Cytokine-macrophage regulatory network in mammary gland development and tumourigenesis

Xuan Sun

Robinson Research Institute, Research Centre for Reproductive Health,
Discipline of Obstetrics and Gynaecology,
School of Paediatrics and Reproductive Health, Faculty of Health Sciences,
The University of Adelaide, Australia

A thesis submitted to the University of Adelaide in fulfilment of the requirements for admission to the degree Doctor of Philosophy

April 2015
Table of Content

List of Figures ... vi
List of Tables ... ix
Abstract ... x
Declaration .. xiii
Acknowledgements .. xiv
Publications arising from this thesis xv
Abstracts arising from this thesis .. xvi
Abbreviations ... xviii

Chapter 1 Literature Review .. 1

1.1 Abstract .. 4
1.2 Introduction ... 5
1.3 Macrophages in the mammary gland 5
1.4 CSF1 .. 8
 1.4.1 CSF1 in mammary gland development 8
 1.4.2 CSF1 in breast cancer .. 9
1.5 TGFB1 ... 10
 1.5.1 TGFB1 in mammary gland development 11
 1.5.2 TGFB1 affects macrophage phenotype and function 13
 1.5.3 TGFB1 and breast cancer ... 14
1.6 CCL2 .. 16
 1.6.1 CCL2 in breast cancer .. 17
1.7 Other epithelial cell-derived cytokines 18
Chapter 2 Methods and Materials ... 22

2.1 Human Non-neoplastic Breast Tissue 23
2.2 Animals and Surgeries .. 23
 2.2.1 Mice ... 23
 2.2.2 General Surgical Procedures .. 29
 2.2.3 Mammary Gland Transplants .. 29
 2.2.4 Ovariectomy .. 29
 2.2.5 Hormone Replacement ... 30
 2.2.6 Blood Collection .. 30
 2.2.7 Estrous Cycle Tracking ... 30
 2.2.8 Doxycycline Administration ... 31
 2.2.9 DMBA Administration .. 31
2.3 Nucleotide Analysis .. 31
 2.3.1 Genotyping Mice .. 31
 2.3.2 Quantitative Real-Time PCR .. 35
2.4 Protein Analysis ... 38
 2.4.1 Protein Extraction .. 38
 2.4.2 Pierce™ BCA Protein Assay .. 39
 2.4.3 CCL2 ELISA ... 39
2.5 Histology and Immunohistochemistry 39
 2.5.1 Tissue collection, embedding and sectioning 39
 2.5.2 Immunohistochemistry Protocol 41
2.6 Statistical Analysis .. 50
Chapter 3 Regulation of macrophage phenotype in the mammary gland by epithelial cell-derived TGFB1

3.1 Introduction .. 53
3.2 Co-localisation of active TGFB1 and macrophages in mammary gland 55
3.3 Dual-label immunofluorescence of mammary epithelial cells and macrophages in the mammary gland .. 56
3.4 Effect of epithelial cell-derived TGFB1 on macrophage abundance and phenotype in the mammary gland at diestrus .. 56
 3.4.1 F4/80 ... 59
 3.4.2 iNOS ... 59
 3.4.3 CCR7 ... 60
3.5 Relationship between epithelial cell-derived TGFB1 and macrophage phenotype in human non-neoplastic breast tissue ... 64
 3.5.1 Relationship between TGFB1 expression and CD68+ cell abundance 64
 3.5.2 Relationship between TGFB1 expression and CD206+ cell abundance 65
 3.5.3 Relationship between TGFB1 expression and iNOS abundance 71
 3.5.4 Relationship between TGFB expression and CCR7 abundance 71
3.6 Discussion ... 74
 3.6.1 Co-localisation of TGFB1 and macrophages in the mammary gland 74
 3.6.2 Epithelial cell-derived TGFB1 regulates macrophages in the mouse mammary gland 74
 3.6.3 Relationship between epithelial cell-derived TGFB1 and macrophage location and phenotypes in the human breast ... 75
3.7 Conclusion ... 77

Chapter 4 The role of TGFB-regulated macrophages in mammary gland development and cancer ... 78

