Robust Rotation Search in Computer Vision

Author: Álvaro Joaquín PARRA BUSTOS

Supervisors: Dr. Tat-Jun CHIN
Prof. David SUTER

A thesis submitted in fulfilment of the requirements for the degree of Doctor of Philosophy in the Faculty of Engineering, Computer and Mathematical Sciences School of Computer Science

August 2016
Declaration

I certify that this work contains no material which has been accepted for the award of any other degree or diploma in my name in any university or other tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text. In addition, I certify that no part of this work will, in the future, be used in a submission in my name for any other degree or diploma in any university or other tertiary institution without the prior approval of the University of Adelaide and where applicable, any partner institution responsible for the joint award of this degree.

I give consent to this copy of my thesis when deposited in the University Library, being made available for loan and photocopying, subject to the provisions of the Copyright Act 1968.

The author acknowledges that copyright of published works contained within this thesis resides with the copyright holder(s) of those works.

I also give permission for the digital version of my thesis to be made available on the web, via the University’s digital research repository, the Library Search and also through web search engines, unless permission has been granted by the University to restrict access for a period of time.

Signed:

Date:

iii
Rotation search is a fundamental problem which has significant importance in geometric computer vision. In many practical settings, data or measurements for rotation search are usually contaminated with large errors, leading to the existence of outliers in the data. As a consequence, traditional least-squares rotation estimation methods are not suitable in many practical applications. A more appropriate approach is to search for the rotation based on a robust criterion. However, optimisation problems involving robust criteria are hard to solve since the objective functions are usually non-differentiable and non-convex.

This thesis makes several fundamental contributions in robust rotation search. In contrast to approximations or local methods that are typically used by current practitioners, the presented methods in this thesis guarantee global optimality. The main challenge for robust rotation search algorithms is to find an optimal result in reasonable time (to be practical in out-of-lab applications). The work in this thesis is a contribution in this direction.

To efficiently solve robust rotation search, several strategies are presented based on new insights into the geometry of rotations, from the perspective of global optimisation. Firstly, for point set registration on horizontally levelled data, the presented algorithms make it possible to globally find the best rotation in real-time. Secondly, for the fully unconstrained 3D rotation search problem, the presented algorithms outperform previous methods by an order of magnitude. The final contribution of this thesis is an algorithm to safely remove true outliers when rotation is computed on outlier contaminated point correspondences. Substantial speed-up can be obtained when the proposed outlier removal is used as a preprocessor to globally optimal algorithms. Since no inliers are discarded, global optimality is guaranteed.

The contributions in this thesis can impact on computer vision problems where rotation search is invoked as a subroutine. This thesis presents examples from 3D point cloud registration and image stitching.
Acknowledgements

I am pleased to thank my supervisor, Dr. Tat-Jun Chin, for all his advice, comments, and critical revisions throughout this thesis and the articles we published during my PhD. I really appreciate his interest in this research. Working with him has certainly been an enriching life experience. I would also like to thank my co-supervisor Prof. David Suter for his advice, revisions and comments during research meetings. I extend this thanks to Anders Eriksson for his valuable comments on ideas and works that are part of this thesis.

I would also like to thank my Master’s supervisor Dr. Julián Ortiz for his constant advice.

I would like to express my sincere appreciation to my parents for all they support and encouragement. I extend this thanks to my tata and tía Maruja for all the unconditional support. I want to thanks to Carola Cardoso for her help, company and encouragement.

I am also grateful to family and friends that visited me and shared amazing moments. A big thank to Pamela Cordero and Nicolás Seitz.

During these years I have shared with incredible people. I am very grateful to Exequiel Sepúlveda and his family for their constant support. A big thank also to Andrés Figueroa and Paula Núñez for the shared moments, trips and help.

I also would like to extend thanks to Quoc-Huy Tran, Trung T. Pham, and Roberto Shinmoto for the general advice and encouragement, and to Russell Disher for his hospitality. Many thanks to Sergio Palacio, Carl Vail, Greg Rowlands and Kingsley Denton for their help.

