but generating all remaining input variables

x2 to x5 according to xi = 0.9x1 + ε, where ε is Gaussian noise ∼ N(0, 0.8).

8.4.2 Bias and Variance Estimation

The quality of the sampling method was determined by estimating the bias and

variance of the ANN error from M bootstrap instances of training, test and val-

idation data samples. The method for estimating the bias and variance is based

on the hold-out validation error for M models developed using independently

sampled training, test and validation data. In this study, M = 100. Given the

network MSE, the bias due to the sample is determined as (Twomey and Smith,

1998; Tong and Liu, 2005)

E(MSE) =
1
M

M∑
m=1

MSEm, (8.15)

which is the expected error of the model determined for M bootstrap experi-

ments, and is indicative of the representativeness of the sample that is obtained.

The sensitivity of model performance to the sample is similarly determined based

on the variance of the error, which is given by

V (MSE) =
1

M − 1

M∑
m=1

(MSEm − E(MSE))2. (8.16)

Unlike the traditional bias/variance dilemma in ANN training, there is no real

trade-off and a sampling algorithm may produce both a low bias and low vari-

ance. Such a sampling algorithm would consistently draw data in each set that

are representative of the problem domain.
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8.4.3 Neural Network Training

The generalized regression class of neural network (GRNN) (Specht, 1991) was

used to perform the regression. Each neural network was trained by optimis-

ing the bandwidth, h, of the Gaussian kernel that is centered at each training

pattern. The optimisation is a fast, one-dimensional solution named Brent’s algo-

rithm (Press et al., 1992). The GRNN provided a way of training many networks

relatively quickly, without having to optimise the model architecture. The objec-

tive cost function was the test-set error (MSE) minimisation.

8.4.4 Data Splitting Algorithms

In this comparative study, the three variants of SBSS were implemented, as de-

scribed in Section 8.3.5, each using different sample allocation rules: single,

proportional and Neyman allocation, which are denoted as SBSS(S), SBSS(P)

and SBSS(N), respectively. Random initialisation of the SOM was also a poten-

tial source of variation in SBSS, since it can potentially lead to variability in the

partitioning of data that could, in turn, affect the sample that is drawn. Conse-

quently, in order to quantify how much variability the SOM contributes to the

overall variability of SBSS, a variation of bootstrap analysis was undertaken by

performing the SOM partitioning only once, and independently drawing random

samples from the partitioned data to train each GRNN model. These cases are

denoted as SBSS(S)*, SBSS(P)*, and SBSS(N)*. Finally, SBSS was implemented

on a large N × N map with a single sample drawn from each, following the

methodology in Daszykowski et al. (2002), and this is denoted as SBSS(SL).

DUPLEX

The deterministic DUPLEX algorithm was implemented for comparison with the

SBSS approach. DUPLEX generates only two sets (train and test), and in most

applications a 50:50 split between training and test data is assumed. Snee (1977)

suggests that alternative splits could be achieved by allocating the remaining

data to training when the test subset has been filled. In this study, a further

modification was made to extend DUPLEX to the case of three sets, where pair-

wise sampling alternated between training, test and validating samples, until

each of the smaller sets were filled. The steps of the algorithm are as follows:

i. Find xi, xj ∈ D that maximise the distance ‖xi − xj‖ and sample (without

replacement) into the training set, T .
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ii. Repeat once each for S and V.

iii. Find next sampled pair xi and xj , such that they maximise the minimum

single-linkage distance ‖x− s‖ for each previously sampled s ∈ T and allo-

cate to T .

iv. Repeat, rotating allocation between sets T , S and V.

v. Once the two smaller sets are fully allocated, allocate remaining data to the

largest set.

Here, in order to initialise each sample, the initialisation sequentially finds the

pair of data points that lie farthest from each other within the database D; the

first pair allocated to the training data, and the second to the test data. Data are

then sampled pair-wise, based on the maximum distance to the respective target

set.

Stratified Systematic Sampling

Systematic stratified sampling has been used in a number of ANN development

examples. The methodology is quite straightforward to implement and is im-

plicitly a form of stratified sampling. In some cases, this may be easier or more

convenient than the SBSS approach, and so was also considered for comparison.

The algorithm proceeds as follows:

i. Sort the order of data in D by ascending y.

ii. Determine sampling interval k = N/(NT +NS).

iii. Randomly select start location m ∈ [1, k].

iv. Draw every m+ k sample into T .

v. Unsampled data are allocated to V.

vi. Repeat steps 2 to 5 to sample S from T .

Here, in order to generate the three samples, the systematic sampling is per-

formed twice. First, training and test (calibration) data are sampled using the

systematic approach, and then the test data are drawn from this sample.
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Optimisation-based Data Splitting

Following the methodology of Bowden et al. (2002), an algorithm was imple-

mented to minimise the dissimilarity of the data sets. It was observed that the

specific GA implementation described by Bowden et al. (2002) behaved more as

a random search of different combinations of data splits. In this study, the main

aim was to test the assumption that the objective function optimises the sampling,

by evaluating the bias/variance characteristics of the approach, and so a simple

random search was adopted. In this approach, up to 10 000 independent data

splits were randomly generated, with the optimal split found according the same

objective function that was used by Bowden et al. (2002), which is to minimise

the expression:

Jµ + Jσ, (8.17)

where Jµ and Jσ are given as

Jµ =
d∑

i=1

|µi,T − µi,S |+ |µi,T − µi,V |+ |µi,S − µi,V |, (8.18)

and

Jσ =
d∑

i=1

|σi,T − σi,S |+ |σi,T − σi,V |+ |σi,S − σV |. (8.19)

Here, µi,T , µi,S and µi,V denote the mean of xi in the training, testing, validating

data sample, respectively; and similarly for standard deviation σi,T , σi,S and σi,V .

8.5 Results

Table 8.3 and Table 8.4 summarise the bias and variance of the GRNN error due

to sampling for all of the sampling techniques for the case of uncorrelated input

variables (Dataset I, II and III). The results show a clear difference between the
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Table 8.3: Variability of ANN generalisation performance for split-sample validation us-
ing alternative sampling techniques. The regression task is the Friedman surface where
input data are uncorrelated noise, and the sampling fraction is (n/N) = 40%

Dataset I Dataset II Dataset III

Method E V E V E V

SRS 20.9 21.4 18.2 3.1 16.4 0.8
SBSS(S)† 27 8.7 23.5 4.9 20.6 1.3
SBSS(S)∗ 24.2 12.8 23.4 4.9 21.9 2.7
SBSS(SL) 25.5 16 19.6 0.2 19.4 1.6
SBSS(P) 20.8 15 18.7 2.4 17.4 0.9
SBSS(P)∗ 20.9 16.5 18.7 2.4 16.9 0.8
SBSS(N) 12.3 6.1 15.7 1.5 17 0.8
SBSS(N)∗ 13 14.6 15.7 1.5 15.8 0.6
DUPLEX 11.51 - 12.22 - 13.4 -
Systematic 20.2 7.5 19.7 0.2 17.7 0.2
Optimisation 21 18.1 22.6 5.4 16.4 0.6

† parentheses denote SBSS using different allocation rules: (S)=single, (SL)=single with large

SOM, (P)=proportional, (N)=Neyman. ∗ denotes SBSS using a single instance of a SOM parti-

tioning.

stratified sample allocation rules. DUPLEX and SBSS(N) produced the lowest

model error in nearly all cases, demonstrating that this sampling technique con-

sistently provided training, test and validation data that led to accurate GRNN

models. In general, DUPLEX provided benchmark sampling performance, with a

slightly lower model error than SBSS(N) and nil variance. The worst performing

technique was SBSS(S), which consistently resulted in the largest bias and the

largest variance. The high bias achieved using this sampling method is conclu-

sive evidence that by drawing a single sample from each SOM unit, the data are

under-sampled and a representative training sample is not obtained. In relative

terms, the average bias of SBSS(S) was double that of SBSS(N), and this sam-

pling technique also performed worse than the SRS benchmark. SBSS(SL), where

the SOM grid was sized equal to the number of samples required and single allo-

cation was used, resulted in poor sample quality. This demonstrates that taking

a single sample from within the SOM map units does not yield a sufficiently rep-

resentative set of training data, and could not be recommended in preference to

Neyman, or even proportional sample allocation.

The results for systematic stratified sampling in Table 8.4 are characterised by

a high bias, but low variability. The low variability can be attributed to the re-

stricted number of samples that can be drawn using this non-probability sam-

pling technique, which is determined by the number of possible start locations for
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Table 8.4: Variability of ANN generalisation performance for split-sample validation us-
ing alternative sampling techniques. The regression task is the Friedman surface where
input data are uncorrelated noise, and the sampling fraction is (n/N) = 80%

Dataset I Dataset II Dataset III

Method E V E V E V

SRS 18.6 66.4 16 5.6 14.1 1.5
SBSS(S)† 27 8.7 23.5 4.9 20.6 1.3
SBSS(S)∗ 24.2 12.8 22.7 5.4 21.9 2.7
SBSS(SL) 29.5 28 16.8 0.5 18.6 1.6
SBSS(P) 17.5 50.9 16.2 5.4 14.4 1
SBSS(P)∗ 18.8 68.2 16.2 5.9 14.3 0.8
SBSS(N) 6.3 0.1 10.2 0.3 15.4 0.6
SBSS(N)∗ 7.7 1.5 11.4 2.3 13.1 0.9
DUPLEX 27.88 - 18.79 - 16.75 -
Systematic 15.6 3.6 16.8 0.5 13.8 0.6
Optimisation 17.6 52.9 22.6 5.4 14.3 1.3

the sampling sequence, m. Although the expected error ranged from 13.8–16.8,

which compared favourably to SRS (14.1–18.6), the minimum error achieved

by systematic stratified sampling was 12.7–13.7, which was greater than that

obtained using SRS (9.8–11.5). This result suggests that systematic sampling

consistently resulted in a model with a relatively high error, where the average

error of SRS was high more so due to the high variability of the sample, since

high variability will also increase the expected error.

The optimisation algorithm resulted in a high bias and variance, and this result

demonstrated that minimising the statistical difference of the datasets did not

strictly ensure representative subsets. The lack of correlation between the global

statistics and sample quality is evidence that the overall error is dependent on

the accuracy of predictions within local regions. This is supported by the superior

results obtained by methods such as SBSS and DUPLEX, which consider the local

distribution of data and are therefore more effective at obtaining representative

data.

The performance of the sampling methods on the correlated datasets (Datasets

IV, V and VI) are shown in Table 8.5 and Table 8.6. The correlation effectively

reduced the dimensionality of the input space and this had a significant influence

on the relative performance of all sampling methods, as can be seen in the com-

parison between Table 8.4 and Table 8.6. For correlated data, the average error

for all sampling methods was lower than the error for uncorrelated data. The
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Table 8.5: Variability of ANN generalisation performance for split-sample validation us-
ing alternative sampling techniques. The regression task is the Friedman surface where
input data are correlated noise, and the sampling fraction is (n/N) = 40%

Dataset IV Dataset V Dataset VI

Method E V E V E V

SRS 13 21.9 7.7 14.2 3.4 0.4
SBSS(S) 15.4 14.2 13.2 25.2 4.8 0.4
SBSS(P) 12.5 11.9 6.6 5.8 3.6 0.1
SBSS(N) 7.2 7.4 6.5 4.6 5 2.9
DUPLEX 3.9 - 3.15 - 2.51 -
Systematic 11.4 10.1 7.8 6.7 3.7 0
Optimisation 12.3 26.4 7.7 13.6 3.4 0.1

Table 8.6: Variability of ANN generalisation performance for split-sample validation us-
ing alternative sampling techniques. The regression task is the Friedman surface where
input data are correlated noise, and the sampling fraction is (n/N) = 80%

Dataset IV Dataset V Dataset VI

Method E V E V E V

SRS 9.1 57.9 4.7 10.4 2.9 0.2
SBSS(S) 15.4 14.2 13.2 25.2 4.8 0.4
SBSS(P) 9.3 60 4.6 8.7 2.9 0.1
SBSS(N) 4.9 4.3 4.3 1.3 3.6 0.3
DUPLEX 4.8 - 4.9 - 3.1 -
Systematic 5.3 14 3.7 0.4 2.7 0.2
Optimisation 17.6 52.9 4.9 11.2 2.8 0.1

explanation for this is that the variability of sampling data is largely dependent

on the variance of the joint distribution of the data. In the case of the corre-

lated input data, the joint distribution has significantly less variance, since the

input data have only one “true” dimension, corresponding to the independent

input variable. The important consideration for sampling is therefore the dimen-

sionality of the joint distribution of the data, as this predicts the difficulty of the

sampling task.

The sensitivity of SBSS to the SOM grid size was investigated by estimating the

sampling bias and variance for a SOM specified with a map size ranging from 20

to 640 units, with a ratio of approximately 1:6 set for the length of the sides. The

results are summarised in Figure 8.2, which plots the bias and variance of model

performance when SBSS data splitting was applied using each of the sample
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allocation rules, and for sampling 40% and 80% of the data into the calibration

(training and test) datasets.

A clear optimum map size was observed for both SBSS(S) and SBSS(N), cor-

responding to minimum bias and variance, as shown in Figure 8.2(a), 8.2(b),

8.2(e) and 8.2(f). As the map size was increased above the optimum grid size,

the bias and variance increased in the case of SBSS(S), but remained low for the

case of SBSS(N). The bias and variance of SBSS(P) was relatively insensitive to

the grid size, although there was a slight decrease in both bias and variance over

the range of grid sizes tested. The optimum size SOM for SBSS(N) was approx-

imately 220 map units for n/N = 40% (Figure 8.2(e)), and 100 map units for

n/N = 80% (Figure 8.2(f)).

