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Abstract: The fluorescence spectra and photostability under 532 nm laser excitation of 

four different common photoswitches (an azobenzene, spiropyran, indolylfulgide, and a 

diarylperfluorocyclopentene) was investigated in a silica microstructured optical fibre.  An 

example of each photoswitch was examined both in solution as well as physically adsorbed 

to the silica fibre surface.  This comparison was made to determine any fluorescence 

behavioral differences as a result of each solution and the optical fibre fluorescence sensing 

platform, and to determine which photoswitch has the best performance in this light intense 

microenvironment.  It was found that the azobenzene and the spiropyran showed the most 

favorable behavior; showing a stronger fluorescence response and the least degradation of 

the fluorescence signal.   

  

Keywords: Fluorescence; Photochromism; Photostability; Microstructured Optical Fibre; 

Optical Fibre Sensors; Azobenzene; Spiropyran 

Highlights: 

-  Photostability of photoswitches investigated with Microstructured Optical Fibre. 

-  Comparison of the fluorescence of four photoswitches when adsorbed to a surface 

-  Photoswitching of spiropyran using MOF in solution and on a surface 

 

1. Introduction 
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The study and development of smart materials and sensors that can be switched on and off or 

modulated in some way is an important area of current endeavor.[1-4]  These materials must possess at 

least two functional states, the relative activity of which is defined by an external stimulus such as 

heat, electric potential or light.  Of particular interest in this context is the use of an organic 

photochromic dye that can be attached to a solid support such as polymer, nanoparticles, or bulk 

surfaces; providing materials where surface properties such as hydrophobicity, charge, conductivity, 

colour, molecular recognition, and material size can be easily controlled. Such photoswitchable 

materials have been proposed for many applications; for example in data storage,[5] nano-

electronics,[6, 7] switchable polymers,[8, 9] nano-machines,[10, 11] gas storage,[12] drugs,[13, 14] 

and sensor devices[15-17].    

Microstructured Optical Fibres (MOFs) show particular promise as a new material for smart sensor 

devices.[18]  The holes surrounding the micron sized waveguide core in wagon-wheel MOFs (Figure 

S1) allow interaction between an analyte within the holes and the evanescent field of guided light to 

allow the absorbance and fluorescence (through light recapture) of the analyte to be detected.[19]  A 

MOF provides a very sensitive sensing platform due to its large light interaction path length and ability 

to sample nano-liter sample solutions.  However, a major limitation of optical sensing devices, such as 

optical fibres, is that the sample can be exposed to high intensity light which can result in bleaching.  

As such the organic sensing molecule needs to be photostable, especially if required over extended 

periods and repeated use, and particularly if fixed to the photon rich waveguide surface.[20, 21]   

The use of a fluorescent photoswitch in these systems offers some advantage over simply detecting 

absorbance changes.  Fluorescence spectroscopy is more versatile for signal acquisition as the 

instrumentation for analyte excitation and detection needs only to be on one ‘side’ of the sample, since 

the fluorescent signal can travel back along the fibre, which allows a wider range of applications; such 

as, fibre optic tip based sensing.[22] However, while the absorption and photoswitching properties of 

common photoswitches for use in such devices are well studied and reported, the associated 

fluorescence spectra are typically not, possibly due to a tendency to have poor fluorescence yields.   

This paper addresses this shortfall by comparing and contrasting the fluorescence and photostability of 

four common photoswitches. This is done by using a MOF, as this allows this comparison to be done 

under the high intensity light conditions that would typically be found within fibre sensors.  . 

Conclusions can then be drawn regarding the suitability of each photoswitch for use in MOF based 

sensors and which could be transferrable to other devices that utilize high intensity light.   

Four examples of photoswitches, each representing a different class of organic photoswitch were 

chosen for study, i.e. an azobenzene, spiropyran, indolylfulgide, and diarylalkene (Figure 1).   

