Search for Gluinos in Events with Two Same-Sign Leptons, Jets, and Missing Transverse Momentum with the ATLAS Detector in pp Collisions at $\sqrt{s} = 7$ TeV

G. Aad et al.*

(ATLAS Collaboration)
(Received 26 March 2012; published 15 June 2012)

A search is presented for gluinos decaying via the supersymmetric partner of the top quark using events with two same-sign leptons, jets, and missing transverse momentum. The analysis is performed with 2.05 fb$^{-1}$ of integrated luminosity from pp collisions at $\sqrt{s} = 7$ TeV collected by the ATLAS detector at the LHC. No excess beyond the standard model expectation is observed, and exclusion limits are derived for simplified models where the gluino decays via the supersymmetric partner of the top quark and in the minimal supergravity and constrained minimal supersymmetric standard model framework. In those scenarios, gluino masses below 550 GeV are excluded at 95% C.L. within the parameter space considered, significantly extending the coverage with respect to existing limits. Depending on the model parameters, gluino masses up to 750 GeV can also be excluded at 95% C.L.

DOI: 10.1103/PhysRevLett.108.241802

Supersymmetry (SUSY) [1–7] is a theory beyond the standard model (SM) which predicts new bosonic partners for the existing fermions and fermionic partners for the known bosons. In the framework of a generic R-parity conserving minimal supersymmetric extension of the SM, SUSY particles are produced in pairs [8,9] and the lightest supersymmetric particle is stable, providing a possible candidate for dark matter.

In SUSY models, the gluino is a strongly interacting Majorana fermion. Pair-produced gluinos therefore have an equal probability to produce a pair of leptons that have the same charge [same-sign (SS)] and the opposite charge from their decays. The supersymmetric partner of the top quark (top squark) has two mass eigenstates with from their decays. The supersymmetric partner of the top quark (top squark) has two mass eigenstates with the same charge [same-sign (SS)] and the opposite charge

Further distribution of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI.

PACS numbers: 12.60.Jv, 13.85.Rm, 14.80.Ly

Published by the American Physical Society under the terms of the Creative Commons Attribution 3.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI.
transverse impact parameters within 1 and 0.2 mm of the primary vertex [28], respectively, and $\Sigma_{pT} < 1.8$ GeV.

The calculation of E_T^{miss} [29] is based on the vectorial sum of the p_T of the reconstructed jets (with $p_T > 20$ GeV and $|\eta| < 4.5$), leptons, and the calorimeter energy clusters not belonging to reconstructed objects.

During part of the data-taking period, a localized electronics failure in the electromagnetic calorimeter created a dead region ($\Delta \eta \times \Delta \phi \approx 1.4 \times 0.2$). For jets in this region, a correction to their energy is made by using the energy depositions in the neighboring cells and is propagated to E_T^{miss}. If this correction projected onto the direction of the E_T^{miss} is larger than 10 GeV or 10% of the E_T^{miss}, the event is discarded [30]. Events with reconstructed electrons in the calorimeter dead region are also rejected.

Events in which the two highest-p_T leptons ($\ell = e, \mu$) have the same charge and with at least four jets with $p_T > 50$ GeV are selected. In addition, two signal regions are considered: SR1, which requires $E_T^{\text{miss}} > 150$ GeV, and SR2, which in addition requires $m_T > 100$ GeV, where m_T is the transverse mass of the E_T^{miss} and the highest-p_T lepton defined as $m_T = 2p_T^{l}E_T^{\text{miss}}[1 - \cos(\Delta \phi(l, E_T^{\text{miss}}))]$. This final m_T cut helps reduce the $t\bar{t}$ background. The signal regions are optimized based on several models where SS dileptons are produced in gluino decays. In signals such as the MSUGRA-CMSSM (minimal supergravity or constrained minimal supersymmetric standard model) [31,32], the directions of the lepton and $\tilde{\chi}_1^0$ are strongly correlated, as they originate from the decay of a common parent particle (usually $\tilde{\chi}_1^0$ or the next-to-lightest neutralino $\tilde{\chi}_2^0$). This leads to a softer m_T spectrum than that found in gluino-mediated top squark signal models, where the lepton and the $\tilde{\chi}_1^0$ originate from different parent particles and are thus uncorrelated.

