Advanced Processes for Titanium Sintering

Evan Schumann

Thesis submitted for the degree of Master of Philosophy

School of Mechanical Engineering Faculty of Engineering, Computer and Mathematical Sciences The University of Adelaide

September 1, 2014

Contents

Al	bstra	act	XV
Pι	ublic	ations	xviii
De	eclar	ation	xix
A	ckno	wledge	ments xx
1	Inti	roducti	on 1
2	Cri	tical Li	terature Review 6
	2.1	Introd	uction
	2.2	Titani	um
		2.2.1	Production of Titanium
		2.2.2	Crystal Structure of Titanium
		2.2.3	Titanium Alloys
		2.2.4	Aluminium and Titanium
		2.2.5	Properties of Titanium Aluminides
		2.2.6	Diffusion Between Titanium and Liquid Aluminium 14
		2.2.7	Impurities in Titanium
	2.3	Titani	um Powder Metallurgy 16
		2.3.1	Sintering

		2.3.2	Titanium Powder Production	18
		2.3.3	Sintering Techniques	19
		2.3.4	Liquid Phase Sintering	20
		2.3.5	Titanium and Aluminium in Liquid Phase Sintering	21
		2.3.6	Thermo-hydrogen Processing of Titanium	24
		2.3.7	Properties of TiH_2	24
		2.3.8	HDH Powder	26
		2.3.9	Sintering TiH_2	26
		2.3.10	Dehydrogenation of $TiH_2 \ldots \ldots \ldots \ldots \ldots \ldots \ldots$	27
		2.3.11	Ball Milling of TiH_2	29
	2.4	Critica	al Review of Current Research	30
	2.5	Conclu	usion	31
ગ	Res	earch	Aims	34
J	Ites			01
3	Mat	terials,	Methods and Procedures	37
4	Mat 4.1	t erials , Introd	Methods and Procedures	37 37
4	Mat 4.1 4.2	terials, Introd TiH ₂ I	Methods and Procedures uction . Powder Synthesis .	 37 37 37
4	Mat 4.1 4.2	terials, Introd TiH ₂ I 4.2.1	Methods and Procedures uction Powder Synthesis Hydrogenation of Titanium	 37 37 37 38
4	Mat 4.1 4.2	terials, Introd TiH ₂ I 4.2.1 4.2.2	Methods and Procedures uction \dots Powder Synthesis \dots Hydrogenation of Titanium \dots Ball milling of TiH ₂ \dots	 37 37 37 38 39
4	Mat 4.1 4.2	terials, Introd TiH ₂ I 4.2.1 4.2.2 4.2.3	Methods and Procedures uction Powder Synthesis Hydrogenation of Titanium Ball milling of TiH_2 HDH Powder	 37 37 37 38 39 40
4	Mat 4.1 4.2 4.3	terials, Introd TiH ₂ I 4.2.1 4.2.2 4.2.3 Materi	Methods and Procedures uction \dots Powder Synthesis \dots Powder Synthesis \dots Hydrogenation of Titanium \dots Ball milling of TiH ₂ \dots HDH Powder \dots uction \dots	 37 37 37 37 38 39 40 40
4	Mat 4.1 4.2 4.3	terials, Introd TiH ₂ I 4.2.1 4.2.2 4.2.3 Materi 4.3.1	Methods and Procedures uction \dots Powder Synthesis \dots Powder Synthesis \dots Hydrogenation of Titanium \dots Ball milling of TiH ₂ \dots HDH Powder \dots Granulometry \dots	 37 37 37 37 38 39 40 40 40 40
4	Mat 4.1 4.2 4.3	terials, Introd TiH ₂ I 4.2.1 4.2.2 4.2.3 Materi 4.3.1 4.3.2	Methods and Procedures uction	 37 37 37 38 39 40 40 40 41
4	Mat 4.1 4.2 4.3	terials, Introd TiH ₂ I 4.2.1 4.2.2 4.2.3 Materi 4.3.1 4.3.2 4.3.3	Methods and Procedures uction	 37 37 37 37 38 39 40 40 40 40 41 42
4	Mat 4.1 4.2	terials, Introd TiH ₂ I 4.2.1 4.2.2 4.2.3 Materi 4.3.1 4.3.2 4.3.3 4.3.4	Methods and Procedures uction	 37 37 37 38 39 40 40 40 40 41 42 43
4	Mat 4.1 4.2	terials, Introd TiH ₂ I 4.2.1 4.2.2 4.2.3 Materi 4.3.1 4.3.2 4.3.3 4.3.4 4.3.5	Methods and Procedures uction	 37 37 37 38 39 40 40 40 40 41 42 43 44

