The influence of temperature on emissions of nitrous oxide and dinitrogen from soils

Thang Viet Lai

Thesis submitted for the degree of

Doctor of Philosophy

in the

School of Agriculture, Food & Wine

at the

University of Adelaide

Discipline of Farming Systems

Waite Campus

The University of Adelaide

September 2016
Table of contents

LIST OF FIGURES .. 1
LIST OF TABLES ... 8
ACRONYMS AND ABBREVIATIONS 11
ABSTRACT ... 12
DECLARATION .. 14
ACKNOWLEDGEMENTS 15

CHAPTER 1 INTRODUCTION 16
 1.1 Aims .. 20
 1.2 Thesis structure 20

CHAPTER 2 LITERATURE REVIEW 22
 2.1 Introduction 22
 2.2 The nitrogen cycle and processes related to N₂O 23
 2.2.1 Biotic transformations 25
 2.2.2 Abiotic transformations 31
 2.3 Factors influencing N₂O production 32
 2.3.1 Temperature 32
 2.3.2 Oxygen and soil moisture 32
 2.3.3 Substrate availability 35
 2.3.4 Carbon availability 36
 2.3.5 Soil pH 37
2.3.6 Availability of trace metals 38

2.4 Thermal response of N\textsubscript{2}O production 39

2.4.1 N\textsubscript{2}O production from nitrification 39

2.4.2 N\textsubscript{2}O from denitrification 45

2.4.3 N\textsubscript{2}O from abiotic reactions 48

2.5 Temperature patterns in Australia 48

2.6 Summary and critical knowledge gaps 50

2.7 Thesis objectives 50

CHAPTER 3 ARE NITRIFICATION AND N\textsubscript{2}O EMISSIONS INFLUENCED BY AMMONIUM SUPPLY OR FLUCTUATING TEMPERATURES? 52

3.1 Introduction 52

3.2 Materials and methods 54

3.2.1 Study site and sample collection 54

3.2.2 Measurement of water field capacity and bulk density 56

3.2.3 Laboratory incubations 57

3.2.4 Gas sampling and analysis 60

3.2.5 Soil mineral N and analysis 61

3.2.6 Most probable number count 61

3.2.7 Calculation of nitrogen transformation rates 62

3.2.8 Statistical analysis 63

3.3 Results 63
5.2 Materials & methods 105

5.2.1 Study sites and sample collection 105

5.2.2 Laboratory incubation 108

5.2.3 Sampling and analysis 108

5.2.4 Calculation of nitrogen transformation rates 109

5.2.5 Statistical analysis 110

5.3 Results 112

5.3.1 Soil mineral N 112

5.3.2 Total N₂O emissions 116

5.3.3 N₂O from heterotrophic nitrification and/or denitrification 116

5.3.4 Net rate of autotrophic nitrification 119

5.3.5 N₂O from autotrophic nitrification 119

5.3.6 The proportion of N₂O to NO₃⁻ from autotrophic nitrification 120

5.3.7 Ammonium oxidising bacteria (AOB) population 120

5.3.8 Production of CO₂ 122

5.3.9 Inter-relationships 122

5.4 Discussion 124

5.5 Conclusions 128

CHAPTER 6 SOIL MOISTURE AFFECTS THE THERMAL RESPONSE OF DENITRIFICATION 129

6.1 Introduction 129
6.2 Material and methods

6.2.1 Study sites and sample collection

6.2.2 Laboratory incubation

6.2.3 Sampling and analysis

6.2.4 Gas measurement

6.2.5 Calculation of nitrogen transformation rates

6.2.6 Determining the activation energy (E_a) of a reaction

6.2.7 Calculation of oxygen (O₂) availability

6.2.8 Statistical analysis

6.3 Results

6.3.1 The production of total N₂O

6.3.2 ¹⁵N₂O production during denitrification

6.3.3 ¹⁵N₂O reduction during denitrification

6.3.4 Total denitrification

6.3.5 Soil respiration rate and O₂ availability

6.3.6 Soil nitrate contents

6.4 Discussion

6.5 Conclusions

CHAPTER 7 N₂O AND N₂ PRODUCTION FROM DENITRIFICATION RESPOND DIFFERENTLY TO SOIL TEMPERATURE AND NITRATE SUPPLY

7.1 Introduction
7.2 Methods

7.2.1 Study sites and sample collection

7.2.2 Laboratory incubation

7.2.3 Sampling and analysis

7.2.4 Gas measurement

7.2.5 Statistical analysis

7.3 Results

7.3.1 Mineral nitrogen pools

7.3.2 Overall N₂O production

7.3.3 Net rate of ^15N₂O production

7.3.4 Rate of ^15N₂O reduction

7.3.5 Total denitrification and N₂O/N₂ ratios

7.3.6 The activation energy

7.3.7 Soil respiration and O₂ availability

7.3.8 Inter-relationships

7.4 Discussion

7.5 Conclusions

CHAPTER 8 GENERAL DISCUSSION

8.1 Concept of research

8.2 Summary of results
8.2.1 The effects of fluctuating temperature and NH$_4^+$ content on nitrification and N$_2$O

8.2.2 The influence of temperature on nitrification and associated N$_2$O

8.2.3 The influence of temperature, soil moisture and nitrate on denitrification

8.3 Conclusions

8.4 Implications

8.5 Future research

REFERENCES
List of figures

Figure 1.1. The pathways of N₂O from nitrification, denitrification and chemical reactions in soil... 19