Simulated Monte Carlo (MC) event samples are used to aid in the description of the background and to model the SUSY signal. Top-quark pair and single-top production are simulated with MC@NLO [33], fixing the top-quark mass at 172.5 GeV and using the next-to-leading-order (NLO) parton density function (PDF) set CT106M [34]. Samples of $W +$ jets and $Z +$ jets with both light- and heavy-flavor jets are generated with ALPGEN [35] and PDF set CT106L [36]. The fragmentation and hadronization for the ALPGEN and MC@NLO samples are performed with HERWIG [37], using JIMMY [38] for the underlying event. Samples of $t\bar{t}Z$, $t\bar{t}W$, and $t\bar{t}WW$ (referred to as $t\bar{t} + X$) are generated with MADGRAPH [39] interfaced to PYTHIA [40]. The total LO cross section for these samples is 0.39 pb and is normalized to NLO by using a K factor of 1.3 [41]. Diboson processes are generated with HERWIG for $W^{\pm}W^{\mp}$, WZ, and ZZ processes and with MADGRAPH for $W^{\pm}W^{\mp}$, qq processes. The total NLO cross section for the diboson background is 71 pb [42,43]. SUSY signal processes are simulated for various models by using HERWIG++ [37] v2.4.2. The SUSY sample yields are normalized to the results of NLO calculations, as obtained by using PROSPINO [44] v2.1. The CT106M [45] parameterization of the PDFs is used. The tunings of the MC parameters of Ref. [46] are used in the production of the MC samples, which are processed through a detector simulation [47] based on GEANT4 [48]. Effects of multiple proton-proton interactions per bunch crossing are included in the simulation.

The SM backgrounds are evaluated by using a combination of MC simulation and data-driven techniques. SM processes that generate events containing jets which are misidentified as leptons or where a lepton from a b- or c-hadron decay is selected are collectively referred to as “fake-lepton” background. It generally consists of semi-leptonic $t\bar{t}$, single-top, $W +$ jets, and strong light- and heavy-flavor jet production. The contribution from the fake-lepton background is estimated from data with a method similar to that described in Refs. [49,50] by loosening the lepton identification and isolation criteria. For electrons the “medium” criteria are used instead of the “tight” criteria [26], and for both electrons and muons the isolation criterion is relaxed. The method counts the number of observed events containing loose-loose, loose-tight, tight-loose, and tight-tight lepton pairs. The probability of loose real leptons passing the tight selection criteria is obtained by using a $Z \rightarrow \ell^+\ell^-$ sample. The probability of loose fake leptons to pass the tight selection criteria is determined as a function of the lepton p_T by using multijet control samples obtained by requiring two SS leptons and low E_T^{miss}. By using these probabilities, relations are obtained for the observed event counts in the signal regions as functions of the numbers of events containing fake-fake, fake-real, real-fake, and real-real lepton pairs. These can be solved simultaneously to estimate the number of background events [49,50]. The results of the estimations have been validated with data in control regions obtained by reversing the E_T^{miss} or jet multiplicity cuts used in the signal regions.

Background events from charge misidentification (dominated by electrons which have undergone hard bremsstrahlung with subsequent photon conversion) are estimated by using a partially data-driven technique [16]. The probability of charge misidentification is calculated from MC simulations and corrected by consideration of the number of events in the data with SS electron pairs and invariant mass within 15 GeV of the Z-boson mass. This probability is applied to $t\bar{t}$ MC events producing $e\pm \ell^\mp$ pairs to evaluate the number of SS events from incorrect charge assignment in each signal region. The probability of misidentifying the charge of a muon and the contributions in the signal regions from charge misidentification of $Z/\gamma^* +$ jets and other SM backgrounds are negligible.

Contributions from other SM background sources (diboson and $t\bar{t} + X$) are evaluated by using the MC samples described above. In these processes, real SS lepton pairs are produced, and their contribution to the signal regions can be described with MC simulations. In particular, the
contribution from the experimentally unmeasured $t\bar{t} + X$ processes has been studied by using several MC generators. The background from cosmic rays is evaluated with data by using the method in Ref. [16], and its contribution is negligible in the signal regions.