Members of these classes are known to have high fatigue resistance, an ability to operate at 

biologically compatible wavelengths, and well-defined switching states that exhibit large 

conformational differences; making them suitable for applications in devices.  Azobenzenes and 

spiropyrans have already found use in MOF devices,[23-27] while the indolylfulgide (CF3-fulgide) 

and diarylalkene (DA1) show promising properties in terms of high photoswitching fatigue resistance, 

a large spectroscopic change upon photoswitching, and tunable absorption profiles within the visible-

red region.[28-30]  In this context, we recently reported the use of 3-carboxy-5,2’,4’-trimethoxy 

azobenzene (Azo1) in combination with a MOF for the sensing of aluminium ions.[21, 25]  Also we 

recently reported the use of the spiropyran SP1 within a MOF for the sensing of zinc ions.[26]  This 
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spiropyran exhibited good switchability in solution, a feature common to all spiropyrans.[31-33]  The 

trifluorinated indolylfulgide (CF3-fulgide), first reported by Yokoyama,[28] has high fatigue 

resistance, high thermal stability (no thermo-isomerisation) and large separation between ring opening 

and closing photoisomerisation wavelengths, and as such shows much promise for applications in data 

storage.[34-36]  However, 3-indolylfulgides such as CF3-fulgide are not known to have a strong 

fluorescence, which limits their readout capacity.[37]  The last example, the diarylalkene 1,2-bis(2,4-

dimethyl-5-phenylthiophen-3-yl)-perfluorocyclopentene (DA1)[29, 38] has high thermal stability and 

high photofatigue resistance (>850 cycles) in hexane, demonstrating the potential of diarylalkenes for 

devices applications. 

Figure 1. Structures of the photoswitches investigated.  

 

2. Experimental Section   

2.1 Materials  

All solvents used were HPLC grade obtained from Sigma-Aldrich and were used as supplied.  The 

diarylalkene, DA1, was obtained from TCI co. (Tokyo). The purity of this compound was confirmed 

by 
1
H NMR spectroscopy and was used as supplied.  All other photoswitches were synthesized 

following published methods; Azo1,[25] CF3-fulgide,[39, 40] and SP1[26]. 

 

The wagon wheel suspended core optical fibres (MOF) (Figure S1) used in these experiments were 

made from high purity silica F300 glass by the fibre drawing technique, and fabricated in-house.[41] 

The fibres have hole diameters of 27.7 μm, providing a total fill volume of 18 nL/cm.  The core size is 

1.5 μm. 

2.2 Apparatus 

2.2.1 Cuvette Measurements 

Bulk solution absorbance and fluorescence measurements were obtained using a CARY 5000 UV-

Vis spectrometer and a CARY Eclipse fluorometer respectively.  Measurements were conducted in a 

quartz cuvette, path length 10 mm, volume 700 μL.  Fluorescence emission measurements were 

obtained after excitation at 532 nm, emission slit width 5 mm, excitation slit width 10 mm, and at 20 
o
C.  Switching experiments were performed in the cuvette using a mercury lamp (UVP, 8 W, 352 nm 

(filtered BLB) or 254 nm (shortwave) tube) or with a halogen white light. 

2.2.2 Fibre Fluorescence Optics Setup  

The optics setup for determining the fluorescence of fluorophores within a MOF is shown in Figure 

2.  An attenuated 25 mW fibre coupled laser light source (CrystaLaser) with an excitation wavelength 

of 532 nm was coupled into the core of the MOF.  Optimal alignment and calibration of the MOF to 

the optics setup was achieved by monitoring the optical power transmitted by the fibre at the ‘fill’ end 
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using a power meter (Thorlabs).  The fluorophores fluorescence emission is captured by the fibre and 

its propagation in the backward direction[19] was recorded with a Horiba iHR550 spectrometer with 

Synapse CCD detector (100 g/mm grating, 0.5 mm entrance slit width).  Photoswitching was 

performed by externally irradiating (Figure 2, blue box) the filled MOF with a mercury lamp (UVP, 8 

W, 352 nm (filtered BLB) or 254 nm (shortwave) tube). 

Figure 2. Optical set-up for measuring the fluorescence with a Microstructured Optical Fibre.  

 

2.3 Fibre Fluorescence and Photostability 

Solutions containing each photoswitch (Azo1, SP1, CF3-fulgide or DA1, Figure 1) in DMSO or 

acetonitrile (1 x 10
-3

 mol L
-1

) were drawn into separate 20 cm lengths of MOF fibre by capillary action 

over a 1 min period (filled length of approx. 14cm).  The sample was then exposed to 50 x 8 ms pulses 

of 532 nm light of either approx. 0.017 mW for the SP1 or 0.17 mW for the other photoswitches 

(Azo1, CF3-fulgide or DA1) (determined by the optical power transmitted by the empty fibre) and the 

resulting fluorescence was measured after each pulse.  This excitation power provided a significant 

fluorescence signal for detection and analysis.  The change in integrated peak intensity over the 50 

pulses was calculated to compare the relative rates of photobleaching.   