Last I would like to thank CONICYT Becas-Chile for founding my PhD.
Contents

Declaration iii

Abstract v

Acknowledgements vii

Contents viii

List of Figures xiii

List of Tables xv

List of Algorithms xvii

Abbreviations xviii

Publications xxi

1 Introduction 1

1.1 Applications involving rotation search 3

1.2 Why is rotation search difficult? 4

1.3 Current rotation search methods 5

1.4 Robust estimation 7

1.5 Research contributions 9

1.6 Thesis outline 10

2 The Rotation Search Problem 11

2.1 Introduction 11

2.2 Rotation representations 12

2.2.1 Matrix representation 12

2.2.2 Axis-angle representation 12

2.2.3 Quaternion representation 14

2.3 Rotation distances 15

2.3.1 Angular distance 15

2.3.2 Chordal distance 15
4.4.2.1 Projection of spherical patches .. 61
4.4.2.2 Indexation for fast intersection queries 65
4.4.3 Modified plane sweep algorithm 66
4.4.4 Computational analysis .. 67

4.5 6 DoF registration .. 67
4.5.1 Locally optimal method (Loc-GM) 67
4.5.2 Globally optimal method (Glob-GM) 68

4.6 Results ... 69
4.6.1 Rotation search .. 69
4.6.1.1 Scalability of rotation search algorithm 72
4.6.1.2 Comparison with other BnB rotation search 72
4.6.2 Globally optimal 6 DoF registration 73
4.6.2.1 Convergence of BnB algorithm 76

4.7 Summary .. 79

5 Guaranteed Outlier Removal for Rotation Search 83

5.1 Introduction .. 83
5.2 Guaranteed outlier removal .. 84

5.3 Efficient algorithm for upper bound 85
5.3.1 The ideal case ... 87
5.3.2 Uncertainty bound .. 87
5.3.3 Reducing the uncertainty ... 89
5.3.3.1 Degenerate cases .. 91
5.3.3.2 Non-degenerate cases ... 91
5.3.3.3 Range of \(\alpha_i \) and \(\beta_i \) 93
5.3.3.4 Validity of the proposed method 94
5.3.4 Interval stabbing ... 96

5.4 Main algorithm .. 97

5.5 Results ... 98
5.5.1 Synthetic data .. 98
5.5.2 Point cloud registration .. 101
5.5.3 Image stitching ... 102
5.5.3.1 Quantitative results .. 104
5.5.3.2 Qualitative results ... 104

5.6 Summary .. 109

6 Conclusions and Future Work .. 111

6.1 Future research directions ... 111
6.1.1 Extensions for registration of LiDAR scans 111
6.1.2 Improvements for 3D rotation search 112
6.1.3 Removal of true outliers on point cloud registration ... 112

Bibliography 115
List of Figures

1.1 Example of rotation search in point cloud registration. 5
1.2 Robust objective functions. ... 6
1.3 Example of rotation search on point correspondences 8

2.1 Illustrating the π-ball. .. 13
2.2 Example of a Type 1 problem with a significant amount of outliers. 21
2.3 Example of a Type 2 problem with a significant amount of outliers. 22
2.4 Illustrating the decomposition of the π-ball into blocks. 27

3.1 Example of terrestrial LIDAR scanner. .. 31
3.2 Registering mine sites. .. 32
3.3 Diagram of the user-assisted point cloud registration system. 33
3.4 Sample result of the interactive 3D registration system on underground mine scans. .. 35
3.5 Sample result of the interactive 3D registration system on underground mine scans. .. 35
3.6 Sample result for the interactive 3D registration system on the Stanford Dragon. ... 36
3.7 Plumb-line uncertainty compensation. ... 37
3.8 Plot of objective function for point cloud rotational registration. 38
3.9 Top view illustration of the rotation search problem. 40
3.10 An illustration of the modified sweep plane algorithm. 43
3.11 Comparing runtime and quality (number of matched points) of various rotation search methods. ... 47
3.12 Screenshots of the automated registration tool in Maptek I-Site Studio 6. 49