Systematic uncertainties are estimated in the signal regions for the background and the SUSY signal processes. The primary sources of systematic uncertainties in the background are the jet energy scale calibration (35%), the jet energy resolution (10%), uncertainties on lepton and jet reconstruction and identification (5%), and MC modeling and theoretical cross section uncertainties (40%–70%). In particular, the theoretical uncertainties on the cross section of the $t\bar{t} + X$ processes are found to be between 35% and 55% by varying factorization and renormalization scales and 25% due to PDF uncertainties. In addition, a 50% uncertainty is assigned on the K factor used to obtain the NLO cross section [41]. In the fake-lepton background estimation, systematic uncertainties are assigned to the probabilities for loose fake leptons to pass the tight selection. This accounts for potentially different compositions of the signal and control regions. These uncertainties vary in the 10%–80% range depending on the lepton p_T and are evaluated by using data samples with jets of different energies. The absolute uncertainty for each background source is given in Table I. Systematic uncertainties on the signal expectations are evaluated through variations of the factorization and renormalization scales between half and twice their default values and by including the uncertainty on α_s and on the PDF provided by CTEQ6. Uncertainties are calculated for individual SUSY processes. The total uncertainty varies in the 20%–40% range for the considered MC signals. Any correlations of the systematic uncertainties in signals and background are taken into account.

Figure 1 shows the distribution of the number of jets with $p_T > 50$ GeV for events with 2 SS leptons and the E_T^{miss} distribution for events with 2 SS leptons and at least four jets with $p_T > 50$ GeV. The contributions from all the SM backgrounds are shown together with their total statistical and systematic uncertainties. For illustration, the distribution for a signal obtained with the decay $g \rightarrow t\bar{t}\chi_1^0$ in $g\bar{g}$ pair-produced events with $m_{\tilde{g}} = 650$ GeV and $m_{\chi_1^0} = 150$ GeV is also shown. The data are in agreement with the SM background expectation, and once four jets of $p_T > 50$ GeV are required no event is observed with $E_T^{miss} > 150$ GeV.

Table I shows the number of expected events in the signal regions for each background source together with the observed number of events. The expectation from the SM is estimated to be less than one event for each signal region with no events observed in the data. Limits at 95% confidence level (C.L.) are derived on the visible cross section $\sigma_{vis} = \sigma \times \epsilon \times A$, where σ is the total production cross section for any new signal producing SS dileptons, A is the acceptance defined by the fraction of events passing

<table>
<thead>
<tr>
<th>$t\bar{t} + X$</th>
<th>Diboson</th>
<th>Fake-lepton</th>
<th>Charge mis-ID</th>
<th>Total SM</th>
<th>Observed</th>
<th>σ_{ext}^{obs} [fb]</th>
<th>σ_{vis}^{obs} [fb]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.37 ± 0.26</td>
<td>0.05 ± 0.02</td>
<td>0.34 ± 0.20</td>
<td>0.08 ± 0.01</td>
<td>0.84 ± 0.33</td>
<td>0</td>
<td><1.6</td>
<td><1.7 ±0.5</td>
</tr>
<tr>
<td>0.21 ± 0.16</td>
<td>0.02 ± 0.01</td>
<td><0.17</td>
<td>0.039 ± 0.007</td>
<td>0.27 ± 0.24</td>
<td>0</td>
<td><1.5</td>
<td><1.6 ±0.2</td>
</tr>
</tbody>
</table>
95% C.L. for top squark masses below 460 GeV. Where gluino masses below 660 GeV are excluded at exclusion limit as a function of gluino and top squark masses, together with existing limits [19]. The −1σ limit lies outside the range of the figure. The production cross section upper limits at 95% C.L. are also shown.