The values of the QE and silhouette coefficient for SOM sizes ranging from 2

to 640 units are shown in Figure 8.3. The silhouette coefficient, S, predicted a

small number of clusters in each case, which has previously been suggested by

Kingston (2006). The maximum value of S obtained was approximately 0.5 for a

2× 1 SOM applied to Dataset I. In this case, the analysis of S correctly identified

that Dataset I comprised two clusters, which correspond to the two Gaussian

distributions that were sampled to generate the data. However, in most cases the

value of S was approximately 0–0.1 for all SOM sizes larger than 3 × 1 units.

According to the guidelines in Table 8.1, these values indicate that the clustering

of the data is at best weak for such a large number of partitions.

The QE followed a typical decreasing trend for an increasing grid size, with an

initially large relative decrease in QE, becoming smaller for successive increases

in grid size. The minimum QE was observed for the largest SOM size of 640 units

(32 × 20), although the trend indicated that the QE would continue to decrease

for larger sizes, which was also not unexpected. Although the QE did not identify

any clustering within the data, it is interesting to note that the observed trend

was similar to the bias and variance trend over the same range of SOM sizes

(Figure 8.2(e) and 8.2(f)). As can be inferred from the slope of the QE trend

in Figure 8.3, the relative decrease in QE becomes small at approximately 100–

200 map units for the datasets studied, which corresponds closely to the optimal

number of map units determined based on bias and variance.
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Figure 8.2: Effect of SOM size on validation error for data sampled using SBSS with
single, proportional and Neyman allocation.
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Figure 8.3: Silhouette coefficient (S) and quantisation error (QE) versus k for SOM
partitioning of (a) Dataset I, (b) Dataset II, and (c) Dataset III.
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8.6 Discussion

8.6.1 Factors influencing data splitting performance

The study presented in this paper has not only presented a thorough evaluation

of the SOM-based approach for data splitting, but has also compared its per-

formance against other approaches. Furthermore, the study has also compared

how the performance of different data splitting methods are influenced by the

proportion of data sampled, and the dimensionality and distribution of the data.

Comparisons of results in Table 8.3 and Table 8.4 show that, with the notable ex-

ception of DUPLEX and SBSS(S), model error was improved by sampling 80%

into training and test data. Overall the results indicate that maximising the

amount of data used for model development improves the accuracy of the model,

which is to be expected. However, SBSS(N) and DUPLEX provided a signifi-

cantly lower bias and variance than the other sampling techniques for the lower

sampling fraction of 40%, indicating that these methods were more efficient at

selecting representative data. This is an important result, since in many applica-

tions there is a need to minimise the number of data samples used to maintain

reasonable computation times. SBSS(N) and DUPLEX therefore provide useful

sampling techniques that can ensure that the quality of the hold-out validation is

less affected by sampling fewer data.

The relative difference in the performance of the GRNN was significantly influ-

enced by the distribution of the data. In particular, SBSS(N) was the best sam-

pling method for Dataset I, in which the distribution of the input data was highly

skewed. This high quality of sampling for Dataset I can be attributed to the ability

of the Neyman allocation rule to over-sample sparse data. However, for Gaussian

data (Dataset II) the sampling methods were more closely matched, and for uni-

form data, no sampling method was found to provide a significant improvement

over SRS. This result indicates that when there is no structure within the data,

there is not likely to be any benefit in performing stratification of the input data.

An interesting result was the decrease in performance of DUPLEX when 80% of

the data were sampled, as this method gave the best results in all other cases.

This result was unexpected, although it can be explained by the insufficient sam-

pling of training data in sparse regions, which resulted in poor test and validation

results within these regions.

The relative performance of different sampling techniques was also affected by

the number of dimensions of the sampled data. In particular, the relative gain of

SBSS(N) over systematic sampling is significantly reduced for the case of corre-
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lated input data. DUPLEX and SBSS(N) produced the lowest bias and variance

for Dataset IV, confirming the benefit of these sampling techniques when applied

to skewed distributions. However, for datasets with Gaussian (Dataset V) and

uniform (Dataset VI) distributions, systematic stratified sampling gave good re-

sults and had lower bias and variance than SBSS(N). It can be concluded that in

low (single) dimensional problems, systematic stratified sampling is able to pro-

vide a more consistent and more representative sample of the data, since samples

are distributed evenly over the data space, which is relatively easy to achieve in

this manner for one dimensional, smoothly distributed data.

8.6.2 Selecting a suitable data splitting approach

Several conclusions were made based on the comparisons between the sam-

pling techniques investigated, that have been formalised as a set of guidelines

for choosing an appropriate sampling technique for the generation of training,

test and validation data for ANN development. The guidelines, which are sum-

marised in Figure 8.4, are proposed so that the sampling technique applied will

result in minimum bias and variance of the hold-out validation method, and to

increase confidence in the results obtained and the model developed. Applica-

tions with non-uniformly distributed data will benefit from sampling techniques

that can adjust the sampling rate throughout the data subspace to ensure ade-

quate representation of all conditions. The choice of sampling technique may be

less important for data that are uniform, although this rarely is the case.

SRS is not recommended as a suitable sampling technique for the generation

of training, test and validation data samples. In particular, the inability of SRS

to draw a reliable sample for skewed or non-uniformly distributed data results

in poor hold-out validation performance. The method is also highly variable,

which reduces confidence in the results of one-off testing and validation that are

obtained during ANN model development.

For the sampling of highly multivariate, non-Gaussian and non-uniform data,

SBSS will yield good results, since the stratification considers all dimensions and

can therefore provide a sampling frame that provides representation of all fea-

tures. In the case that there may be non-uniformly distributed, or non-Gaussian

data, Neyman allocation will yield a sample with the minimum variance. The

Neyman allocation rule is able to account for variations in density in the data to

ensure sparser regions are over-sampled. However, in the case of multivariate

Gaussian data, proportional allocation will yield similar results. The DUPLEX al-

gorithm provides a good approach to data splitting when data are Gaussian or
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Figure 8.4: Guidelines for choosing an appropriate sampling technique based on the
dimensionality of the data, and the distribution of the variables.

uniformly distributed, and although the expected cross-validation performance is

only slightly better than that of SBSS(N), it does not suffer from variance, which

will increase confidence in the results obtained using this approach. However,

although the computation associated with DUPLEX was not prohibitive for the

datasets used in this study, for large datasets the SBSS(N) approach is likely to

yield a more efficient data splitting methodology.

The benefit of SBSS may not be as significant in low dimensions, and so correla-

tions between input dimensions need to be considered. The effect of correlations

effectively reduces the dimensionality of the problem, since there is overlap of

the distributions of one or more variables. In this case, DUPLEX appears to of-

fer best results, as it can effectively distribute samples throughout the database.

Systematic stratified sampling is also an efficient method for selecting data for

ANN models in the case of low-dimensional data, that is data with only one in-

put variable, or one dominant input variable, since systematic stratified sampling

stratifies the data on a single variable. Although the method is non-probabilistic

and therefore restricts the number of possible samples that can be obtained, it

was found to result in low bias and variability in these cases, and therefore is able

to consistently generate a good sample. In terms of computational efficiency and

simplicity, the method is much easier and faster to implement than the more com-

plex DUPLEX and SBSS(N) algorithms. However, as dimensionality increases, it
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should be noted that systematic sampling may not provide a sampling frame that

captures all features in multivariate space, and would be recommended only for

univariate or bivariate datasets.

8.6.3 Specification of SOM Parameters

A shortcoming of previous work has been the lack of guidelines for determining

how to specify the SOM in order to achieve good data splitting. The two main

issues being that of specifying the SOM size and how to allocate the data within

SOM units to the training, test and validation samples. The results of this study

indicate that the bias and variance of model performance is significantly influ-

enced by the size of the SOM. The results suggest a more moderate grid size

might be favoured, but is entirely dependent on the number and distribution of

available data, and on how many data are to be drawn. The dependence of the

optimal number of SOM map units on the sampling fraction n/N may be ex-

plained by the sensitivity of the sample allocation rules to the number of data

within each stratum. If the sampling quota is higher in each stratum, then poten-

tially the same representativeness can be gained with slightly fewer and larger

strata due to the drawing of a larger sample. In order to obtain an equally rep-

resentative sample using a smaller quota, a finer sampling frame (i.e. using a

larger number of map units) is required to ensure data are sampled adequately

throughout the domain, in order to reduce the effects of random sampling within

each stratum.

It is evident from this study that the application of traditional CVIs to cluster-

ing data for implementing sampling techniques for ANN training data selection

is likely to be somewhat limited by the degree of clustering within the available

data. Although in this study, only the silhouette coefficient was applied, a similar

result would be expected for all CVIs, as they similarly estimate the relative com-

pactness and separation of clusters to identify the natural number of clusters. In

the traditional sense, the number of natural clusters within a set of regression

data may be low. However, the goal of the partitioning in CBSS is to define re-

gions that are sufficiently homogeneous to optimise the data sampling, and it has

already been demonstrated that a very small number of partitions does not yield

a good sample.

The correspondence of the map size determined using the heuristic grid size for-

mula in (8.11) with the optimal bias and variance is also reasonably close. The

heuristic rule predicts 208 map units for SOM partitioning of 1 000 samples, with

β = 5. This predicted number of units is close to the optimal number observed for
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SBSS(N) with 40% allocation, although it was twice the optimal size of 100 map

units that was obtained for 80% allocation. Based on the results in this study, it

appears that the degree of partitioning required is greater when fewer samples

are drawn, and specifying too few map units would appear to have more severe

consequences than too many. The result is consistent with the notion of ensuring

adequate coverage of the data. The heuristic rule may therefore provide a useful

means of specifying the size of the SOM without undertaking extensive trial and

error.

8.6.4 Effect of SOM initialisation

Based on the results obtained for SBSS(S)*, SBSS(P)* and SBSS(N)* in Table 8.3

and Table 8.4, it was concluded that the contribution to sample variability due the

random initialisation of the SOM was relatively small, since there was little dif-

ference between the cases where independent SOM partitionings were used, and

the cases where the partitioning was fixed. If anything, the results show higher

bias and variance for the case where the SOM partitioning was fixed, which is

quite unexpected. The result may be attributed to the quality of the partitioning

achieved in this instance in some way resulting in a poorer than average sample.

However, overall the results do not indicate that the SOM was a significant source

of variation, but rather that the SOM partitioning is a reasonably stable and reli-

able algorithm for performing the stratification. However, it should be noted that

any improvement in the SOM algorithm, in terms of yielding a consistently high

quality sample, would be worthwhile. Alternative initialisation schemes may re-

duce the variability, and detailed investigation of learning algorithm behaviour

(i.e. effects of the neighbourhood and map edge effects) could also yield further

improvements in the SBSS approach.

8.7 Conclusions

Hold-out validation is the most common method used to ensure generalisation is

achieved during ANN model development. The importance of good sampling is

apparent, when considering data splitting typically involves a single sampling of

the available data to form the subsets, which subsequently underpins ANN train-

ing and validation. The implications of the choice of sampling methodology used

for data splitting are becoming increasingly recognised, and improved sampling

techniques are being sought to overcome potential bias and variance that arise

from sampling data that are non-uniformly distributed.
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In comparison to other sampling techniques, a multivariate stratified sampling

approach based on the SOM appears to be suitably robust and consistently pro-

duce superior ANN models. However, the efficiency of SBSS was only evident

in multivariate, non-uniform datasets. DUPLEX otherwise provides a benchmark

for data splitting, and generates representative datasets and low model bias. Fur-

thermore, the approach is deterministic and so there is no variance in model

performance. Alternatively, a simple and fast systematic stratified approach, by

sorting data along the predicted variable, was found to yield good performance

for low-dimensional datasets. In either case, these sampling techniques can draw

a representative sample even for skewed distributions of data and provide signif-

icant improvements over simple random sampling.

In reviewing the implementation of SOM-based stratified sampling, the issues of

sample allocation and map size were examined with some interesting results. The

SOM quantisation error (QE), rather than traditional cluster validity measures,

appears to be more useful in determining the required map size to generate a

high quality sample. A rule-of-thumb formula for the map size was also found to

provide a reasonable estimation of the number of map units that corresponded to

minimal bias and variance, which can be used to specify the grid size without the

need for extensive trial and error. Neyman allocation, which increases the sample

quota for sparse map units, generated significantly more reliable sampling than

other techniques. Since the SOM learns to approximate the distribution of the

data, the SBSS technique with Neyman sample allocation provides a way to im-

plement density biased sampling without having to determine the distribution of

the data. Although not explored in this paper, it is quite conceivable that the sam-

ple allocation could be further modified to allow for tuning for the requirements

of a specific application, resulting in a generalised sampling approach.
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Abstract

In applications of ANN models in water resources modelling, hold-out or early stop-

ping remains the most common technique to ensure generalisation from ANN models
constructed on a limited sample of historical data. During model development, data
splitting is employed to generate independent training, test and validation data.
However, depending on the data splitting algorithm, this procedure can potentially
introduce sampling bias and variance, which undermines confidence in model per-
formance.

