Formal Verification of Transactional and Configurable Service-Oriented Processes

A dissertation submitted for the degree
Doctor of Philosophy in the School of Computer Science

by

Scott Bourne
Supervised by A/Prof. Michael Sheng and Dr. Claudia Szabo

2016
Abstract of the Dissertation

Formal Verification of Transactional and Configurable Service-Oriented Processes

by

Scott Bourne

Doctor of Philosophy in School of Computer Science
The University of Adelaide, South Australia, 2016

The industrial rise of Web services and cloud services provides ample opportunities for business processes to be implemented with third-party components in a way that is rapid to develop, low-cost, and with reduced start-up risk. Service-oriented processes are business processes implemented by remotely provisioning third-party services: autonomous black box implementations of common software or hardware requirements. However, executing a workflow structure of these distributed and heterogeneous components creates several transactional concerns. These include ensuring an acceptable level of atomicity over long-running executions, handling a diverse range of potential fault types, and considering the various transactional properties of component services.

In this thesis, we present three related approaches towards ensuring well-formed transactional behavior in service-oriented processes. We address the problem of identifying issues in the transactional behavior of service-oriented processes at design-time, to prevent costly issues or redevelopment at later stages. We adapt an expressive service-oriented process modeling approach that allows for developers to specify detailed transactional behavior. A set of rules can be applied to this model in order to identify transactional issues such as deadlock and invalid termination. Furthermore, developers can elicit complex and varied transactional requirements for the process with ease using our set of temporal logic templates. Model checking is used to ensure that process designs satisfy these rules and requirements.

Recent innovations in cloud services have led to the proposal of Business Process as a Service (BPaaS). BPaaS offers common business processes as configurable cloud services, enabling clients
to perform complex or resource expensive business operations in a simple pay-be-use manner. Both service providers and clients have concerns to be satisfied during BPaaS configuration. Providers must enforce domain constraints to restrict the service to valid configurations, while the client has their own application-dependent requirements for the service to meet. Using Binary Decision Diagram (BDD) analysis and model checking as formal methods, we devise a multi-step process that identifies a BPaaS configuration satisfying the requirements of both parties.

These verification and configuration techniques have been implemented in a prototype tool called TL-VIEWS. We include six validation scenarios to demonstrate the effectiveness of our methods, using real Web and cloud services. An extensive performance analysis is performed for each model checking feature used by TL-VIEWS and the results indicate that our state-space reduction measures can decrease verification time for complex models by up to 98.63%.
I certify that this work contains no material which has been accepted for the award of any other degree or diploma in my name, in any university or other tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text. In addition, I certify that no part of this work will, in the future, be used in a submission in my name, for any other degree or diploma in any university or other tertiary institution without the prior approval of the University of Adelaide and where applicable, any partner institution responsible for the joint-award of this degree.

I give consent to this copy of my thesis, when deposited in the University Library, being made available for loan and photocopying, subject to the provisions of the Copyright Act 1968.

I also give permission for the digital version of my thesis to be made available on the web, via the University's digital research repository, the Library Search and also through web search engines, unless permission has been granted by the University to restrict access for a period of time.

Scott Bourne

ACKNOWLEDGMENTS

I have been extremely fortunate during my candidature to have the backing of a great support network, both inside and outside my work environment. This thesis simply could not have been completed without all of their presence, input, and encouragement.

I am deeply grateful to my co-supervisor Dr. Claudia Szabo for the time, guidance, effort, input, and knowledge she has dedicated to me over the last few years. Under her encouraging, ambitious, and understanding supervision, I felt I could really produce my best work and grow as a researcher. Her role in improving my ability to analyze research work, rather than simply absorb it, cannot be understated.

From day one of my candidature, my principal supervisor Associate Professor Michael Sheng has given me valuable insight into conducting and writing research, while instilling me with the confidence to aim high. I am very appreciative for everything he has done for me over the years, and for the tremendous impact he has had on my professional development.