The results obtained in SR2 are interpreted in a simplified model where gluinos are produced only in pairs, the top squark (m_{\tilde{t}_1} = 1.2 TeV) is heavier than the gluino, and only the gluino three-body decay \(g \rightarrow t\bar{t}\chi^0_1 \) via an off-shell top squark is allowed. Figure 2 shows the limit in the gluino-neutralino mass plane. For a gluino mass of 650 GeV, neutralino masses below 215 GeV are excluded at 95% C.L. For a neutralino mass of 100 GeV, gluino masses below 715 GeV are similarly excluded. The −1σ uncertainty limit on the expected limit lies outside the range of the figure as a consequence of the low number of expected signal events and a total signal uncertainty that reaches close to 50%. The results can be generalized in terms of production cross section upper limits at 95% C.L. for \(g\bar{g} \) pair production processes with the produced particles decaying into \(t\bar{t}\chi^0_1 \) final states, as also shown in Fig. 2.

The results in SR2 are also interpreted by considering gluino pair production followed by the \(g \rightarrow t\bar{t}\chi^0_1 \) decay. Only top squark decays via \(t\rightarrow b\chi^+_1 \) are considered with \(m_{\chi^+_1} = 2m_{\chi^0_1} \) and \(m_{\tilde{t}_1} = 60 \text{ GeV} \). Figure 3 shows the exclusion limit as a function of gluino and top squark masses, where gluino masses below 660 GeV are excluded at 95% C.L. for top squark masses below 460 GeV.

The results in SR1 are interpreted within the MSUGRA-CMSSM framework in terms of limits on the universal scalar and gaugino mass parameters \(m_0 \) and \(m_{1/2} \), as shown in Fig. 4. These are presented for fixed values of the universal trilinear coupling parameter \(A_0 = 0 \), ratio of the vacuum expectation values of the two Higgs doublets \(\tan\beta = 10 \), and Higgs mixing parameter \(\mu > 0 \). In this model, values of \(m_{1/2} \) below 300 GeV are excluded at 95% C.L. for \(m_0 \) values below 750 GeV, and \(m_{1/2} \) values below 180 GeV are excluded over the entire \(m_0 \) region considered. These are equivalent to the exclusion of gluino masses below ~550 GeV independent of the squark mass (and gluino masses below ~750 GeV for squark masses below 1 TeV).

In summary, a search for SUSY with two SS leptons, jets, and missing transverse momentum has been performed by using 2.05 fb\(^{-1}\) of ATLAS data. With no events observed in the signal regions, limits have been derived in the context of models where top quarks are produced in gluino decays and MSUGRA-CMSSM scenarios. In all these signal models, gluino masses below ~550 GeV are.

FIG. 2 (color online). Expected and observed 95% C.L. exclusion limits in the \(g \rightarrow t\bar{t}\chi^0_1 \) (via off mass-shell \(t \), \(m_{\tilde{t}_1} = 1.2 \text{ TeV} \)) simplified model as a function of the gluino and neutralino masses, together with existing limits [19]. The −1σ limit lies outside the range of the figure. The production cross section upper limits at 95% C.L. are also shown.

FIG. 3 (color online). Expected and observed 95% C.L. exclusion limits in the \(g \rightarrow t\bar{t}\chi^0_1 \) with \(t \rightarrow b\chi^+_1 \) model as a function of the gluino and top squark masses assuming that \(m_{\chi^+_1} \approx 2m_{\chi^0_1} \). The −1σ band lies outside the range of the figure.

FIG. 4 (color online). Expected and observed 95% C.L. exclusion limits in the MSUGRA-CMSSM (\(m_0, m_{1/2} \)) plane for \(\tan\beta = 10 \), \(A_0 = 0 \), and \(\mu > 0 \), compared to existing limits [52–56].
excluded at 95% C.L. within the parameter space considered, and gluino masses up to \(\sim 750 \text{ GeV} \) are excluded at 95% C.L., depending on the model parameters. The results of this analysis are complementary to and extend the current exclusion limits on the gluino mass beyond those from other ATLAS searches [19,52].