In this paper, a novel multi-stage data splitting approach called SOMPLEX is pro-
posed that combines clustering the self-organizing map (SOM) with DUPLEX sam-
pling. The SOM has recently been explored as a tool for data splitting, as it can
define partitions within a database to support stratified sampling. DUPLEX is a data
splitting method that provides uniform coverage over a sampled database. Results
for a comparative study are given that benchmark the performance of SOMPLEX
against several popular data splitting approaches for a number of real-world ANN
water resources modelling tasks. Relative to each method alone, the SOMPLEX ap-
proach achieves highly reliable ANN generalisation performance, while maintaining
excellent computational scalability and flexibility. The SOM partitioning reduces
the computational complexity of DUPLEX, which in turn provides a deterministic
approach to splitting data within the SOM partitions.
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9.1 Introduction

Artificial neural network (ANN) models have become a popular approach to the

modelling and analysis of complex, non-linear environmental systems. In the

field of water resources, ANN models have been used widely in applications such

as water supply management (Adeloye, 2009), rainfall-runoff modelling (Hsu
et al., 2002; Jain et al., 2004; Lauzon et al., 2006; Jain and Srinivasulu, 2006),

flood forecasting (Laio et al., 2003; Dawson et al., 2006), streamflow forecast-

ing (Coulibaly et al., 2000; Hu et al., 2001; Sivakumar et al., 2002; Wang et al.,
2006), water and wastewater treatment process modelling (Machon et al., 2007;

Raduly et al., 2007; Maier et al., 2004; Baxter et al., 2000), waste water collection

system management (Darsono and Labadie, 2007), and water quality prediction

(Ani et al., 2009; May et al., 2008b; Alp and Cigizoglu, 2007; Maier and Dandy,

1996; Serodes et al., 2001; Bowden et al., 2005).

A key issue during the development of ANN models is to ensure good general-

isation. Generalisation refers to the ability of any statistical model, whose pa-

rameters are estimated on a limited set of training data, to accurately predict

on novel or previously unseen data. Because ANN models can possess a large

number of parameters, relative to the number of available training data, they are

particularly susceptible to the problem of over-fitting, which leads to optimistic

estimates of accuracy that is characterised by poor validation performance (Sarle,

1997). Various cross-validation techniques can be used to ensure that ANN mod-

els do not over-fit the training data (Anctil and Lauzon, 2004). By far, the most

common methodology employed is the train-and-test cross-validation approach,

or early-stopping. In this approach independent sets of data are used during train-

ing and testing, and training occurs until the minimum test error is determined,

which infers the best degree of generalisation. Model selection, which is often

necessary to determine the optimal ANN architecture, can be optimistically bi-

ased towards the test data used to evaluate and compare model performance.

The selected ANN model must therefore be validated on a third independent set

of data to obtain an unbiased validation of model performance.

In order to implement cross-validation, data splitting is commonly employed to

generate pseudo-independent data sets for training, testing and validating the

model, from a single database. However, the data splitting method employed

can have a significant impact on the training, testing and validation of ANN per-

formance. The data splitting must ensure that data allocated to each set are

equally representative of the modelling domain. Failure to do so leads to a bias
in the training, testing or validation performance assessment. Furthermore, the

data splitting must consistently generate representative datasets. Inconsistent
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data splitting produces variance in the generalisation performance, which creates

uncertainty regarding model performance. These issues are rarely considered in

many ANN applications, but given that data splitting generally occurs only once

in ANN development, it is highly important to determine appropriate methods

for data splitting that reduce the potential for variation in model performance,

and reduce the bias of test and validation performance.

Various algorithms have been described for performing data splitting during ANN

development, but relatively few studies have considered the performance of these

approaches in terms of bias and variance. Consequently, this paper first re-

views the different data splitting approaches and critically evaluates their rela-

tive benefits and shortcomings within the context of ANN development. Based

on this review, a newly proposed algorithm called SOMPLEX is described that

improves upon two existing data splitting approaches, drawing from their indi-

vidual strengths. A comparative study is described that evaluates the relative

performance of the new and existing approaches for some real-world examples

in the field of water resources modelling and analysis.

9.2 Data Splitting Methods

Past reviews have considered some of the approaches used to perform data split-

ting within ANN applications, and found that the approaches could be considered

as: random, judgemental (heuristic), or trial-and error (Bowden et al., 2002;

Shahin et al., 2004). A taxonomy of data splitting approaches that have been

applied to ANN development is shown in Figure 9.1. This taxonomy follows a

similar classification to sampling algorithms, since data splitting is essentially a

sampling application. The three main classifications are: random (probability),

deterministic (non-probability), and multi-stage. Each of the various approaches

have their benefits and weaknesses, which are discussed in the following sub-

sections. The main considerations are the bias and variance of the sampling,

which reflects the ability of the data splitting approach to reliably split the data

into equally representative sets. However, other issues to be considered are the

amount of required knowledge regarding the data, algorithm complexity, suit-

ability for different types of datasets and applications, and computational effort.
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Figure 9.1: Taxonomy of data splitting algorithms used in ANN development.

9.2.1 Uniform random

Uniform random sampling is the most common method for implementing data

splitting across many statistical applications, including ANN development. In this

approach, data are sampled with uniform probability (without replacement) into

training, testing and validating data sets. The characteristics of the data selec-

ted are not considered, and so a good or poor split may result purely by chance.

In particular, random sampling performs poorly when the data distribution is

skewed, and the selected data can be heavily biased towards more frequent cases

within the database (Kollios et al., 2003). This bias in the training set results

in poor predictions for rare cases, that may be overlooked by the random sam-

pling (Tourassi and Floyd, 1997). However, ensuring accurate predictions of low-

frequency events is often an important issue when considering the application of

ANN models to the prediction of rare or extreme events, such as failure analysis,
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or flood forecasting.

The potential for a poor split and a highly variable sample is a particular concern

for ANN development, since the data splitting is performed once during devel-

opment (Verstraeten and Ven den Poel, 2006). Any doubt surrounding the repre-

sentativeness of a given data split undermines confidence in the latter stages of

model development and assessment of model performance.

9.2.2 Stratified

Stratified sampling is a methodology that is often applied to improve the quality

of random sampling for statistical data analysis (Cochran, 1977). The stratifica-

tion identifies distinct, but homogeneous regions within the database, and forces

random sampling of data from within each stratum. Furthermore, by adjust-

ing the number of data drawn from different strata, the sampling can be tuned

to yield an optimally representative sample (Cochran, 1977). For multivariate

datasets, clustering algorithms provide a convenient way to stratify the available

data (Mulvey, 1983). Several approaches have been considered for ANN data

splitting, with variations on the number of clustered variables and the cluster-

ing algorithm used. For example, induction-based stratified sampling stratifies

the data on the single most relevant input variable (Gill et al., 2004). Clustering

algorithms that have been used include k-means, DBSCAN (Daszykowski et al.,
2002) and fuzzy c-means clustering (Shahin et al., 2004).

The self-organizing map (SOM) (Kohonen, 1995) has been proposed as a tool

for data splitting, with several recent examples in ANN modelling applications

(Wong, 1996; Daszykowski et al., 2002; Bowden et al., 2002; Anctil and Lauzon,

2004; Zhang et al., 2004b). Related work also includes some examples of SOM

clustering, where separate ANN models are subsequently developed using data

from each cluster (Hsu et al., 2002; Jain and Srinivasulu, 2006).

The SOM is an unsupervised ANN that is used widely in a number of data analysis

applications (Kalteh et al., 2008). The SOM is an array, or map of weights, or

codebook vectors, corresponding to p-dimensional space. The SOM is trained to

learn the positioning of its codebook vectors that best describes the distribution of

a p-dimensional set of training data. Data are clustered onto the SOM according

to their nearest codebook vector, which are then projected onto the 2-dimensional

map. In data splitting applications of the SOM, the data are first clustered on the

SOM, and then data are selected from each map unit to ensure that training,

testing and validating samples are representative. In the taxonomy in Figure 9.1,

the SOM data splitting approach is a form of stratified sampling.
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SOM-based stratified sampling (SBSS) appears to be an attractive option for data

splitting, since the SOM is a clustering approach that ANN practitioners may al-

ready be familiar with, and will be readily able to implement. However, few of the

reported applications of the SOM provide details on the specific implementation,

and the use of the SOM still presents a challenge. Firstly, the sampling is sen-

sitive to the SOM algorithm parameters and map size, and the partitioning that

results. However, there are no guidelines for choosing optimal SOM parameters

for data splitting (Bowden et al., 2002). Secondly, the best approach to selecting

from within the SOM map is not clear (Daszykowski et al., 2002). In each of

the approaches reported within the literature, different methods were used for

specifying the SOM, and the data were selected differently. In addition, several

examples neglect to fully describe the details of the implementation of the SOM

data splitting approach used. May et al. (2009b) provides details on methods

to select the size of the SOM, and how to determine the number of samples to

draw from each SOM partition in order to minimise sample bias and variance for

random stratified sampling of the SOM. However, stratified random sampling of

the SOM is inherently probabilistic, and although it is reduced in comparison to

uniform random sampling, a small amount of variation in performance can still

be observed.

9.2.3 Convenience

Many ANN practitioners also utilise data splitting methods that are classified in

statistical terminology as convenience sampling. Block-wise sampling refers to the

splitting data by simply partitioning the data arbitrarily into training, test and val-

idating samples of prescribed proportions. While convenience sampling methods

are easily repeatable and tend be characterised by low variance, they can po-

tentially be highly biased. A common example of convenience sampling occurs

in time-series analysis, when contiguous time intervals are selected for training,

testing and validating data (Imrie et al., 2000; Coulibaly et al., 2000; Hu et al.,
2001; Jain and Srinivasulu, 2006; Cigizoglu and Kisi, 2006; Alp and Cigizoglu,

2007). The concern with using such an approach is that there may be unique

features that occur within each time period. Flood and Kartam (1994) showed

that using training data that are biased towards a particular season, which did

not fully represent all extremes of system behaviour, can result in a poor model.

A study by Bowden et al. (2002) similarly illustrated the detrimental effect of us-

ing time-intervals to split data for ANN development, where data in the training

data were found to be uncharacteristic of the validation data, which resulted in

poor model accuracy. Likewise, convenience sampling of spatial data may suffer

equally from this potential bias.
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9.2.4 Judgement

Some methods have relied on expert judgement or heuristic rules to decide how

to partition the data (Bowden et al., 2002). This approach requires extensive

knowledge or familiarity with the system under consideration, which is not typi-

cally the case in data-driven modelling applications. Judgement is often biased by

the modeller’s experience and understanding of the system under consideration.

Variation in performance can often result as the derived data splitting rules tend

to be highly case-specific, or subjective, so that these approaches are generally

not easily transferable across different applications.

9.2.5 Systematic

Systematic sampling is a deterministic sampling approach that draws every kth

datum for a given set. The number of possible ways to split the data using this

approach is limited to k, depending on the location of the first sample drawn.

If the data are unordered the data split may be random. However, the risk with

performing systematic sampling is that the sampling interval coincides with some

natural periodicity in the data, in which case the resulting data sets will be heavily

biased towards a particular part of the seasonal cycle. This is particularly a risk

in time-series analysis where data are often found to be highly seasonal.

Baxter et al. (2001) describe an approach to data splitting using systematic sam-

pling, where the data are first sorted along the output variable. This effectively

results in a sample that is implicitly stratified over the output variable range.

However, while this provides a simple approach for implementing stratified sam-

pling, a potential drawback is that the input-output mapping is assumed to be

1:1. In multivariate data analysis, this approach may not identify significantly

different regions of the input domain that yield the same output.

9.2.6 Kennard-Stone

Kennard and Stone (1969) developed the CADEX and DUPLEX data splitting algo-

rithms for split-sample validation of regression. These approaches are sometimes

collectively referred to as Kennard-Stone data splitting. CADEX proceeds by ini-

tially sampling the point that lies farthest from all others within the database

into the calibration set, and the next farthest into the test set. Subsequent data

are then iteratively sampled one-by-one, by identifying the datum that lies far-

thest from any previously selected points into the target set, where the target set
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alternates at each iteration between calibration and test set. DUPLEX is a modi-

fied form of CADEX in which data are selected in a pair-wise manner, which can

reduce the optimism of the test data (Snee, 1977).

The Kennard-Stone sampling approach is fully deterministic and only one split is

possible for any given database, resulting in zero sample variance. Conventional

Kennard-Stone sampling generates a 50:50 split into two datasets, however it is

possible to generate data sets of arbitrary proportions by allocating data to the

smaller set until it is filled, and allocating all remaining data to the larger set

(Snee, 1977). It is also possible to generate three sets, by rotating between three

sets, rather than alternating between two.

Both CADEX and DUPLEX algorithms have been used widely in the field of chemo-

metrics, including several applications to ANN development (Despagne and Mas-
sart, 1998). However, in comparison to other approaches, they are relatively

unknown within the field of water resources or environmental modelling and

analysis. The main limitation of Kennard-Stone sampling is the computational

requirement of the algorithm. The approach has operational complexity O{N3},
and memory complexity O{N2}. Scalability to large datasets is therefore poor

and may prohibit its use on many environmental datasets.

9.2.7 Search-based

Trial-and-error approaches have been used to perform data splitting, such that

the training, testing and validating data are statistically similar, although the ap-

proach taken in order to achieve this is not always transparent (Bowden et al.,
2002). A data splitting technique based on genetic algorithms (GAs) provides an

automated approach to determine optimally similar sets (Bowden et al., 2002).

The key to any of these approaches is to find a suitable definition of an optimum
split. In general, optimality has been assessed in terms of statistical similarity.

However, the notion that similar statistics lead to reliable, representative cover-

age of the multivariate input-output space has not been validated.

