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Abstract

Scratch assays are often used to investigate potential drug treatments for chronic wounds and cancer.

Interpreting these experiments with a mathematical model allows us to estimate the cell diffusivity, D,

and the cell proliferation rate, λ. However, the influence of the experimental design on the estimates of

D and λ is unclear. Here we apply an approximate Bayesian computation (ABC) parameter inference

method, which produces a posterior distribution of D and λ, to new sets of synthetic data, generated from

an idealised mathematical model, and experimental data for a non-adhesive mesenchymal population of

fibroblast cells. The posterior distribution allows us to quantify the amount of information obtained about

D and λ. We investigate two types of scratch assay, as well as varying the number and timing of the

experimental observations captured. Our results show that a scrape assay, involving one cell front, provides

more precise estimates of D and λ, and is more computationally efficient to interpret than a wound assay,

with two opposingly-directed cell fronts. We find that recording two observations, after making the initial

observation, is sufficient to estimate D and λ, and that the final observation time should correspond to the

time taken for the cell front to move across the field of view. These results provide guidance for estimating

D and λ, while simultaneously minimising the time and cost associated with performing and interpreting

the experiment.

Keywords: Scratch assay, Experimental design, Approximate Bayesian computation, Cell motility, Cell

proliferation

1. Introduction

Scratch assays are commonly used to observe the migration and proliferation of cells [11, 19, 20, 21, 27, 41].

Cells are placed on a culture dish and incubated, eventually forming a confluent monolayer [21]. An artificial
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Figure 1: Schematic representation of scratch assay design parameters. (a)-(b) Schematic wound assay. (a) Immediately after
the scratch, and (b) as the two fronts move and the wound begins to close. (c)-(d) Schematic scrape assay. (c) Immediately
after the scratch, and (d) as the single cell front moves. (e) Potential combinations of the timing of experimental observations.

wound is created and images of the resulting collective cell spreading, driven by combined cell migration

and proliferation, are captured over 12-24 hours [1, 5, 25, 26, 30]. The number of experimental images

captured and reported varies considerably. For example, some results that are reported include just one or

two observations [1, 26, 30], whereas others report many more [5, 14, 25]. The influence of the number of

observations on the experimental findings has not been quantified.

The majority of scratch assays fall into one of two categories. The first, which we refer to as a wound

assay, involves the creation of a thin wound [21, 27], which produces two opposingly directed cell fronts

that eventually merge [1], as shown in the schematic in Figures 1(a)-(b). The second, which we refer to

as a scrape assay, involves a monolayer that has been more extensively scratched so there is only one cell

front [5, 23], as shown in the schematic in Figures 1(c)-(d). Again, the influence of the assay choice on the

experimental findings has not been quantified.

Previously, scratch assays have been used to investigate the influence of various chemical compounds

and potential drug treatments on the rates of cell motility and proliferation [11, 19, 20, 41]. For exam-

ple, wound healing can be stimulated by steroid treatment [41], while cell proliferation can be inhibited by

2



chemotherapeutic drugs [29]. Developing methods that allow us to robustly quantify the rates of cell migra-

tion and proliferation is therefore critical to drug design. However, the majority of scratch assay results are

interpreted qualitatively [20, 26] or use simple quantitative measures that do not distinguish between the

roles of cell motility and proliferation [11, 19]. In contrast, mathematical models that explicitly distinguish

between the roles of cell diffusivity, D, and cell proliferation, λ, for scratch assays have also been presented

[5, 12, 14, 15, 16, 17, 28, 40]. Previous approaches using both deterministic models [14, 15] and stochastic

models [16] lead to point-estimates of D and λ. More recently, approximate Bayesian computation (ABC)

has been used to provide estimates of D and λ, together with a measure of the uncertainty associated with

these estimates [17]. While ABC methods are computationally demanding compared to deterministic data

calibration techniques, such as the Levenberg-Marquadt algorithm [15], the advantage of ABC is that ad-

ditional information regarding the uncertainty of the model parameter estimates is obtained. Furthermore,

prior knowledge about the system can be incorporated in a principled and systematic way, such that knowl-

edge can be accumulated as more data is available. The ABC method of Johnston and coworkers [17] has

been used to obtain parameter estimates for 3T3 fibroblasts but did not consider the influence of design

parameters on the model parameter estimates.

In this work we refer to two different categories of parameters:

• Model parameters, which govern the cell diffusivity, D, and cell proliferation rate, λ, and

• Design parameters, which distinguish between different experimental designs of a scratch assay, such

as shown in Figure 1.

It is instructive to consider how the posterior distribution of D and λ from the ABC algorithm is in-

fluenced by the choice of design parameters. The information gained in moving from a prior to a posterior

distribution can be quantified using the Kullback-Leibler divergence, DKL [4]. Numerical approximations

of posterior distributions are calculated using ABC [24] and have been applied to parameter inference in

dynamical systems [37] and spatio-temporal models [17, 42]. Bayesian experimental design is concerned

with determining the optimal experimental design that maximises DKL, by adjusting the design parameters

[6]. Our mathematical framework, which mimics the random motility and proliferation of mesenchymal