We thank CERN for the very successful operation of the LHC, as well as the support staff from our institutions without whom ATLAS could not be operated efficiently. We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC, and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST, and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR, and VSC CR, Czech Republic; DNRF, DNSRC, and Lundbeck Foundation, Denmark; ARTEMIS and ERC, European Union; IN2P3-CNRS and CEA-DSM/IRFU, France; GNAS, Georgia; BMBF, DFG, HGF, MPG, and AvH Foundation, Germany; GSRT, Greece; ISF, MINERVA, GIF, DIP, and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; FOM and NWO, Netherlands; RCN, Norway; MNI SW, Poland; GRICES and FCT, Portugal; MERS (MECTS), Romania; MES of Russia and ROSATOM, Russian Federation; JINR; MSTD, Serbia; MSSR, Slovakia; ARRS and MVZT, Slovenia; DST/NRF, South Africa; MICINN, Spain; SRC and Wallenberg Foundation, Sweden; SER, SNSF, and Cantons of Bern and Geneva, Switzerland; NSC, Taiwan; TAEK, Turkey; STFC, the Royal Society, and Leverhulme Trust, United Kingdom; DOE and NSF, United States of America. The crucial computing support from all WLCG partners is acknowledged gratefully, in particular, from CERN and the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, and Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (The Netherlands), PIC (Spain), ASGC (Taiwan), RAL (United Kingdom), and BNL (USA) and in the Tier-2 facilities worldwide.

I. van Vulpen,103 M. Vanadia,97 W. Vandelli,29 G. Vandoni,29 A. Vaniache,5 P. Vankov,41 F. Vannucci,76
V. I. Vassilakopoulos,33 T. Vazquez Schroeder,53 G. Vegni,87a,87b J. J. Veillet,113 C. Velidis,8
F. Veloso,122a R. Veness,29 S. Venedice,130a A. Ventura,70a,70b D. Ventura,136 M. Venturi,47 N. Venturi,156
V. Vercesi,117a M. Verducci,136 W. Verkerke,103 J. C. Vermeulen,103 A. Vest,43 M. C. Vetterli,40a I. Vichou,163
T. Vickey,143b,gg O. E. Vickey Boeriu,143b G. H. A. Viehhauser,116 S. Viel,166 M. Vila,19a,19b M. Villaplana Perez,134
E. Vilucchi,46 M. G. Vincter,28 E. Vinek,29 V. B. Vinogradov,63 M. Virchaux,134a J. Virzi,14 O. Vitelles,169 M. Viti,41
I. Vivarelli,47 F. Vives Vaque,2 S. Vlachos,9 D. Vladoiu,96 M. Vlasak,125 N. Vlasov,20 A. Vogel,20 P. Vokac,149
G. Volpi,46 M. Volpi,84 G. Volpini,87a H. von der Schmitt,97 J. von Loeben,97 H. von Radziewski,47 E. von Toerne,20
M. Vranjes Milosavljevic,103 V. Vraha,123 M. Vreeswijk,103 T. Vu Anh,47 R. Vuillermet,29 I. Vukotic,113
C. Weiser,47 H. Wellenstein,22 P. S. Wells,29 T. Wenaus,24 D. Wendland,15 S. Wendler,121 Z. Weng,149,t7 T. Weng,29
S. Wenig,29 N. Wermes,20 M. Werner,47 P. Werner,29 M. Werth,61 M. Wessels,57a J. Wetter,159 C. Weydert,54
K. Whalen,28 S. J. Wheeler-Ellis,161 S. P. Whitaker,21 A. White,7 M. J. White,84 S. R. Whitehead,161 D. Whiteons,161
C. Wiglesworth,73 L. A. W. Wick-Fuchs,47 P. A. Wijeratne,75 A. Wildauer,165 M. A. Wild,124 H. G. Wilkens,29 J. Z. Will,96 E. Williams,34 H. H. Williams,118 W. Willis,34 S. Willocq,82 J. A. Wilson,17
M. G. Wilson,141 A. Wilson,85 I. Wingert-Seex,8 S. Winkelmann,147 F. Winklmeier,47 M. Wittgen,141
M. W. Wolter,38 H. Wolters,122a W. C. Wong,40 G. Wooden,85 B. K. Wosiek,38 J. Wotschack,29 M. J. Woudstra,82
K. W. Wozniak,38 K. Wright,52 C. Wright,52 M. Wright,52 B. Wrana,71 S. L. Wu,170 X. Wu,48 Y. Wu,32b,i E. Wull,34
R. Wunsch,42 B. M. Wynn,45 S. Xella,35 M. Xiao,134 S. Xie,47 Y. Xie,32a C. Xu,137 G. Xu,32a
Y. Yang,59 Y. Yang,32a Z. Yang,144a,144b S. Yanush,89 Y. Yao,14 Y. Yasu,64 G. V. Ybeles Smit,125 J. Ye,39 S. Ye,24
L. Yuan,32a,ij A. Yurkewicz,104 B. Zabinski,38 V. G. Zaets,126 R. Zaidan,61 A. M. Zaitsev,126 Z. Zajcova,29
L. Zanello,130a,130b A. Zaytsev,105 C. Zeitnitz,172 M. Zeller,73 M. Zeman,123 A. Zemla,38 C. Zendler,29 O. Zenin,126
T. Ženiš,142a Z. Žinonos,120a,120b S. Zeni,14 D. Zerwas,113 G. Zevi della Porta,56 Z. Zhao,32d D. Zhang,32,hh
H. Zhang,86 J. Zhang,5 X. Zhang,32d Z. Zhang,113 L. Zhao,106 T. Zhao,136 Z. Zhao,32b A. Zhemchugov,63 S. Zheng,32a
V. Zhuravlov,97 D. Zieminska,59 R. Zimmermann,20 S. Zimmermann,20 M. Ziołkowski,139 R. Zitoun,4 V. Živković,34 V. V. Zhuravlov,126,a G. Zobernig,170 A. Zoccoli,19a,19b A. Zemla,38 M. zur Nedden,15
V. Zutshi,104 and L. Zwalinski29

