G. Aad ... P. Jackson ... L. Lee ... A. Petridis ... N. Soni ... M.J. White ... et al. (ATLAS Collaboration)
Search for new particles decaying to ZZ using final states with leptons and jets with the ATLAS detector in √s = 7 TeV proton-proton collisions

© 2012 CERN. Published by Elsevier B.V. Open access under CC BY-NC-ND license.

Originally published at:
http://doi.org/10.1016/j.physletb.2012.05.020
Search for new particles decaying to ZZ using final states with leptons and jets with the ATLAS detector in $\sqrt{s} = 7$ TeV proton–proton collisions

ATLAS Collaboration

1. Introduction

The Standard Model (SM) of particle physics allows for resonant production of Z boson pairs (ZZ) solely through the production and decay of the Higgs boson. However, some extensions to the SM predict additional mechanisms for resonant ZZ production. For example, models of warped extra dimensions [1,2] predict two such resonances: excited states of the spin-2 graviton (G^*) and the spin-0 radion (R). Searches for such gravitons by the ATLAS Collaboration have excluded at 95% confidence level masses larger than 1.63 TeV in dilepton final states [3] and smaller than 1.9 TeV in diphoton final states [4]; CMS has excluded masses below 1.84 TeV in diphoton final states [5]. Recent versions of these models [6] in which all SM fields propagate in these new dimensions predict enhanced coupling of the graviton to the ZZ final state and suppressed decay rates to light fermion and diphoton states. Observation of graviton production and decay to a pair of Z bosons would be striking evidence for physics beyond the Standard Model.

This Letter describes the search for a new particle decaying to the ZZ final state using the RS1 excited graviton (G^*) as a benchmark model [1]. This search uses 1.02 fb$^{-1}$ of integrated luminosity collected between February and June 2011 by the ATLAS detector in $\sqrt{s} = 7$ TeV pp collisions at the Large Hadron Collider (LHC). Two final states of the ZZ decay are studied. The first, referred to as $\ell\ell\ell\ell$, where $\ell = e$ or μ, includes events in which one Z boson decays into electrons or muons, and the other Z boson decays into two jets. This channel is also sensitive to dijet decays of the W boson in association with a Z boson decaying to a lepton pair. For the second, referred to as $\ell\ell\ell\ell$, both Z bosons decay into electrons or muons. The final state with two pairs of oppositely charged same-flavor leptons, each pair with invariant mass near the Z boson mass, is used to search for anomalous ZZ production.

Below a graviton mass (m_{G^*}) of 500 GeV, the $\ell\ell\ell\ell$ channel dominates the combined $\ell\ell\ell\ell + \ell\elljj$ sensitivity due to the extremely low background rate. Above 500 GeV, the background in $\ell\elljj$ yield decreases rapidly with m_{G^*}, and this final state gains importance due to the larger branching fraction. Since no evidence for $G^* \to ZZ$ production is found in this analysis, 95% confidence level (CL) limits are presented using the RS1 graviton as a benchmark. Additionally, the simplicity of the $\ell\ell\ell\ell$ final state allows for the calculation of fiducial cross section limits which provide a model-independent bound on anomalous ZZ production.

The RS1 graviton has been used as a benchmark in earlier searches for a resonant structure in ZZ final states. The CDF Collaboration used $p\bar{p}$ collisions at $\sqrt{s} = 1.96$ TeV with 2.9 fb$^{-1}$ of integrated luminosity to exclude such a state with a mass less than 491 GeV [7] at 95% CL assuming $k/m_{G^*} = 0.1$, where k is the curvature scale of the warped extra dimension and $m_{G^*} \equiv m_{G^*}/\sqrt{8\pi}$ is the reduced Planck mass. A more recent analysis by CDF using 6 fb$^{-1}$ reports an excess of $\ell\ell\ell\ell$ events at high Z boson-pair invariant mass, clustered around 327 GeV [8], although this is not seen in $\ell\elljj$ or $\ell\ell\nu\nu$ channels.

2. Detector

The ATLAS detector [9] is a multi-purpose detector with precision tracking, calorimetry and muon spectrometry. The detector
covers almost the entire 4π solid angle surrounding the collision point at the center of a set of subdetectors. Starting at the collision point and moving outwards, the first subdetector reached is the silicon pixel detector followed by the silicon strip detector and the transition radiation tracker. These three systems comprise the inner detector (ID) and reconstruct charged particle tracks out to $|\eta| < 2.5$. Particle momentum is measured by the curvature of the tracks as they are deflected in a peak 2T magnetic field provided by a solenoid surrounding the ID. The next subsystems reached are the electromagnetic (EM) and hadronic calorimeters. The EM calorimeter is a highly granular liquid argon (LAr) sampling calorimeter with lead absorber plates designed for electron and photon energy measurements. An iron scintillator tile calorimeter provides hadronic energy measurements in the barrel region ($|\eta| < 1.7$) while liquid argon with copper absorber plates is used in the endcap and forward regions. Together these detectors allow electromagnetic and hadronic energy measurements out to $|\eta| < 4.9$. Behind the calorimeters is the muon spectrometer (MS), which consists of gas-filled chambers and an air-core toroidal magnetic system. This detector measures both the muon momentum and charge out to $|\eta| < 2.7$.

To trigger readout [10], full event reconstruction and event storage by the data acquisition system, electron candidates must have transverse energy greater than 20 GeV. They must satisfy shower-shape requirements and correspond to an ID track. Muon candidates must have transverse momentum greater than 18 GeV and a consistent trajectory reconstructed in the ID and muon spectrometer. The full trigger chain uses signals from all muon detectors. These triggers reach their efficiency plateau at lepton p_T thresholds of 20 GeV for muons and 25 GeV for electrons.

3. Object reconstruction

Electrons are reconstructed from energy deposits in the EM calorimeter matched to tracks in the inner detector, and are required to satisfy the ‘medium’ identification requirements described in Ref. [11]. Electrons are required to have $E_T > 20(15)$ GeV in the $\ell\ell jj (\ell\ell\ell)$ channel and $|\eta| < 1.37$ or $1.52 < |\eta| < 2.47$. For tracks with at least four hits in the pixel and silicon strip detectors, the angles η and ϕ are defined by the track, otherwise these quantities are computed from the calorimeter cluster position. Finally, all electrons must be isolated from other charged tracks to suppress jets, i.e. the scalar sum of track p_T for tracks with $p_T > 1$ GeV surrounding the electron track in a cone of radius $\Delta R = 0.2$, where ΔR is a distance measure in the η–ϕ plane defined as $\sqrt{(\Delta\eta)^2 + (\Delta\phi)^2}$, must be less than 15% (10%) of the transverse energy of the electron in the $\ell\ell\ell (\ell\ell\ell\ell)$ channel.