2.4 Solid State Fluorescence Measurements 

Solutions of photoswitches Azo1, SP1, CF3-fulgide or DA1 in acetonitrile (1 mL, 1 mM) were each 

separately flowed through 40 cm lengths of MOF by external positive pressure supplied by a nitrogen 

source.  Each fibre was then cleared of solution and dried by flowing nitrogen though the holes 

overnight.  A 3 cm length was removed from each end of each fibre to remove possible end-facet 

damage that may have occurred during the filling process and the remaining fibre was split into two 15 

cm sections for analysis.  Each fibre was visually inspected under an Olympus BX51 optical 

microscope with a 20x objective to check for obstructions in the fibre holes, fluorophore precipitation, 

and complete drying.  For analysis, each 15 cm section was coupled to the optical setup in Figure 2 and 

fluorescence signal was measured as described in Section 2.3. 

3. Results and Discussion 

The absorbance and fluorescence spectra of each of the four photoswitch species (Azo1, SP1, CF3-

fulgide and DA1 (Figure 1)) were determined in both DMSO and acetonitrile using a commercial 

benchtop spectrometer as defined in the experimental Section 2.2.1.  These polar aprotic solvents 

provided sufficient solubility to allow detection of absorbance and fluorescence spectra, while also 

being biologically relevant and compatible.  This then allowed for a comparison of the effect of the 

different solvents on the spectra at each photoswitched state.  A solution of each photoswitch was 

added to a Microstructured Optical Fibre (MOF) to investigate the effect of a MOF microenvironment, 

i.e. irradiation brightness and surface proximity, on properties such as the emission spectra and the 

stability of the respective photoswitches on repeated exposure to the excitation light source.  Finally, 
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the fluorescence, photostability and photoswitchability of each photoswitch was investigated in the 

solid state, by physically adsorbing them onto the fibre surface, in order to compare to the solvated 

systems and to approximate surface functionalized systems.  

3.1. Azobenzene  

 The fluorescence spectra of solutions of Azo1 (Figure 1) in DMSO and acetonitrile, from excitation 

at 532 nm, were recorded using a bench top fluorometer in order to compare with the fluorescence 

spectra obtained using a MOF.  Azo1 showed a weak fluorescence signal, with an emission max at 595 

nm in DMSO and 572 nm in acetonitrile (see Figure 3A, blue and red).  The DMSO fluorescence 

signal intensity was four times more intense, reflective of a stronger observed absorbance (ϵ450 DMSO 

= 265000 L mol
-1

 cm
-1

 whereas ϵ450 acetonitrile = 84000 L mol
-1

 cm
-1

).  Irradiation of Azo1 with 352 

nm light from a UV black light, to promote trans to cis photoisomerisation, of the azobenzene did not 

change either the fluorescence or absorbance (Figure S2). This may be due to the poor absorption and 

photoswitching yield at 352 nm, or possibly a fast thermal isomerisation back to the initial trans 

isomer on the experiment timescale.[42] 

The weak signal observed for Azo1 is consistent with the general observation that azobenzenes 

have poor fluorescence yields.[43, 44]  However, the fluorescence and photostability are still relevant 

properties of some azobenzenes; i.e. as some azobenzenes, such as Azo1, are used as fluorescence 

based sensors due to a fluorescence turn-on upon ligand interaction, also, as photoswitchable 

compounds, azobenzenes are routinely exposed to light to induce photoswitching. The fluorescence 

signal of Azo1 in a MOF and the fluorescence decay over 50 x 8 ms pulses was obtained after filling a 

fibre with a 1 mM solution of Azo1 in DMSO or acetonitrile as outlined in Section 2.3.  The 

fluorescence spectrum of Azo1 in a MOF was then determined, shown in Figure 3A.  From these 

experiments, several observations were made.  The fluorescence of Azo1 in the MOF is broader and 

red shifted compared to that determined in the cuvette spectrometer, with emission maximum at 630 

nm and 600 nm in DMSO and acetonitrile, respectively (Figure 3A, orange and purple).  This 

fluorescence was similar to that previously reported for Azo1 in water and on poly(allylamine 

hydrochloride) coated fibre surfaces.[25]  

Figure 3. (A) Fluorescence of Azo1 in cuvette in acetonitrile (10 μM, blue) and DMSO (1 

μM, red); and normalized fluorescence within a MOF in acetonitrile (purple), DMSO 

(orange) and adsorbed to fibre surface (green). (B) Integrated fluorescence signal of the 

azobenzene in a MOF during pulsing with 532 nm light in DMSO (blue) and  acetonitrile 

(black),  fitted with a second order exponential decay model (red). 