(non-adhesive) cells in a scratch assay, contains a significant number of design parameters [17, 32]. How-

ever, we require that the design parameters can be adjusted experimentally, as well as in the mathematical

model, otherwise the results may have limited practical relevance. The simplest design parameter to alter

is the number and timing of the experimental observations. An example of different combinations of ex-

perimental observations is presented in Figure 1(e). The combination of observation times in (i) contains

four equally-spaced observations, whereas in (ii) and (iii) the observations are clustered at the start and end

of the experiment, respectively. Currently, it is unclear which combination of observation times provides
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Figure 2: Interpretation of experimental images for (a)-(d) the scrape assay and (e)-(h) the wound assay. (a),(e) Experimental
images. (b),(f) Identification of the position of cells. The red markers denote the cell centres, and the markers are deliberately
chosen to be smaller than the size of the individual cells so that individual cells are not obscured. The scale bar corresponds to
300 µm. (c),(g) Cell positions mapped to a square lattice with ∆ = 25 µm. (d),(h) Temporal evolution of the pair correlation
function. The pair correlation function is presented at 0 h (dashed black), 4 h (blue), 8 h(red) and 12 h (green). The arrows
indicate the direction of increasing time.

the most information about the model parameters, D and λ, and Bayesian experimental design allows us

to quantify these differences. Therefore, we may be able to identify the optimal number of experimental

images required and consequently avoid collecting additional unnecessary observations, reducing the cost

associated with performing and interpreting the experiments.

Here we implement the ABC parameter inference method of Johnston and coworkers [17]. In Section 2

we provide a brief description of the experimental procedure and the mathematical model. The influence

of the assay choice on the model parameter estimates, using both synthetic and experimental data sets, is

examined in Section 3. We also investigate the influence of the number and timing of observations on the

model parameter estimates, using both synthetic and experimental data sets. In Section 4 we discuss the

implications of our results, and in Section 5, we make recommendations about the experimental design, and

suggest options for future work.
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2. Methods

2.1. Experimental method

The experimental method has been presented previously [34]. Briefly, murine fibroblast 3T3 cells [36]

are grown in T175 cm2 tissue culture flasks and one µL of cell suspension is placed into the well of a tissue

culture plate. The tissue culture plate is incubated at 37 ◦C in 5% CO2 overnight so that the cell population

settles, attaches to the substrate, and the density begins to increase as cell proliferation takes place. A

scratch is made in the monolayer using a P100 pipette tip for the wound assay, and a P1000 pipette tip for

the scrape assay. Microscopic images are captured every five minutes for 24 hours after the initial scratch is

made using a Leica AF6000 automated microscope. Experimental images of the scrape and wound assays

are given in Figures 2(a) and (e), respectively. We note that the cell populations in Figures 2(a) and (e)

appear to be confluent away from the scratched region. However, 3T3 fibroblasts are known to grow to

reach significantly higher densities than in Figures 2(a) and (e) [34]. This implies that the cell density will

increase well beyond the density in Figures 2(a) and (e) provided that sufficient time is allowed for more

cell proliferation to take place.

2.2. Mathematical model

Individual-based random walk models with crowding effects are widely used to mimic the behaviour of

cells in biological systems [9, 16, 17, 22, 32]. We consider a two-dimensional random walk on a square lattice,

with lattice spacing ∆ [7, 32], where each site may be occupied by, at most, one agent. Agents have the

potential to move and proliferate with constant probability Pm ∈ [0, 1] and Pp ∈ [0, 1], respectively, during

each timestep of fixed duration τ . These probabilities are related to the diffusivity and proliferation rate by

[32]

D =
Pm∆2

4τ
, λ =

Pp

τ
. (1)

Using these relationships we consider the parameters in the discrete model, (Pm, Pp,∆, τ), as being inter-

changeable with the model parameters, D and λ [16, 17]. We treat ∆ and τ as constants: ∆ is measurable

[34] and τ is a constant that is chosen to be sufficiently small that the results are independent of the time

step [38]. For all simulations τ = 1/24 h. Although our model is an exclusion process, whereby individual

agents are subject to crowding effects, previous analysis has shown that the two-dimensional spreading of a

population of these agents due to random motility with crowding is described by a linear diffusion mecha-

nism with D = Pm∆2/4τ [31].

In any simulation we have N(t) agents, and during each timestep, N(t) agents are selected sequentially

at random, with replacement, and given the opportunity to move with probability Pm. If an agent under-

going a movement event is currently at (x, y) it attempts to move to (x±∆, y) or (x, y ±∆), without bias.

After N(t) agents have attempted to move, an additional N(t) agents are selected sequentially at random,
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with replacement, and given the opportunity to proliferate with probability Pp. An agent undergoing a

proliferation event at (x, y) will attempt to place a daughter agent at (x±∆, y) or (x, y±∆), without bias.

Potential motility or proliferation events only succeed if the target site is vacant [32].

The geometry of a scratch assay is approximated with a lattice of height Y∆ and width X∆. The field

of view of our microscope and average cell size provide a natural choice for ∆, Y and X. The average

cell diameter of 3T3 fibroblasts has been measured previously, giving ∆ = 25 µm [34]. For our synthetic

data set we consider an idealised case where X and Y are the same for both assays. For our experimental

data set, the experimental image of a scrape assay in Figure 2(a) gives Y = 27 and X = 36, while the

experimental image of a wound assay in Figure 2(e) gives Y = 49 and X = 36. Since the approximately

spatially uniform population extends well beyond the boundaries of the field of view, there will be no net

flux of cells across these boundaries [15]. Hence we apply no net flux (symmetry) boundary conditions along

the lines y = 0, y = Y∆, x = 0, x = X∆ [15, 16, 17]. To model a scrape assay, we randomly place N(0)

agents in the region y ≤ Y0∆ such that each lattice site is occupied by, at most, one agent. We note that

Y0 is the height of the initially-occupied region in a scrape assay. Our wound assay contains a total of N(0)

agents in two regions, y ≤ Y0,1∆ and y > (Y − Y0,2)∆, where Y0,1 and Y0,2 are the height of the initially

occupied regions at y = 0 and y = Y∆, respectively. To calculate N(0) we count the number of cells in the

relevant experimental observation at t = 0 h.