Muons are reconstructed from hits in the muon spectrometer [12]. The track formed from these hits must match a track found in the ID. The ID track must have a hit in the innermost layer of the pixel detector to reduce backgrounds from heavy-flavor hadron decays. The muon track is constructed using information from the ID and MS tracks, and the muon p_T, η, and ϕ are defined from the properties of this combined track. Muons are required to have $p_T > 20(15)$ GeV in the $\ell\ell jj (\ell\ell\ell)$ channel. The lower lepton p_T threshold is used for $\ell\ell\ell\ell$ to maintain acceptance at low Z boson pair mass; in $\ell\ell jj$ the background in this low-p_T region is very large. Finally, the muon must be isolated from nearby track activity such that the p_T sum of all tracks surrounding the muon track in a cone of radius $\Delta R = 0.2$ is less than 10% (15%) of the muon track p_T in the $\ell\ell jj (\ell\ell\ell\ell)$ channel.

For the $\ell\ell jj$ channel, jets are reconstructed from a collection of three-dimensional topological energy clusters using the anti-k_t sequential recombination clustering algorithm [13] implemented in the FastJet [14] package with a radius parameter equal to 0.4. A jet energy scale (JES) correction is applied to account for the energy response and non-uniformity of the EM and hadronic calorimeters [15]. Jets are required to have $p_T > 25$ GeV and $|\eta| < 2.8$. If an electron and jet overlap within $\Delta R < 0.3$, the jet candidate is removed from the event. The missing transverse momentum, E_T^{miss}, is the modulus of the vector sum of transverse energies of topological calorimeter clusters with $|\eta| < 4.5$, corrected for any high quality muons in the event. The $\ell\ell jj$ channel does not consider jets or missing transverse momentum. The $\ell\ell jj$ channel considers E_T^{miss} only for background studies.

All events must have at least one reconstructed vertex with at least three associated tracks with $p_T > 500$ MeV. The vertex with the largest sum of track p_T^2 is defined as the primary interaction vertex.

To ensure that they originate from the primary vertex, lepton candidates in the $\ell\ell\ell\ell$ and $\mu\mu jj$ channels are required to have a longitudinal impact parameter (distance of closest approach) with respect to the primary vertex of less than 10 mm and a transverse impact parameter significance (transverse impact parameter divided by its error) of less than 10. These requirements reduce contamination from both cosmic rays and leptons produced from hadron decays. In the $eejj$ channel this was found to give no improvement in sensitivity.

Scale factors are applied to the simulation to correct for differences in lepton reconstruction and identification efficiencies between simulation and data. These scale factors have values that differ from unity by 0.1%–2% for muons [16] and 1%–13% for electrons depending on the p_T (for muons) or E_T (for electrons); the larger corrections seen for electrons affect only the low-E_T region, and are due to mis-modeling of lateral shower shapes in simulation [17]. Systematic uncertainties on these scale factors are derived from efficiency measurements in the data. A small smearing is added to the muon p_T in the simulation [18] so that the $Z \rightarrow \mu\mu$ invariant mass distribution in data is correctly reproduced by the simulation; similarly, small corrections are applied to the calorimeter energy scale and resolution for electrons.

This analysis uses data collected by single and dilepton triggers during the 2011 LHC run at $\sqrt{s} = 7$ TeV with 50 ns bunch spacing. The efficiency of these triggers to select signal-like events is $99 \pm 1\%$. Additionally, only events recorded while all relevant subdetectors were operating properly are used. The total integrated luminosity for all results in this Letter is $1.02 \pm 0.04 \text{fb}^{-1}$ [19,20].

4. Simulation

The signal and all backgrounds other than multi-jet production are modeled using simulated samples created by process-specific Monte Carlo (MC) event generators. Unless otherwise specified the events in these samples are normalized to the product of the production cross section, the final state branching ratio, and the recorded integrated luminosity. The detector response is simulated with GEANT4 [21,22] after which the event is reconstructed. The RS1 G^* signal events are generated primarily via gluon–gluon fusion using PYTHIA 6.421 [23] using MRST LO* [24] parton distribution functions for $m_{G^*} = 325$ and 500–1500 GeV in 250 GeV
steps. All samples assume the dimensionless coupling parameter \(k/m_{\text{pl}} = 0.1 \). The model described by PYTHIA generates events which are uniform in \(\cos \theta^* \), where \(\theta^* \) is the angle between the Z boson direction and the beam axis in the graviton rest frame, and does not have enhanced rates of longitudinal Z boson polarization.

Expected backgrounds from diboson production in the SM (WW, WZ, ZZ) are modeled using HERWIG and scaled to the next-to-leading order (NLO) production cross sections as computed by MCFM 6.0 with MRST2007 LO* [24], PHOTOS [25] is employed to simulate final state photon radiation and Tauola 2.4 [26] decays all tau leptons. Production of the background processes \(W \rightarrow e \nu \) and \(Z \rightarrow \ell \ell \) in association with jets is modeled using the ALPGEN [27] event generator with CTEQ6L1 [28] interfaced with HERWIG [29] for parton showering and JIMMY [30] to model the underlying event. The SHERPA [31] event generator is used to cross check the \(W \) and Z boson + jets events simulated by ALPGEN; the MCFM 6.0 [32] generator is also used to check the Z boson + jets background estimate. Both \(W \rightarrow e \nu \) and \(Z \rightarrow \ell \ell \) samples are scaled to their respective cross sections at next-to-next-to-leading-order (NNLO) in the strong coupling constant, \(\alpha_s \), as predicted with FEWZ 2.0 [33, 34]. The top pair (\(t \bar{t} \)) and single top-quark (\(tb, t \bar{q}, tW \)) backgrounds are modeled with the MC@NLO 3.41 [35] generator interfaced with HERWIG and JIMMY. A sample of \(t \bar{t} \) events generated with POWHEG [36] is used to cross check the MC@NLO model. Both \(t \bar{t} \) and single top-quark samples are generated assuming a top-quark mass of 172.5 GeV. The SM cross section for \(t \bar{t} \) production is known to approximate-NNLO accuracy as computed in Refs. [37–39]. Single top-quark production cross sections are calculated to next-to-next-to-leading-logarithm order in \(\alpha_s \) for the \(tb \) process [40], and approximate NNLO order for the \(tqb \) and \(tW \) processes [41].