During my time at the School of Computer Science in The University of Adelaide, there have been many other students that have provided me with support, help, encouragement, and friendship. For all this, I want to thank Yihong, Ali, Javier, Lu, Lachlan, Kewen, Sujith, and Lijuan.

Away from academic life, I am very thankful to my parents for the unwavering support that has been behind every accomplishment I have made. Regular camaraderie from my interstate brother delivered to my inbox has been appreciated, masked in dry humour though it was. I also want to thank my friends Michael, Daniel, Nathan, Diana, Tom, Candice, Angela, and Heather. All the fun we have had together allowed me to keep going.
Table of Contents

1 Introduction .. 1

1.1 Motivation .. 1

1.1.1 Reliable Transactional Service-Oriented Processes 2

1.1.2 Transactional Requirements Compliance in Service-Oriented Processes 4

1.1.3 Business Process as a Service Configuration 5

1.2 Goals ... 6

1.3 Contributions ... 7

1.4 Thesis Outline ... 9

2 Background ... 12

2.1 Advanced Transaction Models 13

2.2 Web Service Composition 16

2.2.1 Transactional Web Service Compositions for Business Processes 19

2.3 Cloud Services .. 20

2.3.1 Business Process as a Service 23

2.4 Summary .. 25

3 Well-Formed Transactional Behavior in Service-Oriented Processes 26

3.1 Related Work .. 27

3.1.1 Comparison Criteria 27

3.1.2 Survey .. 32

3.1.3 Research Direction 37

3.2 Transactional Service-Oriented Process Modeling 38

3.2.1 Motivating Example 38
5.1.2 Survey ... 82
5.1.3 Research Direction ... 88

5.2 Transactional Business Process as a Service Modeling 89
5.2.1 Motivating Example .. 90
5.2.2 BPaaS Model ... 91

5.3 Configuration Domain Constraints 94

5.4 Business Process as a Service Configuration and Verification 95
5.4.1 BPaaS Configuration Process 95
5.4.2 BDD Analysis for Ensuring Domain Constraints 97
5.4.3 Model Checking Against Transactional Requirements 100

5.5 Summary ... 107

6 Prototype Implementation and Experimental Analysis 109
6.1 Implementation Architecture .. 110
6.1.1 Verification Against Conversation Rules and Templates 110
6.1.2 BPaaS Configuration .. 114

6.2 Experimental Analysis .. 115
6.2.1 Validation Scenarios ... 116
6.2.2 Performance Analysis .. 129

6.3 Summary ... 135

7 Conclusion .. 137
7.1 Summary ... 138
7.1.1 Conversation Rule Checking for Well-Formed Transactional Behavior ... 138
7.1.2 Application-Dependent Transactional Requirement Verification 139
7.1.3 Configuration of Transactional Business Process as a Service 140
7.2 Future Directions .. 141

