THE DESIGN OF SHALLOW FOOTINGS
ON EXPANSIVE SOIL

BY

PETER W. MITCHELL, B.E.(Hons), M.E.

A thesis presented to the Faculty of Engineering of the University of Adelaide in Fulfilment of the Requirements for the Degree of Doctor of Philosophy.

Civil Engineering Department
<table>
<thead>
<tr>
<th>CONTENTS</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>SUMMARY</td>
<td>I</td>
</tr>
<tr>
<td>STATEMENT BY AUTHOR</td>
<td>II</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENT</td>
<td>III</td>
</tr>
<tr>
<td>PRINCIPAL NOTATION</td>
<td>IV</td>
</tr>
<tr>
<td>1.0 INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>2.0 CRITICAL REVIEW OF COMMONLY USED DESIGN METHODS</td>
<td>8</td>
</tr>
<tr>
<td>2.1 Brab (Building Research Advisory Board) Method</td>
<td>10</td>
</tr>
<tr>
<td>2.2 Lytton Method</td>
<td>11</td>
</tr>
<tr>
<td>2.3 Walsh Method</td>
<td>14</td>
</tr>
<tr>
<td>2.4 Swinburne Method</td>
<td>15</td>
</tr>
<tr>
<td>2.5 PTI-Wray Method</td>
<td>17</td>
</tr>
<tr>
<td>2.6 Mitchell Method</td>
<td>18</td>
</tr>
<tr>
<td>2.7 Comparison of Design Method</td>
<td>20</td>
</tr>
<tr>
<td>3.0 PREDICTION OF EXPANSIVE SOIL BEHAVIOUR</td>
<td>25</td>
</tr>
<tr>
<td>3.1 Fundamental Concepts in Expansive Soil Mechanics</td>
<td>25</td>
</tr>
<tr>
<td>3.1.1 Soil Suction</td>
<td>25</td>
</tr>
<tr>
<td>3.1.2 The Moisture Characteristic</td>
<td>28</td>
</tr>
<tr>
<td>3.1.3 Magnitude of Shrinkage and Swelling Movements</td>
<td>29</td>
</tr>
<tr>
<td>3.1.4 Measurement of Instability Index</td>
<td>31</td>
</tr>
<tr>
<td>3.1.5 The Pressure - Swelling Nature of Soils</td>
<td>33</td>
</tr>
<tr>
<td>3.2 Diffusion of Moisture in Expansive Soils</td>
<td>37</td>
</tr>
<tr>
<td>3.2.1 Permeability of Unsaturated Soils</td>
<td>37</td>
</tr>
<tr>
<td>3.2.2 Derivation of a Simple Diffusion Equation</td>
<td>37</td>
</tr>
<tr>
<td>3.2.3 Experimental Determination of Diffusion Coefficient</td>
<td>42</td>
</tr>
<tr>
<td>3.3 Solution of Commonly Encountered Expansive Soil Problems</td>
<td>44</td>
</tr>
</tbody>
</table>
CONTENTS
(Contd)

3.3.1 The Effect of a Constant Source of Moisture Loss or Gain
3.3.1(a) Garden Watering
3.3.1(b) Subfloor Ventilation
3.3.1(c) Diffusion from Perched Water Table

3.3.2 Effects of Trees on Buildings

3.4 Prediction of the Shape of the Initial Distorted Soil Surface
3.4.1 Introduction
3.4.2 Solution for Soil Suction under Cover
3.4.3 Soil Displacement Under a Flexible Permeable Cover

3.5 Experimental Observations
3.5.1 Introduction
3.5.2 Seasonal Heave Measurements
3.5.3 Movement of Surface Cover

4.0 THE STRUCTURAL INTERACTION OF FOOTING AND EXPANSIVE SOIL
4.1 Introduction

4.2 The Hogging (Centre Heave) Condition
4.2.1 Centre Heave Design Equations
4.2.2 Example for Centre Heave
4.2.3 Parametric Study for Centre Heave

4.3 The Sagging (Edge Heave) Condition
4.3.1 Edge Heave Design Equations
4.3.2 Example for Edge Heave
4.3.3 Parametric Study for Edge Heave
CONTENTS
(Contd)

4.4 The Allowable Deflections of Structures 91
4.5 Practical Limitations of Theoretical Analysis 92
4.6 The Critical Bending Moment & Stiffness 94

5.0 CASE STUDIES 101
5.1 Introduction 101
5.2 Problem Rafts with Footing Continuity Broken 103
5.3 Problem Rafts with Footing Continuity Maintained 107
5.4 Discussion 116
5.5 A Simple Design Table 121

