Search for events with large missing transverse momentum, jets, and at least two tau leptons in 7 TeV proton-proton collision data with the ATLAS detector

© CERN for the benefit of the ATLAS Collaboration. Open access under CC BY-NC-ND license.

Originally published at: http://doi.org/10.1016/j.physletb.2012.06.055
Search for events with large missing transverse momentum, jets, and at least two tau leptons in 7 TeV proton–proton collision data with the ATLAS detector

ATLAS Collaboration

1. Introduction

Supersymmetry (SUSY) [1–5] introduces a symmetry between fermions and bosons, resulting in a SUSY partner (sparticle) for each Standard Model (SM) particle with identical mass and quantum numbers except a difference by half a unit of spin. As none of these sparticles have been observed, SUSY must be a broken symmetry if realised in nature. Assuming R-parity conservation [6,7], sparticles are produced in pairs. These would then decay through cascades involving other sparticles until the lightest SUSY particle (LSP) is produced, which is stable.

Minimal gauge-mediated supersymmetry breaking (GMSB) [8–13] models can be described by six parameters: the SUSY breaking mass scale felt by the low-energy sector (Λ), the messenger mass (M_{mess}), the number of SU(5) messengers (N_5), the ratio of the vacuum expectation values of the two Higgs doublets (tan β), the Higgs sector mixing parameter (μ) and the scale factor for the gravitino mass (C_{grav}). In this analysis Λ and tan β are treated as free parameters and the other parameters are fixed to M_{mess} = 250 TeV, N_5 = 3, μ > 0 and C_{grav} = 1, similar to other GMSB benchmark points in the literature, e.g. G2a [14] and SPS7 [15]. The C_{grav} parameter determines the lifetime of the next-to-lightest SUSY particle (NLSP). For C_{grav} = 1 the NLSP decays promptly (τ_{NLSP} < 0.1 mm). With these parameters, the production of squark and/or gluino pairs is expected to dominate at the present Large Hadron Collider (LHC) energy. These sparticles decay directly or through cascades into the NLSP, which subsequently decays to the LSP. In GMSB models, the LSP is the very light gravitino (˜G). Due to the gravitino’s very small mass of O(keV), the NLSP is the only sparticle decaying into the LSP. This leads to multiple jets and missing transverse momentum (E_T^{miss}) in the final states. The experimental signature is then largely determined by the nature of the NLSP, which can be either the lightest stau (τ_1̃), a right-handed slepton (ℓ_R), the lightest neutralino (χ^0_1), or a sneutrino (ν), leading to final states containing taus, light leptons (ℓ = e, μ), photons, b-jets, or neutrinos. For N_5 = 3 the τ_1̃ and ℓ_R NLSPs become dominant compared to lower values of N_5. At large values of tan β, the τ_1̃ is the NLSP for most of the parameter space, which leads to final states containing between two and four tau leptons. In the so-called CoNLSP [16] region, the mass difference between the τ_1̃ and the ℓ_R is smaller than the tau lepton mass such that both sparticles decay directly into the LSP and are therefore NLSP.

This Letter reports on the search for events with large E_T^{miss} jets, and at least two hadronically decaying tau leptons. The analysis has been performed using 2 fb^{-1} of proton–proton (pp) collision data at √s = 7 TeV recorded with the ATLAS detector at the LHC between March and August 2011. Although the analysis is sensitive to a wide variety of models for physics beyond the Standard Model, the results shown here are interpreted in the context of a minimal GMSB model. The three LEP Collaborations ALEPH [17], DELPHI [18] and OPAL [19] studied τ_1̃ pair production, with the subsequent decay τ_1̃ → τG in the minimal GMSB model. The best limits are set by the OPAL Collaboration and τ_1̃ NLSPs with masses below 87.4 GeV are excluded. A limit on the SUSY breaking mass scale Λ of 26 TeV was set for N_5 = 3, M_{mess} = 250 TeV, independent of tan β and the NLSP lifetime. The CMS Collaboration searched for new physics in same-sign ditau events [20] and multilepton events including di-tau [21] using 35 pb^{-1} of data, but the minimal GMSB model was not considered. A search for supersymmetry in final states containing at least one hadronically decaying...
2. ATLAS detector

