INVESTIGATION ON THE POPULATION VARIATION
OF Drosera indica L. COMPLEX USING COMBINED
MORPHOLOGICAL AND MOLECULAR TECHNIQUES

RATNA SUSANDARINI

Thesis submitted in fulfillment of the requirement for
the degree of

MASTER OF SCIENCE

DEPARTMENT OF ENVIRONMENTAL BIOLOGY
ADELAIDE UNIVERSITY
SOUTH AUSTRALIA

JUNE 2001
ABSTRACT

Drosera indica L. is an annual, tropical species of carnivorous plant exhibiting a considerable amount of morphological variability, including plant size, flower colour, stamen form, seed size, and seed coat ornamentation pattern. Thus far there has been no study dealing with these morphological variability. The present study, therefore, is aiming at investigating the pattern of morphological and genetic variability in this species to determine whether there are morphologically distinguishable groups, and whether these groups are genetically distinct.

Materials used in this study consisted of air-dried herbarium specimens, water- and silica sand-preserved plant, and glasshouse- and tissue culture-grown plants germinated from seeds. The assessment of morphological variation was carried out on sixty two accessions of *D. indica* based on 62 accessions based on 14 vegetative and floral characters, as well as 12 micromorphological seed characters examined using scanning electron microscope. Multivariate numerical analysis on morphological data was performed using cluster analysis and two ordination techniques: the multidimensional scaling and principal component analysis. The pattern of genetic variation was evaluated on 15 accessions of *D. indica* using random amplified polymorphic DNA (RAPD). The DNA for RAPD analysis was obtained from fresh materials only, either from glasshouse- or tissue culture-grown plants germinated from seeds. The other types of materials failed to produce DNA of sufficient amounts and quality.

Results of morphological data analysis indicated that there are six morphotypes, each representing a distinctive combination of seed type and other morphological characters. Examination on the geographic distribution of accessions, coupled with the geology and the average annual rainfall data suggested that these morphotypes occurred sympatrically, and that they did not exhibit distinct geographical and ecological patterns. Based on this
evidence, therefore, these morphotypes might represent varieties within
D. indica, or possibly even distinct species.

Cluster analysis and multidimensional scaling ordination on RAPD data
revealed a high degree of genetic dissimilarity between accessions and
between different morphotypes. The grouping of accessions based on RAPD
data did not correspond to that resulted from morphological analysis. A
comparison on the same set of samples (15 accessions) indicated that
accessions from different morphotypes grouped together in the same cluster
generated from RAPD data, and that there was no consistent pattern in the
grouping of these morphotypes. This result indicated that there were
differences in the pattern of within-species morphological and genetic
variation. The discrepancy between results from morphological and molecular
data was discussed. The two data sets, however, are in general agreement in
detecting the degree of similarity between accessions.

The high degree of genetic dissimilarity revealed from RAPD analysis
confirms the inbreeding nature of D. indica, and provides evidence on the
reproductive isolation between sympatric morphotypes. This result, therefore,
supports the recognition of the six defined morphotypes as distinct species.
Considering the wide range of distribution of D. indica across different
habitats and continents, however, further examination of specimens covering
as much as possible its range of geographic distribution and morphological
variation is required to justify the suggested taxonomic treatment.
DECLARATION

This work contains no material which has been accepted for the award of any degree or diploma in any university or other tertiary institutions and, to the best of my knowledge and belief, the thesis contains no material previously published or written by another person, except where due reference has been made in the text.

I give consent to this copy of my thesis, when deposited in the University Library, being available for loan and photocopying.