9.2.8 Multi-stage

Multi-stage sampling describes any approach that combines one or more sam-

pling techniques to improve on a single technique. The most common basis for

multi-stage sampling is the application of stratified sampling with deterministic

sampling of data from each stratum, rather than random sampling. The aim is to
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achieve adequate global coverage of the data set that is achieved by stratification,

but with improved sampling in local regions covered by each of the strata. This

is beneficial if the strata are large, or if there remains some structure or diversity

within the strata that needs to be adequately sampled.

Shahin et al. (2004) proposed a multi-stage data splitting approach that combines

fuzzy c-means clustering with a heuristic rule for sampling data based on their

fuzzy membership. The heuristic rule for selecting samples enables the number

of samples drawn from each cluster to be adjusted depending on the spread of

data, and forces the selection of data within each membership band to improve

the coverage of the sample drawn.

The multi-stage approach provides the basis for an approach that combines clus-

tering of the self-organizing map (SOM) with Kennard-Stone sampling. This ap-

proach, hereafter called SOMPLEX, is described in detail in the following section.

9.3 The SOMPLEX Algorithm

A multi-stage algorithm called SOMPLEX is proposed in this study, which com-

bines clustering on the SOM with DUPLEX sampling of map units. SOM clustering

is useful for identifying distinct regions of the modelling database for either par-

ticular classes or examples of unique input-output cases. The weakness of strati-

fied random sampling is that data are assumed to be homogeneously distributed

within each of the map units, and therefore random sampling within each cluster

is adequate. However, due to the nature of the SOM, the distribution of data

within the map units is rarely uniform. This is often overlooked, because the

SOM is generally visualised by the topographical projection that only describes

the number of data within each map unit, and not the distribution of data. Con-

sequently, the interpretation of SOM mapping in many data splitting applications

neglects the fact that map units may cover varying proportions of the database,

and it is often the case that data in some partitions are more widely spread than

in others, or that the distribution of data within a partition may be non-uniform

(May et al., 2009b). Given any distribution of data, DUPLEX can generate a uni-

form sample that provides total coverage of the data (Snee, 1977). In the case

of data partitioned by the SOM, a representative sample can be drawn from each

partition regardless of the heterogeneity or spread. The intra-cluster sampling

is therefore robust and relatively insensitive to the partitioning that results from

the SOM algorithm. Furthermore, since the DUPLEX algorithm is fully determin-

istic, there is no sample variance due to the intra-cluster sampling, which further

improves on the conventional SOM approach.
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An additional advantage of SOMPLEX is the scalability of the algorithm to large

datasets, since the number of clusters remains proportional to
√
N . As mentioned

in Section 9.2.6, the DUPLEX algorithm has an operational complexity ∼ O{N3},
and memory complexity O{N2}, which causes the computational requirements

of DUPLEX to increase very quickly for even modestly sized datasets. However, by

using a SOM with
√
N map units, the DUPLEX sampling considers clusters with

an average size
√
N so that the operational complexity for SOMPLEX becomes

∼ O{N1.5}, and the memory requirement is reduced to O{N}. Consequently, the

SOMPLEX algorithm provides a highly efficient means of applying the DUPLEX

approach to large datasets, which may present some use in ANN applications

such as hydrological modelling.

Given some database D, the SOMPLEX data splitting algorithm generates sets

for training (T ), testing (S) and validating (V) as follows:

SOM clustering:

i. Initialise a r × c SOM

ii. Train the SOM on database D

iii. Cluster D onto the trained SOM

iv. For each SOM unit C(m),

DUPLEX:

v. Set sampling quota

n
(m)
T =

∣∣∣C(m)
∣∣∣ nT
N
, (9.1)

and similar for n(m)
S and n(m)

V

vi. Initialise empty cluster samples T (m), S(m) and V(m) = ∅

vii. Find pair xi, xj ∈ C(m) that maximise ‖xi−xj‖, and sample without replace-

ment into T (m)

viii. Repeat step 7 for S(m) and V(m)

ix. Find the next pair xi and xj , that maximise ‖x− s‖, for s ∈ T (m)

x. Repeat step 9, rotating between T (m), S(m), and V(m), until the quota for

each set is filled.

xi. Merge T (m) with T , S(m) with S, and V(m) with V
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Table 9.1: Specifications of the SOM

Parameter Ordering Tuning

Initial learning rate 0.9 0.01
Initial neighbourhood size r 1
Epochs 2 20
Neighbourhood function Gaussian
Decay function Linear
Conscience 10
Bias 0.0001

Here, nT , nS and nV denote the specified number of data for sets T , S and

V, respectively; which are determined by the specified proportions for each set

and the number of data, N , in database D. A proportionate number of data are

selected from within each cluster, depending on their size
∣∣C(m)

∣∣.
The SOM is specified with k map units in a rectangular grid of r rows and c

columns. A heuristic rule k = 2
√
N is used to determine the number of map

units (Vesanto and Alhoniemi, 2000). The importance of each of the inputs, with

respect to the output variable, can be used to determine the shape of the map,

where the map length-to-width ratio should be similar to the ratio of importance

for the two most important variables (Cereghino and Park, 2009). Cereghino and
Park (2009) utilise the ratio of eigenvector lengths from principal component

analysis (PCA) to determine the relative importance of variables.

The SOM is trained using the conventional SOM learning algorithm, which in-

volves a short ordering phase with a large weight adjustment, followed by a

longer tuning phase of fine adjustments. The specified SOM learning parameters

used in this study are summarised in Table 9.1. Full details of the SOM algo-

rithm are provided in Kohonen (1995). An important aspect is the inclusion of

the conscience mechanism, in order to avoid the generation of large clusters and

to ensure that the distribution of data is as even as possible.

9.4 Methodology

In this paper, the utility of SOMPLEX is evaluated by comparing its performance

on five real-world datasets with that of several of the existing data splitting ap-
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proaches described in Section 9.2. Past comparisons of data splitting approaches

have been limited, and have focussed on similarity of the statistics of datasets

generated, in order to define the ability of each approach to draw representative

data (Bowden et al., 2002; Shahin et al., 2004). However, less attention has been

paid to quantifying or comparing the performance of data splitting with respect

to other issues, such as bias and variance.

Analysis of the bias and variance of data splitting algorithms provides a more

rigorous evaluation of data splitting than examining the statistics of datasets ob-

tained from a single split. Importantly, the sample variance provides an indi-

cation of the variability of model performance for independent resampling. A

highly variable data splitting approach results in poor confidence for a one-off

split during ANN development, as the performance obtained for a particular split

could lie anywhere on a wide distribution of performance, which is often not

known a priori.

The average model error relates to both bias and variance, and a high variance

can contribute to a high average error. Examination of both average error and

variance will indicate whether a model performance resulting from a particular

data splitting method is consistently biased, or is simply highly unpredictable.

A high error, combined with low variance, indicates poor representation of data

within each of the data sets. In this case, the estimate of model performance

is considered to be pessimistic. On the other hand, it is also possible that the

test and validation error are optimistic. This often occurs when training and test

data are coincident (i.e. in close proximity) to the training data (Snee, 1977),

and results in an artificially low error. The danger of an optimistic assessment of

model performance is that the model passes validation, but is highly likely to fail

during deployment when it is challenged with previously unseen data.

In order to determine the relative performance of the different data splitting al-

gorithms, a bootstrap evaluation of the data splitting algorithms was undertaken,

following the methodology described in Twomey and Smith (1998). In a single

test, the available data were split, using a given algorithm, into datasets with

proportions of 3:1:1 (or, 60%, 20% and 20%) for training, test and validation,

respectively. A generalised regression neural network (GRNN) (Specht, 1991)

was trained to minimise the test error, and then the validation data were queried

with the trained network. For each trained GRNN network, the test and valida-

tion performance were measured based on the mean squared-error (MSE), mean

absolute error (MAE), and Pearson R2 of predictions. This procedure was re-

peated for a total of 100 independent data splits. From the bootstrap results of

each performance measure E, the average bias in test performance was deter-
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mined as:

ĒS =
1

100

100∑
m=1

ES(m) (9.2)

and the standard deviation in test performance S(ES) was determined as

S(ES) =

√√√√ 1
99

100∑
m=1

(ES(m)− ĒS)2 (9.3)

where ES(m) is the test performance for a single instance of training and testing

data. Similarly, the mean and variance of the validation performance EV was

also determined.

The suite of data splitting algorithms evaluated included: random uniform sam-

pling, systematic stratified sampling, two variants of SBSS, DUPLEX and the

newly proposed SOMPLEX algorithm described in Section 9.3. These algorithms

are summarised in Table 9.2. The first variant of SBSS was implemented with

random allocation of a single datum per set from each map unit, with a map

size of k = nT . The second variant of SBSS clustered the data on a SOM with

k = 5
√
N map units, where the Neyman allocation rule was used to determine

the number of randomly selected data from each map unit. The Neyman alloca-

tion determines the number of points drawn according to (Cochran, 1977):

n
(m)
T =

σmNm∑k
j=1 σjNj

nT
N
, (9.4)

where σ denotes the intra-cluster standard deviation. Neyman allocation im-

proves random sampling of the SOM by increasing the sampling rate in highly

populated clusters and where data are widely spread to ensure that more train-

ing samples are drawn from heterogeneous clusters (May et al., 2009b).
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Table 9.2: Algorithms included in the comparative study

Algorithm Description

Random Uniform random sampling.

Systematic Data sorted on output axis prior to systematic sampling with
interval kT = nT /N for training data, and kT = nS/N for
test data.

SBSS(Single) Random sampling of a single datum per map unit from a
SOM with k = nT map units.

SBSS(Neyman) Random intra-cluster sampling of data from a SOM with k =
5
√
N , and where the Neyman allocation rule determines the

number of training and test data drawn from each map unit.

DUPLEX Duplex implementation of Kennard-Stone, as described by
Snee (1977).

SOMPLEX Multi-stage sampling with DUPLEX intra-cluster sampling on
a SOM with k = 2

√
N map units, as described in Section 9.3.

9.5 Datasets

Five datasets were sourced from water resources ANN modelling case studies

presented within the literature: Colour, Turbidity, UV Absorbance (UVA), Salin-

ity and Chlorine. These datasets, which are summarised in Table 9.3, represent

various examples of ANN modelling applications. Each of the Colour, Turbidity

and UVA datasets represent prediction tasks based on water treatment perfor-

mance jar tests. The Salinity and Chlorine datasets represent two water quality

forecasting applications using historical time-series data.

9.5.1 Pre-processing

Prior to undertaking the bootstrap evaluation, an input variable selection (IVS)

stage was first applied as a pre-processing step in order to identify the impor-

tant input variables in each dataset, and eliminate any redundant or irrelevant

variables from the modelling and analysis. Each dataset was analysed using a

forward selection algorithm based on partial mutual information (PMI), incor-

porating a termination criterion that minimises the Akaike Information Criterion

(AIC) of the selected input variable set (see May et al. (2008a) for full details).

The resulting input and output variables for each modelling dataset are detailed
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in Table 9.3. The relative importance (RI) is also shown, and is measured as the

PMI for each variable expressed as a percentage of the sum of PMI for all selected

variables, which represents the total explanatory information within the input

variable set (Soofi and Retzer, 2003). The relative importance also provides useful

information in setting the parameters of the SOM, as mentioned in Section 9.3.

9.5.2 Coagulation

The Coagulation dataset was used previously in Maier et al. (2004) to demon-

strate the potential for ANN prediction of treated water quality for a conventional

surface water treatment process, comprising alum coagulation, flocculation, sed-

imentation and sand filtration, as determined by jar test simulation. The data

comprise measurements of treated water quality corresponding to 204 individual

jar tests performed over a range of alum doses for several different raw water

sources.

Six potential input variables in the dataset included raw water alkalinity, pH, tur-

bidity, UVA (λ = 254nm), colour and applied alum dose. Three modelling tasks

are considered in this study, which are to predict colour, turbidity and UVA of the

filtered water. Individual models were used to predict each filtered water qual-

ity variable, and since the input variables differ for each output, three modelling

datasets were generated by repeating the input variable selection procedure for

each output variable. These datasets are referred to as the Colour, Turbidity and

UVA datasets, according to their respective output variables.

9.5.3 Salinity

The Salinity dataset has been used as a case study system to illustrate the ap-

plication of ANN models to forecasting water quality in the River Murray, South

Australia (Maier and Dandy, 1997; Bowden et al., 2002). In this case study, the

ANN modelling task is to generate a 14-day forecast of salinity at a downstream

location using observations of water quality, and stream flow at upstream loca-

tions. The dataset comprises a total of 2028 weekly observations of stream flow

and salinity at several upstream locations that are routinely sampled. The orig-

inal data comprised a total of twelve variables, with up to 26-week lags of each

variable, resulting in a total of 416 potential model inputs. However, the IVS

procedure reduce this to an optimal set of only two input variables.
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9.5.4 Chlorine

The Chlorine dataset comprises 2773 observations of hourly water quality and

flow within the Myponga water distribution system in South Australia, recorded

for the period November 2003 and July 2004. This case study has been described

previously in May et al. (2008b) and Bowden et al. (2006). The task in this ap-

plication is to generate a 24-hour forecast of free chlorine within the trunk main,

based on previous values at the downstream location, upstream water quality

and system flows. Given up to 48-hour lags of the individual time-series for each

variable, the dataset contained a total of 384 candidate input variables. In the

study by May et al. (2008b), the IVS procedure was applied during model devel-

opment to reduce the dataset to four input variables, and so the same set of input

variables were retained for the purpose of this study.