7.2.1 Diagnosing Conversation Rule and Transactional Requirement Violations . 141

7.2.2 Preserving Transactional Requirements During Dynamic Configuration . 143

7.2.3 Business Process as a Service Configuration Framework 144

References .. 145

A Temporal Logic Template Specifications .. 157

B Using JDD for BDD Construction ... 165

C Checkout Configuration BDD .. 167

D Implementation of Online Payment Scenario 169

E Implementation of Course Enrolment Scenario 173
List of Figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>A Web service composition for sending email or postal mail to a group of customers</td>
<td>18</td>
</tr>
<tr>
<td>2.2</td>
<td>Cloud service hierarchy [159]</td>
<td>22</td>
</tr>
<tr>
<td>2.3</td>
<td>An abstract example of a BPaaS</td>
<td>24</td>
</tr>
<tr>
<td>3.1</td>
<td>Faults of transactional service-oriented processes</td>
<td>30</td>
</tr>
<tr>
<td>3.2</td>
<td>Fault-handling of transactional service-oriented processes</td>
<td>31</td>
</tr>
<tr>
<td>3.3</td>
<td>Overview of the online payment process</td>
<td>39</td>
</tr>
<tr>
<td>3.4</td>
<td>Control and operational behavior models of the online payment composition</td>
<td>41</td>
</tr>
<tr>
<td>3.5</td>
<td>Two examples of exchanged inter-behavior messages during successful (a) and failed (b) process execution</td>
<td>44</td>
</tr>
<tr>
<td>3.6</td>
<td>Flattened behavior model of the online payment composition</td>
<td>52</td>
</tr>
<tr>
<td>3.7</td>
<td>Reduced Kripke structure for verification against conversation rules</td>
<td>55</td>
</tr>
<tr>
<td>4.1</td>
<td>Reduced Kripke structure for transactional requirement verification</td>
<td>78</td>
</tr>
<tr>
<td>5.1</td>
<td>BPMN model of the configurable checkout BPaaS</td>
<td>92</td>
</tr>
<tr>
<td>5.2</td>
<td>Configurable resources and data objects mapped to a BPMN activity</td>
<td>93</td>
</tr>
<tr>
<td>5.3</td>
<td>Inter-behavior messages used to enable communication between the checkout BPMN and the control behavior model</td>
<td>94</td>
</tr>
<tr>
<td>5.4</td>
<td>Feature model constraints used in our approach</td>
<td>95</td>
</tr>
<tr>
<td>5.5</td>
<td>A feature model representing configuration constraints of the checkout BPaaS</td>
<td>96</td>
</tr>
<tr>
<td>5.6</td>
<td>Overview of the BPaaS configuration and verification process</td>
<td>97</td>
</tr>
<tr>
<td>5.7</td>
<td>A selection of the feature model (a) transformed into propositional logic (b) and a BDD (c)</td>
<td>98</td>
</tr>
</tbody>
</table>
5.8 Binary Decision Diagram form of the feature model in Figure 5.7 with four feature selections ... 100

5.9 Propositional logic form of the checkout process feature model with the feature selections of Table 5.7 ... 101

5.10 Kripke structure example for verifying the checkout activity selection 103

5.11 An example of how activities with multiple resources are traversed for the second model checking phase .. 104

5.12 Kripke structure example for verifying resource and data object selection 105

5.13 BPMN of a configuration solution of the Checkout BPaaS 106

6.1 TL-VIEWS architecture ... 110

6.2 TL-VIEWS process design interface ... 111

6.3 TL-VIEWS requirement specification window 112

6.4 TL-VIEWS results window following unsuccessful conversation rule verification . 117

6.5 Operational behavior model of the lesson enrolment composition 120

6.6 Conversation rule checking output for the online enrolment model 122

6.7 Transactional requirement verification output for the course enrolment model . . 124

6.8 Violating stack trace produced by NuSMV ... 127

6.9 Verification times during configuration with and without reduction for 10 to 100 requirements 133

B.1 A Java class for implementing a BDD using the JDD library 166

C.1 Binary Decision Diagram form of the propositional logic property of Figure 5.9 . . 168

D.1 Conversation rules and Kripke structure formulated in an SMV input file for verifying the online payment process 170
<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>D.2</td>
<td>Kripke structure definition and transactional requirements of the online payment process</td>
<td>171</td>
</tr>
<tr>
<td>D.3</td>
<td>Kripke structure relation of the online payment process</td>
<td>172</td>
</tr>
<tr>
<td>E.1</td>
<td>NuSMV input file containing the temporal logic properties for verifying the course enrolment process against conversation rules</td>
<td>174</td>
</tr>
<tr>
<td>E.2</td>
<td>NuSMV input file containing the Kripke structure for verifying the course enrolment process against conversation rules</td>
<td>175</td>
</tr>
<tr>
<td>E.3</td>
<td>NuSMV input file containing the course enrolment transactional requirements</td>
<td>176</td>
</tr>
<tr>
<td>E.4</td>
<td>NuSMV input file containing the course enrolment Kripke structure relation</td>
<td>177</td>
</tr>
</tbody>
</table>
LIST OF TABLES