Ratna Susandarini
21/6/2001
ACKNOWLEDGEMENTS

I would like to express my gratitude to my supervisors - Dr. John G. Conran and Dr. Graham G. Collins - for their guidance, critical discussions, and encouragement throughout the course of the study. I am so fortunate to be the part of Department of Environmental Biology and also Department of Horticulture, Viticulture and Oenology, where I meet friendly and helpful people, both their staff and fellow postgraduate students. Mr. Allen Lowrie is acknowledged for providing seeds and herbarium specimens. My appreciation goes to Dr. Russell Barrett, Mr. Robert Gibson, and the people from Australian Carnivorous Plant Society for their valuable information on *Drosera indica*. My sincere thanks to Mita for her wonderful friendship, and to Yagus for sharing ideas. Finally, I gratefully acknowledge my husband Suroto and son Amirul for their support, patience, and devotion, which give me strength and motivation to complete my study on time. This study is sponsored by Australian Agency for International Development (AusAID) through Australian Development Scholarship.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
<td>i</td>
</tr>
<tr>
<td>DECLARATION</td>
<td>iii</td>
</tr>
<tr>
<td>ACKNOWLEDGMENTS</td>
<td>iv</td>
</tr>
<tr>
<td>Table of Contents</td>
<td>v</td>
</tr>
<tr>
<td>List of Tables</td>
<td>viii</td>
</tr>
<tr>
<td>List of Figures</td>
<td>ix</td>
</tr>
<tr>
<td>Chapter One: Introduction</td>
<td>1</td>
</tr>
<tr>
<td>Chapter Two: Literature Review</td>
<td>4</td>
</tr>
<tr>
<td>2.1 The Genus Drosera</td>
<td>4</td>
</tr>
<tr>
<td>2.1.1 Drosera indica L.</td>
<td>7</td>
</tr>
<tr>
<td>2.2 DNA-based Molecular Markers in Plant Systematics</td>
<td>10</td>
</tr>
<tr>
<td>2.3 Polymerase Chain Reaction (PCR)</td>
<td>13</td>
</tr>
<tr>
<td>2.4 Random Amplified Polymorphic DNA (RAPD)</td>
<td>16</td>
</tr>
<tr>
<td>2.4.1 RAPD in Intraspecific Study of Plants</td>
<td>20</td>
</tr>
<tr>
<td>2.4.1.1 The Use of RAPD in the Estimation of Genetic Diversity</td>
<td>21</td>
</tr>
<tr>
<td>2.4.1.2 The Use of RAPD in the Identification of Cultivars and Species</td>
<td>23</td>
</tr>
<tr>
<td>2.4.2 Analysis of RAPD Data in Systematics Studies</td>
<td>25</td>
</tr>
<tr>
<td>2.5 The Use of Herbarium Specimens for DNA-based Studies in Plant Systematics</td>
<td>29</td>
</tr>
<tr>
<td>2.6 Morphological and Molecular Data in Systematics Studies</td>
<td>31</td>
</tr>
<tr>
<td>Chapter Three: Seed Morphology of Drosera indica L.</td>
<td>36</td>
</tr>
<tr>
<td>3.1 Abstract</td>
<td>36</td>
</tr>
<tr>
<td>3.2 Introduction</td>
<td>36</td>
</tr>
<tr>
<td>3.3 Materials and Methods</td>
<td>41</td>
</tr>
</tbody>
</table>
5.5 Discussion
5.6 Conclusion

Chapter Six: Morphological and Genetic Variation in the
Drosera indica Complex

6.1 Abstract
6.2 Introduction
 6.2.1 Molecular data in taxonomy
 6.2.2. Species concepts in plant systematic study
6.3 Materials and Methods
 6.3.1 Morphological analysis
 6.3.2 RAPD analysis
6.4 Results
 6.4.1 Morphological analysis
 6.4.2 RAPD analysis
6.5 Discussion
6.6 Conclusion