	4.5	Hot P	ress Sintering	47
		4.5.1	Induction Hot Press	47
		4.5.2	Mould Preparation	49
		4.5.3	Induction Hot Press Procedure	50
	4.6	Chara	cterisation of Sintered Specimens	51
		4.6.1	Density Measurement	52
		4.6.2	Specimen Preparation for SEM and Hardness Measurements .	53
		4.6.3	Hardness Measurement	54
	4.7	Post-t	reatment of Pure Ti Specimens	56
		4.7.1	3-Point Bending Test	57
	4.8	Concl	usion	61
5	Ball	l Mille	d Titanium Hydride	62
	5.1	Introd	luction	62
	5.2	Ball N	filling of TiH_2	63
		5.2.1	Granulometry of Ball Milled ${\rm TiH}_2$	63
		5.2.2	SEM of Ball Milled TiH_2	63
		5.2.3	X-Ray Diffraction of Ball Milled TiH_2	64
		5.2.4	Metallic Impurities	67
		5.2.5	Dehydrogenation of Ball Milled ${\rm TiH}_2$ Powders \hdots	68
	5.3	Comm	nercial Powders	72
		5.3.1	Commercial Ti Powder	72
		5.3.2	Commercial Al Powder	73
	5.4	Concl	usion	74
6	Exp	erime	ntal Investigations	76
	-		6	
	6.1	Introd	luction	76

		6.2.1	Density of Sintered ${\rm TiH}_2$. 77
		6.2.2	SEM of Sintered TiH_2	. 78
		6.2.3	XRD of Sintered TiH_2	. 79
		6.2.4	Hardness of Sintered TiH_2	. 81
	6.3	Liquid	Phase Sintering	. 85
		6.3.1	HDH Titanium with Liquid Aluminium	. 87
		6.3.2	Ball Milled ${\rm TiH}_2$ with Liquid Aluminium	. 92
		6.3.3	Commercial Ti with Liquid Aluminium	. 92
	6.4	Conclu	usion	. 102
7	Ana	dysis c	of Results and Discussion	103
	7.1	Introd	uction	. 103
	7.2	Dehyd	lrogenation of TiH_2	. 104
	7.3	Densif	ication of TiH_2	. 105
		7.3.1	Hardness and Microstructure of Sintered TiH_2	. 106
	7.4	Densif	ication using LPS	. 108
		7.4.1	Flexural Strength and Microstructure of titanium using	
			Aluminium LPS	. 112
	7.5	Practi	cal Implications of Research Outcomes	. 113
	7.6	Conclu	usion	. 115
8	Con	clusio	ns and Future Work	116
	8.1	Conclu	usions	. 116
	8.2	Future	e Work	. 119
A	Con	lferenc	e Paper for ICCM19	121
в	XR	D of H	IDH powder	124

C Powder Mixing Calculations	126
Bibliography	130

List of Tables

2.1	Comparison of basic properties of common structural materials	8
2.2	Properties of titanium aluminides	14
2.3	Properties and impurity quantities of commercial grades of titanium	
	(ASTM B 348)	16
2.4	Properties of titanium sintered by various techniques	32
4.1	Sintered specimen polishing stages	54
7.1	Flexural strength and strain at yield and break of specimens from	
	commercial Ti powder sintered at 900°C under 80 MPa for 30 minutes 1	13
C.1	Powder mixing calculation table	29

List of Figures

2.1	Crystal structure of α -Ti (left) and β -Ti (right)	10
2.2	Influence of alloying elements on titanium (Peters and Leyens, 2003).	11
2.3	The Ti-Al phase diagram (Murray, 1987)	13
2.4	Lattice structures of titanium aluminides	13
2.5	Diffusion between liquid aluminium and titanium	15
2.6	Phase diagram examples of transient and passive (left), and reactive	
	(right) sintering, with concentrations C_T , C_P and C_R respectively,	
	sintered at temperature T_S	22
2.7	Sintered titanium with liquid aluminium causing intermetallic growth	
	around spherical titanium powders (Savitskii and Burtsev, 1979)	23
2.8	Ti-H phase diagram (Okamoto, 2011)	25
2.9	FCC crystal structure of γ -TiH ₂	26
2.10	DSC and TGA of ball milled TiH_2 (Bhosle et al., 2003) \ldots	28
4.1	Hydrogen oven	38
4.2	Planetary ball mill	39
4.3	TiH_2 sponge with stainless steel balls in a ball mill vial $\ldots \ldots \ldots$	40
4.4	Mastersizer 2000 laser granulometer	41
4.5	X-Ray diffraction sample holder	42
4.6	CEM MARS5 microwave	44
4.7	TESCAN scanning electron microscope	45