   

 

The photodecay study showed that in DMSO solution the fluorescence intensity of Azo1 decreased 

by 33% over the first ten pulses relative to the initial intensity (Figure 3B).  This rapid decrease in 

fluorescence is likely due to photobleaching rather than from trans to cis photoisomerisation, as the 

original fluorescence spectrum was unable to be regenerated thermo- or photochemically after 

prolonged exposure with white or UV light; as would be expected if photochromism was occurring.  
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After the initial rapid decrease the fluorescence signal degrades at 0.05% per pulse.  Interestingly the 

decrease in fluorescence trended to a non-zero value, this could possibly be due to diffusion within the 

fibre, as only the photoswitch close to the fibre core will undergo photoexcitation and bleaching.  The 

photobleaching rate of Azo1 in acetonitrile is lesser than in DMSO, here the signal decayed by 12% of 

the initial intensity over the whole 50 pulses (0.24% per pulse).  Because of the slower rate of 

photodecay a linear decay was not observed within the experiment timescale, unlike with the DMSO 

sample.  This experiment demonstrates that the excitation laser light used to provide the fluorescence 

signal promotes photodegradation of Azo1. The extent of degradation is solvent dependent, with 

acetonitrile giving a reduced rate of decay compared to DMSO. 

3.2. Spiropyran 

The fluorescence spectrum of spiropyran SP1 (Figure 1) in a MOF were obtained as described in 

Section 2.3.  The DMSO and acetonitrile samples gave only a small difference in fluorescence peak 

shape; with maximum fluorescence observed at 640 nm in both solvents (Figure 4B orange/purple).  

This is red shifted from the 620 nm fluorescence peak observed in cuvette using the benchtop 

spectrometer (Section 2.2, Figure 4A).  Photoswitching of SP1 to MC1 was induced on exposing the 

filled fibre to UV black light (a process first confirmed in cuvette as a colouration at 562 nm in the 

UV-vis absorbance spectra. (Figure S2B)).  The MC1 isomer gives a significant increase in the 

emission intensity at 650 nm, as would be expected from its more fluorescent cyanine structure.[45]  

Pulsing of the MC1 solution with the excitation light source led to a rapid decrease in the 650 nm 

merocyanine peak to give the previously observed SP1 like fluorescence spectra within four pulses 

(Figure 4C, insert).  Irradiation of this ‘bleached’ solution with UV light caused an increase in the 

fluorescence due to regeneration of MC1, although to a reduce intensity than previously observed.  

This suggests that the 532 nm excitation light induced rapid reverse MC1 to SP1 photoswitching.  

This is not ideal for continuous and repetitive measurements involving a photoswitchable state, 

highlighting the requirement to have a non-destructive readout capability for use in optical devices.  

Non-destructive readout has previously been shown to be achievable by carefully selecting an 

appropriate excitation wavelength which causes little or no change in the photostationary state.[29, 46]  

A solution of SP1 in either DMSO or acetonitrile was exposed repeatedly to the pulsing excitation 

light source in order to determine its photostability over time.  For DMSO this produced a gradual 

decrease in the intensity of fluorescence at 640 nm and the appearance of a new peak at 740 nm.  This 

second peak was not photochromic on exposure to UV or white light and it is likely due to a product of 

photodegradation induced by the 532 nm light.  Exposure of SP1 to the laser pulses reduced 

fluorescence rapidly over the first five pulses in both solvents; by 27% in DMSO and by 11% in 

acetonitrile.  A reduced linear decay rate of 0.13% per pulse was observed in acetonitrile over the next 

40 pulses (Figure 4B).     

 

Figure 4.  Fluorescence of SP1 and MC1 in cuvette (A) in acetonitrile (dark blue/light 

blue) and DMSO (red/pink); and normalised fluorescence within a MOF  (B) in acetonitrile 

(purple), DMSO (orange) and adsorbed to fibre surface (green) and photoswitched on the 
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surface (black).  C) Integrated fluorescence signal of the SP1 in a MOF during pulsing 

with 532 nm light in; DMSO (blue), acetonitrile (black), and after UV photoswitching to 

the MC1 isomer (insert), fitted with a second order exponential decay model (red). 