Chapter Seven: General Discussion

REFERENCES

APPENDICES

I. Accessions used in this study
II. Results of examination on seed morphological characters
III Herbarium specimens of Drosera indica L. showing variation in morphology (plant size, stem colour, and flower colour)
IV. Scores and measurements of morphological data
V. Glasshouse-grown plant of Drosera indica showing a red stripe on the abaxial surface of the leaf
VI. The Geology of Western Australia
VII. Map of the Average Annual Rainfall of Western Australia
VIII. Gel electrophoresis of RAPD fragments of Drosera indica amplified using primer OPA03
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 3.1</td>
<td>Seed morphological characters examined</td>
<td>39</td>
</tr>
<tr>
<td>Table 3.2</td>
<td>Grouping of seed samples based on seed coat ornamentation patterns</td>
<td>41</td>
</tr>
<tr>
<td>Table 4.1</td>
<td>List of materials used in DNA extraction study</td>
<td>59</td>
</tr>
<tr>
<td>Table 4.2</td>
<td>Comparisons of DNA yield and quality from accessions extracted using four different protocols</td>
<td>67</td>
</tr>
<tr>
<td>Table 5.1</td>
<td>Morphological characters examined</td>
<td>86</td>
</tr>
<tr>
<td>Table 5.2</td>
<td>Coefficient loadings of characters in the first three components of PCA</td>
<td>94</td>
</tr>
<tr>
<td>Table 5.3</td>
<td>Geographic position where different morphotypes were found growing together in a mixed population in Kimberley region, Western Australia</td>
<td>101</td>
</tr>
<tr>
<td>Table 6.1</td>
<td>Accessions of Drosera indica used in morphological and RAPD analysis</td>
<td>110</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

Figure 3.1 Scanning electron micrograph of *Drosera indica* seeds with reticulate ornamentation pattern (Type I), showing three different seed coat cell shapes:

a. tetragonal (AL2242); b. transversely hexagonal (AL2219); c. longitudinally hexagonal (AL1208).

Figure 3.2 Scanning electron micrograph of *Drosera indica* seeds with (a) foveolate (Type II) ornamentation (AL1306), and (b) longitudinally ridged or furrowed (Type III) ornamentation (AL1730).

Figure 3.3 Scanning electron micrograph of epicuticular wax deposits on the surface of the seed coat, showing:

a. irregular granules; b. rosettes; c. rounded granules.

All forms are from seeds within the same sample (Dro42).

Figure 4.1 Gel electrophoresis of DNA showing comparison of DNA integrity obtained from different materials

Figure 5.1 UPGMA dendrogram of 62 accessions of *Drosera indica* based on morphological data, showing six morphological groups

Figure 5.2 The MDS analysis of *Drosera indica* accessions using Gower’s metric, showing the groups from the dendrogram in Figure 5.1

Figure 5.3 Two-dimensional scatter-plot of *Drosera indica* accessions projected in PC1 and PC2, showing six morphological groups and outliers

Figure 5.4 Distribution map of some *Drosera indica* accessions in Kimberley region, Western Australia

Figure 6.1 UPGMA dendrogram of 15 accessions of *Drosera indica* based on 16 morphological characters, showing the grouping of accessions into four groups

Figure 6.2 The MDS analysis of 15 accessions of *Drosera indica* based on 16 morphological characters, showing the grouping of accessions into four groups
Figure 6.3 UPGMA dendrogram of 15 accessions of *Drosera indica* based on RAPD data