4.8	Setaram Sensys Evo differential scanning calorimeter	46
4.9	Turbula 3D mixing machine	47
4.10	Induction Hot Press	48
4.11	Hot induction press experimental setup inside the vacuum chamber $% \mathcal{A}$.	49
4.12	Hot induction press schematic	50
4.13	Typical temperature graph of the hot induction press $\ldots \ldots \ldots$	51
4.14	A sintered titanium sample set in phenolic resin	53
4.15	Vickers hardness indentation test	55
4.16	Vickers hardness testing machine	56
4.17	Diagonal measurement of Vickers hardness diamond indentation	57
4.18	High vacuum oven	58
4.19	3-point bending experimental setup	59
4.20	3-point bending test diagram	60
4.21	Typical bending test result of flexural stress versus flexural strain $\ .$.	61
5.1	Particle size distribution of ball milled ${\rm TiH}_2$ powders $\ . \ . \ . \ .$.	64
5.2	SEM micrographs of $\rm TiH_2$ powder ball milled for 5-180 minutes $~$	65
5.3	XRD patterns of $\rm TiH_2$ powders ball milled for 5 and 180 minutes $~$	66
5.4	Particle size and crystallite size of ball milled ${\rm TiH}_2$ powders $\ \ .$	66
5.5	Mass percent of Fe, Mg and Cr measured in ball milled $\rm TiH_2$ powders	
	by ICP-OES	69
5.6	DSC of $\rm TiH_2$ powder ball milled for 5, 10, 60, and 180 minutes showing	
	the desorption of hydrogen	70
5.7	DSC of $\rm TiH_2$ powder ball milled for 180 minutes, loose and cold	
	compacted at 40 MPa and 80 MPa, showing the desorption of	
	hydrogen	71
5.8	SEM micrograph of commercial titanium powder	73

5.9	SEM micrograph of commercial aluminium powder	73
6.1	Density of sintered ball milled titanium hydride as a function of	
	sintering temperature	78
6.2	SEM BSE micrographs of sintered TiH_2 powders, ball milled for 5 (6.6	
	$\mu {\rm m}),~60~(1.7~\mu {\rm m})$ and 180 (1.0 $\mu {\rm m})$ minutes, sintered at 700-900°C	
	under 80 MPa for 30 minutes	80
6.3	XRD patterns of TiH ₂ ball milled for 5 minutes (6.6 μ m) sintered at	
	700-900°C for 30 minutes under 80 MPa $\ldots \ldots \ldots \ldots \ldots$	82
6.4	XRD patterns of TiH ₂ ball milled for 180 minutes (1.0 $\mu m)$ sintered	
	at 700-900°C for 30 minutes under 80 MPa	83
6.5	Vickers hardness of sintered TiH_2 ball milled for 5, 30 and 180	
	minutes, of powder size 6.6, 1.9 and 1.0 μm respectively	84
6.6	Density sintered TiH ₂ ball milled for 30 minutes $(1.9\mu m)$ as sintered	
	and after post treatment	85
6.7	XRD patterns of TiH_2 , ball milled for 30 minutes and sintered at 700	
	and 750°C, after post treatment \ldots	86
6.8	Densities of sintered HDH powder with 0-75 at \% a luminium $\ . \ . \ .$	88
6.9	XRD patterns of HDH powder sintered with 0-75 at $\%$ a luminium and	
	sintered at 700°C under 80 MPa for 30 minutes $\ldots \ldots \ldots \ldots$	89
6.10	SEM micrographs of HDH powder sintered with 2-75 at $\%$ a luminium	
	and sintered at 700°C under 80 MPa for 30 minutes	90
6.11	XRD patterns of HDH powder sintered with 0-75 at $\%$ a luminium and	
	sintered at 800°C under 80 MPa for 30 minutes $\ldots \ldots \ldots \ldots$	91
6.12	SEM micrographs of HDH powder sintered at 800°C with 2 at % Al	
	shown at 1k and 4k times magnification	92
6.13	Densities of sintered TiH ₂ powder with 0-75 at% aluminium \ldots .	93