In order to describe properly the effects of multiple proton-proton interactions per bunch crossing, the Monte Carlo samples contain multiple interactions per beam-crossing, weighted to match the data. Additional interactions may produce low-energy deposits in the calorimeter, which leads to a systematic uncertainty in the reconstructed jet energy. Lepton identification and reconstruction efficiency is largely unaffected by multiple interactions, due to the use of track-based isolation. Many of the background models used are data-driven and so naturally account for multiple interactions.

5. \(\ell \ell jj \) event selection

Events in the \(\ell \ell jj \) channel must have exactly two isolated electrons or exactly two isolated muons, each with \(p_T > 20 \) GeV accompanied by two or more jets, each with \(p_T > 25 \) GeV. The lepton pair mass \((m_{\ell \ell}) \) must be consistent with that of a Z boson \((m_Z \approx [66, 116] \text{GeV}) \); the size of this mass window reflects the non-negligible natural width of the Z boson as well as the lepton momentum resolution. A requirement that the leptons have opposite charge is applied only to dimuon events, where the charge mis-measurement rate is negligible.

Two signal regions are chosen to maximize the sensitivity to a low-mass \((m_{\text{G}} < 500 \text{ GeV}) \) and high-mass \((m_{\text{G}} \geq 500 \text{ GeV}) \) signal. In the low-mass region, the \(p_T \) of the lepton pair system is required to be greater than 50 GeV, and similarly the system formed by the two highest \(p_T \) jets is required to have \(p_T \) greater than 50 GeV. In the high-mass region, both \(p_T \) thresholds are raised to 200 GeV. In both regions, a signal will manifest itself as a peak in the \(\ell \ell jj \) invariant mass. The signal definition requires that the two jets result from the decay of a Z boson and therefore have an invariant mass near the Z boson pole mass. The dijet mass, \(m_{jj} \), is thus required to be between 65 GeV and 115 GeV for both low- and high-mass signals. This \(m_{jj} \) range was chosen to optimize sensitivity.

5.1. Backgrounds

The primary background with this event selection is production of a \(Z/p^* \) boson with associated jets. Secondary backgrounds are \(t \bar{t} \) and diboson production (WW, ZZ).

Sidebands surrounding the dijet mass window (below 65 GeV and above 115 GeV) are used to normalize the Z boson + jets background separately for the low- and high-mass signal regions. The normalization factor, defined as the ratio of data to Z boson + jets ALPGEN MC prediction, is 93% (75%) in the low(high)-mass signal region. These factors agree within 20% with those obtained from Z boson + jets events simulated with SHERPA and scaled to the data in the sidebands.

The uncertainty of the background prediction in the high-mass selection sample is dominated by Z boson + jets background modeling; the main contribution comes from the uncertainty assigned as a relative deviation of the Z boson + jets normalization factor from unity due to limited \(m_{jj} \) sideband statistics. This assigned uncertainty, which leads to an uncertainty of 40% on the Z boson + jets background normalization, is combined with an additional uncertainty obtained as the difference between the ALPGEN and SHERPA predictions in the signal region after sideband normalization, leading to a total uncertainty of 43%. The Z boson + jets background uncertainty in the low-mass selection sample, which amounts to 6%, is obtained solely from the scale factor differences between the two \(m_{jj} \) sidebands. The Z boson + jets normalization factors are factors by repeating this study with NLO \(\ell \ell jj \) invariant mass distributions in simulated Z boson + jets events generated with MCFM6.0 and scaled to the data in the sidebands. The JES uncertainty varies between 12–14% for the background estimate and the signal acceptance [15].

The observed event yield in a \(t \bar{t} \)-dominated region, low-mass sidebands with the additional requirement of \(E_{\text{T,miss}} > 80 \) GeV, is found to agree with the Monte Carlo prediction. The top-quark pair background uncertainty is determined to be 25% from a comparison of event yields between MC@NLO and POWHEG together with an evaluation of the sensitivity of the background prediction to the amount of initial state and final state radiation. The uncertainty associated with the theoretical production cross section is estimated to be 10% [42]. The uncertainty due to lepton energy and \(p_T \) resolution and reconstruction efficiency contribute less than 3% to the total uncertainty. The trigger selection efficiency and integrated luminosity contribute 1% and 3.7% [19,20] relative uncertainties, respectively.

Production of a W boson with associated jets and single top-quark production are found to give rise to negligible backgrounds. A sample of data events with two low-quality electron candidates (which fail at least one of the requirements above) or two non-isolated muon candidates is used to model the shape of the multijet background. The normalization of this background is determined by a fit to the dilepton mass spectrum using the multijet-like sample as one template and the sum of all other Monte Carlo-based backgrounds as the other template. The multijet background within the dilepton mass range \((m_{\ell \ell} \in [66, 116]) \) GeV is determined to be less than 1% (0.1%) for \(eejj \) (\(\mu \mu jj \)) events.

Table 1 shows the number of events passing the full selection in the data and expected for each background, and for the RS1 graviton with \(m_{\text{G}} = 350 \) and 750 GeV. No additional scale factors are applied to diboson background events. Fig. 1 shows the predicted and observed \(m_{\ell \ell jj} \) distributions for both low- and high-mass signal selections.
Table 1

<table>
<thead>
<tr>
<th>Process</th>
<th>Low-mass selection</th>
<th>High-mass selection</th>
</tr>
</thead>
<tbody>
<tr>
<td>Z + jets</td>
<td>3530 ± 190</td>
<td>60 ± 27</td>
</tr>
<tr>
<td>Top</td>
<td>81 ± 25</td>
<td>4.4 ± 0.3</td>
</tr>
<tr>
<td>Diboson</td>
<td>92 ± 14</td>
<td>4 ± 1</td>
</tr>
<tr>
<td>W + jets</td>
<td>9 ± 5</td>
<td>1 ± 1</td>
</tr>
<tr>
<td>Multi-jet</td>
<td>14 ± 14</td>
<td>0.2 ± 0.2</td>
</tr>
<tr>
<td>Background sum</td>
<td>3720 ± 200</td>
<td>66 ± 27</td>
</tr>
<tr>
<td>Graviton signal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>m_{γ^*} = 350 GeV</td>
<td>680 ± 120</td>
<td>21 ± 4</td>
</tr>
<tr>
<td>m_{γ^*} = 750 GeV</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Data</td>
<td>3515</td>
<td>85</td>
</tr>
</tbody>
</table>

Fig. 1. Distribution of $\ell\ell jj$ invariant mass for events satisfying the low-mass signal selection (upper) and high-mass signal selection (lower). These distributions contain both $eejj$ and $\mu\mu jj$ events. The hatched area shows the uncertainty on the background prediction.