The ATLAS detector [23] is a multi-purpose apparatus with a forward-backward symmetric cylindrical geometry and nearly 4π solid angle coverage. The inner tracking detector (ID) consists of a silicon pixel detector, a silicon strip detector and a transition radiation tracker. The ID is surrounded by a thin superconducting solenoid providing a 2 T magnetic field and by fine-granularity lead/liquid-argon (LAr) electromagnetic calorimeters. An iron/scintillating-tile calorimeter provides hadronic coverage in the central rapidity range. The endcap and forward regions are instrumented with liquid-argon calorimeters for both electromagnetic and hadronic measurements. An extensive muon spectrometer system that incorporates large superconducting toroidal magnets surrounds the calorimeters.

3. Simulated samples

Monte Carlo (MC) simulations are used to extrapolate backgrounds from control regions (CRs) to the signal region (SR) and to evaluate the selection efficiencies for the SUSY models considered. Samples of W and Z/γ^* production with accompanying jets are simulated with ALEPHEN [24], using CTEQ6.1L [25] parton density functions (PDFs). Top quark pair production, single top production and diboson pair production are simulated with HERWIG [30], using JIMMY [31] for the underlying event simulation and the ATLAS MC10 parameter tune [32], TAUOLA [33,34] and PHOTOS [35] are used to model the decays of tau leptons and the radiation of photons, respectively. The production of multi-jet events is simulated with PYTHIA 6.4.25 [36] using the AMBT1 tune [37] and MRST2007 LO* [38] PDFs. For the minimal GMSB model considered in this analysis, the SUSY mass spectra are calculated using ISAJET 7.80 [39]. The MC signal samples are produced using HERWIG++ 2.4.2 [40] with MRST2007 LO* PDFs. NLO cross sections are calculated using PROSPINO 2.1 [41–46]; all samples are processed through the GEANT4-based simulation [47] of the ATLAS detector [48]. The variation of the number of pp interactions per bunch crossing (pile-up) as a function of the instantaneous luminosity is taken into account by modeling the simulated number of overlaid minimum bias events according to the observed distribution of the number of pile-up interactions in data, with an average of ~ 6 interactions.

4. Object reconstruction

Jets are reconstructed using the anti-k_t jet clustering algorithm [49] with radius parameter $R = 0.4$. Their energies are calibrated to correct for calorimeter non-compensation, upstream material and other effects [50]. Jets are required to have transverse momentum (p_T) above 20 GeV and $|\eta| < 2.5$.

Muons are identified as tracks in the ID matched to track segments in the stand-alone muon spectrometer, while electrons are identified as isolated tracks with a corresponding energy deposit in the electromagnetic calorimeter. The selection criteria applied to muons and “medium” quality electrons are described in more detail in Refs. [51] and [52], respectively.

The measurement of the missing transverse momentum two-dimensional vector p_T^{miss} (and its magnitude E_T^{miss}) is based on the transverse momenta of identified jets, electrons, muons and all calorimeter clusters with $|\eta| < 4.5$ not associated to such objects [53]. For the purpose of the measurement of E_T^{miss}, taus are not distinguished from jets.

In this search, only hadronically decaying taus are considered. The tau reconstruction is seeded from anti-k_t jets with $p_T > 10$ GeV. An η- and p_T-dependent energy calibration to the hadronic tau energy scale is applied. Hadronic tau identification is based on observables sensitive to the transverse and longitudinal shape of the calorimeter shower and on tracking information, combined in a boosted decision tree (BDT) discriminator [54]. Transverse radiation and calorimeter information is used to veto electrons misidentified as taus. A tau candidate must have $p_T > 20$ GeV, $|\eta| < 2.5$, and one or three associated tracks of $p_T > 1$ GeV with a charge sum of ± 1. The efficiency of the BDT tau identification (the “loose” working point in Ref. [54]), determined using $Z \rightarrow \mu \mu$ events, is about 60%, independent of p_T, with a jet background rejection factor of 20–50.

During a part of the data-taking period, an electronics failure in the LAr barrel EM calorimeter created a dead region in the second and third layers, corresponding to approximately 1.4 \times 0.2 radians in $\Delta \phi$ and $\Delta \eta$. Electron and tau candidates falling in this region are discarded. A correction to the jet energy is made using the energy depositions in the cells neighbouring the dead region; events having at least one jet for which the energy after correction is above 30 GeV are discarded, resulting in a loss of $\sim 6\%$ of the data sample.