6.14	XRD patterns of $\rm TiH_2$ ball milled for 180 minutes, blended with 0-75
	at% Al powder and sintered at 700°C under 80 MPa for 30 minutes $~.~~94$
6.15	Density of commercial Ti powder sintered with $0, 5, 10, 20$ and 50
	at% Al at 700-900°C under 80 MPa for 30 minutes \hdots 95
6.16	XRD patterns of commercial Ti sintered with 0, 10 and 50 at % Al,
	at 700°C under 80 MPa for 30 minutes $\dots \dots 96$
6.17	XRD patterns of commercial Ti s intered with 0, 10 and 50 at% Al,
	at 900°C under 80 MPa for 30 minutes \ldots
6.18	SEM micrographs of commercial Ti s intered with 5, 10 and 50 ${\rm at}\%$
	Al, at 700 and 900°C \ldots
6.19	SEM micrograph of commercial Ti sintered with 50 at% Al, at 900°C
	under 80 MPa for 30 minutes
6.20	EDS elemental line profile of commercial Ti sintered with 50 at% Al
	at 900°C under 80 MPa for 30 minutes \hdots
6.21	Flexural bending test of commercial Ti sintered with $0, 10$ and 50
	at% Al, at 900°C under 80 MPa for 30 minutes \hdots
7.1	Densities of commercial Ti, ball milled TiH_2 and HDH powders,
	sintered with 0-75 at% Al at 700°C under 80 MPa for 30 minutes $~$. $. ~$ 109 $~$
7.2	SEM mircrographs of HDH and commercial Ti powder sintered with
	5 and 10 at% Al respectively, at 800°C under 80 MPa for 30 minutes 111 $$
7.3	SEM mircrographs of commercial Ti powder sintered with $0, 10$ and
	50 at% Al, at 900°C under 80 MPa for 30 minutes
B.1	XRD Patterns of HDH powder, ball milled for 180 minutes and
	dehydrogenated in a vacuum oven at 500°C for 3 hours, as well as of
	a TiH ₂ powder ball milled for 180 minutes $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots 125$

Symbols and Abbreviations

List of Abbreviations

- **BE** Blended Elemental
- BCC Body Centred Cubic
- **CIP** Cold Isostatic Press
- CHIP Cold Isostatic Press followed by Hot Isostatic Press
- **CP** Cold Press or Commercially Pure
- DSC Differential Scanning Calorimetry
- **EDS** Energy Dispersive Spectroscopy
- FCC Face Centred Cubic
- FCT Face Centred Tetragonal
- FWHM Full Width at Half Maximum
- GA Gas Atomisation
- HDH Hydride De-Hydride
- **HIP** Hot Isostatic Press

HP Hot (Uniaxial) Press

HV Vickers Hardness Number

ICP-OES Inductively Coupled Plasma - Optical Emission Spectroscopy

LPS Liquid Phase Sintering

MA Mechanically Alloyed

PA Pre-Alloyed

 ${\bf PM}\,$ Powder Metallurgy

REP Rotating Electrode Process

SE Secondary Electrons

SEM Scanning Electron Microscopy

XRD X-Ray Diffraction

List of Symbols

- Å Angstrom (10^{-10}m)
- ${\cal E}\,$ Young's Modulus (MPa)
- ρ Density (g/cm³)
- σ_f Flexural stress (MPa)
- ϵ_f Flexural strain (mm/mm)
- at% Atomic percent

- wt% Weight percent
- $m\%\,$ Mass percent
- $V\%\,$ Volume percent
- % el~ Percent elongation
- $^{\circ}C\,$ Degrees Celsius

Abstract

A global objective of current research is to reduce the cost of manufacturing of titanium parts by improving the efficiency of near net-shape powder metallurgy (PM) technologies. These technologies are considered to be very promising as they eliminate waste and high machining costs. However, the cost of titanium components fabricated with PM remains relatively high due to the significant rate of energy consumption needed for various stages of PM, such as powder processing and sintering. Therefore, more research is needed to reduce the cost of production further, without compromising the mechanical properties and quality of the final product.

The current research is focused on the two latest developments addressing the efficiency problems of current PM: (I) the use of hydrogen as a temporary alloying element in the production of titanium powder, and (II) the application of the Liquid Phase Sintering (LPS) method to enhance the densification of materials. The following aspects of these developments are studied in this thesis: the effect of powder characteristics obtained with the ball milling method and the influence of sintering parameters on the microstructure and mechanical properties of fabricated samples.