6. $\ell\ell\ell\ell$ event selection

Events in the $\ell\ell\ell\ell$ final state are characterized by at least four high-p_T, isolated electrons or muons. Events are required to have passed either a single-muon or single electron trigger which have thresholds of $p_T > 18$ GeV and $p_T > 20$ GeV, respectively. To minimize the systematic uncertainty on the trigger efficiency, at least one of the selected muons (electrons) is required to have $p_T > 20$ ($E_T > 25$) GeV, above which the trigger efficiency dependence on p_T (E_T) is small. The trigger efficiency for selected events is consistent with 100% with an uncertainty of 0.04%.

Same-flavor, oppositely-charged lepton pairs are combined to form Z boson candidates. When more than one such pairing exists, the set with the smallest value of the sum of the two $|m_{\ell\ell} - m_Z|$ values is chosen. Both Z boson candidates are required to have a dilepton invariant mass $m_{\ell\ell} \in [66, 116]$ GeV; events with two electrons and two muons are categorized as $e^+e^-\mu^+\mu^-$ ($\mu^+\mu^-e^+e^-$) if $m_{e^+e^-} (m_{\mu^+\mu^-})$ is closer to m_T than $m_{\mu^+\mu^-} (m_{e^+e^-})$. The invariant mass of the ZZ diboson system must be greater than 300 GeV. No requirement is made of the p_T of the individual Z bosons, nor on the p_T of the ZZ system.

The dominant systematic uncertainties arise from electron identification and muon reconstruction efficiency which range from 3.1% to 6.6% and 1.0% to 2.0%, respectively, depending on the final state.

6.1. Backgrounds

The primary SM source of events with four charged leptons is $(Z/\gamma^*)^2$ production, which we abbreviate as ZZ. Other sources are Z (or W) boson production in association with additional jets or photons ($W/Z + X$), and top-quark pair production. The jets might be misidentified as electrons or contain electrons, photons or muons from in-flight decays of pions, kaons, or heavy-flavored hadrons; photons might be misidentified as electrons. Only a small minority of these background ("misidentified") leptons survive the isolation requirement. This background is estimated directly from the data.

To estimate the background contribution to the selected sample from events in which one lepton originates from such misidentified jets, a sample of data events containing three leptons passing all selection criteria plus one ‘lepton-like jet’ is identified; such events are denoted $\ell\ell F$. For muons, the lepton-like jets are muon candidates that fail the isolation requirement. For electrons, the lepton-like jets are clusters in the electromagnetic calorimeter matched to ID tracks that fail either the full electron quality requirement or both. The events are otherwise required to pass the full event selection, treating the lepton-like jet as if it were a fully identified lepton. This event sample is dominated by Z boson + jets events. The background is estimated by scaling the $\ell\ell F$ control sample by a measured factor f (η and p_T dependent and treated as uncorrelated in the two variables) which is the ratio of the probability for a jet to satisfy the full lepton criteria to the probability to satisfy the lepton-like jet criteria. The background in which two selected leptons originate from jets is treated similarly, by identifying a data sample with two leptons and two lepton-like jets; such events are denoted $\ell\ell FF$. To avoid double counting in the background estimate, and to account for the expected ZZ contribution in the control region, $N(\text{ZZ})$, the total number of background events $N(\text{BG})$ is calculated as:

$$N(\text{BG}) = N(\ell\ell F) \times f - N(\ell\ell FF) \times f^2 - N(\text{ZZ}).$$

The factor f is measured in a sample of data selected with single-lepton triggers with cuts applied to suppress isolated leptons from W and Z bosons, and corrected for the remaining small contribution of true leptons from W and Z boson decays using simulation. The negative contribution proportional to f^2 is used to correct for double-counting in the term proportional to f. A similar analysis is performed on Monte Carlo simulation of background processes of heavy-flavor and light-flavor multi-jet production; the difference between data and simulation is taken as the systematic uncertainty in each p_T (or η) bin. This results in an average systematic uncertainty of ~30% for each $p_T(\eta)$ bin except for the
lowest p_T bin (15–20 GeV), for which there is nearly a 100% systematic uncertainty.

In some cases, the control regions from which the background estimate is extrapolated ($\ell\ell\ell\ell$ or $\ell\ell\ell\ell$) contain zero observed events. In such cases, the 68% CL upper limit on the mean of a Poisson distribution from which zero events are observed is $N < 1.29$. We consider the number of events in these regions to be $N = 0.0^{+1.3}_{-1.0}$ and the estimate of the misidentified lepton background uses the value of the lepton misidentification rate f in the lowest p_T bin (15–20 GeV), which has the largest misidentification rate. This is less likely to happen in electron final states ($e^+e^-\mu^+\mu^-$ or $e^+e^-\mu^+\mu^-$), which have two ways for the electron candidate to fail the full selection but still enter the control region, whereas muons are allowed only to fail the isolation requirement. For example, in final states with a muon this leads to $N(\ell\ell\ell\ell) \times f = 0.0^{+1.3}_{-1.0} \times 0.8 = 0.1^{+1.0}_{-0.0}$. When multiple final states are combined, this technique is applied to the combined final state, rather than adding the individual final states in quadrature. The systematic uncertainty in such cases is evaluated using the misidentification rate uncertainty in the lowest p_T bin.

Modeling of the ZZ and non-ZZ SM backgrounds is verified in two data subsamples. To validate the modeling of the ZZ background, events with two opposite-sign same-flavor (OS-SF) pairs, both within a dilepton invariant mass window of $m_{\ell\ell} \in [66, 116]$ GeV, are examined. Requiring two OS-SF pairs inside the chosen Z boson mass window results in an almost pure sample of ZZ events. To be orthogonal to the signal region for the graviton search, $m_{\ell\ell\ell\ell} < 300$ GeV is required. A comparison between the SM ZZ expectation and the observation shows agreement within statistics (see Table 2), indicating satisfactory modeling of the SM ZZ production.

Requiring four leptons and fewer than two OS–SF pairs but applying the same dilepton mass window used for ZZ pairs to the dilepton pair masses rejects nearly all of the SM ZZ production, so that one may test the misidentified lepton background estimate. This region is orthogonal to the $G^* \to ZZ$ signal regions. The expected ZZ contribution is $0.15 \pm 0.01 \pm 0.01$, while the misidentified lepton background is $0.0^{+1.3}_{-0.8}$. No events are observed in this region, demonstrating an agreement between data and the modeling of misidentified leptons within the available statistics.