In the mathematical model we can alter X, Y , N(0), the height of the initially-confluent monolayer

and the number and timing of observations captured. However, since we aim to mimic an experiment, we

recognise that some design parameters are constrained by the experimental procedure. For example, X

and Y are defined by the field of view of the microscope. Therefore, without additional equipment, we

cannot alter this feature of the experimental domain. In addition, N(0) is determined by the cell density

at confluence, which is cell-type specific and cannot be easily varied. The height of the initially confluent

monolayer, either Y0 or Y0,1 and Y0,2, depends on the instrument used to perform the scratch and is difficult

to reproduce reliably, and is therefore inappropriate to consider as a design parameter. We therefore focus

on varying the number and timing of experimental observations captured. A single observation must be

captured to determine the state of the system at t = 0 h and, consequently, we can only vary the number

of observations captured after the initial observation. Therefore, the number of experimental observations

captured refers to the number of observations captured after the initial observation.

2.3. Data interpretation

Both the synthetic data set, produced by our mathematical model, and the experimental data set contain

the spatial positions of N(t) cells in each observation. We note that the cell positions in the experimental

6



data set are obtained manually while the cell positions in the synthetic data set are obtained automatically.

However, it is computationally intractable to compare the data sets using the spatial position of all cells.

Johnston and coworkers [17] found that considering the number of cells, N(t), and the pair correlation

function, q(i) [3], provides a summary statistic that contains a large percentage of the complete information.

A summary statistic provides a lower-dimensional summary of a data set that allows tractable comparisons

between data sets [10, 24]. Full details of the pair correlation function are presented elsewhere [3], and are

summarised here. Briefly, we count the number of pairs of cells, separated by a distance of i∆ µm, in the

y-direction and define this as c(i), which is the counts of pair distances. We note that we could repeat this

for the x-direction, however since the initial distribution of cells in the x-direction is, on average, uniform,

and remains uniform throughout the experiment [3], we choose to focus on the counts of pair distances in

the y direction only. The counts of pair distances are normalised to obtain the pair correlation function

q(i) =
c(i)

X2(Y − i)ρρ̄
, (2)

where ρ = N(t)/(XY ) is the mean density and ρ̄ = (N(t)−1)/(XY −1). The process of obtaining q(i) from

the experimental images is shown in Figure 2. To do this we identify the position of the centre of each cell

in Figures 2(a) and (e) and mark their position with a red square in Figures 2(b) and (f), respectively. The

red markers are deliberately chosen to be smaller than the cell diameter so that superimposing the markers

on the experimental images does not obscure the view of the cells. We map the cell positions onto the lattice

described in Section 2.2. We present the resulting lattice for the cell positions identified in Figures 2(b)

and (f) in Figures 2(c) and (g), respectively. The corresponding pair correlation functions are presented in

Figures 2(d) and (h), respectively, at 0, 4, 8 and 12 h.

2.4. Approximate Bayesian computation

To investigate which values of D and λ can generate summary statistics that are consistent with our

synthetic or experimental data set we apply an ABC algorithm [2, 17, 24, 35, 37]. The ABC algorithm

involves performing M identically-prepared stochastic realisations of the mathematical framework described

in Section 2.2 and uses a combination of N(t) and q(i) as a summary statistic to determine an approximate

posterior distribution of D and λ [17]. We note that we consider the uniform prior distribution for all data

sets. Further details are given in the Supplementary Material.

3. Results

3.1. Assay choice: synthetic data set

In the experimental literature there has been no explicit discussion of whether the choice of performing

a scrape or wound assay influences our ability to estimate D and λ. Therefore, we attempt to recover

estimates of D and λ from synthetic data sets generated from the mathematical framework, for both assays.
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Figure 3: Mean model parameter estimates with 90% credible intervals, for a synthetically generated data set interpreted with
a suite of combinations of observation times. (a)-(b) Mean estimates of Pm. (c)-(d) Mean estimates of Pp. The dashed line
corresponds to the model parameter values used to obtain the synthetic data set. The blue crosses correspond to the mean
values. (e)-(f) Mean DKL values. The blue bar corresponds to the information gained about Pm and the green bar corresponds
to information gained about Pp. The red crosses denote the combination of observation times that results in the highest DKL

value. Data was generated using (Pm, Pp) = (0.25, 2 × 10−3). For all simulations τ = 1/24 h, N(0) = 100, M = 106, X = 36,
Y = 27, ∆ = 25 µm. For scrape assays, Y0 = 10. For wound assays, Y0,1 = Y0,2 = 5.
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Observation Times (h) 3 6 9 12 3,12 6,12 8,12 10,12
Scrape Assay Pm 90% CI 0.52 0.34 0.36 0.28 0.30 0.26 0.24 0.24
Wound Assay Pm 90% CI 0.32 0.36 0.38 0.49 0.26 0.28 0.34 0.40