(ATLAS Collaboration)

1 University at Albany, Albany, New York, USA
2 Department of Physics, University of Alberta, Edmonton, Alberta, Canada
3 Department of Physics, Ankara University, Ankara, Turkey
4 LAPP, CNRS/IN2P3 and Université de Savoie, Annecy-le-Vieux, France
5 High Energy Physics Division, Argonne National Laboratory, Argonne, Illinois, USA
6 Department of Physics, University of Arizona, Tucson, Arizona, USA
7 Department of Physics, The University of Texas at Arlington, Arlington, Texas, USA
8 Physics Department, University of Athens, Athens, Greece

Physics Department, National Technical University of Athens, Zografou, Greece
Institute of Physics, Azerbaijan Academy of Sciences, Baku, Azerbaijan
Institut de Física d’Altes Energies and Departament de Física de la Universitat Autònoma de Barcelona and ICREA, Barcelona, Spain
Institute of Physics, University of Belgrade, Belgrade, Serbia
Vinca Institute of Nuclear Sciences, University of Belgrade, Belgrade, Serbia
Department for Physics and Technology, University of Bergen, Bergen, Norway
Physics Division, Lawrence Berkeley National Laboratory and University of California, Berkeley, California, USA
Department of Physics, Humboldt University, Berlin, Germany
Albert Einstein Center for Fundamental Physics and Laboratory for High Energy Physics, University of Bern, Bern, Switzerland
School of Physics and Astronomy, University of Birmingham, Birmingham, United Kingdom
Department of Physics, Bogazici University, Istanbul, Turkey
Division of Physics, Dogus University, Istanbul, Turkey
Department of Physics Engineering, Gaziantep University, Gaziantep, Turkey
Department of Physics, Istanbul Technical University, Istanbul, Turkey
INFN Sezione di Bologna, Italy
Department of Physics, University of Bonn, Bonn, Germany
Department of Physics, Boston University, Boston, Massachusetts, USA
Department of Physics, Brandeis University, Waltham, Massachusetts, USA
Universidade Federal do Rio De Janeiro COPPE/EE/IF, Rio de Janeiro, Brazil
Federal University of Juiz de Fora (UFJF), Juiz de Fora, Brazil
Federal University of Sao Joao del Rei (UFSJ), Sao Joao del Rei, Brazil
Instituto de Física, Universidade de Sao Paulo, Sao Paulo, Brazil
Physics Department, Brookhaven National Laboratory, Upton, New York, USA
National Institute of Physics and Nuclear Engineering, Bucharest, Romania
University Politehnica Bucharest, Bucharest, Romania
West University in Timisoara, Timisoara, Romania
Departamento de Física, Universidad de Buenos Aires, Buenos Aires, Argentina
Cavendish Laboratory, University of Cambridge, Cambridge, United Kingdom
Department of Physics, Carleton University, Ottawa, Ontario, Canada
CERN, Geneva, Switzerland
Enrico Fermi Institute, University of Chicago, Chicago, Illinois, USA
Departamento de Física, Pontificia Universidad Católica de Chile, Santiago, Chile
Departamento de Física, Universidad Técnica Federico Santa María, Valparaíso, Chile
Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China
Department of Modern Physics, University of Science and Technology of China, Anhui, China
Department of Physics, Nanjing University, Jiangsu, China
School of Physics, Shandong University, Shandong, China
Laboratoire de Physique Corpusculaire, Clermont Université and Université Blaise Pascal and CNRS/IN2P3, Aubiere Cedex, France
Nevis Laboratory, Columbia University, Irvington, New York, USA