Table 3 shows the expected yield in the $m_{\ell\ell\ell\ell} > 300$ GeV region. A total of $1.9^{+1.0}_{-0.8} \times k/m_{\ell\ell}$ events are expected from SM processes. Three events are observed, see Fig. 2. Due to the asymmetry of the uncertainties, three events corresponds to the median expected number of observed events from SM processes.

7. Statistical analysis

To test for possible resonances we search for an excess in the full spectrum using the BUMP Hunter algorithm [43]. No significant excess is found in the $\ell\ell\ell\ell$ low-mass $\ell\ell\jj$ or high-mass $\ell\ell\jj$ spectra. The largest excesses have p-values of 0.07, 0.08, and 0.08 respectively, corresponding to significances of 1.5σ, 1.4σ, 1.4σ, respectively.

Observing no significant excess, we calculate limits on the production cross section times branching ratio for a narrow ZZ resonance from the $\ell\ell\ell\ell$ channel and the $\ell\ell\jj$ channels separately, as well as for the combined channel. In the $\ell\ell\jj$ channel, the background falls quickly and the resonance is expected to be fairly narrow; statistical analysis for each hypothesized mass is therefore done as a counting experiment using a single bin that surrounds the hypothesized mass. The mass windows are chosen to optimize the expected limit in the background-only hypothesis. In the $\ell\ell\ell\ell$ channel, the background is very low and the knowledge of the mass dependence of the misidentified lepton background is limited by the small number of events in the sample used to estimate its contribution. Hence, a single wide window, $m_{\ell\ell\ell\ell} > 300$ GeV, is used. Limits are evaluated at a specific set of mass points and interpolated between them, as the background levels and signal acceptance are smoothly varying.

Limits are set using the CLs method [44,45], a modified frequentist approach. In this method a log-likelihood ratio (LLR) test statistic is formed using the Poisson probabilities for estimated background yields, the signal acceptance, and the observed number of events for all ZZ resonance mass hypotheses, accounting...
Table 4
Mass windows (in GeV) for statistical analysis of the $\ell\ell jj$ channel at each of the generated graviton masses (in GeV), with the expected numbers of background, graviton ($k/m_{\tilde{g}} = 0.1$), and observed events. For a resonance mass of 350 GeV, the low-mass selection is used; at the remaining mass values the high-mass selection is used. Uncertainties are statistical and systematic added in quadrature.

<table>
<thead>
<tr>
<th>Resonance mass</th>
<th>Mass window</th>
<th>Expected background</th>
<th>Expected signal</th>
<th>Obs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>350</td>
<td>330–360</td>
<td>eejj</td>
<td>116.0\pm16</td>
<td>109</td>
</tr>
<tr>
<td>500</td>
<td>480–530</td>
<td>eejj</td>
<td>27.4</td>
<td>8</td>
</tr>
<tr>
<td>750</td>
<td>730–830</td>
<td>eejj</td>
<td>6.5\pm0.9</td>
<td>6</td>
</tr>
<tr>
<td>1000</td>
<td>900–1090</td>
<td>eejj</td>
<td>1.2\pm0.5</td>
<td>2</td>
</tr>
<tr>
<td>1250</td>
<td>≥ 1150</td>
<td>eejj</td>
<td>0.1\pm0.1</td>
<td>1</td>
</tr>
<tr>
<td>1500</td>
<td>≥ 1300</td>
<td>eejj</td>
<td>0.4\pm0.4</td>
<td>1</td>
</tr>
</tbody>
</table>

for systematic uncertainties on the background estimate and signal acceptance. Pseudo-experiments are drawn from a Poisson distribution whose mean is drawn from a bifurcated Gaussian and truncated at zero; a bifurcated Gaussian has distinct positive and negative widths to represent asymmetric uncertainties. Confidence levels are derived by integrating the LLR in pseudo-experiments using both the signal plus background hypotheses (CL_{s+b}) as well as the background only hypothesis (CL_b). In the modified frequentist approach, the production cross section excluded at 95% CL is computed as the cross section for which CL_b defined as CL_{s+b}/CL_b, is equal to 0.05.

7.1. $\ell\ell jj$ limits

For the statistical analysis of the $\ell\ell jj$ data, mass windows are chosen surrounding each of the generated graviton masses to perform a counting experiment, as shown in Table 4. The mass windows are chosen to optimize the expected limit in the background-only hypothesis. For a resonance mass of 350 GeV, the low-mass selection described above is as the initial selection; at the remaining mass values the high-mass selection described above is used. Observed limits are shown in Table 6 for the individual $eejj$ and $\mu\mu jj$ channels. The combined limits for the $\ell\ell jj$ channel are shown in Fig. 3.

The acceptance times efficiency including the mass window cuts is 5.6% (5.3%, 12.9%, 8.6%, and 6.0%) for 350 (500, 750, 1000, 1250 and 1500) GeV graviton signal with Z boson decays to e^+e^-, $\mu^+\mu^-$, and $\tau^+\tau^-$; the uncertainty is 15%, relative. The acceptance drop at high mass is due to highly boosted Z bosons producing a single merged jet.

7.2. $\ell\ell\ell\ell$ limits

The analysis of the $\ell\ell\ell\ell$ data is done using a single mass-independent counting experiment. The median expected upper limit on the number of $\ell\ell\ell\ell$ events from a new source with $m_{\ell\ell\ell\ell} > 300$ GeV is $N_{\ell\ell\ell\ell} < 5.7$ events at 95% CL. The observed three events leads to an upper limit of $N_{\ell\ell\ell\ell} < 5.7$ events at 95% CL.

We define a ZZ $\rightarrow \ell\ell\ell\ell$ fiducial region, which contains events with four charged leptons (e or μ) each with $p_T > 15$ GeV and $|y| < 2.5$ forming two OS-SF pairs each with $m_{\ell\ell} \in [66, 116]$ GeV and $m_{\ell\ell\ell\ell} > 300$ GeV. Within this fiducial region, the efficiency of the $\ell\ell\ell\ell$ selection is nearly independent of the graviton mass for the RS1 graviton benchmark model, as shown in Table 5.

The lowest selection efficiency (61%) is used to set limits on all mass points. The corresponding ZZ fiducial limit on the production of new sources of high-mass ZZ pairs is

$$\sigma_{ZZ, fid} < \frac{N_{ZZ}}{\epsilon_{ZZ} \times B(ZZ \rightarrow \ell\ell\ell\ell) \times L} \times \frac{5.7}{0.61 \times 0.01 \times 1.02 \text{ fb}^{-1}} = 0.92 \text{ pb},$$

which can be applied to our benchmark model of RS1 gravitons using the fiducial acceptance, see Fig. 4 and Table 6, but may be extended to a larger class of models that hypothesize resonances with branching fraction (B) to ZZ different than that in the RS1 model.