5. Data analysis

The analysed data sample, after applying beam, detector and data-quality requirements, corresponds to an integrated luminosity of $(2.05 \pm 0.08) \text{ fb}^{-1}$ [55,56]. Candidate events are pre-selected by a trigger requiring a leading jet, i.e. the jet having the highest transverse momentum of all jets in the event, with $p_T > 75$ GeV, measured at the raw electromagnetic scale, and $E_T^{\text{miss}} > 45$ GeV [57]. In the offline analysis, these events are required to have a reconstructed primary vertex with at least five tracks, a leading jet with $p_T > 130$ GeV and $E_T^{\text{miss}} > 130$ GeV. These requirements ensure a uniform trigger efficiency that exceeds 98%.

Pre-selected events are then required to have at least two identified tau candidates and must not contain any electron or muon candidates with transverse momenta above 20 GeV or 10 GeV, respectively. To suppress soft multi-jet events, a second jet with $p_T > 30$ GeV is required. The p_T spectrum of the leading tau candidate after pre-selection of candidate events, soft multi-jet rejection and the requirement of two or more taus and no light leptons is shown in Fig. 1.

This selection rejects almost all soft multi-jet background events. Remaining multi-jet events, where highly energetic jets are mis-measured, are rejected by requiring the azimuthal angle between the missing transverse momentum and either of the two leading jets $\Delta \phi(p_{T,1}^{\text{miss}}, \text{jet,2})$ to be larger than 0.4 radians.

The SR is defined by requiring $m_{\ell \ell} > 700$ GeV and $m_{T,1}^{\ell \ell} + m_{T,2}^{\ell \ell} > 80$ GeV, where m_{eff} is the effective mass 2 and $m_{T,1}^{\ell \ell} + m_{T,2}^{\ell \ell}$ is the effective mass 2 calculated as the sum of E_T^{miss} and the magnitude of the transverse momenta of the two highest-p_T jets and all selected taus.

1 ATLAS uses a right-handed coordinate system with its origin at the nominal interaction point (IP) in the centre of the detector and the z-axis along the beam pipe. The x-axis points from the IP to the centre of the LHC ring and the y-axis points upward. Cylindrical coordinates (r, ϕ) are used in the transverse plane, ϕ being the azimuthal angle around the beam pipe. The pseudorapidity is defined in terms of the polar angle θ as $\eta = -\ln \tan(\theta/2)$.

2 The effective mass m_{eff} is calculated as the sum of E_T^{miss} and the magnitude of the transverse momenta of the two highest-p_T jets and all selected taus.
sum of the transverse masses3 of the two leading tau candidates. The m_{eff} distribution after the $\Delta \phi(p_{T\text{miss}}^{\text{jet}_1,2})$ requirement and the $m_T^1 + m_T^2$ distribution after the m_{eff} requirement are shown in Fig. 2. After applying all the analysis requirements, 3 events are selected in the data.

6. Background estimation

The dominant backgrounds in the SR arise from top-pair plus single top events (here generically indicated as $t\bar{t}$), $W \rightarrow \tau\nu\tau$, and $Z \rightarrow \tau\tau$ events. While the latter comprises final states with two true taus, which are well described in the simulation, the W and $t\bar{t}$ background consist of events in which one real tau is correctly reconstructed and the other tau candidates are mis-reconstructed from hadronic activity in the final state. Since misidentified taus are not well described in the MC, the background contribution from $t\bar{t}$ and $W \rightarrow \tau\nu\tau$ is determined simultaneously in a CR defined by inverting the m_{eff} cut. Owing to the requirement on $\Delta \phi$ and of two or more taus, this CR has negligible contamination from multi-jet events. Moreover, a totally negligible contribution is expected in this CR from signal events. The MC overestimates the number of events in the CR compared to data, due to mis-modeling of tau misidentification probabilities. MC studies show that the tau misidentification probability is, to a good approximation, independent of m_{eff}, so that the measured ratio of the data to MC event yields in the CR can be used to correct the MC background prediction in the SR.