Niels Bohr Institute, University of Copenhagen, København, Denmark
INFN Gruppo Collegato di Cosenza, Italy
Dipartimento di Fisica, Università della Calabria, Arcavata di Rende, Italy
AGH University of Science and Technology, Faculty of Physics and Applied Computer Science, Krakow, Poland
The Henryk Niewodniczanski Institute of Nuclear Physics, Polish Academy of Sciences, Krakow, Poland
Physics Department, Southern Methodist University, Dallas, Texas, USA
Physics Department, University of Texas at Dallas, Richardson, Texas, USA
DESY, Hamburg and Zeuthen, Germany
Institut für Experimentelle Physik IV, Technische Universität Dortmund, Dortmund, Germany
Institut für Kern- und Teilchenphysik, Technical University Dresden, Dresden, Germany
Department of Physics, Duke University, Durham, North Carolina, USA
SUPA-School of Physics and Astronomy, University of Edinburgh, Edinburgh, United Kingdom
INFN Laboratori Nazionali di Frascati, Frascati, Italy
Fakultät für Mathematik und Physik, Albert-Ludwigs-Universität, Freiburg i.Br., Germany
Section de Physique, Université de Genève, Geneva, Switzerland
INFN Sezione di Genova, Italy
Dipartimento di Fisica, Università di Genova, Genova, Italy
E. Andronikashvili Institute of Physics, Tbilisi State University, Tbilisi, Georgia
High Energy Physics Institute, Tbilisi State University, Tbilisi, Georgia
152 Department of Physics, Aristotle University of Thessaloniki, Thessaloniki, Greece
153 International Center for Elementary Particle Physics and Department of Physics, The University of Tokyo, Tokyo, Japan
154 Graduate School of Science and Technology, Tokyo Metropolitan University, Tokyo, Japan
155 Department of Physics, Tokyo Institute of Technology, Tokyo, Japan
156 Department of Physics, University of Toronto, Toronto, Ontario, Canada
157 TRIUMF, Vancouver, British Columbia, Canada
158 Department of Physics and Astronomy, York University, Toronto, Ontario, Canada
159 Institute of Pure and Applied Sciences, University of Tsukuba, Ibaraki 305-8571, Japan
160 Science and Technology Center, Tufts University, Medford, Massachusetts, USA
161 Centro de Investigaciones, Universidad Antonio Narino, Bogota, Colombia
162 Department of Physics and Astronomy, University of California Irvine, Irvine, California, USA
163 INFN Gruppo Collegato di Udine, Italy
164 ICTP, Trieste, Italy
165 Instituto de Física Corpuscular (IFIC) and Departamento de Física Atómica, Molecular y Nuclear and Departamento de Ingeniería Electrónica and Instituto de Microelectrónica de Barcelona (IMB-CNM), University of Valencia and CSIC, Valencia, Spain
166 Department of Physics, University of British Columbia, Vancouver, British Columbia, Canada
167 Department of Physics and Astronomy, University of Victoria, Victoria, British Columbia, Canada
168 Waseda University, Tokyo, Japan
169 Department of Particle Physics, The Weizmann Institute of Science, Rehovot, Israel
170 Department of Physics, University of Wisconsin, Madison, Wisconsin, USA
171 Fakultät für Physik und Astronomie, Julius-Maximilians-Universität, Würzburg, Germany
172 Fachbereich C Physik, Bergische Universität Wuppertal, Wuppertal, Germany
173 Department of Physics, Yale University, New Haven, Connecticut, USA
174 Yerevan Physics Institute, Yerevan, Armenia
175 Domaine scientifique de la Doua, Centre de Calcul CNRS/IN2P3, Villeurbanne Cedex, France