4.1 Introduction ... 79
4.2 Expression of dominant negative TGFB receptor in TGF-Mac mice 79
4.3 Effect of impaired TGFB signalling in macrophages on estrous cyclicity ... 82
4.4 Effect of impaired TGFB signalling in macrophages on mammary gland development at diestrus .. 82
4.5 Effect of impaired TGFB signalling in macrophages on macrophage abundance and phenotype in the mammary gland at diestrus .. 87
4.6 Effect of impaired TGFB signalling in macrophages on mammary gland cancer susceptibility in mice .. 89
4.7 Discussion .. 94
 4.7.1 TGFB-regulated macrophages inhibit mammary epithelial alveolar development at diestrus 94
 4.7.2 TGFB signalling to macrophages regulates macrophage invasion and inhibits “M1” macrophage activity ... 95
 4.7.3 Impaired TGFB signalling in macrophages reduces mammary cancer susceptibility in mice 96
 4.7.4 Limitations and future directions .. 97
4.8 Conclusion .. 98

Chapter 5 Regulation of macrophages, mammary gland development and cancer by epithelial cell-derived CCL2 ... 99

5.1 Introduction .. 100
5.2 Validation of Mmtv-Ccl2 transgenic mouse model .. 101
 5.2.1 Expression of Mmtv and Ccl2 mRNA in Mmtv-Ccl2 mice ... 101
 5.2.2 Constitutive expression of CCL2 protein in Mmtv-Ccl2 mice .. 102
5.3 Effect of constitutive expression of CCL2 on estrous cyclicity .. 105
5.4 Effect of constitutive expression of epithelial cell-derived CCL2 on mammary gland development during ovarian cycle ... 105
5.5 Effect of constitutive epithelial cell-derived CCL2 on epithelial cell proliferation and apoptosis in the mammary gland at proestrus .. 110
5.6 Effect of constitutive epithelial cell-derived CCL2 on macrophage recruitment and abundance in the mammary gland at proestrus .. 113
5.7 Effect of constitutive epithelial cell-derived CCL2 on collagen deposition and remodelling in the mammary gland at proestrus...115
5.8 Effect of constitutive expression of epithelial cell-derived CCL2 on mammary gland cancer susceptibility in mice..118
5.9 Relationship between CCL2 and macrophage phenotype in human non-neoplastic breast tissue ..118
5.10 Discussion ...123
 5.10.1 Epithelial cell-derived CCL2 inhibits mammary gland epithelium regression.........123
 5.10.2 Epithelial cell–derived CCL2 promotes macrophage recruitment in the mammary gland..124
 5.10.3 Epithelial cell-derived CCL2 promotes collagen deposition and remodelling in the mammary gland ..125
 5.10.4 Constitutive expression of epithelial cell-derived CCL2 increases mammary cancer susceptibility in mice ..127
 5.10.5 Epithelial cell-derived CCL2 affects macrophage functions in the human breast129
5.11 Conclusions...131

Chapter 6 General discussion and conclusions...132
 6.1 Introduction ...133
 6.2 Epithelial cell-derived cytokines regulate macrophage functions in mouse mammary gland development...134
 6.3 Epithelial cell-derived cytokines affect macrophage abundance and functions in the human breast ...137
 6.4 Cytokine-macrophage regulatory networks affect mammary cancer susceptibility........138
 6.5 Future research directions..140
 6.6 Conclusions...143

Chapter 7 Bibliography...146
 7.1 References...147

Chapter 8 Appendix...162
List of Figures

Figure 1.1 Summary of the actions of cytokines known to mediate epithelial cell-macrophage cross-talk in the mammary gland. ...20

Figure 2.1 Schematic outline of the regulation of transgene expression in TGF-Mac double transgenic mice. ..27

Figure 2.2 Generation of Mmtv-Ccl2 transgenic mice. ..28

Figure 2.3 Genotyping Tgfb1 mutation, rtTA transgene, Egfp-ΔTgfbrII transgene and Mmtv transgene by PCR. ...34

Figure 3.1 The co-localisation of active TGFB1 and macrophages in the mammary gland at diestrus...57

Figure 3.2 The dual-label immunofluorescence of mammary epithelial cells and F4/80-positive/MHCII-positive macrophages in the mammary gland. ..58

Figure 3.3 The effect of epithelial cell-derived TGFB1 on macrophage abundance and location within and around mammary epithelium. ...61