The fiducial efficiency is relative to all ZZ decays to charged leptons, including τ leptons, and therefore $B(ZZ \rightarrow \ell\ell\ell\ell) = 0.010$ also includes τ lepton decays.

7.3. Combined limits

The limits obtained from combinations of channels are calculated using the same technique, keeping each channel separate but with a coherent signal hypothesis and including the correlations.
Table 5
For spin-2 RS1 graviton models, the theoretical prediction of $\sigma(pp \rightarrow G^* \rightarrow ZZ)$ using a coupling of $k/\bar{m}_G = 0.1$; acceptance of the $G^* \rightarrow ZZ$ in each fiducial region defined in the text, and the efficiency of the selection described in the text; the median expected and observed 95% CL upper limits on $\sigma(pp \rightarrow G^* \rightarrow ZZ)$ using the fiducial cross-section limit. We use $B(G^* \rightarrow ZZ) = 4.5\%$ [46] and $\sigma(pp \rightarrow G^*)$ at leading order from PYTHIA with $k/\bar{m}_G = 0.1$; predictions scale as $(k/\bar{m}_G)^2$. As is done within the $\ell\ell\ell\ell$ fiducial limit, the lowest selection efficiency (61%) is used to set limits on all mass points.

<table>
<thead>
<tr>
<th>Graviton mass (GeV)</th>
<th>Theory $k/\bar{m}_G = 0.1$ (pb)</th>
<th>Fid. acc.</th>
<th>Sel. eff.</th>
<th>Exp. limit (pb)</th>
<th>Obs. limit (pb)</th>
</tr>
</thead>
<tbody>
<tr>
<td>325</td>
<td>950</td>
<td>23%</td>
<td>61%</td>
<td>4.0</td>
<td>4.0</td>
</tr>
<tr>
<td>350</td>
<td>42</td>
<td>27%</td>
<td>61%</td>
<td>3.3</td>
<td>3.3</td>
</tr>
<tr>
<td>500</td>
<td>6.5</td>
<td>28%</td>
<td>63%</td>
<td>3.2</td>
<td>3.2</td>
</tr>
<tr>
<td>750</td>
<td>0.69</td>
<td>31%</td>
<td>66%</td>
<td>2.9</td>
<td>2.9</td>
</tr>
<tr>
<td>1000</td>
<td>0.13</td>
<td>32%</td>
<td>68%</td>
<td>2.8</td>
<td>2.8</td>
</tr>
<tr>
<td>1250</td>
<td>0.03</td>
<td>33%</td>
<td>67%</td>
<td>2.7</td>
<td>2.7</td>
</tr>
<tr>
<td>1500</td>
<td>0.01</td>
<td>35%</td>
<td>66%</td>
<td>2.6</td>
<td>2.6</td>
</tr>
</tbody>
</table>

Fig. 5. Expected and observed 95% CL limits for $G^* \rightarrow ZZ$ for the combined $\ell\ell jj$ and $\ell\ell\ell\ell$ channels. The leading-order theoretical prediction is also shown for $k/\bar{m}_G = 0.1$. Theoretical predictions scale with $(k/\bar{m}_G)^2$.

Table 6
Upper limits at 95% CL on $\sigma(pp \rightarrow G^*) \times B(G^* \rightarrow ZZ)$ in the individual channels $eejj$, $\mu\mu jj$ and $\ell\ell\ell\ell$ as well as the combined $\ell\ell jj$ ($eejj$ and $\mu\mu jj$) and $\ell\ell\ell\ell$ ($eejj$, $\mu\mu jj$ and $\ell\ell\ell\ell$) channels.

<table>
<thead>
<tr>
<th>Graviton mass (GeV)</th>
<th>$eejj$ (pb)</th>
<th>$\mu\mu jj$ (pb)</th>
<th>$\ell\ell jj$ (pb)</th>
<th>$\ell\ell\ell\ell$ (pb)</th>
<th>$\ell\ell jj + \ell\ell\ell\ell$ (pb)</th>
</tr>
</thead>
<tbody>
<tr>
<td>325</td>
<td>-</td>
<td>-</td>
<td>4.0</td>
<td>4.0</td>
<td>8.0</td>
</tr>
<tr>
<td>350</td>
<td>8.9</td>
<td>11.6</td>
<td>10.9</td>
<td>3.3</td>
<td>3.3</td>
</tr>
<tr>
<td>500</td>
<td>2.3</td>
<td>1.8</td>
<td>2.1</td>
<td>3.3</td>
<td>3.3</td>
</tr>
<tr>
<td>750</td>
<td>0.9</td>
<td>0.5</td>
<td>0.9</td>
<td>2.9</td>
<td>2.9</td>
</tr>
<tr>
<td>1000</td>
<td>0.6</td>
<td>0.7</td>
<td>0.5</td>
<td>2.8</td>
<td>2.8</td>
</tr>
<tr>
<td>1250</td>
<td>0.7</td>
<td>0.6</td>
<td>0.4</td>
<td>2.8</td>
<td>2.8</td>
</tr>
<tr>
<td>1500</td>
<td>0.7</td>
<td>0.9</td>
<td>0.4</td>
<td>2.6</td>
<td>2.4</td>
</tr>
</tbody>
</table>

between the systematics where appropriate. The dominant uncertainties in the $\ell\ell\ell\ell$ channel are due to the misidentified-lepton estimate; the degree of correlation with uncertainties in the $\ell\ell jj$ channel is small. The combined limits are shown in Fig. 5 and given in Table 6.

We exclude an RS1 graviton in the mass range of 325 to 845 GeV at 95% CL for $k/\bar{m}_G = 0.1$.

8. Conclusions
We report the results of a search for narrow resonances such as Randall–Sundrum gravitons decaying to ZZ pairs, using $\ell\ell jj$ and $\ell\ell\ell\ell$ final states collected by the ATLAS detector from $\sqrt{s} = 7$ TeV LHC pp collisions. No excess is seen above the expected SM backgrounds, and upper limits are set on the cross section of graviton production times the branching fraction to ZZ. We exclude an RS1 graviton in the mass range of 325 to 845 GeV at 95% CL for $k/\bar{m}_G = 0.1$.

Acknowledgements
We thank CERN for the very successful operation of the LHC, as well as the support staff from our institutions without whom ATLAS could not be operated efficiently.