aDeceased.
bAlso at Laboratorio de Instrumentacao e Fisica Experimental de Particulas-LIP, Lisboa, Portugal.
cAlso at Faculdade de Ciencias and CFNUL, Universidade de Lisboa, Lisboa, Portugal.
dAlso at Particle Physics Department, Rutherford Appleton Laboratory, Didcot, United Kingdom.
eAlso at TRIUMF, Vancouver, BC, Canada.
fAlso at Department of Physics, California State University, Fresno, CA, USA.
gAlso at Novosibirsk State University, Novosibirsk, Russia.
hAlso at Fermilab, Batavia, IL, USA.
iAlso at Department of Physics, University of Coimbra, Coimbra, Portugal.
jAlso at Università di Napoli Parthenope, Napoli, Italy.
kAlso at Institute of Particle Physics (IPP), Canada.
lAlso at Department of Physics, Middle East Technical University, Ankara, Turkey.
mAlso at Louisiana Tech University, Ruston, LA, USA.

nAlso at Department of Physics and Astronomy, University College London, London, United Kingdom.
oAlso at Group of Particle Physics, University of Montreal, Montreal, QC, Canada.
pAlso at Department of Physics, University of Cape Town, Cape Town, South Africa.
qAlso at Institute of Physics, Azerbaijan Academy of Sciences, Baku, Azerbaijan.
rAlso at Institut für Experimentalphysik, Universität Hamburg, Hamburg, Germany.
sAlso at Manhattan College, New York, NY, USA.
tAlso at Shandong University, Shandong, China.
uAlso at CPPM, Aix-Marseille Universite and CNRS/IN2P3, Marseille, France.
vAlso at School of Physics and Engineering, Sun Yat-sen University, Guangzhou, China.
wAlso at Academia Sinica Grid Computing, Institute of Physics, Academia Sinica, Taipei, Taiwan.
xAlso at DSM/IRFU (Institut de Recherches sur les Lois Fondamentales de l’Univers), CEA Saclay (Commissariat a l’Energie Atomique), Gif-sur-Yvette, France.
yAlso at Section de Physique, Université de Genève, Geneva, Switzerland.
zAlso at Departamento de Fisica, Universidade de Minho, Braga, Portugal.
aa Also at Department of Physics and Astronomy, University of South Carolina, Columbia, SC, USA.
ab Also at Institute for Particle and Nuclear Physics, Wigner Research Centre for Physics, Budapest, Hungary.
cc Also at California Institute of Technology, Pasadena, CA, USA.
dd Also at Institute of Physics, Jagiellonian University, Krakow, Poland.
ee Also at LAL, Univ. Paris-Sud and CNRS/IN2P3, Orsay, France.
ff Also at Department of Physics and Astronomy, University of Sheffield, Sheffield, United Kingdom.
gg Also at Department of Physics, Oxford University, Oxford, United Kingdom.
hh Also at Institute of Physics, Academia Sinica, Taipei, Taiwan.
i Also at Department of Physics, The University of Michigan, Ann Arbor, MI, USA.
jj Also at Laboratoire de Physique Nucléaire et de Hautes Energies, UPMC andUniversité Paris-Diderot and CNRS/IN2P3, Paris, France.