Figure 3.4 The effect of epithelial cell-derived TGFB1 on abundance and location of iNOS-positive cells within mammary epithelium stroma..62

Figure 3.5 The effect of epithelial cell-derived TGFB1 on abundance and location of CCR7-positive cells within mammary epithelium stroma..63

Figure 3.6 Detection of latent TGFB1 in human non-neoplastic breast tissue.66

Figure 3.7 Detection of the abundance of CD68-positive macrophages in human non-neoplastic breast tissue. ..67

Figure 3.8 Relationship between the expression of latent TFGB1 and the abundance of CD68-positive macrophages..68

Figure 3.9 Detection of the abundance of CD206-positive cells in human non-neoplastic breast tissue.69

Figure 3.10 Relationship between the expression of latent TFGB1 and the abundance of CD206-positive cells. ..70

Figure 3.11 Relationship between the expression of latent TFGB1 and the abundance of iNOS-positive cells. ..72

Figure 3.12 Relationship between the expression of latent TFGB1 and the abundance of CCR7-positive cells. ..73
Figure 4.1 Expression of ΔTgfbrII mRNA in doxycycline-treated Cfms-rtTA mice, doxycycline-treated TetO-TgfbrII mice, non-doxycycline treated TGF-Mac mice and doxycycline-treated TGF-Mac mice measured by RT-PCR. .. 81

Figure 4.2 Percentage of time spent in each stage of estrous cycle in doxycycline-treated C-fms-rtTA, TetO-TgfbrII and TGF-Mac adult mice. .. 84

Figure 4.3 The effect of impaired TGFB signalling in macrophages on mammary gland morphogenesis at diestrus. .. 85

Figure 4.4 The effect of impaired TGFB signalling in macrophages on mammary gland alveolar development at diestrus. .. 86

Figure 4.5 The effect of impaired TGFB signalling in macrophages on macrophage abundance and location within and around mammary epithelium. .. 90

Figure 4.6 The effect of impaired TGFB signalling in macrophages on abundance and location of iNOS-positive cells within mammary epithelium stroma. .. 91

Figure 4.7 The effect of impaired TGFB signalling in macrophages on abundance and location of CCR7-positive cells within mammary epithelium stroma. .. 92

Figure 4.8 The effect of impaired TGFB signalling in macrophages on mammary gland cancer susceptibility in mice. .. 93

Figure 5.1 Expression of Mmtv and Ccl2 mRNA in Mmtv-Ccl2 and control mice measured by RT-PCR. .. 103

Figure 5.2 Expression of CCL2 protein in Mmtv-Ccl2 and control mice measured by immunohistochemistry and ELISA. .. 104

Figure 5.3 Percentage of time spent in each stage of estrous cycle in control and Mmtv-Ccl2 adult mice. .. 107

Figure 5.4 The effect of epithelial cell-derived CCL2 on mammary gland morphogenesis during ovarian cycle. .. 108

Figure 5.5 The effect of epithelial cell-derived CCL2 on mammary gland alveolar development during ovarian cycle. .. 109

Figure 5.6 The effect of epithelial cell-derived CCL2 on mammary epithelial cell proliferation within control and Mmtv-Ccl2 mammary epithelium at proestrus. .. 111
Figure 5.7 The effect of epithelial cell-derived CCL2 on mammary epithelial cell apoptosis within control and Mmtv-Ccl2 mammary epithelium at proestrus...112

Figure 5.8 The effect of epithelial cell-derived CCL2 on macrophage abundance and location within and around mammary epithelium at proestrus ..114

Figure 5.9 The effect of epithelial cell-derived CCL2 on collagen density around mammary epithelium at proestrus ..116

Figure 5.10 The effect of epithelial cell-derived CCL2 on collagen remodelling enzymes mRNA expression in the mammary gland at proestrus ..117

Figure 5.11 The effect of epithelial cell-derived CCL2 on mammary gland cancer susceptibility in mice. ...120

Figure 5.12 Detection of the abundance of CCL2 in non-neoplastic human breast tissue..................121

Figure 5.13 Relationship between the expression of CCL2 and the abundance of macrophages in non-neoplastic human breast tissue. ..122

Figure 6.1 Schematic illustration of mechanisms involving epithelial cell-derived TGFB1 and CCL2 in regulation of macrophages in normal breast and breast cancer. ..145
List of Tables