Scrape Assay Pp 90% CI (10−3) 2.2 1.4 1.2 1.0 1.0 1.0 1.0 1.0
Wound Assay Pp 90% CI (10−3) 3.0 1.6 1.2 1.2 1.2 1.2 1.2 1.2

Observation Times (h) 1,2,3 2,4,6 3, 6,9 4,8,12 8,10,12 6,9,12 2,9,12 2,4,12
Scrape Assay Pm 90% CI 0.45 0.34 0.34 0.22 0.22 0.22 0.24 0.24
Wound Assay Pm 90% CI 0.20 0.30 0.28 0.26 0.30 0.36 0.28 0.30

Scrape Assay Pp 90% CI (10−3) 2.4 1.4 1.2 1.0 1.0 1.0 1.0 1.0
Wound Assay Pp 90% CI (10−3) 3.1 1.6 1.2 1.2 1.2 1.2 1.0 1.2

Table 1: Comparison between the width of the 90% credible interval (CI), symmetric around the mode, for (i) Pm in the scrape
assay; (ii) Pm in the wound assay; (iii) Pp in the scrape assay, and (iv) Pp in the wound assay for a suite of combinations of
observation times. The assay type with the narrower credible interval for each combination of observation times and parameter
is presented in bold.

We consider biologically relevant model parameters (Pm, Pp) = (0.25, 2 × 10−3), where cell proliferation

occurs over a significantly longer timescale than cell motility [34]. We perform ten identically-prepared

realisations of the mathematical model for both assays. For each realisation and assay we calculate q(i)

and N(t) at t = 0, 1, 2, ..., 12 h [17]. We note that, in our synthetic experiments, t = 12 h approximately

corresponds to the observed time taken for a cell front to move across a typical experimental field of view.

For each realisation, we apply the ABC algorithm with the appropriate initial condition, and calculate the

approximate posterior distribution of D and λ. For each assay, we then average the posterior distributions

[16]. To measure the amount of information gained from the ABC algorithm we discretise the posterior

distribution into 104 equally-spaced values of Pp, for Pp ∈ [0, 1], and 102 equally-spaced values of Pm, for

Pm ∈ [0, 1]. Since proliferation takes place on a longer timescale than motility [17, 39], we require a finer

resolution for Pp than Pm. We then calculate the Kullback-Leibler divergence [4]

DKL(f |π) =

106∑
j=1

f(θj |β)ln

(
f(θj |β)

π(θj)

)
, (3)

where f is the posterior distribution, β is a data set, π is the uniform prior distribution, θ is a model

parameter pair and the index j accounts for all possible parameter pairs. We also calculate the marginal

distributions for Pm and Pp by averaging the posterior distribution across Pp and Pm, respectively, and

evaluate the corresponding value of DKL. The mean and 90% credible interval, symmetrical around the

mode, for Pm and Pp, are then estimated from the marginal distributions.

The posterior distributions of D and λ are calculated, for both assays, using a suite of combinations of

observation times. Typically, scratch assays are interpreted with, at most, two observation times [1, 26, 30].

Therefore, we restrict our investigation to, at most, three observation times after the initial scratch is made.
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The mean model parameter estimates and 90% credible intervals for both assays are given in Figures 3(a)-

(d), indicating that the majority of combinations of observation times provide estimates of Pm and Pp that

match those used to generate the synthetic data set for both assays. However, the credible intervals indicate

that there is greater uncertainty in the estimates of Pm for the majority of combinations of observation times

in the wound assay. We highlight the assay type with a narrower credible interval, corresponding to less

uncertainty, for each combination of observation times in Figure 3 in Table 1. We attribute the greater un-

certainty about Pm in the wound assay to the fact that the two cell fronts begin to interact toward the end of

the experiment, which results in pair correlation functions that can be replicated with different values of Pm.

Interestingly, the credible intervals for Pp are similar for both the wound and scrape assay, suggesting

that the difference in assay geometry does not influence the uncertainty associated with Pp. It is possible

that the uncertainty associated with Pp is proportional to N(0), which is the same for both synthetic assays.

To explore this possibility, we repeat the synthetic scrape assay with N(0) = 50 and find that, for all

combinations of observation times, there is more uncertainty in the recovered parameters compared to the

synthetic scrape assay with N(0) = 100 (Tables 1-2, Supplementary Material). To examine the amount of

information gained about the model parameters, we present DKL for the suite of combinations of observation

times, for both assay types, in Figures 3(e)-(f). Our results indicate that, predominantly, the scrape assay

gives higher DKL values when compared to the same combination of observation times in the wound assay.

We note that there are cases where the DKL value is higher for the wound assay. However, this occurs for

combinations of observations times where the final observation is made at short time and hence these do

not correspond to the designs that provide the most information. We denote the combination of observation

times that provides the most information both the scrape and wound assay with a red cross in Figures 3(e)-

(f), respectively. The most informative design in the scrape assay results in a DKL value of 8.11, compared

to 7.90 in the wound assay. For both assay types, the most informative design includes a final observation

time at t = 12h, which corresponds to the final observation captured. We note that the Kullback-Leibler

divergence is logarithmic, meaning that a large difference in uncertainty can correspond to a small difference

in DKL. To illustrate this, consider the DKL values and uncertainty associated with Pp in the scrape assay

at 1, 2, 3 h and 2, 4, 6 h. The DKL values are 5.93 and 6.32, respectively, while the width of the 90% credible

intervals are 2.4×10−3 and 1.4×10−3, respectively. In this case a 6% increase in DKL corresponds to a 42%

reduction in the credible interval. Tabular form of the data in Figure 3 is provided in the Supplementary