We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic; DNiRF, DNSRC and Lundbeck Foundation, Denmark; EPLANET and ERC, European Union; IN2P3-CNRS, CEA-DSM/IRFU, France; GS, Geora; GMBF, DFG, MPG and AVH Foundation, Germany; GSI, Greece; ISF, MINERVA, GIF, DIP and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; FOM and NWO, Netherlands; RCN, Norway; MNISW, Poland; GCRICES and FCT, Portugal; MERSYS (MECTS), Romania; MES of Russia and ROSATOM, Russian Federation; JINR, MSTD, Serbia; MSSR, Slovakia; ARS and MWZT, Slovenia; DST/NRF, South Africa; MICINN, Spain; SRC and Wallenberg Foundation, Sweden; SER, SNSF and Cantons of Bern and Geneva, Switzerland; NSC, Taiwan; TAEK, Turkey; STFC, the Royal Society and Leverhulme Trust, United Kingdom; DOE and NSF, United States of America.

The crucial computing support from all WLCG partners is acknowledged gratefully, in particular from CERN and the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (UK) and BNL (USA) and in the Tier-2 facilities worldwide.

Open access
This article is published Open Access at sciencedirect.com. It is distributed under the terms of the Creative Commons Attribution License 3.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are credited.

References

1 University at Albany, Albany, NY, United States
2 Department of Physics, University of Alberta, Edmonton, AB, Canada
3 (a) Department of Physics, Ankara University, Ankara; (b) Department of Physics, Dumulupid Univerity, Katalha; (c) Department of Physics, Gazi University, Ankara; (d) Division of Physics, TOBB University of Economics and Technology, Ankara; (e) Turkish Atomic Energy Authority, Ankara, Turkey
4 LAPP, CNRS/IN2P3 and Université de Savoie, Annecy-le-Vieux, France
5 High Energy Physics Division, Argonne National Laboratory, Argonne, IL, United States
6 Department of Physics, Arizona State University, Tempe, AZ, United States
7 Department of Physics, The University of Texas at Arlington, Arlington, TX, United States
8 Physics Department, University of Athens, Athens, Greece
9 Physics Department, National Technical University of Athens, Zographou, Greece
10 Institute of Physics, Azerbaijan Academy of Sciences, Baku, Azerbaijan
11 Instituto de Física d’Altes Energies and Departament de Física de la Universitat Autònoma de Barcelona and ICREA, Barcelona, Spain
12 (a) Department of Physics, University of Belgrade, Belgrade; (b) Vinca Institute of Nuclear Sciences, University of Belgrade, Belgrade, Serbia
13 Department for Physics and Technology, University of Bergen, Bergen, Norway
14 Physics Division, Lawrence Berkeley National Laboratory and University of California, Berkeley, CA, United States
15 Physics Department, Humboldt University, Berlin, Germany
16 Albert Einstein Center for Fundamental Physics and Laboratory for High Energy Physics, University of Bern, Bern, Switzerland
17 School of Physics and Astronomy, University of Birmingham, Birmingham, United Kingdom
18 (a) Department of Physics, Bogazici University, Istanbul; (b) Division of Physics, Dogus University, Istanbul; (c) Department of Physics Engineering, Gaziantep University, Gaziantep; (d) Department of Physics, Istanbul Technical University, Istanbul, Turkey
19 (a) INFN Sezione di Bologna; (b) Dipartimento di Fisica, Università di Bologna, Bologna, Italy
20 Physikalisches Institut, University of Bonn, Bonn, Germany
21 Department of Physics, Boston University, Boston, MA, United States
22 Department of Physics, Brandeis University, Waltham, MA, United States
23 (a) Universidad Federal do Rio de Janeiro COPE/EIE/UF, Rio de Janeiro; (b) Federal University of Juiz de Fora (UFJF), Juiz de Fora; (c) Federal University of Sao Joao del Rei (UFSJ), Sao Joao del Rei; (d) Instituto de Física, Universidade de Sao Paulo, Sao Paulo, Brazil
24 Physics Department, Brookhaven National Laboratory, Upton, NY, United States
25 (a) National Institute of Physics and Nuclear Engineering, Bucharest; (b) University Politehnica Bucharest, Bucharest; (c) West University in Timisoara, Timissoara, Romania
26 Departamento de Física, Universidad de Buenos Aires, Buenos Aires, Argentina
27 Cavendish Laboratory, University of Cambridge, Cambridge, United Kingdom
28 Department of Physics, Carleton University, Ottawa, ON, Canada
29 CERN, Geneva, Switzerland
30 Enrico Fermi Institute, University of Chicago, Chicago, IL, United States
31 (a) Departamento de Física, Pontificia Universidad Católica de Chile, Santiago; (b) Departamento de Física, Universidad Técnica Federico Santa María, Valparaíso, Chile
32 (a) Institute of High Energy Physics, Chinese Academy of Sciences, Beijing; (b) Department of Modern Physics, University of Science and Technology of China, Anhui; (c) Department of Physics, Nanjing University, Jiangsu; (d) School of Physics, Shandong University, Shandong, China
33 Laboratoire de Physique Corpusculaire, Clermont Université and Université Blaise Pascal and CNRS/IN2P3, Aubiere Cedex, France
34 Nevis Laboratory, Columbia University, Irvington, NY, United States
35 Niels Bohr Institute, University of Copenhagen, København, Denmark
36 (a) INFN Gruppo Collegato di Cosenza; (b) Dipartimento di Fisica, Università della Calabria, Arcavata di Rende, Italy
37 AIP, University of Science and Technology of China, Beijing, China
38 The Henryk Niewodniczanski Institute of Nuclear Physics, Polish Academy of Sciences, Krakow, Poland
39 Physics Department, Southern Methodist University, Dallas, TX, United States
40 Physics Department, University of Texas at Dallas, Richardson, TX, United States
41 DESY, Hamburg and Zeuthen, Germany
42 Institut für Experimentelle Physik IV, Technische Universität Dortmund, Dortmund, Germany
43 Institut für Kern- und Teilchenphysik, Technische Universität Dresden, Dresden, Germany
44 Department of Physics, Duke University, Durham, NC, United States
123 (a) Laboratorio de Instrumentaci\'on e Fisica Experimental de Particulas – LIP, Lisboa, Portugal; (b) Departamento de Fisica Teorica y del Cosmos and CAPEF, Universidad de Granada, Granada, Spain
124 Institute of Physics, Academy of Sciences of the Czech Republic, Praha, Czech Republic