Table 1.1 Macrophages have diverse and essential roles in mammary gland development7
Table 2.1 Estrous stage determination by vaginal smears..30
Table 2.2 PCR primers for mouse genotyping...32
Table 2.3 Custom made primer probes for TaqMan® qRT-PCR ..37
Table 2.4 Primers designed by Primer Express for qRT-PCR ..37
Table 2.5 Primary antibodies used for fresh-frozen mouse mammary gland tissue43
Table 2.6 Primary antibodies used for paraffin embedded mouse mammary gland tissue45
Table 2.7 Primary antibodies used for paraffin-embedded human breast tissue49
Table 4.1 The average length of estrous cycle and the number of estrous cycles within 28 days in adult doxycycline treated Cfls-rtTA, TetO-TgfbrII and TGF-Mac mice ...82
Table 5.1 The average length of estrous cycle and the number of estrous cycles with 28 days in adult control and Mmtv-Ccl2 mice ..105
Abstract

Development and function of the mammary gland involves complex and dynamic interactions between epithelial and stromal cells under the influence of hormones and cytokines. Macrophages are a major component of the mammary gland stroma and they are capable of many roles in mammary gland development; importantly, their functions are tightly regulated by signals within the local cytokine microenvironment. The mammary epithelium secretes a number of cytokines, including transforming growth factor beta 1 (TGFB1) and chemokine ligand 2 (CCL2), that might affect the phenotype and function of adjacent stromal macrophages. Furthermore, alterations in cytokine secretion, and macrophage abundance and phenotype have been observed throughout different stages of normal mammary gland development and in tumourigenesis. A number of studies have demonstrated the significance of TGFB1 and CCL2 in regulating macrophages in many other tissues; however, the importance of the function of this cytokine-macrophage regulatory network in mammary gland development and tumourigenesis is yet to be investigated. The studies described in this thesis aimed to investigate the significance of epithelial cell-derived TGFB1 and CCL2 in regulation of macrophages in mammary gland development and mammary cancer susceptibility in the mouse and human mammary gland.

Utilising a mouse mammary gland transplant model whereby the mammary gland tissue from Tgfb1 null mutant and wild-type mice were transplanted into TGFB1 replete recipients, we have demonstrated that deficiency in epithelial cell-derived TGFB1 caused a 50% increase of F4/80-positive macrophages invaded into the mammary epithelium, moreover, the number of iNOS-positive (“M1”) and CCR7-positive (“M1”) macrophages was increased by 78% and 200% respectively in the absence of epithelial cell-derived TGFB1. Similarly, immunohistochemical analysis of human non-neoplastic breast tissue revealed that there was a significant inverse relationship between the abundance of latent TGFB1 protein and the abundance of CD68-positive macrophages. We also observed a significant positive relationship between the abundance of latent TGFB1 and the density of stromal-associated CD206-positive (“M2”) macrophages.

Further investigation of the role of TGFB-regulated macrophages in mammary gland development and tumourigenesis was undertaken utilising a transgenic (Cfms-rTA x TetO-TgfbrII) mouse model whereby a dominant negative TGFB receptor is activated in macrophages in the presence of doxycycline, which in turn attenuates TGFB signalling in macrophages in these mice. Whole mount and H&E analysis revealed that impaired TGFB signalling in macrophages caused a 15% and 7% increase in the number
of ductal branch points and the percentage of alveolar epithelium respectively in the mammary gland at diestrus. Immunohistochemical analysis using macrophage markers indicated that impaired TGFB signalling in macrophages resulted in a similar alteration in macrophage phenotypes observed in TGFB replete mice transplanted with Tgfb1/- epithelium. There was a 50% increase in abundance of macrophages invaded into the mammary epithelium, and the number of iNOS-positive ("M1") macrophages and CCR7-positive ("M1") stromal macrophages was increased by 110% and 37% respectively. The effect of impaired TGFB signalling in macrophages on mammary gland cancer susceptibility in mice was investigated by challenging the mice with DMBA carcinogen; a significant decrease in mammary tumour incidence and prolonged tumour free survival was observed in mice with impaired TGFB signalling in macrophages compared to controls.