  

 

A comparison of light induced decay of fluorescence of both Azo1 and SP1 shows that the two 

photoswitches showed a similar trend, in that the two solvent systems produce a different response to 

repetitive irradiation.   Both of the photoswitches show increased stability in acetonitrile compared to 

in DMSO; manifest as a decreased rate of fluorescence signal loss and reduced formation of 

fluorescent side products. 

 

3.3. Indolylfulgide  

To the best of our knowledge, there are currently no reports on the fluorescence of an 3-

indolylfulgide, such as CF3-fulgide (Figure 1).  One possible reason could be attributed to a low 

quantum yield of fluorescence.  This therefore limits the application of fulgides within devices with 

fluorescence readout capabilities.  However, this limitation may be overcome by the use of a MOF, 

which has a long optical path length, effectively concentrating the sample within the region where the 

fibre guides light and, therefore, enhances the detection of any weak fluorescence emission.  This 

would then provide an opportunity to use fulgides, and potentially other weak fluorophores, in sensing 

applications.  To investigate the fluorescence of CF3-fulgide, it was first dissolved in DMSO or 

acetonitrile and studied using a benchtop cuvette fluorometer, this revealed a weak signal with a peak 

at 580 nm or 600 nm, respectively, but was only evident at high concentrations (>1 mM) (Figure 5A 

blue and red).  The emission of the CF3-fulgide solution in DMSO interestingly gave differing spectra 

within the MOF with a 600 nm peak and a broad 650 nm emission peak (Figure 5B orange).  

Irradiation of this sample with either UV light or white light, to switch the molecule to the 

photocyclised closed state, (see Figure 1) (a method previously confirmed by UV-vis absorption 

spectroscopy and 
1
H NMR spectroscopy (see supporting info Figure S2C)) did not produce a change in 

the emission spectra when investigated in either MOF or cuvette.  The acetonitrile solution of CF3-

fulgide within the MOF gave a different fluorescence spectra compared to in DMSO; with a similar 

peak at 600 nm, 630 nm and a broad peak around 770 nm (Figure 5B purple).  Irradiation of the 

acetonitrile sample with UV light caused a large change in the spectrum with the loss of the 600 nm 

and 630 nm peaks.  Recovery of the initial spectrum was not achieved with either 532 nm or white 

light, indicating that the spectral change was not due to UV induced photoswitching.  Investigation of 

the in-MOF fluorescence of older samples known to have decomposed (by 
1
H NMR spectroscopy and 

UV-vis absorption spectroscopy) showed only the 770 nm peak suggesting that this fluorescence is a 

result of degradation of CF3-fulgide.  CF3-fulgide appears to degrade in both solvent mixtures.  This 

thermal degradation may reflect some hydrolysis of CF3-fulgide, caused by trace amounts of water in 

the DMSO.[35]  Further photobleaching of CF3-fulgide and its degradation products was observed 

upon pulsing with the 532 nm excitation source. 
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Figure 5. Fluorescence of CF3-fulgide (1 mM) in cuvette (A)  in acetonitrile (blue) and 

DMSO (red); and within a MOF (B) in acetonitrile (purple), DMSO (orange) and adsorbed 

to fibre surface (green).  

 

3.4. Diarylalkene 

The fluorescence spectra of a diarylalkene, DA1, (Figure 1) in DMSO or acetonitrile were obtained 

using a benchtop cuvette fluorometer as well as using a MOF as described earlier.  Photoswitching of 

DA1 from the uncyclised uncoloured state to the cyclised coloured state was performed by irradiation 

with 256 nm UV lamp (The change in the UV-vis absorption spectra after 60 min irradiation is shown 

in Figure S2D.)  DA1 showed no fluorescence using the benchtop fluorometer in either the uncyclised 

state or the photocyclised state (Figure 6, red and blue).  This was expected as the uncyclised form 

does not absorb at the 532 nm excitation wavelength, (Figure S2D, red and blue) and other 

diarylalkenes which have only thiophene substituents are also known not to be fluorescent.[29, 47]  

However, as shown earlier for CF3-fulgide, the possibility exists for molecules with very low 

fluorescence quantum yields to give a measureable signal in a suspended core MOF, due to the 

increased sensitivity provided by this architecture.  Initially the DA1 solutions in the uncyclised form, 

as expected, gave no fluorescence signal in the MOF (Figure 6 orange/purple).  Photoswitching to the 

cyclised coloured state by exposing the filled fibre to 254 nm UV light resulted in a broad fluorescence 

signal with a maximum at 590 nm and a sharp feature at 634 nm.  These emissions were not photo-

reversible on exposure to photoswitching white light, and the 634 nm peak increased in a time 

dependent manner when within the fibre.  Therefore these signals are believed to be due to the 

products of either oxidative degradation or photodegradgation.[48, 49]  A relative photodegradation 

rate, for comparison to the other photoswitches, was not obtained due to the lack of fluorescence 

signal. 