9.6 Results and Discussion

The results of the comparative study are presented in Table 9.4, which sum-

marises the biases and standard deviations of model test and validation per-

formance using different data splitting algorithms when applied to each of the

datasets. Based on the results obtained, the issue of variance in model perfor-

mance when using random data splitting is evident. In the case of the Colour,

Turbidity, and UVA datasets, variation in model performance was found to be

significant when random data splitting was performed, leading to a high aver-

age error. In other words, the poor expected performance was driven by the

high degree of variability in model performance. Models built using a random

split of the Salinity dataset performed relatively well, in terms of average per-

formance. However, the large standard deviation indicated the potential for this

data splitting approach to yield poor test and validation performance, even for

these datasets. For the Chlorine dataset, random sampling compared reasonably

well with the other data splitting approaches. This dataset consisted of a large

number of data sampled over a low-dimensional input space, with a single dom-

inant input variable, and a distribution of data that was close to Gaussian. Not

surprisingly, the impact of data splitting was therefore found to be negligible in

this case.

The systematic stratified approach, in which data were first sorted along the out-

put variable and then systematically sampled, was also found to yield poor per-

formance for all but the Chlorine datasets. Although the approach is classified as

deterministic, the variability introduced by the randomised location of the first
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9.6 Results and Discussion

sample drawn was determined to be significant in some cases, such as the Salinity

and Colour datasets.

SBSS with allocation of a single, randomly selected datum for training and testing

data, was found to perform the worst of all data splitting approaches. The ap-

proach led to poor test performance and extremely poor validation performance,

which was attributed to a lack of representative data. The poor performance

can be attributed to the fewer data that were included in training and test sets,

since although a SOM was specified with a number of map units equal to the de-

sired number of training data (k = NT ), the SOM contained some empty units,

which reduced the amount of information contained in the training set, in com-

parison to the other data splitting approaches, where the intended 3:1:1 split was

achieved. The large variance in performance also indicates that sampling a single

datum from within each cluster is insufficient and can result in a highly variable

set of training data.

The drawback of random sampling within SOM partitions can be considered by

visualising the distribution of data and the true shape of the partitions within the

multivariate data space. Figure 9.2 describes the partitioning of the data by the

1 × 90 SOM for each plane formed by the given pairs of variables shown. The

square markers indicate the location of the codebook vectors of the trained SOM.

The delineated regions are the Voronoi tesselations that form the boundaries of

each of the partitions formed by each codebook vector. These plots emphasize the

characteristic behaviour of the SOM, which maps the density of the database D.

The resulting Voronoi regions vary in size according to the density of the data.

In the dense regions, the partitions are small in volume and close together. In

the sparse regions, the partitions are larger in volume, and the data within these

partitions can be spread significantly.

Figure 9.2 also highlights deficiencies with some of the other potential data selec-

tion approaches when combined with the SOM clustering. For example, choosing

training and test data closest to the codebook can ignore points within the cluster

and can therefore be significantly biased, since the codebook vectors do not al-

ways correspond to the centroid of each of the partitions. In fact, choosing just a

single point at random will not fully represent the data that are contained within

a single partition. The need to ensure adequate coverage of the more voluminous

partitions is immediately apparent.

SBSS using Neyman allocation, in which the number of training data drawn in-

creases proportionally with spread and size of the cluster, was found to marginally

improve on random uniform sampling. The average error was lower than for ran-

dom uniform sampling in the Coagulation datasets. This improvement was de-
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Figure 9.2: Codebook vectors and resulting Voronoi regions for the partitioning of the
Salinity dataset by a 1× 90 SOM
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termined to be the effect of reduced variance in model performance, indicating

that the approach could be used to sample representative data with increased re-

liability. This result was consistent with previous comparisons made by May et al.
(2009b) using an example regression problem. However, in some instances, SBSS

(Neyman) still performed poorly, indicating that the randomness of intra-cluster

sampling still offered the potential for an occasional bad split.

The DUPLEX data splitting approach is fully deterministic, and generates a unique

split for any given dataset, so the split was performed only once, hence there was

no variability for these cases. Comparisons of the error obtained for each dataset

showed that the DUPLEX algorithm was found to yield improved sampling for

the Turbidity and UVA datasets, and a marginally pessimistic model error when

applied to the Salinity and Chlorine datasets. In the case of the Colour dataset,

the test and validation errors were significantly higher than the average error for

random data splitting. This was found to be due to the forced inclusion of an

outlying point in the validation data, which can occur as a result of the sampling

behaviour. The underlying issue in this case is the sparseness of the data, and the

result suggests a need for further data collection to provide more neighbouring

data for training and testing.

Figure 9.3 provides a scatter plot indicating the selected training, testing and

validating data when the SOMPLEX approach was used in conjunction with the

partitioning shown in Figure 9.2. Training data are indicated by dot markers, test

data are the filled square markers, and validating data are the unfilled square

markers. It can be seen in these plots that the DUPLEX sampling within each of

the SOM partitions is able to adequately sample representative data within each

region, regardless of the volume and spread of data within a given partition.

In comparison with the other data splitting approaches evaluated, SOMPLEX was

found to perform favourably, with low test and validation error in nearly all cases,

with the exception of the Salinity dataset. Furthermore, when using this ap-

proach, the test and validation error were found to be consistent, indicating that

good similarity between test and validating data sets was achieved. The cluster-

ing ensured that outlying data in each of the distinct regions identified by the

SOM were first included in training, which can improve the quality of training,

thereby improving upon the excessive pessimism of the conventional DUPLEX

approach.

In this study, the number of map units of the SOM used to implement SOMPLEX

was specified as k = 2
√
N , which was found to give good results. Previous ex-

periments with SBSS (Neyman) found that the performance of SBSS improved

for a larger grid k = 5
√
N (May et al., 2009b). This is because a larger map gen-

250



9 Publication 5: SOMPLEX: A hybrid SOM-DUPLEX data splitting algorithm

200 400 600 800 1000 1200

200

400

600

800

1000

1200

1400

Mannum salinity, mg/L

M
u
rr
a
y
 B
ri
d
g
e
 s
a
lin
it
y
 (
t+
1
3
),
 m
g
/L

 

 

S V T

200 300 400 500 600 700 800 900 1000 1100
200

400

600

800

1000

1200

1400

Waikerie salinity, mg/L

M
ur

ra
y 

B
rid

ge
 s

al
in

ity
 (

t+
13

),
 m

g/
L

200 400 600 800 1000 1200
200

300

400

500

600

700

800

900

1000

1100

Mannum salinity, mg/L

W
ai

ke
rie

 s
al

in
ity

, m
g/

L

Figure 9.3: Training, test and validating data selected from the Salinity dataset using
SOMPLEX
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9.7 Software

erates smaller, more homogeneous partitions, which reduces the variance of the

random intra-cluster sampling. However, SOMPLEX can accommodate a coarser

partitioning of the data, since the DUPLEX intra-cluster sampling provides good

coverage of the partitions.

A common issue in all applications of the SOM is the treatment of singleton clus-

ters (map units with a single datum). In data splitting applications of the SOM,

the data in singleton clusters are typically allocated to training. The argument for

doing so is that ANN models are poor at extrapolating, and consequently these

data should be placed inside the training set to avoid the need to extrapolate

(Bowden et al., 2002). However, as the SOM size increases, the number of sin-

gleton clusters increases and the selection of data in these regions can be highly

biased towards the training set. Fewer test and validation data are drawn, and

are drawn from the more heavily populated clusters, which correspond to dense

regions in the database. The impact of specifying a large grid is to increase the

optimism with respect to test and validation performance. Although the forma-

tion of singletons is dependent on the presence of outliers within the data, the

SOM map size should be restricted in order to avoid the unnecessary formation

of singleton clusters caused by an overly large map. In this study, the 2
√
N was

found to provide a suitably conservative map size.

9.7 Software

A suite of command-line data splitting tools has been developed, which allow

users to implement all of the sampling approaches described in this paper. The

software is freely available upon request for research and teaching purposes. The

suite has been developed in C++ and has been compiled for operation on both

Unix and Windows operating systems.

9.8 Conclusions

Data splitting is an important aspect of ANN development and ensures that good

generalisation is achieved through cross-validation during training, and valida-

tion of model selection. Many methodologies have been considered for imple-

menting data splitting, however in many cases the potential bias and variance in

model performance due to the sampling procedure are neglected.

A comparative study was undertaken using several real-world ANN applications,
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including modelling of a coagulation process to predict turbidity, colour and UVA-

254 of the treated water; time-series forecasting of salinity within a river; and

forecasting of free chlorine residual within a water distribution system. This

study has provided a useful evaluation of the bias and variance in model perfor-

mance that results when the proposed SOMPLEX data splitting algorithm is used,

relative to several other popular data splitting approaches. In the case of all but

one the examples given in this paper, a lower model error was achieved using

the SOMPLEX approach, with no variation. The benefit of the approach was

greatest for the Coagulation datasets, which were characteristically multivariate

with non-uniformly distributed data. For univariate or bivariate and smoothly

distributed data, such as the Salinity and Chlorine datasets, the benefits over

random sampling were found to be marginal. However, the results suggest that

either SOMPLEX or DUPLEX can be universally applied with greater confidence

than techniques such as systematic sampling, random uniform sampling or strat-

ified random sampling.

The weakness of uniform random sampling was found to be a large variation in

model performance for independent resampling of the data into training, test and

validating sets. The large variance resulted in a high expected test and valida-

tion error when using this approach, which creates a high degree of uncertainty

regarding the assessment of an ANN developed from a one-off split. This result

suggests a lack of confidence in model performance resulting from data split-

ting using a random sampling approach for real-world datasets, which are often

non-uniformly distributed and sparse.

A modified form of the DUPLEX algorithm has been introduced for sampling three

datasets for training, testing and validating ANN models. DUPLEX provides a ro-

bust approach to data splitting, since the sample is guaranteed to cover the entire

database volume, which avoids the need for extrapolation, and ensures represen-

tative data are selected in each set, regardless of the distribution of the data.

However, the computational requirement of DUPLEX scales poorly with increas-

ing dataset length, due to its operational complexity, which limits its potential

application to splitting large datasets.

Conceptually, the SOM is useful at determining representative regions within the

database. However, in practical terms, the approach is difficult to implement.

The method is sensitive to the SOM parameters, and random sampling of the

potentially non-uniform clusters that are generated by the SOM can still result

in poor results due to large intra-cluster variance. Despite several applications of

the SOM to data splitting, the most appropriate implementation of the SOM, and

the best method for the selection of data are difficult to determine. The results

in this study found that the SBSS approach using Neyman allocation lowered
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9.8 Conclusions

variance in model performance, relative to uniform random sampling, but did

not eliminate it entirely.

The newly proposed SOMPLEX algorithm provides a multi-stage solution that

combines SOM clustering with the DUPLEX algorithm. The SOM allows a coarse

partitioning of the data into disjoint sets, which span the entire database. The

DUPLEX algorithm then ensures that the intra-cluster samples selected provide

adequate coverage of the cluster, which provides a more robust approach than

random sampling. Computational run-time is reduced, and run-time perfor-

mance is maintained by exploiting the scalability of the SOM to large datasets,

while maintaining data splitting quality. Additionally, using the SOM approach

can provide increased flexibility to the overall DUPLEX approach, since it provides

scope for boosting (creating replicates) where data are sparse, or the ability to

adjust the sample quota from each cluster depending on the density mapping

determined by the SOM.

254



Chapter 10

Development of Artificial Neural
Networks for Water Quality
Modelling and Analysis

Publication 6

255



Publication Details

This work has been published as a book chapter as follows:

May, R. J., H. R. Maier, and G. C. Dandy. Development of Artifi-

cial Neural Networks for Water Quality Modelling and Analysis, in

G. Hanrahan (Ed.), Modelling of Pollutants in Complex Environmental
Systems, Vol. 1, pp. 27–62, ILM Publications, UK, 2009

Although the manuscript has been reformatted in accordance with University

guidelines, and sections renumbered for inclusion within this thesis, the material

within this paper is otherwise presented herein as published.

Statement of Authorship

May, R. J. (Candidate)

Development of ideas and criticisms, literature review, preparation of manuscript

and corresponding author.

Signed: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Date: . . . . . . . . . . . . .

Maier, H. R.

Assistance with manuscript preparation and review of manuscript.

Signed: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Date: . . . . . . . . . . . . .

Dandy, G. C.

Review of manuscript.

Signed: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Date: . . . . . . . . . . . . .

257



 
 
 
 
May, R. J., Maier, H.R. and Dandy, G.C., (2009) Development of Artificial 
Neural Networks for Water Quality Modelling and Analysis, in Modelling of 
Pollutants in Complex Environmental Systems, v. 1, ed. G. Hanrahan, ILM, St. 
Albans, pp. 27–62. 
 
 
 
 
 

 
NOTE:  This publication is included on pages 259-299 in the print 
copy of the thesis held in the University of Adelaide Library. 
 



Chapter 11

Conclusions

“If computers get too powerful, we can organize them into a
committee—that will do them in.”

Anonymous, Bradley’s Bromide

Modelling is becoming an increasingly important tool, as the issues surrounding

water resource management are becoming more complex and challenging. The

development of models that can accurately and reliably represent the complex-

ities of natural environmental systems and man-made infrastructure is essential

for making informed decisions, and developing sound management practices.