The role of epithelial cell-derived CCL2 in regulation of macrophages in mammary gland development and cancer susceptibility was explored in a transgenic mouse model, Mmtv-Ccl2, whereby CCL2 is constitutively expressed by the mammary epithelium under the control of the MMTV promoter. Whole mount and H&E analysis revealed that the number of ductal branch points and the area comprised by alveolar epithelium were increased by 26% and 22% respectively in the presence of abundant epithelial cell-derived CCL2 at proestrus. Immunohistochemical analysis revealed that CCL2 did not affect the proliferation or apoptosis of mammary epithelial cells; however, there was a 40% and 53% increase in macrophage density and collagen deposition respectively around the ductal epithelium of mammary glands of transgenic mice compared to non-transgenic controls. Moreover, quantitative PCR analysis showed that the expression of Lox and Timp3 was increased by 160% and 170% respectively in the mammary glands with constitutive CCL2 expression. In addition, we investigated the effect of constitutive expression of epithelial cell-derived CCL2 on mammary gland cancer susceptibility by challenging the Mmtv-Ccl2 mice with DMBA carcinogen. A significant increase in mammary gland tumour incidence and reduced tumour latency was seen in mice with overabundant CCL2 expression compared to controls. Non-neoplastic breast tissue exhibited variable expression of CCL2 in the epithelium, with protein abundance ranging from low, to moderate and high. However, immunohistochemical analysis of human non-neoplastic breast tissue did not show a significant correlation between the expression of CCL2 and the abundance of macrophages. Interestingly, it was demonstrated that a significant negative relationship was found between the expression of CCL2 and the abundance of stromal-associated iNOS-positive cells in our human breast tissue.

Together, these studies suggest that epithelial cell-derived TGFB and CCL2 exert effects on mammary gland development and tumourigenesis through regulation of macrophage functions and phenotypes.
This implies that the finely orchestrated cytokine-macrophage regulatory network may be a contributing factor in mammary gland cancer susceptibility. These studies also reveal the possibility of targeting both TGFB and CCL2 signalling as a novel therapeutic approach to breast cancer prevention and/or treatment. However, more research will first be required on the upstream signalling events and underlying mechanisms that affect epithelial cell-derived TGFB and CCL2 macrophage-mediated mammary cancer risk.
Declaration

I certify that this work contains no material which has been accepted for the award of any other degree or diploma in my name, in any university or other tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text. In addition, I certify that no part of this work will, in the future, be used in a submission in my name, for any other degree or diploma in any university or other tertiary institution without the prior approval of the University of Adelaide and where applicable, any partner institution responsible for the joint-award of this degree.

I give consent to this copy of my thesis when deposited in the University Library, being made available for loan and photocopying, subject to the provisions of the Copyright Act 1968. The author acknowledges that copyright of published works contained within this thesis resides with the copyright holder(s) of those works. I also give permission for the digital version of my thesis to be made available on the web, via the University’s digital research repository, the Library Search and also through web search engines, unless permission has been granted by the University to restrict access for a period of time.

..
Xuan Sun
April 2015
Acknowledgements

I would like to thank my principle supervisor, Associate Professor Wendy Ingman, for the extensive mentoring she has provided during my time in the Breast Biology and Cancer Unit. I am truly grateful to her for such an opportunity, and appreciate all of the support, encouragement and intellectual expertise that she has provided throughout my studies. I would also like to thank my co-supervisor, Professor Sarah Robertson, for the mentoring, support, and technical expertise that I received. I am indebted to you all for all of my future endeavours.

I would like to thank the members of the Breast Biology and Cancer Unit and the Reproductive Immunology Laboratory, who have provided intellectual support and friendship. In particular I would like to thank Dr Danielle Glynn, Ms Leigh Hodson, Dr John Schjenken and Dr David Sharkey for their technical expertise, despite their busy schedules and for the friendship and support they have provided. I would like to thank previous and present Ph D students for their friendship and assistance throughout my studies: Siti, Bihong, Lorreta, Zahied, Noor, Siew, Hanan and Alison. Thank you all.

I am fortunate to receive scholarships from Adelaide Graduate Research Scholarship, Florey Foundation, Breast Biology and Cancer Unit and Robinson Institute for supporting my Ph D journey and opportunity to present my research in conferences. Thank you also to the staff of Discipline of Obstetrics and Gynaecology for excellent resources throughout my studies.