In a similar way, the multi-jet background expectation is computed in a multi-jet dominated CR defined by inverting the m_{eff} and m_{eff} cuts. In addition, $E_T^{\text{miss}}/m_{\text{eff}} < 0.4$ is required to increase the purity of this CR sample. The extrapolated contribution of this background source to the SR is found to be negligible.

7. Systematic uncertainties on the background

The theoretical uncertainty on the MC-based corrected extrapolation of the W and $t\bar{t}$ backgrounds from the CR into the SR is estimated using alternative MC samples obtained by varying the renormalisation and factorisation scales, the functional form of the factorisation scale and the matching threshold in the parton shower process. An uncertainty of 14% is estimated from this procedure. Moreover, an uncertainty of 23% is associated to the normalisation factor derived in the CR. This uncertainty is estimated by repeating the normalisation to data independently for W and $t\bar{t}$. Systematic uncertainties on the jet energy scale and jet energy resolution [50] are applied in MC to the selected jets and propagated throughout the analysis, including to E_T^{miss}. The difference in the number of expected background events obtained with the nominal MC simulation after applying these changes is taken as the systematic uncertainty and corresponds to 18% each. The effect of the tau energy scale uncertainty on the expected background is estimated in a similar way and amounts to 7%. The uncertainties from the jet and tau energy scale are treated as fully correlated. The tau identification efficiency uncertainties on the background depends on the tau identification algorithm, the kinematics of the τ sample and the number of associated tracks. The systematic uncertainties associated to the tau identification and misidentification are found to be 2.5% and 0.5%, respectively. For

3 The transverse mass m_T^i formed by E_T^{miss} and the p_T of the tau lepton (τ) is defined as $m_T^i = \sqrt{2p_T^{\tau}E_T^{\text{miss}}(1 - \cos(\Delta \phi(\tau, p_{T\text{miss}}))}$.
the $t\bar{t}$ and W backgrounds, these uncertainties are absorbed into the normalisation. The systematic uncertainty associated to pile-up simulation in MC is 1%. The normalisation of the $Z +$ jets and diboson backgrounds is affected by the uncertainty of 3.7% on the luminosity measurement [55,56]. This results in a 0.8% uncertainty on the total background. The contributions from the different systematic uncertainties result in a total background systematic uncertainty of 41%.

In total 5.3 \pm 1.3 (stat) \pm 2.2 (sys) background events are expected where the first uncertainty is statistical and includes the statistical component of the background correction factor uncertainty and the second is systematic. Roughly half of the background is composed of $t\bar{t}$ events and the other half is evenly split into W and Z events with accompanying jets.

8. Signal efficiencies and systematic uncertainties

GMSB signal samples were generated on a grid ranging from $\Lambda = 10$ TeV to $\Lambda = 80$ TeV and from $\tan \beta = 2$ to $\tan \beta = 50$. The number of selected events decreases significantly with increasing Λ due to the reduced cross section. The cross section drops from 100 pb for $\Lambda = 15$ TeV to 5.0 fb for $\Lambda = 80$ TeV. The selection efficiency is highest ($\approx 3\%$) for high $\tan \beta$ and lower Λ values, including in the region of the GMSB4030 point ($\Lambda = 40$, $\tan \beta = 30$) which is near the expected limit. It drops to 0.2% in the non-τ_1 NLSP regions and for high Λ values. This is primarily a consequence of the light lepton veto and the requirement of two hadronically decaying taus, respectively.

The total systematic uncertainty on the signal selection from the systematic uncertainties discussed in Section 7 ranges between 7.5% and 36% over the GMSB grid. The statistical uncertainty from the limited size of the MC signal samples is of the order of 20%, with variations between 7.6% and 59% at the edges of the accessible signal range. Theory uncertainties related to the GMSB cross section predictions are estimated through variations of the factorisation and renormalisation scales in the NLO PROSPINO calculation between half and twice their default values, by considering variations in α_s, and by considering PDF uncertainties using the CT@Q6.6M PDF error sets [58]. These uncertainties are calculated for individual SUSY production processes and for each model point, leading to overall theoretical cross section uncertainties between 6.5% and 22%. Altogether this yields 20.8 ± 3.4 (stat) ± 3.6 (sys) ± 3.3 (theo) signal events for the GMSB4030 point.