The experimental approach includes the following stages: (a) synthesis of TiH_2 from a commercial titanium sponge; (b) particle size reduction through ball milling; and (c) hot press sintering with and without adding a liquid aluminium phase. The TiH₂ powders were investigated for particle size and morphology by laser granulometry and Scanning Electron Microscopy (SEM), and the dehydrogenation kinetic was studied using Differential Scanning Calorimetry, The metallic impurities introduced during ball milling were measured through Inductively Coupled Plasma Optical Emission Spectroscopy (ICP-OES). Sintered specimens were characterised by density using the Archimedes immersion method, and the microstructure and phase composition were examined using SEM Energy Dispersion Spectroscopy (EDS) and X-Ray diffraction (XRD). The hardness of pure titanium specimens was tested by microindentation and the flexural strength of selected LPS specimens was determined using the 3-point bending test. A relationship between the ball milling time and TiH₂ particle size alongside the level of contamination of the Ti powder were established. The influence of the particle size and sintering temperatures, specifically in the bottom range concerned with the energy efficiency, on the densification and dehydrogenation of TiH_2 was studied. The effect of an aluminium phase on the minimum sintering temperatures and quality of the fabricated samples was investigated by varying the concentration of liquid aluminium during hot press sintering.

The outcomes of the current research demonstrated that:

- the size of TiH₂ powder after ball milling greatly increases the density and dehydrogenation of the sintered specimens;
- the dehydrogenation is seen to be delayed by pressure assisted sintering inside a graphite mould;
- ball milling leads to the increased pickup of oxygen on the surface of fine TiH₂ due to the increased specific surface area;
- The aluminium liquid phase is shown to improve the density during pressure assisted sintering at concentrations of 5 to 10 at% aluminium;

- the use of fine particle sizes leads to a faster reaction between the liquid aluminium and titanium and promotes a solid intermetallic phase formation around the aluminium particle site;
- one interesting outcome of the completed research is that the use of a liquid aluminium phase to sinter titanium is shown to improve part density when using pressure-assisted sintering, when compared with previous studies using free sintering.

Overall, it is believed that the conducted study contributes to the understanding and further improvement of PM techniques and demonstrates a significant potential to reduce the fabrication costs of titanium components with ball milling and direct sintering TiH_2 methods. However, a further optimisation of the fabrication parameters and a more comprehensive assessment of mechanical properties are required in order to verify the quality of the fabricated components and for industry to adopt these methods.

Publications

Journal Papers

Schumann E., Silvain J.-F., Bobet J.-L., Bardet M., Lu Y., Kotousov A. and Lamirand-Majimel M. Advanced Processes for Titanium Sintering, *Materials Chemistry and Physics*, under review.

Conference Papers

Schumann E., Silvain J.-F., Bobet J.-L., Kotousov A. and Lamirand-Majimel M. Titanium Enhanced Sintering Through Liquid Phase Sintering, *International Conference on Composite Materials*, ICCM19, Montreal, Canada, July 28 - August 2, 2013. See Appendix A.

Declaration

I certify that this work contains no material which has been accepted for the award of any other degree or diploma in my name, in any university or other tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text. In addition, I certify that no part of this work will, in the future, be used in a submission in my name, for any other degree or diploma in any university or other tertiary institution without the prior approval of the University of Adelaide and where applicable, any partner institution responsible for the joint-award of this degree.

I give consent to this copy of my thesis, when deposited in the University Library, being made available for loan and photocopying, subject to the provisions of the Copyright Act 1968.

I also give permission for the digital version of my thesis to be made available on the web, via the Universitys digital research repository, the Library Search and also through web search engines, unless permission has been granted by the University to restrict access for a period of time.

SIGNED: DATE:

Acknowledgements

I would like to express great gratitude for the teaching, guidance, motivation, joy and inspiration given by Jean-François Silvain, Mélanie Lamirand-Majimel, Jean-Louis Bobet, Matthieu Bardet and the members of groups 4 and 1 at the ICMCB, it was a pleasure.

I am also sincerely indebted to Andrei Kotousov for his dedicated support and insightful guidance.

I am grateful to Eric Lebraud, Laëtitia Etienne and Nicolas Penin for their technical assistance, to Alison-Jane Hunter for incredible speed in editing, and I would like to thank Region Aquitaine for its financial support and the DSTO and the MDE group at SES for their support.

I would also like to thank my family for their continuous and immeasurable support.