4.1 Under the action of all possible rotations in \(\mathbb{B} \), \(\mathbf{x}_i \) may lie only on a spherical patch centered at \(\mathbf{R}_c \mathbf{x}_i \). ... 56
4.2 Illustrating the idea of matchlists. ... 58
4.3 Stereographic projection of a spherical patch. ... 60
4.4 The three types of patches arising from projecting spherical patches. 60
4.5 Projection of a spherical patch \(S_\alpha(\mathbf{x}) \). .. 62
4.6 Collinearity of the origin, circle’s centre and closest and furthest points on the a circle to the origin. ... 63
4.7 A set of interior patches in the projection plane is indexed in a circular R-tree. .. 65
4.8 Point clouds used in the evaluation of rotation search. 70
4.9 Rotation search scalability. ... 72
4.10 Evolution of upper and lower bounds as a function of iteration count in the Glob-GM method. 79
4.11 Initial poses of point clouds and globally optimal results by Glob-GM under the full overlap scenario. 80
4.12 Initial poses of point clouds and globally optimal results by Glob-GM under the partial overlap scenario. 81
4.13 Ground truth and results of K-4PCS-Quality over the mining dataset under the partial overlap scenario. 82

5.1 Geometry interpretations. .. 86
5.2 Geometric considerations of the angular bounding interval. 89
5.3 Solving for α_i and β_i in using the proposed linear approximations. ... 92
5.4 Geometry of solving α'_i. .. 95
5.5 Results on synthetic data. ... 99
5.6 Data instance for armadillo for $N = 100$. 101
5.7 SIFT correspondences and stitching result of GORE. 103
5.8 Results for the machu-picchu image pair. 105
5.9 Results for the paris1 image pair. 106
5.10 Results for the paris2 image pair. 107
5.11 Results for the rio image pair. 108

6.1 Relating the Euclidean error and the angular error for a point correspondence. ... 113
List of Tables

4.1 Comparing the performance of BnB rotation search methods using different bounds and bound evaluation methods. .. 70
4.2 Comparing performance of 3D registration methods on point clouds with full overlap. ... 77
4.3 Comparing performance of 3D registration methods on point clouds with partial overlap. .. 78
5.1 Point cloud registration results. ... 101
5.2 Image stitching results. .. 104
List of Algorithms

2.1 ICP for rotation search. .. 20
2.2 RANSAC for rotation search. ... 23
2.3 BnB best-first algorithm prototype for maximising $f(x)$. 27
3.1 BnB for 1D rotation search. .. 39
3.2 Modified sweep plane algorithm for 1D rotation search. 45
4.1 BnB algorithm for 3D rotation search. 55
4.2 Modified plane sweep algorithm for 3D rotation search. 66
4.3 Nested BnB algorithm for 6 DoF registration. 69
5.1 Guaranteed outlier removal for rotation search (GORE). 98
Abbreviations

BnB Branch and Bound
CSM Consensus Set Maximisation
DoF Degrees of Freedom
GM Geometric Matching
LS Least Squares
SLAM Simultaneous Localisation And Mapping
Publications

This thesis is in part result of the work presented in the following papers:

• Álvaro Parra Bustos, Tat-Jun Chin, Anders Eriksson, Hongdong Li and David Suter: Fast rotation search with stereographic projections for 3D registration. IEEE Transactions on Pattern Analysis and Machine Intelligence. Accepted on 23 Dec 2015. (DOI: 10.1109/TPAMI.2016.2517636)

• Álvaro Parra Bustos and Tat-Jun Chin: Guaranteed Outlier Removal for Rotation Search. In International Conference on Computer Vision (ICCV) 2015: 2165-2173

• Álvaro Parra Bustos, Tat-Jun Chin and David Suter: Fast rotation search with stereographic projections for 3D registration. In Computer Vision and Pattern Recognition (CVPR) 2014: 3930-3937 (DOI: 10.1109/CVPR.2014.502)

For my parents.