3.1 Overview of comparison criteria ... 28
3.2 Overview criteria of application-independent requirements approaches. 32
3.3 Support criteria of application-independent requirements approaches 33
3.4 Method criteria of application-independent requirements approaches. 34
3.5 Transactional behavior criteria of application-independent requirements approaches. 35
3.6 Initiation inter-behavior messages ... 42
3.7 Outcome inter-behavior messages .. 43
3.8 Conversation structure rules .. 45
3.9 Message sequence conversation rules 46
3.10 Conversation rules formalized using LTL and CTL 48
3.11 A set of inter-behavior messages defined over the online payment design 50
3.12 Temporal logic conversation rules for verifying a Kripke structure 56

4.1 Overview criteria of application-dependent requirements approaches 61
4.2 Support criteria of application-independent requirements approaches 62
4.3 Method criteria of application-dependent requirements approaches 63
4.4 Transactional behavior criteria of application-dependent requirements approaches. 64
4.5 Template specification for CompensateFailure 71
4.6 Template specification for ControlStateCritical 73
4.7 Transactional requirements for the online payment process 75
4.8 Online payment process transactional requirements implemented using our template set ... 75
4.9 Temporal logic formalizations of the online payment process transactional requirements ... 78
5.1 Comparison criteria overview .. 82
5.2 Support criteria for comparing work related to BPaaS configuration 83
5.3 Correctness Criteria for comparing work related to BPaaS configuration 84
5.4 Configurable resources for the checkout BPaaS ... 93
5.5 Configurable data objects for the checkout BPaaS ... 93
5.6 Propositional logic representations of the feature model constraints of Figure 5.4 99
5.7 A selection of features from the checkout BPaaS .. 99

6.1 Transactional requirements for the online payment model 119
6.2 The inter-behavior messages used in the lesson enrolment composition 121
6.3 Transactional requirements for the course enrolment model 123
6.4 Transactional requirements for BPaaS Scenario A .. 126
6.5 Transactional requirements for BPaaS Scenario B .. 129
6.6 Additional feature selections for BPaaS Scenario B ... 129
6.7 Verification time (in seconds) of conversation rules with and without Kripke structure reduction .. 130
6.8 NuSMV execution times for individual templates ... 131
6.9 Verification time (in seconds) of temporal logic templates with and without Kripke structure reduction .. 132
6.10 Details of the configurable BPaaS test suite for performance analysis 134
6.11 Verification time (in seconds) of increasingly complex configuration scenarios 134

A.1 Template specification for CompensateFailure ... 158
A.2 Template specification for CompensateSuccess, minus temporal logic 158
A.3 LTL for the implementations of CompSuccess ... 159
A.4 Template specification for Alternative ... 160

xv
A.5 Template specification for NonRetriable 161
A.6 Template specification for RetriablePivot 161
A.7 Template specification for NonRetriablePivot 162
A.8 Template specification for ControlStateCritical 162
A.9 Template specification for ControlStateTrigger 163
A.10 Template specification for ControlStateReachable 163
A.11 Template specification for ControlStateUnreachable 164
A.12 Template specification for Compensation 164
A.13 Template specification for ConditionalCompensation 164
List of Algorithms

<table>
<thead>
<tr>
<th></th>
<th>Algorithm Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Conversation Checking Kripke Structure Reduction: CKSR</td>
<td>54</td>
</tr>
<tr>
<td>2</td>
<td>Conversation Checking Depth-First Traversal: CDF*(s_x, s_m, S_v)*</td>
<td>54</td>
</tr>
<tr>
<td>3</td>
<td>Transactional Requirements Kripke Structure Reduction: TKSR</td>
<td>76</td>
</tr>
<tr>
<td>4</td>
<td>Transactional Requirements Depth-First Traversal: TDF*(s_c, s_x, s_k, AP_v)*</td>
<td>76</td>
</tr>
</tbody>
</table>