Figure 6. Fluorescence of DA1 in cuvette in acetonitrile (blue) and DMSO (red); and 

within a MOF in acetonitrile (purple), DMSO (orange) and adsorbed to fibre surface 

(green).  

 

 

This investigation into the fulgide CF3-fulgide and diarylalkene DA1 highlights that although some 

photoswitches or fluorophores may be suitable for a variety of applications, due to favorable thermal- 

and photo- stability in controlled, deaerated, non-polar solvents, their use may be limited in situations 

involving real world applications, such as in high intensity optical devices or biological samples, due 

to enhanced degradation. 

 

3.5. Solid State Fibre Fluorescence Measurements 
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In finding applications in switchable devices the photoswitchable compounds may often be 

covalently attached to a surface, suspended in a matrix, dried to a powder, or physically adsorbed to a 

support rather than dissolved in a  solution.  Each environment might be expected to influence the way 

the photoswitchable compounds interacts with light and its associated spectral and photoswitching 

properties.  In this section, differences in fluorescence of the photoswitches Azo1, SP1, CF3-fulgide 

and DA1 in the solid state when they are physically adsorbed to the core of a MOF, is investigated and 

the results compared to the solution observations discussed above. 

Microstructured optical fibres were coated separately with each photoswitch using a modified “drip 

method”[50, 51] (see Section 2.4) prior to coupling to the fluorescence setup; fluorescence and 

photostability measurements were then performed as described in Section 2.4.  Optimization of the 

alignment of the MOF core to the excitation light source is typically determined by maximizing the 

fibre transmittance; however, this was not possible with the fluorophores pre-attached to the core as 

this could cause photobleaching, and the fluorophores caused an increase in fibre transmission loss due 

to increased absorption and scattering of the light.  Therefore to minimalize light exposure the dry 

photoswitch coated fibres were coupled to the laser setup as quickly as possible using filtered laser 

light and the relative optical power and photobleaching rates of the samples were compared based on 

relative changes in fluorescence intensities.  The initial fluorescence signals from each of the four 

photoswitches prior to prolong exposure to 532 nm light is shown in Figures 3A, 4B, 5B and 6 

comparing to their respective solution fluorescence and the integrated signal decay due to 

photobleaching is shown in Figure 7. 

Figure 7. The integrated fluorescence of each photoswitch coated onto the inner surface of 

a MOF during irradiation with 532 nm light (black) then after subsequent switching with 

UV light (blue) fitted with two component exponential decay function (red). (A) Azo1. (B) 

SP1. (C) CF3-fulgide. (D) DA1. 

     

 

The azobenzene Azo1 showed a broad peak with a maximum around 600 nm (Figure 3A green), 

similar to what was observed in the solution-based fibre experiment described in Section 3.1.  Pulsing 

with the 532 nm laser caused a reduction in the signal intensity by 26% over the 50 pulses (0.5% per 

pulse) (Figure 7A).  This is twice as fast as that observed when Azo1 was dissolved in acetonitrile.  

The fluorescence from the dried Azo1 was still decreasing after the monitored 50 pulses, unlike in the 

DMSO and acetonitrile dissolved sample which plateaued within the 50 pulses.  Thus further 

indicating that the plateauing of signal intensity in the solution state may be due to diffusion of the 

fluorophore solution near the light exposed surface mixing within the MOF: no such equilibrium can 

be formed with a fixed fluorophore.  Subsequent UV exposure, to induce photoswitching from the 

native trans isomer to the cis isomer, gave no change in the fluorescence peak shape, however, a small 

recovery of the signal intensity was observed.  