Thank you to my friends Sheechee, Olivia, Cherlynn, Cingel, Witney and Tony for your friendship and support.

Last, but not least, a big thankyou to Mum and Dad for everything that they have done for me and made me who I am today. There's no way that I can thank you enough for your endless love, support and encouragement.
Publications arising from this thesis

Abstracts arising from this thesis

2014

Xuan Sun, Sarah A Robertson, Wendy V Ingman. “The role of CCL2 in mammary gland development and cancer”, Society of Reproductive Biology (SRB) Annual Scientific Meeting, Melbourne, Australia, Poster Presentation, August 2014.

2013

Xuan Sun, Sarah A Robertson, Wendy V Ingman. “TGFβ1 is a key regulator of mammary gland macrophages”, Research Centre for Reproductive health (RCRH) conference, Adelaide, Australia. Poster Presentation, November 2013.

Xuan Sun, Sarah A Robertson, Wendy V Ingman. “Impaired TGFβ signalling in macrophages perturbs mammary gland development”, Society of Reproductive Biology (SRB) Annual Scientific Meeting, Sydney, Australia, Oral Presentation, August 2013.

2012

Xuan Sun, Sarah A Robertson, Wendy V Ingman. “Epithelial cell-derived TGFβ1 regulates macrophages abundance and phenotypes in the mammary gland”, Gordon Research Conference, Mammary Gland Biology Conference, Pisa, Italy, Poster Presentation, June 2012.

2011

Xuan Sun, Sarah A Robertson, Wendy V Ingman. “Epithelial cell-derived TGFβ1 regulates macrophages abundance and phenotypes in the mammary gland”, Research Centre for Reproductive health (RCRH) conference, Adelaide, Australia, Poster Presentation, November 2011.

Xuan Sun, Sarah A Robertson, Wendy V Ingman. “Epithelial cell-derived TGFβ1 regulates macrophages abundance and phenotypes in the mammary gland”, Faculty of Health Science (FHS) Meeting, Adelaide, Australia, Poster Presentation, August 2011.

Sun xvi
Xuan Sun, Sarah A Robertson, Wendy V Ingman. “Regulation of mammary gland macrophages by epithelial cell-derived TGFB1”, Australian Society for Medical Research (ASMR) Scientific Meeting, Adelaide, Australia, Oral Presentation, June 2011.

Xuan Sun, Sarah A Robertson, Wendy V Ingman. “Epithelial cell-derived TGFB1 regulates macrophages abundance and phenotypes in the mammary gland”, Pacific Rim Breast and Prostate Cancer Conference, Tweed Coast, Australia, Poster Presentation, May 2011.