9. Results

Based on the observation of 3 events in the SR and a background expectation of 5.3 ± 1.3 (stat) ± 2.2 (sys) events, an upper limit of 5.9 events from new phenomena, corresponding to an upper limit on the visible cross section of 2.9 fb. Limits on the model parameters are set for a minimal GMSB model. The limit on the SUSY breaking scale Λ of 32 TeV is determined, independent of $\tan \beta$. It increases up to 47 TeV for $\tan \beta = 37$. These results provide the most stringent tests in a large part of the parameter space considered to date, improving the previous best limits.

Acknowledgements

We thank CERN for the very successful operation of the LHC, as well as the support staff from our institutions without whom ATLAS could not be operated efficiently.

We acknowledge the support of many collaborators beyond the institutions associated with ATLAS, including a significant contribution from the companies which supply technical equipment.

Fig. 3. Expected and observed 95% CL limits on the minimal GMSB model parameters Λ and $\tan \beta$. The dark grey area indicates the region which is theoretically excluded due to unphysical sparticle mass values. The different NLSP regions are indicated. In the CoNLSP region the τ_1 and the τ_2 are the NLSP. Additional model parameters are $M_{t\bar{t}} = 250$ TeV, $N_3 = 3$, $\mu > 0$ and $C_{\text{grav}} = 1$. The previous OPAL [19] limits are also shown.
Greece; ISF, MINERVA, GIF, DIP and Benoziyo Center, Israel; IFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; FOM and NWO, Netherlands; RCN, Norway; MNiSW, Poland; GRICES and FCT, Portugal; MERSY (MECTS), Romania; MES of Russia and ROSATOM, Russian Federation; JINR, MSTD, Serbia; MSSR, Slovakia; ARRS and MVZT, Slovenia; DST/NRF, South Africa; MICINN, Spain; SRC and Wallenberg Foundation, Sweden; SER, SNSF and Cantons of Bern and Geneva, Switzerland; NSC, Taiwan; TAEK, Turkey; STFC, the Royal Society and Leverhulme Trust, United Kingdom; DOE and NSF, United States of America.

The crucial computing support from all WLCG partners is acknowledged gratefully, in particular from CERN and the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (UK) and BNL (USA) and in the Tier-2 facilities worldwide.

Open access

This article is published Open Access at sciencedirect.com. It is distributed under the terms of the Creative Commons Attribution License 3.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are credited.

References

[1] Y.A. Golftand, E.P. Likhtman, JETP Lett. 13 (1971) 323.
[18] ATLAS Collaboration, Charged particle multiplicities in pp interactions at $\sqrt{s} = 0.9$ and 7 TeV in a diffractive limited phase space measured with the ATLAS detector at the LHC and a new Pythia6 tune, ATLAS-CONF-2010-031, July 2010, http://cdsweb.cern.ch/record/1277653.