Artificial neural networks (ANNs) provide a powerful tool for the development

of data-driven statistical models where processes are potentially non-linear and

relatively poorly understood. Interest in the application of ANN models to en-

vironmental modelling and analysis has been growing exponentially in recent

years, based on the numbers of reported applications. However, a majority of

papers are concerned with the novelty of ANN models for a given application.

Somewhat less attention is paid to the ANN model development approach that is

employed. Many examples of ad hoc model development can be found within the

literature, with many modelling decisions relying on case-specific idiosyncrasies

or expert judgement. A more consistent ANN methodology is required, which

will enable modellers to make informed decisions regarding ANN development.

Consequently, this thesis has addressed the issue of how to develop ANN models

in a structured and methodical fashion.
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11.1 Contributions of Research

11.1 Contributions of Research

Overall, the major contribution of this research has been to provide further in-

sight into the underlying development of ANN models, to guide model developers

through the ANN development framework. Ultimately, it is hoped that this will

encourage the adoption of a framework that leads to reliable model development

and increased confidence in the ANN methodology. More specifically, the major

efforts of this research have led to significant contributions in the input variable

selection (IVS) and data splitting stages of ANN development.

11.1.1 Input Variable Selection

The contributions have been made in the area of input variable selection, which

relate directly to the research objectives defined in Section 1.3, are summarised

as follows:

1. The IVS problem is common to all statistical modelling applications, where

a number of potential predictors are available, but it is necessary to include

only the most informative variables, and discard irrelevant and redundant

variables. Determining what IVS approach is most suitable for ANN devel-

opment is a challenge for practitioners, given the many different algorithms

that are proposed within the literature. A taxonomical representation pro-

duced from the review of literature provides a useful reference for classifying

the many approaches that have been described. Comparisons of the strengths

and weaknesses the different IVS algorithms are made with respect to their

application to ANN model development. Model specific wrapper algorithms

can be applied, but are likely to yield case-specific results, that are a function

of the particular ANN class, learning algorithm and data. Model-free filter

methods, which are based on statistical relevance measures, tend to provide

a faster and more generic approach. Many IVS methods are employed that

are based upon linear modelling paradigms, such as correlation and covari-

ance analysis. However, the assumption with ANN model development is that

some relationships are non-linear, and consequently linear analysis can fail to

identify important variables. Mutual information (MI) is preferable for ANN

development, as it measures arbitrary relationships, and provides a suitable

alternative relevance measure for implementing IVS.

2. An evaluation of a forward selection procedure that estimates partial mu-

tual mutual information (PMI) was undertaken using a suite of benchmark
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datasets. The PMI-based algorithm requires a bootstrap estimate of the criti-

cal value of MI for a given sample size, in order to determine the significance

of PMI during each iteration. This significance test forms the basis of the

termination criterion, which halts the selection procedure. The bootstrap is

necessary, because no method currently exists for directly computing the con-

fidence bounds of MI estimates. However, estimating MI is computationally

intensive and, due to computational constraints, a limited number of boot-

strap replicates are used to determine the critical value of MI. This results

in inaccurate and highly variable estimates and the termination criterion was

found to be inaccurate and unreliable. A comparison with a similarly devised

forward-selection algorithm using linear correlation was also undertaken in

parallel. The results of this comparison clearly demonstrated the inability of

correlation-based IVS to fully identify the input variable set when one or more

input-output relationships are non-linear. This research has therefore conclu-

sively shown the benefit of MI, which had not previously been fully tested.

3. An improved algorithm was developed that provides a fast and accurate ap-

proach to performing input variable selection (IVS) based on the estimation of

partial mutual information (PMI). Specifically, several alternative termination

criteria were developed that sidestep the requirement to perform the com-

putationally intensive bootstrap at each iteration of the PMI-based forward

selection procedure. Off-line estimates of critical values were estimated using

Monte Carlo simulation. These critical values provide an immediate threshold

to gauge the significance of PMI for a given candidate input variable. How-

ever, the derived estimates of critical values assume i.i.d Gaussian data, which

may not be a reasonable assumption for real-world datasets. Alternatively, the

Akaike Information Criterion (AIC) can be computed, to determine an opti-

mum trade-off between the number of selected variables, and the information

contained within the input set. A third alternative criterion was determined

that applies an outlier test to determine whether the remaining candidates

contain any significantly relevant variables. This approach was found to suf-

fer from the effect of masking, which is a known issue in outlier detection,

where the relevance of variables is masked by distribution multiple relevant

variables. However, methods to overcome this problem were identified, in-

cluding modifications to the outlier test that is used, or by supplementing the

candidate input variables with sufficient noise variables. Overall, the result

of this research has improved the accuracy of selections, and has significantly

reduced the computational requirement that is necessary to perform the task

using the PMI-based approach.

4. The benefits of the IVS approach using the PMI-based forward-selection algo-

rithm were demonstrated using a meta-modelling example and a real-world
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example of disinfectant forecasting. In each case, the IVS approach was able

to reduce a large number of potential input variables into a smaller, more

parsimonious subset, which contained all of the information necessary to rep-

resent the behaviour of the output variable. From a statistical perspective, the

quality of the smaller model was considered superior to larger models with a

greater number of input variables, given the tendency for large ANN models

to be over-fit. In a practical sense, the smaller model utilised less data and

could be developed faster due to the reduced computational requirements of

a smaller dataset. The additional benefit of the IVS procedure is that it yields

useful information regarding the importance of variables, as this can be di-

rectly measured based on the PMI estimated for each input variable. The

importance can be used to infer the relative strength of input-output relation-

ships that are embodied within ANN models, which may provide some useful

explanation and validation of how model predictions are yielded. It may also

provide a useful tool in troubleshooting unexpected predictions, which would

not be easily facilitated by a “black-box” approach.

11.1.2 Data Splitting

The contributions of this research, with respect to methods used during the data

splitting stage of ANN development, are summarised as follows:

1. The review of literature has highlighted the importance of data splitting for

ANN development. The issues of generalisation are a key concern for ANN de-

velopment, since the arbitrary complexity that ANN architectures afford also

increases the potential to over-fit. Although a number of approaches can be

employed to prevent over-fitting, the train-and-test method is by the far the

most widely used, and it is ultimately necessary to set aside data for vali-

dation, regardless of the method used to determine the ANN parameters. A

taxonomy of data splitting algorithms is presented, which organises the differ-

ent approaches presented within literature. The key considerations relevant

to ANN model development are the ability to reliably select training, test and

validating data sets that lead to representative training data and an unbi-

ased estimate of model performance. The most commonly employed methods

within ANN literature are found to be random, and therefore subject to high

variance; or, convenience sampling, which has a risk of generating highly bi-

ased datasets. Recently proposed algorithms based on the self-organizing map

(SOM) are categorised into the class of stratified sampling algorithms. These

are found to improve on random sampling, by reducing the variance of the

data sample. However, there are several different ways in which the SOM
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is used to perform the data sampling, and no evidence to suggest the most

appropriate approach. The literature review also identified Kennard-Stone

sampling algorithms (CADEX and DUPLEX), which have not been used widely

in environmental modelling and analysis applications. These algorithms are

deterministic, and therefore result in zero sample variance, and select repre-

sentative data for each dataset regardless of the distribution of the data.

2. The application of the SOM to data splitting was examined in detail. Experi-

ments were conducted on an example regression problem to assess the quality

of data splitting using different allocation rules, and different SOM sizes. The

results indicated that the variation in sample performance was reduced when

the Neyman allocation rule was adopted, which increases the sampling rate in

proportion to the size and spread of a SOM cluster. The common approach of

using a large SOM and drawing one datum each for training and testing was

found to yield poor results.

3. How to correctly size the SOM has been an on-going issue for all applications

of the SOM, and no reliable guidelines for determining an appropriate size

had been previously developed. In this research, the issue of SOM size was

examined directly by considering the relationship between SOM size and the

performance of the SOM-based data splitting algorithm. The use of cluster

validity measures was found to be inappropriate for determining the most ap-

propriate size of the SOM for data splitting. Cluster validity indices (CVIs) are

useful for identifying the number of natural clusters, but data in ANN mod-

elling are not always strongly clustered, and these measures therefore tend

to suggest a small SOM. However, an analysis of grid size found that the best

sampling was obtained for a moderate to large size grid. This is was found

to be consistent with the formation of smaller, more homogeneous partitions

by the SOM, rather than the identification of large clusters. A heuristic rule

for specifying the SOM size was found to result in a size that approximately

corresponded to optimal sampling, and that this could be used instead to de-

termine the size SOM required to partition a given dataset, without the need

for extensive trial-and-error.

4. A novel algorithm was proposed that combines the SOM with DUPLEX intra-

cluster sampling. The weakness of the SBSS approach is that the random

intra-cluster sampling still has the potential to result in a highly variable split,

since the data in some SOM partitions can be significantly large and spread.

Using DUPLEX, the data within each SOM partition can be more representa-

tively split into training, test and validating sets. This improves the sampling

of partitions, and eliminates the variance that results from random sampling.

Furthermore, DUPLEX is a computationally intensive data splitting algorithm,
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and scales poorly to large datasets. However, the SOMPLEX approach provides

a significant reduction in the computational effort from O{N3} to O{N1.5},
which allows the DUPLEX approach to be applied to much larger datasets.

5. The performance of data splitting approaches was compared for some real-

world examples of the application of ANNs to water resources modelling. The

results highlighted the potentially high degree of variability in model perfor-

mance when random data splitting is used. The application of SOMPLEX and

DUPLEX was demonstrated in each case to reliably perform an unbiased one-

shot data split, with training, testing and validation datasets that were equally

representative of the modelling database.

11.1.3 Water Quality Forecasting

A motivation for this research, from the perspective of water authorities, is the

development of water quality forecasting capabilities, or predictive models that

can describe water quality changes within a large-scale WDS. The ultimate goal

is to determine a suitable model that can inform operators and assist in develop-

ing optimal water quality management practice. The outcomes of this research,

with respect to the modelling of water quality within a WDS, are summarised as

follows:

1. The real-world Myponga WDS case study that has been presented within

Chapters 7 and 9 provides a successful demonstration of the ANN modelling

approach to forecasting residual chlorine. The application of the ANN ap-

proach provides a validation of the model development framework, in partic-

ular the novel approaches for IVS and data splitting, within an applied context.

In conjunction with the closely related case study examples presented in Chap-

ter 9, this research has positively demonstrated the utility of ANN modelling

within a range of applications that have direct relevance to water authorities.

2. The analysis of WDS dynamics, and the assessment of relevant input variables,

was found to provide a useful insight that was gained through the application

of the IVS approach. An interesting result was obtained that challenges results

in previous studies, with respect to the influence of temperature as an input

to ANN models. In the case of the Myponga WDS, the diurnal variation in de-

mand gave rise to strong 24-hour periodicity in the chlorine trends. Similarly,

water temperature also exhibited a strong 24-hour sinusoidal cycle, and was

subsequently identified as a highly relevant input due to a strong correlation

with the chlorine trend. Although highly correlated, it is doubtful that the

relationship identified by the ANN can be considered a causal effect. Previous
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studies have implied or suggested that chlorine decay kinetics are in some way

influencing the observed chlorine decay. However, in this case, the inclusion of

water temperature appears more to provide an input variable that allows the

ANN to track the 24-hour cycle. In the absence of water temperature data, it

is possible that the inclusion of surrogate variables could also be used to track

seasonal patterns. These variables are synthetically generated data, where

the data generating functions are cyclic functions with an appropriate period,

such as sine and cosine functions. This approach has been used previously in

ANN prediction of electricity demand, and could also be potentially useful for

ANN prediction of water quality within a WDS.

3. Although accurate forecasting of residual chlorine has been demonstrated

to be achievable using the ANN modelling approach, some insight gained

through this work suggests that input-output modelling of large-scale water

distribution networks is not likely to be as straightforward a task as previ-

ously thought. This is because the impacts of relatively small adjustments

in chlorine dose at the outlet of the water treatment plant (WTP) are sig-

nificantly dampened within the network, due to long detention times within

trunk mains and within storage reservoirs and the natural decay of chlorine

over time. In the case of the Myponga WDS, the variation in chlorine due to di-

urnal flow variation was found to be far more significant than variation caused

by changes in applied dose. Consequently, the statistically relevant variables

were identified as endogenous lags of chlorine at the control point within the

WDS, rather than previous values of the chlorine residual at the outlet of the

WTP, where the chlorine is dosed. This yields an accurate time-series forecast-

ing ANN, but does not produce an input-output model that could be deployed

to predict the impact of dose adjustments. However, it should also be noted

that this limitation is in part due to the restricted variation in dose within the

data collected, given that the system was under operational control during the

data collection period, and that large variations in chlorine dose are avoided.

As discussed in Section 11.2, this limits the ability of the ANN to learn the

impact of large changes in chlorine dosing for this system, and restricts mod-

elling to the prediction of deviations about a set-point due to disturbances in

flows within the WDS.

4. The hypothetical case of the Cherry Hills—Brushy Plains WDS, presented in

Chapter 7, provides an example of what could be possible using ANN models

when applied to more complex networks. This case study describes the de-

velopment of an ANN to model the relationship between the dose applied at

multiple booster chlorination stations and the residual chlorine at a control

point within a small, but complex network, that included a common inlet-

outlet storage tank. In particular, this example showed that the IVS method
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was able to identify the dynamics of the system over a 48-hour window, and

identify the booster stations and the dosing window that specifically impacted

on residual chlorine concentration at the control point.