Material.
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Figure 4: Mean model parameter estimates with 90% credible intervals, for an experimentally generated data set interpreted
with a suite of combinations of observation times. (a)-(b) Mean estimates of D, given by Equation (3). (c)-(d) Mean estimates
of λ. The blue crosses correspond to the mean values. (e)-(f) Mean DKL values, given by Equation (3). The blue bar
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X = 36, Y = 27, ∆ = 25 µm. For scrape assays, N(0) = 155, Y0 = 10. For wound assays, N(0) = 226, Y0,1 = 7, Y0,2 = 9.
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3.2. Assay choice: experimental data set

We now repeat the process in Section 3.1 for an experimental data set obtained using the procedure

described in Section 2.1. We note that the wound assay was performed over 24 h whereas the scrape assay

was performed over 12 h. These timescales were chosen since they indicate the amount of time required for

the cell front(s) in the two different assays to move across their respective field of view. Without a priori

information about D, it is difficult to choose an appropriate final time. Therefore, we capture experimental

observations relatively frequently until the cell front has moved across the field of view. After the final ob-

servation has been captured, we select the relevant earlier observations to interpret our experimental results.

While it is possible to capture experimental observations after the front(s) have moved across the field of

view, it is unlikely that there is any additional information to be gained. Since the wound and scrape assays

are different experiments, and hence are captured over different time periods, we compare combinations

of observation times relative to the final time of the experiment, as this systematically utilises all relevant

data for each experiment. For example, 6 and 12 h in the scrape assay are compared to 12 and 24 h in the

wound assay. It would be computationally infeasible to explore all possible observation times and, as such,

we attempt to provide a fair comparison by selecting observation times in a sensible manner.

We present mean estimates of D and λ, with 90% credible intervals, symmetric about the mode, for both

assays in Figures 4(a)-(d). We observe that the qualitative trend for the mean model parameter estimates

with regard to the combination of observation times is consistent for both assays. This suggests that com-

paring combinations of observation times after the same proportion of the final observation time is reasonable.

Unlike the synthetic data set, we observe that the scrape and wound assay provide different estimates of

the cell diffusivity, D. Given that estimates of D for 3T3 fibroblasts are reported to be in the range 30-3000

µm2/h [5, 17, 39, 40], our observed variation is not necessarily surprising. However, we note that our esti-

mates of D are consistent with previous results obtained by interpreting experiments using 3T3 cells with

an ABC algorithm [17]. Comparing the credible intervals for the two assays we observe that, again, there is

more uncertainty associated with D for the majority of combinations of observation times in the wound assay.

Our estimates of the cell proliferation rate, λ, from the two assays are similar. This is consistent with

the synthetic data set, suggesting that estimates of λ are relatively insensitive to whether we consider a

scrape or wound assay. However, the 90% credible intervals for λ are always smaller for the wound assay.

The reduction in uncertainty may be attributed to the larger number of initial cells in the wound assay,

as we observed similar credible intervals in the synthetic data set where N(0) is the same for both assays.

Evaluating the DKL value for each combination of observation times and both assays, presented in Figures

4(e)-(f), respectively, suggests that more information is obtained from the wound assay. However, decom-
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posing the DKL value into the DKL values for the marginal distributions for D and λ, which correspond to

the blue and green bars in Figures 4(e)-(f), respectively, suggests that while more information is obtained

about λ in the wound assay, the scrape assay provides more information about D. The most informative

combination of observation times, denoted by the red crosses in Figures 4(e)-(f), provides more information

in the wound assay than in the scrape assay. Again, however, this additional information is associated with

λ. Furthermore, similar to the results obtained from the synthetic data set, the most informative combina-

tion of observations for both assays include the final experimental observation. Tabular form of the data in

Figure 4 is provided in the Supplementary Material.

Unfortunately, the additional information obtained from the wound assay is associated with two impor-

tant limitations. First, the interpretation of the experimental images is significantly more time-consuming

due to higher N(t) values. Second, the time required to perform the ABC algorithm for the experimental

wound assay is significantly longer than for the experimental scrape assay, due to the increase in both the

final time and initial number of cells. Running in parallel on ten cores (2.66 GHz Intel Xeon E5-2670), the

ABC algorithm for the wound assay required approximately one week of computation time, whereas the

scrape assay required approximately one day of computation time.

3.3. Choice of observation times: synthetic data set

Typically, in the experimental literature there is no explicit discussion about the choice of the duration

of the experiment [1, 17, 19, 26]. Therefore, it is instructive to compare estimates of D and λ, and the corre-

sponding DKL values, for different final time points using synthetic data. Using the approximate posterior

distributions generated in Section 3 we calculate the mean estimates of Pm and Pp, and the corresponding

mean 90% credible intervals, symmetric around the mode, for a final observation time of 3, 6, 9 and 12 h.