ATLAS Collaboration

1 University at Albany, Albany, NY, United States
2 Department of Physics, University of Alberta, Edmonton, AB, Canada
3 (a) Department of Physics, Arizona State University, Tempe, AZ, United States
4 Department of Physics, Boston University, Boston, MA, United States
5 Physics Department, Brookhaven National Laboratory, Upton, NY, United States
7 Physics Division, Lawrence Berkeley National Laboratory and University of California, Berkeley, CA, United States
8 Department of Physics, Humboldt University, Berlin, Germany
9 Albert Einstein Center for Fundamental Physics and Laboratory for High Energy Physics, University of Bern, Bern, Switzerland
10 School of Physics and Astronomy, University of Birmingham, Birmingham, United Kingdom
11 Dipartimento di Fisica, Pontificia Universidad Católica de Chile, Santiago, Chile
12 a Instituto de Física, Universidade de Sao Paulo, Sao Paulo, Brazil
13 (a) National Institute of Physics and Nuclear Engineering, Bucharest, Romania
14 University Politehnica Bucharest, Bucharest, Romania
15 West University in Timisoara, Timisoara, Romania
16 Departamento de Física, Universidad de Buenos Aires, Buenos Aires, Argentina
17 Cavendish Laboratory, University of Cambridge, Cambridge, United Kingdom
18 Department of Physics, Carleton University, Ottawa, ON, Canada
19 CERN, Geneva, Switzerland
20 Enrico Fermi Institute, University of Chicago, Chicago, IL, United States
21 (a) Departamento de Física, Pontificia Universidad Católica de Chile, Santiago, Chile
22 (b) Instituto de Física, Universidade de Sao Paulo, Sao Paulo, Brazil
23 (c) INFN Sezione di Bologna, Dipartimento di Fisica, Università di Bologna, Bologna, Italy
24 Physikalischs Institut, University of Bonn, Bonn, Germany
25 (a) Department of Physics, Boston University, Boston, MA, United States
26 Department of Physics, Brandeis University, Waltham, MA, United States
27 Universidade Federal do Rio De Janeiro CPGE/EE/IF, Rio de Janeiro, Brazil
28 (a) Department of Modern Physics, University of Science and Technology of China, Anhui, China
29 Department of Physics, Nanjing University, Jiangsu, China
30 School of Physics, Shandong University, Shandong, China
31 Laboratoire de Physique Corpusculaire, Clermont Université and Université Blaise Pascal and CNRS/IN2P3, Aubiere Cedex, France
32 Nevis Laboratory, Columbia University, Irvington, NY, United States
33 Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark
34 INFN Sezione di Genova, Dipartimento di Fisica, Università di Genova, Genova, Italy
35 Lawrence Berkeley National Laboratory, Berkeley, CA, United States
36 (a) Department of Physics, Stony Brook University, Stony Brook, NY, United States
37 AGH University of Science and Technology, Faculty of Physics and Applied Computer Science, Krakow, Poland
38 The Henryk Niewodniczanski Institute of Nuclear Physics, Polish Academy of Sciences, Krakow, Poland
39 Physics Department, Southern Methodist University, Dallas, TX, United States
40 Physics Department, University of Texas at Dallas, Richardson, TX, United States
41 DESY, Hamburg and Zeuthen, Germany
42 Institut für Experimentelle Physik IV, Technische Universität Dortmund, Dortmund, Germany
43 Institut für Kern- und Teilchenphysik, Technical University Dresden, Dresden, Germany
44 Department of Physics, Duke University, Durham, NC, United States
45 SLAC – School of Physics and Astronomy, University of Edinburgh, Edinburgh, United Kingdom
46 Fachhochschule Wiener Neustadt, Johannes Gutenbergstrasse 3 2700 Wiener Neustadt, Austria
47 INFN Laboratori Nazionali di Frascati, Frascati, Italy
48 Fakultät für Mathematik und Physik, Albert-Ludwigs-Universität, Freiburg i.B., Germany
49 Section de Physique, Université de Genève, Geneva, Switzerland
50 a INFN Sezione di Genova, Dipartimento di Fisica, Università di Genova, Genova, Italy
51 E. andromedavski Institute of Physics, Thiblisi State University, Thiblisi, Georgia
52 Il Physikalisches Institut, Justus-Liebig-Universität Giessen, Giessen, Germany
53 SDPA – School of Physics and Astronomy, University of Glasgow, Glasgow, United Kingdom