Figure 6.4 The MDS analysis of 15 accessions of *Drosera indica* based on RAPD data
3/2/4-5 ‘D. ramentacea’ Burch, ex DC., D. madagascariensis DC., D. burmannii Vahl and D. pelata’ Thunb. is recognised as the
7/2/1 ‘areas, and’ = ‘areas, that’
7/2/10 ‘Asia to’ = ‘Asia, Japan’
9/3/1 remove ‘L.’
9/3/2 remove ‘a set of characters such as’
10/2 remove all ‘L.’
11/2/1 ‘resulted in a new’
12/1/1 replace ‘amount’ with ‘number’
13/2/5 ‘of a specific’
13/2/6 ‘by a factor’
15/2/8 ‘researchers: Welsh’
18/1/5 ‘from the heterozygote’
18/3/2 replace ‘overcome’ with ‘reduced’
19/1/9 ‘in conjunction with’
23/2/5 ‘kinds’
31/2/11 ‘data may have’
35/1/8 remove ‘each’
35/2/1 remove ‘research’
35/2/2 ‘variability between specimens’
36/1/6 replace ‘Provided’ with ‘Combined’;
‘evident’ with ‘evidence’
38/2/4 ‘either help to define’
38/2/14 ‘At the infraspecific level’
39/1/10 ‘species on seed morphology’
40/1/5 delete ‘genus’
40/1/9 delete ‘was’
40/2/7 delete ‘the family’
40/2/9 ‘as in the study’
49/1/3 ‘SEO meant that’
51/1/4 ‘excavations’
52/2/2 ‘Type II seeds’
52/3/4 ‘belonging to’
53/1/2-3 ‘which no additional character was found
to support the’
55/1/2 replace ‘quality’ with ‘concentration’
55/2/5 delete ‘cell’
66/3/6 ‘sources’
69/2/11 delete ‘because’
69/2/12 ‘hydration, so the’
69/3/1 delete ‘using’
69/3/4 delete ‘from’
76/3/title ‘plants’
77/3/4 ’1986,’
79/2/5 ‘thus does not necessarily’
80/2/8 ‘character overlap with’
81/2/4 ‘replace ‘to use’ with ‘that’
81/2/5 ‘analysis to be used in’
84/1/3 delete ‘in the application of numerical
phenetic methods’
84/2/12 delete ‘two’
85/2/3 ‘fifty-nine complete specimens’
88/2/1 ‘dendrogram’
91/1/2 ‘of the clusters (Fig. 5.4)’
91/4/1 replace ‘Despite’ with ‘In addition to’

102/1/3 ‘with a distinctive’
102/1/4 delete ‘and thus’
102/1/8 ‘population systems’
102/1/17 ‘in the case of D. indica’
103/2/1 ‘that of the six defined morphotypes, 3 (A,
B and C)
104/1/2 delete ‘six defined’
104/2/1 ‘comprised three morphotypes and a
further three subtypes’
105/1/10 ‘inbreeding’
105/1/11 ‘the three morphotypes’
106/2/7 ‘similarity and difference’
108/1/1 replace ‘in which the’ with ‘so that a’
108/2/1 ‘replace’ from with ‘of’
108/2/6 ‘which is a commonly used’
108/2/9 ‘reproductive’
109/1/1 ‘fingerprinting technique using RAPD’
110/1/2 delete ‘random amplified polymorphic
DNA’
112/2/2 ‘B2 and C, corresponding to the main
clusters identified in the earlier morphological
analysis’
112/2/3 ‘Cluster A (seed Type II)
112/2/5 ‘Cluster B1 (seed Type I)
112/2/7 ‘Cluster B2 (seed Type I)
112/2/9 ‘Cluster C (seed Type III)
112/2/10 ‘and red-striped petiolate leaves’
117/1/3 delete ‘result’
118/1/5 ‘(Abbott et al. 1985)’
119/2/2 replace ‘inbreeding’ with ‘inbred’
119/2/3 ‘that is responsible’
119/2/5 replace ‘explaining’ with ‘explains’
119/2/10 ‘populations from exchanging genes’
120/2/10 ‘Whitkus, 1997, whereas’
121/2/2 ‘populations’
122/1/2 ‘difference, and’
122/1/8 ‘as much as’
122/1/9 ‘conclusion could’
124/2/8 replace ‘defining’ with ‘studying’
126/1/1 delete ‘are’
127/3/2 ‘cases where a pair’
128/1/14 ‘is the nature of morphology’
128/1/21 ‘and that with a large’
128/1/22 ‘there is a possibility that’
129/3/2 replace ‘, thus confirms its inbreeding
nature’ with ‘providing evidence of
reproductive isolation between accessions,
possibly through inbreeding’
130/2/3 ‘distinct species. The anecdotal pollination
observations where there is clear pollinator
preference between the different morphs also
supports the idea of genetic isolation. However,
considering’
130/2/5 ‘as possible of its range’
Drosera indica L.