Results are presented in Figures 5(a)-(b) and Figures 5(d)-(e), for the scratch assay and the wound assay,

respectively. For both assays we see that the mean parameter estimates depend on the choice of final obser-

vation time. To determine which final observation time provides the most information about D and λ we

calculate the mean DKL value, for both Pm and Pp, for each final observation time. The mean DKL values

are presented in Figures 5(c) and (f) for the scrape assay and wound assay, respectively. We note that the

green bar reflects the information gained about Pp while the blue bar reflects the information gained about

Pm. For the scrape assay, we observe that a final observation time of 12 h provides the most information

about both Pm and Pp and note that 12 h corresponds to the approximate time taken for the cell front to

move across the experimental field of view. This result is intuitive, as we are able to observe cell migration

and proliferation until the cell front crosses, and leaves, the experimental field of view. For the wound assay,

we observe that the information gained peaks at a final observation time of 9 h. Again, this result is intuitive

as the two opposingly-directed cell fronts begin to interact towards the end of the experiment, and hence
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respectively, for the scrape assay for a final observation time of 3 h, 6 h, 9 h and 12 h. (d)-(f) Mean estimates of Pm and Pp with
corresponding 90% credible intervals, and the mean DKL values, respectively, for the wound assay for a final observation time
of 3 h, 6 h, 9 h and 12 h. The mean DKL values were calculated using Equation (3). The green bar corresponds to the DKL

value for Pp and the blue bar corresponds to the DKL value for Pm. For all simulations τ = 1/24 h, N(0) = 100, M = 106,
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For scrape assays, Y0 = 10. For wound assays, Y0,1 = Y0,2 = 5. The crosses correspond to the mean values.

information is lost beyond that time. This suggests that interpreting experimental observations in a wound

assay after the two cell fronts merge does not provide additional information about D and λ.

Currently, there is no explicit discussion in the experimental literature about the choice of the number

of observations. Typically there is, at most, two observations made after the initial observation [1, 26, 30],

which is due to the cost associated with capturing and interpreting experimental observations. Therefore,

we restrict our analysis to consider, at most, three observations after the initial observation. We present the

mean parameter estimates, and the mean of the corresponding 90% credible intervals, symmetric around

the mode, that we obtain when we analyse one, two and three observations in Figures 6(a)-(b) and Figures

6(d)-(e), for the scrape and wound assays, respectively. While our estimates of Pm and Pp are sensitive

to the number of observations, they are less sensitive compared to the choice of final observation time. To

determine whether there is any benefit in capturing and interpreting additional experimental observations,

15



we calculate the mean DKL value for Pm and Pp, for one, two and three observations. To obtain the mean

DKL value for one observation we consider the mean of four DKL values. Each of these DKL values is

obtained using a combination of observation times that contains a single observation, that is, either 3 h, 6

h, 9 h or 12 h. We follow a similar process to obtain the mean DKL values for two and three observations.

For two and three observations we calculate the mean of the DKL values obtained from all combinations of

observation times that contain two and three observations, respectively. The mean DKL values are given

in Figures 6(c) and (f). In both assays, on average, there is a slight increase in the amount of information

gained when we make two observations relative to when we make one observation. However, there is a much

smaller amount of information gained when we make three observations, compared to two observations. The

third observation does not provide a significant amount of additional information, even if we only compare

combinations of observations that include t = 12 h. With this additional restriction, in the scrape assay, we

obtain mean DKL values of 7.95 and 8.05 for two and three observations, respectively. In the wound assay,

we obtain mean DKL values of 7.64 for both two and three observations. The lack of additional information

obtained from interpreting three observations compared to two observations implies that there is likely to

be further diminishing returns and we therefore recommend that making two observations is sufficient.

3.4. Choice of observation times: experimental data set

We repeat the process described in Section 3.3 for our experimental data set and calculate the mean

model parameter estimates, and corresponding mean 90% credible intervals, for different final observation

times. Again, we note that the wound assay was performed over 24 h and that we compare observation

times after the same proportion of time has elapsed relative to the final time. For example, we compare

an observation at 6 h in the scrape assay with an observation at 12 h in the wound assay. We present the

mean model parameter estimates and 90% credible intervals in Figures 7(a)-(b) and Figures 7(d)-(e), for the

scrape and wound assays, respectively. Similar to the synthetic results, we observe that the estimates of D

are more sensitive to the choice of final observation time in the wound assay. Additionally, estimates of λ are

more sensitive to the choice of final observation time in the wound assay, a trend that is not observed in the

synthetic data set. Interestingly, while the estimates of λ are more sensitive in the wound assay, the DKL

values corresponding to λ, represented by the green bar in Figures 7(c) and (f), are higher for the wound

than the scrape assay. We attribute this to the additional number of cells present in the wound assay, which

may influence the information gained but not the relationship between λ and the final observation time.

The DKL value for the scrape assay, given in Figure 7(c), increases with the final observation time. Con-

versely, the DKL value for the wound assay, given in Figure 7(f), does not increase significantly after a final

observation time of 12 h. We observe that the composition of the DKL value for the wound assay changes

with the final observation time; as the final observation time increases, the DKL value for D decreases and

the DKL value for λ increases, while the sum of the two DKL values is approximately constant. This result

16



(a) (b) (c)

6 12 18 24
0

3000

6 12 18 24
0

0.06

6 12 18 24
0

3

6

9

Final Observation Time (h)

Final Observation Time (h)

Final Observation Time (h)

Wound AssayWound AssayWound Assay (d) (e) (f )

D 

(μm2/h)

3 6 9 12
0

3000

3 6 9 12
0

0.06

3 6 9 12
0

3

6

9

Final Observation Time (h)

Final Observation Time (h)Final Observation Time (h)

Scrape Assay Scrape Assay Scrape Assay

D 

(μm2/h) λ (/h)

λ (/h)