6.0 WORKED EXAMPLES 125

7.0 NATURE OF AUTHOR'S CONTRIBUTION 128

8.0 CONCLUSION 131

REFERENCES 139

APPENDIX A : Example Calculations for Required Bending Moment by the Various Design Methods A1

APPENDIX B : Soil Profile of Finite Depth. Constant Suction at Surface. Solution for Suction. B1

APPENDIX C : Soil Profile with Cover. Solution for Suction and Surface Displacement. C1

APPENDIX D : Interaction of Expansive Soil and Footing in Centre Heave (Hogging Mode) D1

APPENDIX E : Interaction of Expansive Soil and Footing in Edge Heave (Sagging Mode) E1

APPENDIX F : Details of Case Studies F1
SUMMARY

A method of analysis for the prediction of soil movement and the design of shallow footings on expansive soil is developed from fundamental principles which define the nature of expansive soil and the soil-footing interaction. The developed concepts are modified by field observations of distorted footings, and a simple design table is presented.

A review of the commonly used methods of shallow footing design indicates a large variation in the bending moment calculated by each method. The variation is primarily a result of the assumed loading configuration and initial distorted soil shape.

The prediction of the magnitude of expansive soil movements is developed from fundamental concepts in terms of three constants; an Instability Index, defining the expansiveness of the soil; a Swelling Stiffness, defining the suppression of swell under load; and the Diffusion Coefficient, defining the movement of moisture through the soil. Laboratory methods are suggested to determine the Instability Index and Diffusion Coefficient. The effects of common causes of moisture change (such as garden watering, subfloor ventilation, tree root influence, expansive soil movements under a cover) can thus be predicted more confidently than previously possible. Observations of the behaviour of expansive soil under seasonal conditions support the developed concepts, though the prediction of water infiltration through fissures remains intractable.

The soil-footing interaction is examined by integration of the beam equation, and algebraic expressions for the bending moment and required stiffness in centre and edge heave are developed. A parametric study indicates that each of the design variables (i.e. footing length, building loads, soil movement, structure flexibility, swell stiffness and shape of the initial distorted soil surface) affects the bending moment and required footing stiffness. Charts are developed from the algebraic expressions, and these are correlated with the observed behaviour of thirty-one problem raft footings. Modifications to the theoretical analysis, made in the light of the field observations, are incorporated into a simple design table for practical use.
This thesis contains no material which has been accepted for the award of any other degree or diploma in any university, and to the best of my knowledge and belief, contains no material previously published or written by another person, except when due reference is made in the text.

Peter W. Mitchell

Copyright 1984 Peter W. Mitchell
ACKNOWLEDGEMENT

The author acknowledges the encouragement and guidance received from his supervisor, Dr. M. Arnold, Senior Lecturer in the Department of Civil Engineering at the University of Adelaide.
PRINCIPAL NOTATION

A_o Rate of water uptake by tree roots
B Breadth footing area
C Support ratio
D Depth of raft subbeam
E Young's Modulus, footing material
G_s Specific Gravity
I Moment of inertia, footing
I_{pt} Instability Index
L Length of footing or covered area
M' Effective ultimate moment capacity
M_u Ultimate moment capacity
M_{-} Hogging Bending Moment
M_{+} Sagging Bending Moment
M_x Bending Moment about a point x on footing due to superstructure loads.
W Perimeter loads
W_L Perimeter loads in long direction
W_B Perimeter loads in short direction
P Soil pressure; Perimeter load in PTI-Wray Method.
T Internal line loads at footing centre; Non-dimensional parameter $a t / L^2$
T_L Internal line loads in long direction
T_B Internal line loads in short direction
Y Differential free soil heave across unloaded flexible structure
a Depth of soil over which suction varies (the active depth)
b Breadth of raft subbeam
c Moisture characteristic
d Soil displacement
e Void ratio; edge distance in Walsh, Swinburne & PTI-Wray Methods

h_t Total suction in cms water
h_m Matrix suction in cms water
h_s Solute suction in cms water
f Compressibility factor
g Lateral restraint factor
k Swelling stiffness
l Length of a soil sample
m Exponent in equation defining soil surface under covered area (the shape factor)
p Unsaturated permeability
t Exponent in equation defining deflected shape of footing; time
u Total suction expressed as a pF
w Superstructural loads excluding perimeter and centre line loads per unit area footing; moisture content of soil
α Diffusion coefficient
δ Footing deflection
δ_o Displacement of origin footing profile from origin soil profile
Δ Maximum differential footing deflection
ω Superstructural loads per unit area footing
γ_d Dry density
ε_{vert} Vertical strain