54 (a) Physikalisches Institut, Georg-August-Universität, Göttingen, Germany
55 Laboratoire de Physique Subatomique et de Cosmologie, Université Joseph Fourier and CNRS/IN2P3 and Institut National Polytechnique de Grenoble, Grenoble, France
56 Department of Physics, Hampton University, Hampton, VA, United States
57 Laboratory for Particle Physics and Cosmology, Harvard University, Cambridge, MA, United States
58 e Kirchhoff-Institut für Physik, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany
59 Physikalisches Institut, Ruprecht-Karls-Universität Heidelberg, Mannheim, Germany
60 Faculty of Applied Information Science, Hiroshima Institute of Technology, Hiroshima, Japan
61 Department of Physics, Indiana University, Bloomington, IN, United States
62 Institut für Astro- und Teilchenphysik, Leopold-Franzens-Universität, Innsbruck, Austria
63 University of Iowa, Iowa City, IA, United States
64 Department of Physics and Astronomy, Iowa State University, Ames, IA, United States
65 Joint Institute for Nuclear Research, JINR Dubna, Dubna, Russia
66 KEK, High Energy Accelerator Research Organization, Tsukuba, Japan
67 Graduate School of Science, Kobe University, Kobe, Japan
68 Graduate School of Science, Kyoto University, Kyoto, Japan
69 Kyoto University of Education, Kyoto, Japan
70 Instituto de Física La Plata, Universidad Nacional de La Plata and CONICET, La Plata, Argentina
71 Physics Department, Lancaster University, Lancaster, United Kingdom
<table>
<thead>
<tr>
<th>Institution</th>
<th>City</th>
<th>Country</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Department of Physics, Royal Institute of Technology, Stockholm, Sweden</td>
<td></td>
<td>Sweden</td>
</tr>
<tr>
<td>2. Departments of Physics & Astronomy and Chemistry, Stony Brook University, Stony Brook, NY, United States</td>
<td></td>
<td>United States</td>
</tr>
<tr>
<td>3. Department of Physics and Astronomy, University of Sussex, Brighton, United Kingdom</td>
<td></td>
<td>United Kingdom</td>
</tr>
<tr>
<td>4. School of Physics, University of Sydney, Sydney, Australia</td>
<td></td>
<td>Australia</td>
</tr>
<tr>
<td>5. Institute of Physics, Academia Sinica, Taipei, Taiwan</td>
<td></td>
<td>Taiwan</td>
</tr>
<tr>
<td>6. Department of Physics, Technion - Israel Inst. of Technology, Haifa, Israel</td>
<td></td>
<td>Israel</td>
</tr>
<tr>
<td>7. Raymond and Beverly Sackler School of Physics and Astronomy, Tel Aviv University, Tel Aviv, Israel</td>
<td></td>
<td>Israel</td>
</tr>
<tr>
<td>8. Department of Physics, Aristotle University of Thessaloniki, Thessaloniki, Greece</td>
<td></td>
<td>Greece</td>
</tr>
<tr>
<td>9. International Center for Elementary Particle Physics and Department of Physics, The University of Tokyo, Tokyo, Japan</td>
<td></td>
<td>Japan</td>
</tr>
<tr>
<td>10. Graduate School of Science and Technology, Tokyo Metropolitan University, Tokyo, Japan</td>
<td></td>
<td>Japan</td>
</tr>
<tr>
<td>11. Department of Physics, Tokyo Institute of Technology, Tokyo, Japan</td>
<td></td>
<td>Japan</td>
</tr>
<tr>
<td>12. Department of Physics, University of Toronto, Toronto, ON, Canada</td>
<td></td>
<td>Canada</td>
</tr>
<tr>
<td>13. Institute of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tenmonodai, Tsukuba, Ibaraki 305-8571, Japan</td>
<td></td>
<td>Japan</td>
</tr>
<tr>
<td>14. Science and Technology Center, Tufts University, Medford, MA, United States</td>
<td></td>
<td>United States</td>
</tr>
<tr>
<td>15. Centro de Investigaciones, Universidad Antonio Narino, Bogota, Colombia</td>
<td></td>
<td>Colombia</td>
</tr>
<tr>
<td>16. Department of Physics and Astronomy, University of California Irvine, Irvine, CA, United States</td>
<td></td>
<td>United States</td>
</tr>
<tr>
<td>17. Department of Physics and Astronomy, University of Uppsala, Uppsala, Sweden</td>
<td></td>
<td>Sweden</td>
</tr>
<tr>
<td>18. Departamento de Ciencia Corpuscular (IFIC) and Departamento de Física Atómica, Molecular y Nuclear and Departamento de Ingeniería Electrónica and Instituto de Microelectrónica de Barcelona (IMB-CNM), University of Valencia and CSIC, Valencia, Spain</td>
<td></td>
<td>Spain</td>