125 Faculty of Mathematics and Physics, Charles University in Prague, Prague, Czech Republic
126 Czech Technical University in Prague, Praha, Czech Republic
127 State Research Center Institute for High Energy Physics, Protvino, Russia
128 Particle Physics Department, Rutherford Appleton Laboratory, Didcot, United Kingdom
129 Physics Department, University of Regina, Regina, SK, Canada
130 Ritsumeikan University, Kusatsu, Shiga, Japan
131 (a) INFN Sezione di Roma I; (b) Dipartimento di Fisica, Universit\'a La Sapienza, Roma, Italy
132 (a) INFN Sezione di Roma Tor Vergata; (b) Dipartimento di Fisica, Universit\'a di Roma Tor Vergata, Roma, Italy
133 (a) INFN Sezione di Roma Tre; (b) Dipartimento di Fisica, Universit\'a di Roma ”Tor Vergata”, Roma, Italy
134 (a) Faculté des Sciences Ain Chock, Centre Universitaire de Physique des Hautes Énergies – Université Hassan II, Casablanca; (b) Centre National de l’Energie des Sciences Techniques Nucléaires, Rabat; (c) Faculté des Sciences Semlalia, Université Cadi Ayyad, L.PHÉA-Marrakech; (d) Faculté des Sciences, Université Mohammed Premier et LPTPM, Oujda; (e) Faculté des Sciences, Université Mohammed V- Agdal, Rabat, Morocco
135 DSM/IFIS (Institut de Recherches sur les Lois Fondamentales de l’Univers), CEA Saclay (Commissariat a l’Energie Atomique), Gif-sur-Yvette, France
136 Faculty of Science, Hiroshima University, Hiroshima, Japan
137 Domaine scientifique de la Doua, Centre de Calcul CNRS/IN2P3, Villeurbanne Cedex, France
138 Yerevan Physics Institute, Yerevan, Armenia
139 Department of Physics, Yale University, New Haven, CT, United States
140 Fachbereich Physik, Universität Siegen, Siegen, Germany
141 Department of Physics, Simon Fraser University, Burnaby, BC, Canada
142 SLAC National Accelerator Laboratory, Stanford, CA, United States
143 (a) Faculty of Mathematics, Physics & Informatics, Comenius University, Bratislava; (b) Department of Subnuclear Physics, Institute of Experimental Physics of the Slovak Academy of Sciences, Kosice, Slovak Republic
144 (a) Department of Physics, University of Johannesburg, Johannesburg; (b) School of Physics, University of the Witwatersrand, Johannesburg, South Africa
145 (a) Department of Physics, Stockholm University; (b) The Oskar Klein Centre, Stockholm, Sweden
146 Physics Department, Royal Institute of Technology, Stockholm, Sweden
147 Departments of Physics & Astronomy and Chemistry, Stony Brook University, Stony Brook, NY, United States
148 Department of Physics and Astronomy, University of Sannio, Benevento, Italy
149 School of Physics, University of Sydney, Sydney, Australia
150 Institute of Physics, Academia Sinica, Taipei, Taiwan
151 Department of Physics, Technion, Israel Inst. of Technology, Haifa, Israel
152 Raymond and Beverly Sackler School of Physics and Astronomy, Tel Aviv University, Tel Aviv, Israel
153 Department of Physics, Aristotle University of Thessaloniki, Thessaloniki, Greece
154 International Center for Elementary Particle Physics and Department of Physics, The University of Tokyo, Tokyo, Japan
155 Graduate School of Science and Technology, Tokyo Metropolitan University, Tokyo, Japan
156 Department of Physics, Tokyo Institute of Technology, Tokyo, Japan
157 Department of Physics, University of Toronto, Toronto, ON, Canada
158 (a) TRIUMF, Vancouver BC; (b) Department of Physics and Astronomy, York University, Toronto, ON, Canada
159 Institute of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennoji, Tsukuba, Ibaraki 305-8571, Japan
160 Science and Technology Center, Tsukuba University, Medford, MA, United States
161 Centro de Investigaciones, Universidad Antonio Narino, Bogota, Colombia
162 Department of Physics and Astronomy, University of California Irvine, Irvine, CA, United States
163 Department of Physics, University of Illinois, Urbana, IL, United States
164 Department of Physics and Astronomy, University of Uppsala, Uppsala, Sweden
165 Instituto de Fisica Corpuscular (IFIC) and Departamento de Fisica Atómica, Molecular y Nuclear and Departamento de Ingeniería Electrónica y Instituto de Microelectrónica de Barcelona (IMB-CNM), University of Valencia and CSIC, Valencia, Spain
166 Department of Physics, University of British Columbia, Vancouver, BC, Canada
167 Department of Physics and Astronomy, University of British Columbia, Vancouver, BC, Canada
168 Waseda University, Tokyo, Japan
169 Department of Particle Physics, The Weizmann Institute of Science, Rehovot, Israel
170 Department of Physics, University of Wisconsin, Madison, WI, United States
171 Fakultät für Physik und Astronomie, Julius-Maximilians-Universität, Würzburg, Germany
172 Fachbereich C Physik, Bergische Universität Wuppertal, Wuppertal, Germany
173 Department of Physics, Yale University, New Haven, CT, United States
174 Yerevan Physics Institute, Yerevan, Armenia
175 Domaine scientifique de la Doua, Centre de Calcul CNRS/IN2P3, Villeurbanne Cedex, France
176 Faculty of Science, Hiroshima University, Hiroshima, Japan
177 Also at Instituto de Instrumentaci\'on e Fisica Experimental de Particulas – LIP, Lisboa, Portugal.
178 Also at Facultad de Ciencias and CFNUL, Universidade de Lisboa, Lisboa, Portugal.
179 Also at Particle Physics Department, Rutherford Appleton Laboratory, Didcot, United Kingdom.
180 Also at TRIUMF, Vancouver, BC, Canada.
181 Also at Department of Physics, California State University, Fresno, CA, United States.
182 Also at Novosibirsk State University, Novosibirsk, Russia.
183 Also at Fermilab, Batavia, IL, United States.
184 Also at Department of Physics, University of Coimbra, Coimbra, Portugal.
185 Also at Università di Napoli Parthenope, Napoli, Italy.
186 Also at Institute of Particle Physics (IPP), Canada.
187 Also at Department of Physics, Middle East Technical University, Ankara, Turkey.
188 Also at Louisiana Tech University, Ruston, LA, United States.
189 Also at Department of Physics and Astronomy, University College London, London, United Kingdom.
190 Also at Group of Particle Physics, University of Montreal, Montreal, QC, Canada.
191 Also at Department of Physics, University of Cape Town, Cape Town, South Africa.
192 Also at Institute of Physics, Azerbaijan Academy of Sciences, Baku, Azerbaijan.