11.1.4 Field Research

It is worth highlighting that the Myponga WDS case study, which is presented in

Papers 3 and 5, represents a significant body of field-work that was undertaken to

support this research. Initial establishment of robust field monitoring sites using

multiple chlorine analysers, operation and calibration, communications and data

retrieval were all tasks that were undertaken over a three-year period as part of

this research in order to generate a dataset spanning three-years. The collected

chlorine residual and temperature data were also collated with additional data

obtained from the water utility to create a comprehensive modelling dataset for

use in this research, and for use in future research. Given that robust and reliable

data acquisition systems is essential to provide the amount of data required for

ANN and other data-driven modelling applications, the practical know-how and

experience gained from this aspect of the research project has immense value.

11.1.5 Software

A significant amount of this research has also involved the programming of soft-

ware tools in order to develop and implement the various algorithms discussed

within this thesis. In addition to the theoretical understanding, an additional out-

come of this research is the implementation of ANN development software tools.

A program has been developed to enable the selection of input variables using

the PMIS algorithm described in Chapters 6 and 7. Several programs have also

been developed to implement the various data splitting algorithms discussed in

Chapters 8 and 10.

11.2 Research Limitations

In undertaking this research, time restrictions and other constraints have led to

some limitations. The key limitations are summarised as follows:

1. The estimation of PMI is dependent on the ability to know or estimate the den-

sity distribution for the sample of available data. The work presented in this
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thesis has focussed on the use of kernel density estimation (KDE) for the esti-

mation of density distributions. This approach was chosen as it was relatively

straightforward to implement, and was consistent with research in this area.

However, KDE has some known limitations, including inaccuracy when ap-

plied to high-dimensional cases, and the need to determine the optimum ker-

nel bandwidth. Alternative density estimation techniques may provide faster

or more accurate estimates of PMI, and these would each provide a further

improvement to the IVS algorithm.

2. Considerable attention in this research was given to the application of the

SOM for performing the clustering of data, which has led to the SOMPLEX

approach. However, the SOM is but one of many potential partitioning and hi-

erarchical clustering techniques. Numerous multi-stage sampling approaches

could be conceived by coupling DUPLEX intra-clustering sampling with any

clustering algorithm, which may perform equally as well as SOMPLEX. Fur-

thermore, improvements to the conventional SOM may also be explored, since

any improvement in the clustering will ultimately improve the quality of the

overall data splitting approach.

3. The generalised regression neural network (GRNN) was used as the ANN class

in all of the studies undertaken, as the focus of the research was on the aux-

iliary stages of development, which were considered to be independent of the

class of ANN used to perform the modelling. The GRNN was selected as it

can be developed much faster than the more conventional MLP, and therefore

allowed many bootstrap experiments to be undertaken within a reasonable

time-frame. In particular, the performance of the MLP for bootstrap data splits

may potentially yield different bias and variance characteristics than those of

the GRNN.

Several practical limitations were also encountered in relation to ANN model

development, which are given as follows:

1. Observability of a system is an important consideration during model devel-

opment. In many cases, data for model development are sourced from readily

collected datasets, such as SCADA or monitoring programs. The concern high-

lighted through the examples given in this research is that while there is an

abundance of data, there is insufficient information within the dataset to de-

scribe the system. In particular, systems that are observed under closed-loop

(controlled) conditions may not be excited to exhibit the full range of varia-

tion in the system response. It can not be expected that a model will be able

to predict features that are not present in the data.
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2. The particular example of disinfectant modelling highlighted some limitations

in the potential for ANN-based control of water quality in large-scale distribu-

tion networks. The analysis of ANN models developed indicated that fluctua-

tions in disinfectant were largely driven by diurnal patterns, which are caused

by demand. Importance analysis of ANN inputs also reflected the weak rela-

tionships between downstream residual chlorine and post-injection chlorine

concentrations. Such a result is symptomatic of control of a large scale pro-

cess, where downstream responses to fluctuations in chlorine injection rates

are dampened by mixing and decay over long detention times. The scope to

perform process identification on water supply networks, by performing mod-

erate adjustments of the chlorine injection rate, is likely to be restricted, as

water authorities will be cautious of exceeding limits for residual at locations

within close proximity to the treatment plant.

11.3 Future Research

Several opportunties for continuing research are identified:

1. The development of ANN models still remains a relatively unexplored alter-

native in many applications, and further work is required to investigate the

potential contribution of ANNs. Additionally, the model development frame-

work proposed in this thesis could be retrospectively applied to improve the

quality of ANN models used in applications where they have already demon-

strated some benefit. Such work would also continue to popularise the ANN

approach and increase its acceptance within the mainstream water resources

modelling community.

2. Data collection and measurement is important for any modelling application.

Current trends in data acquisition are increasingly based on real-time sensing

and communications, which offers the potential to gather vast amounts of data

at a relatively low cost. However, without the tools necessary to turn data into

information, there is little benefit and motivation for the development of these

sensors. It is in this context that ANNs can potentially add significant value to

such data acquisition systems. By the same token, ANN models are reliant on

robust, accurate and affordable measurement to generate informative datasets

that allow them to represent system behaviour. It is therefore logical that

the development of reliable and affordable monitoring and data acquisition

systems should go hand-in-hand with the development of computational tools

for data analysis.
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3. The software developed during this research has been developed purely for

research purposes. Future work should also consider the further development

of the techniques developed during this research within a user-friendly soft-

ware application. Lack of software is a major barrier to the uptake of many of

the newer developments in ANN development, and would provide a suitable

alternative to existing tools that implement outmoded model development

techniques.
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Appendix A

Critical Values of I and R

This appendix presents complete tables of the critical value of mutual informa-

tion, I∗, and the Pearson correlation, R∗, which form the basis for termination

criteria used for PMIS and PCIS in Chapter 5.

Tables A.1—A.6 contain estimates of the critical value of the KDE mutual infor-

mation estimator described in Section 5.3. The estimates were obtained by Monte

Carlo simulation of the MI for independently sampled (uncorrelated) Gaussian

noise variables. Estimates were obtained for I(X;Y ) for a range of dimensions

of both X and Y .

Critical values for the Pearson correlation (Table A.7) were computed using the

analytical method based on the assumption of a t-distribution of the error for a

sample estimate with degrees of freedom, df = n − 2. Critical values of R are

determined according to the relationship

R∗ =

√
t2c

df + t2c
.
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Table A.1: Critical values of the KDE estimate of I obtained by Monte Carlo simulation
for the bivariate (two-dimensional) case I(x1; y).

Confidence level, α

n 0.5 0.1 0.05 0.01

50 0.1276 0.1990 0.2224 0.2705

60 0.1195 0.1825 0.2031 0.2452

70 0.1131 0.1694 0.1879 0.2254

80 0.1076 0.1592 0.1756 0.2091

90 0.1029 0.1506 0.1657 0.1973

100 0.0987 0.1429 0.1572 0.1858

120 0.0920 0.1309 0.1434 0.1688

140 0.0864 0.1211 0.1321 0.1546

160 0.0821 0.1138 0.1237 0.1444

180 0.0783 0.1072 0.1166 0.1356

200 0.0750 0.1019 0.1103 0.1276

220 0.0722 0.0975 0.1055 0.1215

240 0.0695 0.0932 0.1005 0.1158

260 0.0671 0.0894 0.0965 0.1108

280 0.0652 0.0862 0.0928 0.1062

300 0.0633 0.0834 0.0896 0.1022

400 0.0559 0.0724 0.0775 0.0876

500 0.0507 0.0646 0.0689 0.0775

600 0.0468 0.0589 0.0627 0.0702

700 0.0436 0.0544 0.0578 0.0644

800 0.0411 0.0509 0.0539 0.0597

900 0.0389 0.0479 0.0507 0.0563

1000 0.0372 0.0455 0.0481 0.0531

2000 0.0269 0.0318 0.0333 0.0361

3000 0.0221 0.0257 0.0268 0.0289

4000 0.0192 0.0221 0.0230 0.0247

5000 0.0172 0.0196 0.0204 0.0218
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A Critical Values of I and R

Table A.2: Critical values of the KDE estimate of I obtained by Monte Carlo simulation
for the multivariate (three-dimensional) case I(x1, x2; y).

Confidence level, α

n 0.5 0.1 0.05 0.01

50 0.3342 0.4443 0.4774 0.5418

60 0.3200 0.4183 0.4479 0.5046

70 0.3078 0.3976 0.4251 0.4757

80 0.2975 0.3797 0.4044 0.4515

90 0.2885 0.3648 0.3877 0.4333

100 0.2805 0.3514 0.3721 0.4136

120 0.2665 0.3299 0.3490 0.3854

140 0.2551 0.3123 0.3296 0.3627

160 0.2458 0.2984 0.3136 0.3436

180 0.2371 0.2858 0.3000 0.3281

200 0.2299 0.2751 0.2884 0.3142

220 0.2236 0.2662 0.2790 0.3032

240 0.2177 0.2580 0.2701 0.2934

260 0.2125 0.2504 0.2618 0.2839

280 0.2077 0.2436 0.2543 0.2751

300 0.2032 0.2377 0.2478 0.2674

400 0.1856 0.2140 0.2225 0.2388

500 0.1727 0.1971 0.2043 0.2183

600 0.1627 0.1843 0.1906 0.2030

700 0.1545 0.1738 0.1795 0.1905

800 0.1479 0.1655 0.1707 0.1809

900 0.1420 0.1582 0.1631 0.1723

1000 0.1370 0.1522 0.1567 0.1651

2000 0.1075 0.1168 0.1195 0.1248

3000 0.0928 0.0999 0.1019 0.1058

4000 0.0835 0.0892 0.0909 0.0941

5000 0.0768 0.0817 0.0831 0.0859
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Table A.3: Critical values of the KDE estimate of I obtained by Monte Carlo simulation
for the multivariate (four-dimensional) case I(x1, x2, x3; y).

Confidence level, α

n 0.5 0.1 0.05 0.01

50 0.5544 0.6922 0.7313 0.8061

60 0.5411 0.6658 0.7019 0.7696

70 0.5286 0.6429 0.6768 0.7391

80 0.5182 0.6243 0.6546 0.7125

90 0.5087 0.6075 0.6362 0.6902

100 0.4994 0.5929 0.6197 0.6720

120 0.4839 0.5683 0.5926 0.6383

140 0.4705 0.5471 0.5692 0.6105

160 0.4594 0.5301 0.5506 0.5885

180 0.4483 0.5148 0.5345 0.5711

200 0.4395 0.5012 0.5191 0.5531

220 0.4309 0.4898 0.5070 0.5390

240 0.4238 0.4793 0.4953 0.5252

260 0.4165 0.4695 0.4844 0.5136

280 0.4104 0.4605 0.4752 0.5031

300 0.4043 0.4528 0.4667 0.4928

400 0.3800 0.4205 0.4323 0.4543

500 0.3614 0.3968 0.4071 0.4264

600 0.3466 0.3781 0.3871 0.4043

700 0.3343 0.3627 0.3711 0.3867

800 0.3239 0.3502 0.3577 0.3722

900 0.3149 0.3390 0.3459 0.3592

1000 0.3071 0.3297 0.3362 0.3487

2000 0.2578 0.2723 0.2765 0.2844

3000 0.2319 0.2430 0.2463 0.2524

4000 0.2146 0.2238 0.2264 0.2314

5000 0.2019 0.2098 0.2122 0.2165
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A Critical Values of I and R

Table A.4: Critical values of the KDE estimate of I obtained by Monte Carlo simulation
for the multivariate (four-dimensional) case I(x1, x2; y1, y2).

Confidence level, α

n 0.5 0.1 0.05 0.01

50 0.7585 0.9288 0.9786 1.0692

60 0.7401 0.8946 0.9388 1.0228

70 0.7221 0.8643 0.9051 0.9803

80 0.7066 0.8381 0.8758 0.9467

90 0.6933 0.8161 0.8515 0.9189

100 0.6797 0.7952 0.8283 0.8928

120 0.6574 0.7616 0.7916 0.8480

140 0.6385 0.7330 0.7601 0.8120

160 0.6222 0.7099 0.7352 0.7835

180 0.6071 0.6887 0.7123 0.7583

200 0.5942 0.6705 0.6925 0.7334

220 0.5824 0.6544 0.6752 0.7136

240 0.5717 0.6399 0.6599 0.6970

260 0.5617 0.6265 0.6453 0.6809

280 0.5526 0.6142 0.6323 0.6665

300 0.5440 0.6037 0.6205 0.6536

400 0.5094 0.5591 0.5734 0.6004

500 0.4833 0.5267 0.5388 0.5632

600 0.4623 0.5009 0.5121 0.5335

700 0.4450 0.4799 0.4900 0.5088

800 0.4306 0.4627 0.4721 0.4895

900 0.4179 0.4473 0.4556 0.4714

1000 0.4067 0.4345 0.4426 0.4575

2000 0.3384 0.3559 0.3610 0.3706

3000 0.3026 0.3160 0.3199 0.3273

4000 0.2788 0.2899 0.2930 0.2991

5000 0.2615 0.2711 0.2738 0.2790
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Table A.5: Critical values of the KDE estimate of I obtained by Monte Carlo simulation
for the multivariate (five-dimensional) case I(x1, x2, x3, x4; y).