The spiropyran, SP1, showed a broad emission, with peak maximums at 580 nm and 620 nm in 

these experiments (Figure 4B green).  Bleaching occurred to the extent of 22% of the initial intensity 

over the 50 pulses (0.4% per pulse) (Figure 7B black).  Irradiation of the fibre with UV 352 nm light 
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for 10 min photoswitched SP1 to MC1 resulting in an increase in the fluorescence with a new 

emission at 647 nm (Figure 4B black).  Pulsing of the MC1 with the 532 nm excitation light quickly 

bleached this new peak, reproducing the original spectrum within ten pulses; the photobleaching then 

continued at the same rate as was observed with the unswitched SP1 (Figure 7B blue).  Photoswitching 

between the different SP1 and MC1 emissions with UV 352 nm and green 532 nm light was able to be 

reproduced at least three times with a gradual decrease in the intensity between switching cycles as a 

result of the photodegradation (see supporting Figure S3).  The fluorescence spectra of SP1 in the solid 

state was similar to that in the DMSO and acetonitrile solutions (Section 3.2).  The formation of a new 

fluorescence at 740 nm, as observed in the solution studies, was not observed in the solid state, even 

after multiple photoswitching cycles; indicating that, this degradation in the solid state is dominated by 

a different pathway than which occurred in the solution. 

The indolylfulgide, CF3-fulgide, adsorbed to the fibre core gave a similar spectrum to that observed 

in the cuvette benchtop fluorometer experiment (see Section 3.3), with a main peak at 590 nm and a 

shoulder peak at 630 nm (Figure 5B, green).  No other emission peaks above 650 nm were observed, 

unlike compared to CF3-fulgide in solution in fibre.  Photobleaching caused a 10% decrease in the 

signal intensity over the 50 pulses (0.2% per pulse) (Figure 7C).  Irradiation of CF3-fulgide in the fibre 

using UV light or halogen white light to induce photoswitching, again, gave no change in the 

fluorescence spectrum.  Meaning that either photoswitching was not occurring in the adsorbed state or, 

as the same observation was made in solution, the closed fulgide is not fluorescent from excitation at 

532 nm. 

The adsorbed diarylalkene, DA1, in the MOF showed a very different strong emission spectrum 

compared to the lack of fluorescence observed in the previous DMSO and acetonitrile solutions.  The 

initial spectrum showed a fluorescence signal with a maximum at 627 nm (Figure 6 green).  After 

exposure to pulsing of the 532 nm excitation light the signal decreased by 54% (1% per pulse) (Figure 

7D) and broadened.  After exposure to UV light the peak intensity at 627 nm increased, indicating 

photoswitchability in the solid state. Repeated exposure to 532 nm light decreased the 627 nm peak 

intensity and the formation of a new higher wavelength emission became evident.  This new peak at 

approx. 660 nm did not appear to change with UV, or white light irradiation suggesting that this was 

not photochromic and possibly due to a photodecay product. 

The above investigation shows that the fluorescence of each of the four photoswitches was 

observable in the solid state; fluorescence spectral features were comparable to in solution, apart from 

for DA1 which did not show fluorescence in solution.  In the solid state photoswitching was observed 

for SP1.  A greater photodegradation was observed on the surface.  However, this could be attributed 

to higher intensity light due to the fluorophore concentrated within the evanescent field, as well as no 

diffusion of the fluorophores.  Also, as spectral changes associated with solution based degradation 

was not observed it is believed that an alternative degradation pathway is dominant. 

4. Conclusions/Outlook  

The photostability of organic photoswitches is important for their incorporation into switchable smart 

materials for optical systems.  The fluorescence and photostability of four types of photochromic 

molecules (Azo1, SP1, CF3-fulgide and DA1) was investigated when dissolved in DMSO, or 
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acetonitrile, or adsorbed to a MOF silica surface.  It was observed that Azo1 and SP1 had stronger 

fluorescence in solution compared to CF3-fulgide and DA1.  A difference in the rate of photodecay 

was observed between the two solutions investigated, with degradation of Azo1 and SP1 occurring 2-3 

fold slower in acetonitrile than in DMSO.  When adsorbed to the silica surface a fluorescence signal 

was observed for all photoswitches.  Photodegradation of this signal appeared to proceed faster than in 

solution, possibly a result of the concentration of the photoswitch on the light intense fibre surface as 

well as a lack of diffusion within the fibre air-holes.  Therefore, of the four photoswitches investigated 

in this study the most suitable for fibre device applications were found to be azobenzene, Azo1, and 

spiropyran, SP1 due to their higher fluorescence yield, and solution stability. 
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