</tr>
<tr>
<td>19. Department of Physics, University of British Columbia, Vancouver, BC, Canada</td>
<td></td>
<td>Canada</td>
</tr>
<tr>
<td>20. Department of Physics and Astronomy, University of Victoria, Victoria, BC, Canada</td>
<td></td>
<td>Canada</td>
</tr>
<tr>
<td>21. Waseda University, Tokyo, Japan</td>
<td></td>
<td>Japan</td>
</tr>
<tr>
<td>22. Department of Particle Physics, The Weizmann Institute of Science, Rehovot, Israel</td>
<td></td>
<td>Israel</td>
</tr>
<tr>
<td>23. Department of Physics, University of Wisconsin, Madison, WI, United States</td>
<td></td>
<td>United States</td>
</tr>
<tr>
<td>24. Fakultät für Physik und Astronomie, Julius-Maximilians-Universität, Würzburg, Germany</td>
<td></td>
<td>Germany</td>
</tr>
<tr>
<td>25. Fachbereich C Physik, Bergische Universität Wuppertal, Wuppertal, Germany</td>
<td></td>
<td>Germany</td>
</tr>
<tr>
<td>26. Department of Physics, Yale University, New Haven, CT, United States</td>
<td></td>
<td>United States</td>
</tr>
<tr>
<td>27. Yerevan Physics Institute, Yerevan, Armenia</td>
<td></td>
<td>Armenia</td>
</tr>
<tr>
<td>28. Domaine scientifique de la Doua, Centre de Calcul CNRS/IN2P3, Villeurbanne Cedex, France</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Also at Laboratorio de Instrumentacao e Fisica Experimental de Particulas – LIP, Lisboa, Portugal.
* Also at Faculdade de Ciencias and CFNUL, Universidade de Lisboa, Lisboa, Portugal.
* Also at Particle Physics Department, Rutherford Appleton Laboratory, Didcot, United Kingdom.
* Also at TRIUMF, Vancouver, BC, Canada.
* Also at Department of Physics, California State University, Fresno, CA, United States.
* Also at Novosibirsk State University, Novosibirsk, Russia.
* Also at Fermilab, Batavia, IL, United States.
* Also at Department of Physics, University of Coimbra, Coimbra, Portugal.
* Also at Università di Napoli Parthenope, Napoli, Italy.
* Also at Institute of Particle Physics (IPP), Canada.
* Also at Department of Physics, Middle East Technical University, Ankara, Turkey.
* Also at Louisiana Tech University, Ruston, LA, United States.
* Also at Department of Physics and Astronomy, University College London, London, United Kingdom.
* Also at Group of Particle Physics, University of Montréal, Montréal, QC, Canada.
* Also at Department of Physics, University of Cape Town, Cape Town, South Africa.
* Also at Institute of Physics, Azerbaijan Academy of Sciences, Baku, Azerbaijan.
* Also at Institut für Experimentalphysik, Universität Hamburg, Hamburg, Germany.
* Also at Manhattan College, New York, NY, United States.
* Also at School of Physics, Shandong University, Shandong, China.
* Also at CPPM, Aix-Marseille Université and CNRS/IN2P3, Marseille, France.
* Also at School of Physics and Engineering, Sun Yat-sen University, Guangzhou, China.
* Also at Academia Sinica Grid Computing, Institute of Physics, Academia Sinica, Taipei, Taiwan.
* Also at DSM/IRFU (Institut de Recherches sur les Lois Fondamentales de l’Univers), CEA Saclay (Commissariat a l’Energie Atomique), Gif-sur-Yvette, France.
* Also at Section de Physique, Université de Genève, Geneva, Switzerland.
* Also at Departamento de Física, Universidad de Minho, Braga, Portugal.
* Also at Department of Physics and Astronomy, University of South Carolina, Columbia, SC, United States.
* Also at Institute for Particle and Nuclear Physics, Wigner Research Centre for Physics, Budapest, Hungary.
* Also at California Institute of Technology, Pasadena, CA, United States.
* Also at Institute of Physics, Jagiellonian University, Krakow, Poland.
* Also at LAL, Univ. Paris-Sud and CNRS/IN2P3, Orsay, France.
* Also at Department of Physics and Astronomy, University of Sheffield, Sheffield, United Kingdom.
* Also at Department of Physics, Oxford University, Oxford, United Kingdom.
* Also at Institute of Physics, Academia Sinica, Taipei, Taiwan.
* Also at Department of Physics, The University of Michigan, Ann Arbor, MI, United States.
* Also at Laboratoire de Physique Nucléaire et de Hautes Energies, UPMC and Université Paris-Diderot and CNRS/IN2P3, Paris, France.
* Deceased.