D
KL

D
KL
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17



1 2 3
0

3000

1 2 3
0

0.06

1 2 3
0

3

6

9

Number of ObservationsNumber of Observations Number of Observations

Wound AssayWound AssayWound Assay (d) (f )(e)

D 

(μm2/h)

1 2 3
0

3000

1 2 3
0

0.06

1 2 3
0

3

6

9

Number of ObservationsNumber of Observations Number of Observations

Scrape AssayScrape Assay Scrape Assay(a) (b) (c)

D 

(μm2/h) λ (/h)

λ (/h)

D
KL

D
KL

Figure 8: Results obtained from the parameter inference approach applied to the experimental data set. (a)-(c) Mean estimates
of Pm and Pp with corresponding 90% credible intervals, and the mean DKL values, respectively, for the scrape assay for one,
two and three observations. (d)-(f) Mean estimates of Pm and Pp with corresponding 90% credible intervals, and the mean
DKL values, respectively, for the wound assay for one, two and three observations. The mean DKL values were calculated
using Equation (3). The green bar corresponds to the DKL value for λ and the blue bar corresponds to the DKL value for D.
For all simulations τ = 1/24 h, M = 106, X = 36, Y = 49, ∆ = 25 µm. For scrape assays, N(0) = 155, Y0 = 10. For wound
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is consistent with the synthetic wound assay, where we observed that information about D is lost when the

two cell fronts began to interact.

We now examine the influence of the number of observations on our estimates of D and λ and the cor-

responding DKL values. The mean model parameter estimates for all combinations of observation times,

for one, two and three observations are presented, with the corresponding mean 90% credible interval for

D and λ, in Figures 8(a)-(b) and Figures 8(d)-(e) for the scrape and wound assays, respectively. For both

model parameters and assays, the parameter estimates are less sensitive to the number of observations than

to the final observation time, which is consistent with the synthetic results. It is instructive to consider

whether the number of observations influences DKL, to provide guidance about the number of experimental

observations that ought to be captured. We present the DKL values for one, two and three observations

for the scrape and wound assays in Figures 8(c) and (f), respectively. Similar to the synthetic results for

the data set in Section 3.3, there is no significant increase in information gained between two and three
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Figure 9: Approximate posterior distributions corresponding to different combinations of observation times for the wound
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the black curves are obtained from observations at 12, 18 and 24 h. Dashed lines correspond to mean parameter estimates.
For all simulations τ = 1/24 h, M = 106, X = 36, Y = 49, N(0) = 226, Y0,1 = 7, Y0,2 = 9, ∆ = 25 µm.

observations, implying that capturing and interpreting additional experimental observations is unneces-

sary. Given that the interpretation of experimental observations is both time-consuming and expensive, this

result provides useful guidance about the number of experimental observations required to estimate D and λ.

For all data sets we observe that it is possible to obtain consistent DKL values with different combinations

of observation times, suggesting that various experimental designs are equally informative. However, it is

also important to consider the ratio of the DKL values associated with the marginal distributions of Pm and

Pp. To illustrate this, we present the approximate posterior distributions of D and λ for the experimental

wound assay data set using the combinations of observation times at 6, 12, 18 h, and 12, 18, 24 h in Figures

9(a)-(b), respectively. The DKL values, presented in Figure 9(c), for the two posterior distributions are

similar: 8.63 and 8.50, respectively, suggesting that both are approximately equally informative. However,

if we consider the marginal distributions, we find that the 6, 12, 18 h design results in approximately 30%

extra information about D compared to the 12, 18, 24 h design, while retaining 97% of the information about
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λ. The marginal distributions in Figures 9(d)-(e) illustrate the relative information gain for the two designs.

We observe that the marginal distribution for D varies significantly, in particular the width of support of the

distribution is very different, while the marginal distributions for λ are relatively consistent. The change in

distribution for D suggests that the ratio between marginal DKL values can be used to distinguish between

posterior distributions that have similar DKL values.

4. Summary of results and recommendations

Our results provide guidance about experimental design choices for scratch assays. For both synthetic

and experimental data sets we observe that the scrape assay provides estimates of D and λ that are less

sensitive to the choice of observation times. For the synthetic data set, where D and λ are known in advance,

the scrape assay provides more robust estimates of D and λ. With regard to the information gained about

D and λ, defined using the Kullback-Leibler divergence, the scrape assay is superior for the synthetic data

set. Conversely, for the experimental data set, the wound assay provides more information about the model

parameters than the scrape assay. However, if we consider the DKL values for the marginal distribution of D

and λ, we see that the additional information gained in the wound assay is primarily associated with λ. This

result is intuitive for the experimental data set, as initially there are significantly more cells in the wound

assay than in the scrape assay, in contrast with the synthetic data set where the initial number of cells is

the same for both assays. We found that the increase in the initial number of cells results in an increase in

computational time of approximately one order of magnitude between the scrape assay and the wound assay.

The majority of combinations of observation times for the scrape assay lead to more information about D

than the corresponding combinations of observation times for the wound assay. As the DKL values asso-

ciated with the marginal distribution of D are significantly lower than those associated with the marginal

distribution of λ, an increase in information about D is more significant than an equivalent absolute increase

in information about λ. Therefore, since the scrape assay provides more robust estimates of D and λ, is

less sensitive to the choice of combination of observation times, and is more computationally efficient, we

recommend that scrape assays, instead of wound assays, ought to be used to estimate D and λ. We note

that these recommendations are based upon experimental observations for a mesenchymal (non-adhesive)

cell population and that our recommendations may not be valid for cell populations that involve significant

cell-to-cell adhesion.