2010

Xuan Sun, Sarah A Robertson, Wendy V Ingman. “Location of active TGFB1 in the mammary gland during different stages of development”, Society of Reproductive Biology (SRB) Annual Scientific Meeting, Sydney, Australia, Oral Presentation, August 2010.
Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>ArgI</td>
<td>Arginase I</td>
</tr>
<tr>
<td>bp</td>
<td>Base pair</td>
</tr>
<tr>
<td>BrdU</td>
<td>Bromodeoxyuridine</td>
</tr>
<tr>
<td>BSA</td>
<td>Bovine serum albumin</td>
</tr>
<tr>
<td>CCL2</td>
<td>Chemokine ligand 2</td>
</tr>
<tr>
<td>CCR2</td>
<td>C-C chemokine receptor type 2</td>
</tr>
<tr>
<td>CCR7</td>
<td>C-C chemokine receptor 7</td>
</tr>
<tr>
<td>CDs</td>
<td>Cluster of differentiation</td>
</tr>
<tr>
<td>Col 1</td>
<td>Collagen 1</td>
</tr>
<tr>
<td>COX2</td>
<td>Cyclooxygenase 2</td>
</tr>
<tr>
<td>CRP</td>
<td>C-reactive protein</td>
</tr>
<tr>
<td>CSF1</td>
<td>Clony stimulating factor 1</td>
</tr>
<tr>
<td>CSF1R</td>
<td>Clony stimulating factor 1 receptor</td>
</tr>
<tr>
<td>DAB</td>
<td>3,3 diaminobenzadine</td>
</tr>
<tr>
<td>DAPI</td>
<td>4',6-Diamidino-2-phenylindole dihydrochloride</td>
</tr>
<tr>
<td>DMBA</td>
<td>7,12-Dimethylbenz (a) anthracene</td>
</tr>
<tr>
<td>DNA</td>
<td>Deoxyribonucleic acid</td>
</tr>
<tr>
<td>Dox</td>
<td>Doxycycline</td>
</tr>
<tr>
<td>EDTA</td>
<td>Ethylenediaminetetraacetic Acid</td>
</tr>
<tr>
<td>EGFP</td>
<td>Enhanced green fluorescent protein</td>
</tr>
<tr>
<td>ELISA</td>
<td>Enzyme-linked immunosorbent assay</td>
</tr>
<tr>
<td>FBXW7</td>
<td>F-box/WD repeat-containing protein 7</td>
</tr>
<tr>
<td>HRP</td>
<td>Horseradish peroxidase</td>
</tr>
<tr>
<td>IFNG</td>
<td>Interferon gamma</td>
</tr>
<tr>
<td>IL</td>
<td>Interleukin</td>
</tr>
<tr>
<td>iNOS</td>
<td>Inducible nitric oxide synthase</td>
</tr>
<tr>
<td>kb</td>
<td>Kilo base</td>
</tr>
<tr>
<td>LAP</td>
<td>Latency-associated peptide</td>
</tr>
<tr>
<td>LOX</td>
<td>Lysyl oxidase</td>
</tr>
<tr>
<td>LPS</td>
<td>Lipopolysaccharide</td>
</tr>
<tr>
<td>LTBP</td>
<td>Latent TGFB binding protein</td>
</tr>
<tr>
<td>LTGFB1</td>
<td>Latent transforming growth factor 1</td>
</tr>
<tr>
<td>MD</td>
<td>Mammographic density</td>
</tr>
</tbody>
</table>

Sun xvi
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>MHC</td>
<td>Major histocompatibility complex</td>
</tr>
<tr>
<td>MMPs</td>
<td>Matrix metalloproteinases</td>
</tr>
<tr>
<td>MMTV</td>
<td>Mouse mammary tumour virus</td>
</tr>
<tr>
<td>MMTV-LTR</td>
<td>Mouse mammary tumour virus long terminal repeat</td>
</tr>
<tr>
<td>NO</td>
<td>Nitric oxide</td>
</tr>
<tr>
<td>PBS</td>
<td>Phosphate buffered saline</td>
</tr>
<tr>
<td>PCNA</td>
<td>Proliferating cellular nuclear antigen</td>
</tr>
<tr>
<td>PCR</td>
<td>Polymerase chain reaction</td>
</tr>
<tr>
<td>PyMT</td>
<td>Polyoma middle T antigen</td>
</tr>
<tr>
<td>qRT-PCR</td>
<td>Quantitative Real-time Polymerase Chain Reaction</td>
</tr>
<tr>
<td>SEM</td>
<td>Standard error of the mean</td>
</tr>
<tr>
<td>SOCSI</td>
<td>Suppressor of cytokine signalling 1</td>
</tr>
<tr>
<td>TAM</td>
<td>Tumour-associated macrophages</td>
</tr>
<tr>
<td>TGFB1</td>
<td>Transforming growth factor beta 1</td>
</tr>
<tr>
<td>TGFBRI</td>
<td>Transforming growth factor beta type I receptor</td>
</tr>
<tr>
<td>TGFBRII</td>
<td>Transforming growth factor beta type II receptor</td>
</tr>
<tr>
<td>TIMPs</td>
<td>Tissue inhibitors of matrix metalloproteinases</td>
</tr>
<tr>
<td>TLR</td>
<td>Toll-like receptor</td>
</tr>
<tr>
<td>TNFA</td>
<td>Tumour necrosis factor alpha</td>
</tr>
<tr>
<td>TUNEL</td>
<td>Terminal deoxynucleotidyl transferase dUTP nick end labeling</td>
</tr>
<tr>
<td>VEGF</td>
<td>Vascular endothelial growth factor</td>
</tr>
<tr>
<td>WAP</td>
<td>Whey acid protein</td>
</tr>
</tbody>
</table>