Confidence level, α

n 0.5 0.1 0.05 0.01

50 0.7301 0.8818 0.9238 1.0015

60 0.7225 0.8608 0.8997 0.9730

70 0.7154 0.8438 0.8794 0.9480

80 0.7083 0.8285 0.8616 0.9240

90 0.7019 0.8142 0.8462 0.9049

100 0.6954 0.8022 0.8325 0.8902

120 0.6835 0.7808 0.8086 0.8600

140 0.6725 0.7626 0.7878 0.8354

160 0.6642 0.7469 0.7706 0.8163

180 0.6548 0.7335 0.7561 0.7992

200 0.6469 0.7211 0.7421 0.7808

220 0.6396 0.7102 0.7299 0.7682

240 0.6335 0.6999 0.7188 0.7548

260 0.6266 0.6906 0.7088 0.7430

280 0.6208 0.6823 0.6998 0.7333

300 0.6153 0.6745 0.6913 0.7226

400 0.5920 0.6420 0.6566 0.6835

500 0.5732 0.6179 0.6303 0.6541

600 0.5581 0.5980 0.6092 0.6313

700 0.5448 0.5813 0.5919 0.6110

800 0.5336 0.5674 0.5769 0.5949

900 0.5237 0.5550 0.5638 0.5811

1000 0.5150 0.5445 0.5531 0.5692

2000 0.4572 0.4769 0.4825 0.4931

3000 0.4248 0.4402 0.4445 0.4529

4000 0.4023 0.4152 0.4188 0.4257

5000 0.3854 0.3966 0.3998 0.4058
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A Critical Values of I and R

Table A.6: Critical values of the KDE estimate of I obtained by Monte Carlo simulation
for the multivariate (five-dimensional) case I(x1, x2, x3; y1, y2).

Confidence level, α

n 0.5 0.1 0.05 0.01

50 1.1534 1.3568 1.4137 1.5210

60 1.1403 1.3292 1.3808 1.4821

70 1.1283 1.3022 1.3517 1.4413

80 1.1158 1.2780 1.3239 1.4084

90 1.1056 1.2588 1.3022 1.3825

100 1.0939 1.2394 1.2809 1.3623

120 1.0738 1.2063 1.2444 1.3155

140 1.0551 1.1782 1.2132 1.2776

160 1.0401 1.1540 1.1877 1.2474

180 1.0243 1.1317 1.1632 1.2207

200 1.0108 1.1116 1.1413 1.1953

220 0.9974 1.0947 1.1222 1.1739

240 0.9869 1.0780 1.1038 1.1538

260 0.9752 1.0632 1.0884 1.1347

280 0.9653 1.0501 1.0744 1.1201

300 0.9556 1.0370 1.0603 1.1039

400 0.9154 0.9841 1.0037 1.0410

500 0.8834 0.9445 0.9617 0.9945

600 0.8574 0.9120 0.9276 0.9577

700 0.8352 0.8851 0.8993 0.9261

800 0.8161 0.8625 0.8756 0.9005

900 0.7993 0.8422 0.8542 0.8775

1000 0.7848 0.8250 0.8364 0.8578

2000 0.6881 0.7148 0.7223 0.7368

3000 0.6345 0.6552 0.6612 0.6723

4000 0.5977 0.6150 0.6200 0.6296

5000 0.5701 0.5850 0.5894 0.5973
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Table A.7: Critical values of the Pearson coefficient of cross-correlation for the bivariate
case, R(x, y).

Confidence level, α

n 0.5 0.10 0.05 0.01

50 0.0095 0.0775 0.1001 0.1523

60 0.0079 0.0645 0.0835 0.1278

70 0.0067 0.0553 0.0716 0.1100

80 0.0059 0.0483 0.0627 0.0965

90 0.0052 0.0429 0.0558 0.0860

100 0.0047 0.0386 0.0502 0.0776

120 0.0039 0.0322 0.0418 0.0648

140 0.0033 0.0275 0.0359 0.0557

160 0.0029 0.0241 0.0314 0.0488

180 0.0026 0.0214 0.0279 0.0434

200 0.0023 0.0193 0.0251 0.0391

220 0.0021 0.0175 0.0228 0.0356

240 0.0019 0.0160 0.0209 0.0326

260 0.0018 0.0148 0.0193 0.0301

280 0.0016 0.0137 0.0179 0.0280

300 0.0015 0.0128 0.0167 0.0261

400 0.0011 0.0096 0.0126 0.0196

500 0.0009 0.0077 0.0100 0.0157

600 0.0008 0.0064 0.0084 0.0131

700 0.0007 0.0055 0.0072 0.0112

800 0.0006 0.0048 0.0063 0.0098

900 0.0005 0.0043 0.0056 0.0087

1 000 0.0005 0.0038 0.0050 0.0079

2 000 0.0002 0.0019 0.0025 0.0039

3 000 0.0002 0.0013 0.0017 0.0026

4 000 0.0001 0.0010 0.0013 0.0020

5 000 0.0001 0.0008 0.0010 0.0016
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Appendix B

IVS Performance Data

This appendix provides full tables of results for the application of PMIS and PCIS

to seven benchmark synthetic datasets using different termination criteria, which

was summarised in Chapter 5.

337



Ta
bl

e
B

.1
:

Pe
rc

en
ta

ge
co

rr
ec

t
m

od
el

sp
ec

ifi
ca

ti
on

s
fo

r
PM

IS
an

d
PC

IS
(5

0-
sa

m
pl

e
da

ta
se

ts
)

A
lg

or
it

hm
C

ri
te

ri
on

Li
ne

ar
M

od
el

s
N

on
-l

in
ea

r
M

od
el

s

A
R

4
A

R
9

TA
R

2
TA

R
1

Fr
ie

dm
an

Fr
ie

dm
an

(1
5)

M
ex

ic
an

-H
at

f
∗ u

f c
f o

f u
f c

f o
f u

f c
f o

f u
f c

f o
f u

f c
f o

f u
f c

f o
f u

f c
f o

PC
IS

A
30

40
30

40
30

30
67

23
10

77
10

13
87

13
0

93
3

3
10

0
0

0
B

53
33

13
63

37
0

87
13

0
97

0
3

10
0

0
0

97
3

0
10

0
0

0
C

40
30

30
47

27
27

70
23

7
80

10
10

97
3

0
97

0
3

10
0

0
0

D
53

40
7

63
37

0
87

13
0

10
0

0
0

10
0

0
0

10
0

0
0

10
0

0
0

E
43

20
37

47
27

27
70

23
7

80
10

10
10

0
0

0
10

0
0

0
10

0
0

0
F

53
40

7
73

27
0

87
13

0
10

0
0

0
10

0
0

0
10

0
0

0
10

0
0

0
G

17
10

73
17

23
60

30
17

53
57

7
37

83
17

0
70

10
20

10
0

0
0

PM
IS

A
40

13
47

40
23

37
23

30
47

73
17

10
40

47
13

40
30

30
17

40
43

B
50

17
33

50
33

17
53

23
23

93
7

0
60

33
7

60
30

10
50

33
17

C
40

10
50

20
7

73
27

33
40

77
13

10
47

37
17

40
27

33
17

40
43

D
53

27
20

23
7

70
63

17
20

93
7

0
73

23
3

67
27

7
60

30
10

E
90

10
0

10
0

0
0

10
0

0
0

10
0

0
0

10
0

0
0

10
0

0
0

10
0

0
0

F
10

0
0

0
10

0
0

0
10

0
0

0
10

0
0

0
10

0
0

0
10

0
0

0
10

0
0

0
G

57
30

13
93

7
0

77
23

0
80

20
0

93
7

0
90

10
0

20
80

0
H

83
7

10
87

10
3

73
20

7
83

10
7

10
0

0
0

83
13

3
77

23
0

*f
u

=
fr

eq
ue

nc
y

un
de

r-
sp

ec
ifi

ed
,f

c
=

fr
eq

ue
nc

y
co

rr
ec

tl
y

sp
ec

ifi
ed

,f
o

=
fr

eq
ue

nc
y

ov
er

-s
pe

ci
fie

d

338



B IVS Performance Data

Ta
bl

e
B

.2
:

Pe
rc

en
ta

ge
co

rr
ec

t
m

od
el

sp
ec

ifi
ca

ti
on

s
fo

r
PM

IS
an

d
PC

IS
(1

00
-s

am
pl

e
da

ta
se

ts
)

A
lg

or
it

hm
C

ri
te

ri
on

Li
ne

ar
M

od
el

s
N

on
-l

in
ea

r
M

od
el

s

A
R

4
A

R
9

TA
R

2
TA

R
1

Fr
ie

dm
an

Fr
ie

dm
an

(1
5)

M
ex

ic
an

-H
at

f
∗ u

f c
f o

f u
f c

f o
f u

f c
f o

f u
f c

f o
f u

f c
f o

f u
f c

f o
f u

f c
f o

PC
IS

A
0

60
40

7
53

40
80

0
20

97
0

3
90

10
0

10
0

0
0

10
0

0
0

B
0

83
17

17
73

10
87

7
7

10
0

0
0

90
10

0
10

0
0

0
10

0
0

0
C

0
67

33
7

50
43

77
3

20
97

0
3

90
10

0
10

0
0

0
10

0
0

0
D

0
93

7
20

73
7

93
7

0
10

0
0

0
90

10
0

10
0

0
0

10
0

0
0

E
0

60
40

7
53

40
77

3
20

97
3

0
90

10
0

10
0

0
0

10
0

0
0

F
0

93
7

20
73

7
93

7
0

10
0

0
0

90
10

0
10

0
0

0
10

0
0

0
G

0
23

77
7

10
83

50
3

47
87

0
13

77
7

17
80

7
13

10
0

0
0

PM
IS

A
0

23
77

23
23

53
3

7
90

50
37

13
0

70
30

0
60

40
3

57
40

B
10

53
37

27
40

33
7

37
57

70
27

3
0

83
17

0
73

27
3

77
20

C
0

33
67

13
3

83
3

10
87

43
40

17
0

77
23

0
63

37
3

67
30

D
7

63
30

20
7

73
7

53
40

77
20

3
0

90
10

0
83

17
3

83
13

E
77

23
0

97
3

0
90

10
0

10
0

0
0

10
0

0
0

10
0

0
0

10
0

0
0

F
93

7
0

10
0

0
0

97
3

0
10

0
0

0
10

0
0

0
10

0
0

0
10

0
0

0
G

13
60

27
77

10
13

60
30

10
47

53
0

73
27

0
47

53
0

0
97

3
H

70
17

13
67

30
3

30
43

27
63

33
3

93
7

0
30

60
10

13
70

17

*f
u

=
fr

eq
ue

nc
y

un
de

r-
sp

ec
ifi

ed
,f

c
=

fr
eq

ue
nc

y
co

rr
ec

tl
y

sp
ec

ifi
ed

,f
o

=
fr

eq
ue

nc
y

ov
er

-s
pe

ci
fie

d

339



Ta
bl

e
B

.3
:

Pe
rc

en
ta

ge
co

rr
ec

t
m

od
el

sp
ec

ifi
ca

ti
on

s
fo

r
PM

IS
an

d
PC

IS
(5

00
-s

am
pl

e
da

ta
se

ts
)

A
lg

or
it

hm
C

ri
te

ri
on

Li
ne

ar
M

od
el

s
N

on
-l

in
ea

r
M

od
el

s

A
R

4
A

R
9

TA
R

2
TA

R
1

Fr
ie

dm
an

Fr
ie

dm
an

(1
5)

M
ex

ic
an

-H
at

f
∗ u

f c
f o

f u
f c

f o
f u

f c
f o

f u
f c

f o
f u

f c
f o

f u
f c

f o
f u

f c
f o

PC
IS

A
0

60
40

0
53

47
0

23
77

93
0

7
97

0
3

10
0

0
0

10
0

0
0

B
0

93
7

0
67

33
0

50
50

97
3

0
97

0
3

10
0

0
0

10
0

0
0

C
0

63
37

0
50

50
0

20
80

93
3

3
97

0
3

10
0

0
0

10
0

0
0

D
0

93
7

0
73

27
3

67
30

97
3

0
10

0
0

0
10

0
0

0
10

0
0

0
E

0
70

30
0

47
53

0
23

77
97

0
3

97
0

3
10

0
0

0
10

0
0

0
F

0
97

3
0

80
20

3
70

27
97

3
0

10
0

0
0

10
0

0
0

10
0

0
0

G
0

7
93

0
3

97
0

0
10

0
80

3
17

90
3

7
90

0
10

10
0

0
0

PM
IS

A
0

53
47

0
23

77
0

7
93

0
60

40
0

80
20

0
60

40
0

47
53

B
0

70
30

0
63

37
0

20
80

0
83

17
0

93
7

0
83

17
0

87
13

C
0

60
40

0
7

93
0

3
97

0
67

33
0

83
17

0
67

33
0

50
50

D
0

80
20

0
17

83
0

23
77

0
90

10
0

10
0

0
0

87
13

0
87

13
E

0
10

0
0

10
90

0
0

10
0

0
93

7
0

0
10

0
0

0
10

0
0

0
10

0
0

F
0

10
0

0
30

70
0

0
10

0
0

10
0

0
0

0
10

0
0

0
10

0
0

0
10

0
0

G
0

97
3

67
33

0
27

67
7

0
10

0
0

0
10

0
0

0
10

0
0

0
10

0
0

H
10

73
17

3
90

7
0

67
33

0
10

0
0

77
17

7
0

93
7

0
87

13

*f
u

=
fr

eq
ue

nc
y

un
de

r-
sp

ec
ifi

ed
,f

c
=

fr
eq

ue
nc

y
co

rr
ec

tl
y

sp
ec

ifi
ed

,f
o

=
fr

eq
ue

nc
y

ov
er

-s
pe

ci
fie

d

340



B IVS Performance Data
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