The uncertainty in our estimates of λ is sensitive to the data obtained at the final observation time. It

is intuitive to consider the estimate of λ obtained from a combination of experimental observations that

include the latest final observation time, as it is difficult to characterise λ for an experimental time that is

significantly less than the cell doubling time, which is approximately 24 h [16]. For the scrape assay, using
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both experimental and synthetic data sets, we observe that using a final observation time corresponding to

time taken for the cell front to cross the experimental field of view provides the most information about D

and λ. The choice of the number of observations captured and interpreted affects both the cost and amount

of time required to analyse an experiment. Therefore, there is a considerable advantage in minimising the

number of observations. We note that the main cost of our approach is associated with the interpretation,

rather than the capture, of the experimental images. Therefore, if there is no prior estimate of D, which

provides guidance about the final experimental time, images can be captured until the cell front has crossed

the experimental field of view. The choice of which images to interpret can then be made after the experi-

ment is performed and the final observation time is determined. For both assays and data sets, we observe

that there is, at best, a small increase in information gained by interpreting three experimental observations

compared to two. To minimise the expense associated with interpreting experiments, we recommend that

two experimental observations are captured, after the initial observation. The time when the first obser-

vation is captured, after the initial observation, does not significantly influence the information obtained,

compared to the final observation time. As such, we do not provide a recommendation for the time when

the first observation should be captured.

5. Discussion and conclusions

Scratch assays are widely used to observe collective cell spreading and to examine the influence of poten-

tial drugs on the rates of cell motility and proliferation [11, 19, 20, 41]. However, the experimental design of

scratch assays reported in the literature varies considerably [1, 5, 16, 17, 25, 26, 30]. The number of exper-

imental observations, the timing at which the observations are captured, and the type of scratch assay are

all technically straightforward to vary but there is no explicit discussion in the literature about the influence

of these design choices. To the best of our knowledge, there is no biological justification associated with

the choice of assay type. Instead, this choice appears to be made according to personal preference. Math-

ematical models that can be used to estimate D and λ have been presented previously, but these previous

applications have not considered the influence of varying experimental designs [5, 16, 17, 28, 40]. To address

this limitation, we quantify the information gained about the D and λ, depending on whether a scrape or

wound assay is performed. We also investigate the amount of information gained depending on how many

experimental observations are captured, and the timing of these observations. To interpret the experimental

observations we use an ABC method which provides an approximate bivariate posterior distribution of D

and λ [17]. This allows us to quantify the amount of information gained about the model parameters, D and

λ, thereby providing guidance about the influence of the experimental design. By identifying experimental

designs that allow for more robust parameter estimation, we can make objective recommendations about
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the number of experimental observations required and, subsequently, reduce the time and cost requirements.

We find that a scrape assay, with just one cell front, provides more robust estimates of the random

motility, D, and the cell proliferation rate, λ, is more computationally efficient, requires less time to locate

cell positions, and provides more information about D, without sacrificing too much information about λ,

compared to the wound assay. Therefore, if the aim is to estimate D and λ, we recommend that scrape

assays, and not wound assays, be performed. We find that most information about D and λ is obtained

when the final observation time corresponds to the amount of time taken for the front to migrate across the

experimental field of view. We also find there is limited benefit to capturing three observations, compared

to two.

The work presented here could be extended in several ways. We note that our experimental analysis is

relevant for a mesenchymal cell population and that the influence of cell-to-cell or cell-to-substrate adhesion

in epithelial cell populations may affect our recommendations. In our mathematical model, we make the

standard assumption that both D and λ are constant [16, 17, 33, 34], However, from the results presented

in Figure 7, we observe that D appears to increase with time. It is possible that the cells are disrupted

by the initial scratch or the addition of fresh medium immediately after the scratch is performed. We do

not make any suggestion about the putative form of any model parameters that may depend on time or

local cell density. It would be instructive to consider an extension to our discrete mathematical model

with parameters that are not constant [8, 13] and, subsequently, to investigate whether ABC can result in

robust model parameter estimates for a more complicated mathematical model. Such a model may require

a different choice of summary statistic and we could employ a semi-automatic approach to determine an

appropriate summary statistic [10]. A similar investigation of potential summary statistics for a model

that includes parameters that are sensitive to chemical gradients could be performed. However, introducing

chemotaxis into the mathematical model increases both the complexity of the model and the number of un-

known model parameters. For example, a chemotaxis model would include the diffusivity of the attractant,

the production rate of the attractant, the decay rate of the attractant, as well as the parameters governing

the chemotactic sensitivity function [18]. We therefore leave this for future work. Alternatively, we could

apply the approach outlined in this work to different types of in vitro experiments, such as two-dimensional

barrier assays or three-dimensional spheroid assays, to quantify the impact of experimental design choices.

We make two approximations to compare the cell positions in the experimental images to the mathematical

model. First, we assume that cells are incompressible, uniformly-sized disks and, second, we map the cell

positions on to a regular lattice with lattice spacing equivalent to the average cell diameter [34]. It would

be instructive to relax these assumptions by considering cells that are able to deform or by considering a

lattice-free mathematical model. However, both of these approaches would significantly increase the com-
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plexity of the mathematical model. Subsequently, the time required to perform the ABC algorithm would

become intractable and, as such, we leave this extension for a future study.
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