Figure 1.2. Thesis structure indicating the scientific relationships among chapters, indicated as solid blue lines, and some methodological relationships among chapters, indicated as broken red lines. Data from chapters bounding with double line were based on isotopic techniques (¹⁵N). 21

Figure 2.1. The nitrogen cycle in agricultural systems (adapted from Bolan et al. (2004)) .. 24

Figure 2.2. Mineralisation of nitrogen in soil including the components of aminisation and ammonification (adapted from Bolan et al. (2004)). 26

Figure 2.3. Nitrification: outline of the pathway and enzymes involved (adapted from Wrage et al. (2001)). ... 28

Figure 2.4. Denitrification: outline of the pathways and enzymes involved (adapted from Bolan et al. (2004))... 30

Figure 2.5. Factors affecting nitrification, denitrification and N₂O production in soils (red shaded: proximal factors; blue shaded: distal factors). Adapted from Saggar et al. (2013) ... 34

Figure 2.6. The effect of soil temperature on relative nitrification rates from different climatic regions: relative nitrification rates (lines) and the range of mean of monthly air temperatures for each site (bars). Data from Myers (1975), Sabey et al. (1959), Malhi and McGill (1982), Maag and Vinther (1996). 40
Figure 2.7. The effect of temperature on N_2O and NO_x from soil based on the DAYCENT model (Parton et al., 2001).

Figure 3.1 (a) The variation in soil temperature (50mm top layer) and water content in study site from June 2012 until July 2013 (unpublished data from Kevin Kelly, Department of Agriculture, VIC.): Lines present daily soil maximum (red line) and minimum temperature (blue line), bars present the monthly volumetric water content; (b) The variation in daily soil temperature captured automatically every 30 minutes in February 2013, (each line represents one day); and (c) three temperature patterns tested (FTP$_1$: 8h-15 °C, 8h-20 °C, 8h-25 °; FTP$_2$: 12h-15 °C and 12h-25 °C; CT maintained continually at 20 °C).

Figure 3.2. Experimental procedures outlined for experiment 1, testing different N supply and experiment 2, testing different temperature patterns during incubation.

Figure 3.3 Variation in concentrations of soil ammonium and nitrate concentrations over time when subjected to different temperature patterns (FTP$_1$: 8h-15 °C, 8h-20 °C, 8h-25 °; FTP$_2$: 12h-15 °C and 12h-25 °C; CT maintained continually at 20 °C) and C$_2$H$_2$ pressure (without C$_2$H$_2$ -open symbols and with C$_2$H$_2$ -filled symbols). Soil moisture was maintained at 60% field capacity. Vertical bars are +1SE.

Figure 3.4. Cumulative N_2O production in the chromosol soil under different temperature patterns (FTP$_1$: 8h-15 °C, 8h-20 °C, 8h-25 °; FTP$_2$: 12h-15 °C and 12h-25 °C; CT maintained continually at 20 °C) and C$_2$H$_2$ treatments (without C$_2$H$_2$ -open plots and with C$_2$H$_2$ - filled plots). Soil moisture was maintained at 60%
field capacity. Vertical bars are +1SE. Pooled ANOVA indicated no interaction between temperature patterns and sapling time (p > 0.05). 71

Figure 4.1. The variation in temperature and water content in study sites from June 2012 until July 2013. Lines indicate daily soil maximum (red line) and minimum temperature (blue line); bars present the monthly volumetric water content. 82

Figure 4.2. The production of \(\text{N}_2\text{O} \) from autotrophic nitrification and heterotrophic nitrification or denitrification in soils incubated at different temperatures for 5 days after application of 100 µg NH\(_4\)-N g\(^{-1}\) soil. Total bar height represents total \(\text{N}_2\text{O} \) production (all processes). Grey bar represents \(\text{N}_2\text{O} \) arising from heterotrophic nitrification and/or denitrification in C\(_2\)H\(_2\)-amended treatments. The size of the open bar represents \(\text{^{15}N-N}_2\text{O} \) from autotrophic nitrification determined from the difference in \(\text{N}_2\text{O} \) from C\(_2\)H\(_2\) and non-C\(_2\)H\(_2\) treatments. **Vertical bars** are +1 SE of four replicates. ... 90

Figure 4.3. The response of \(\text{N}_2\text{O} \) emissions to different temperatures and C\(_2\)H\(_2\) pressures over the 10 days of incubation. Soil samples were amended with NH\(_4\)NO\(_3\) and maintained at 60% FC. **Vertical bars** are +1 SE of four replicates. 92

Figure 4.4. Production of \(\text{^{15}N-N}_2\text{O} \) emissions in soil incubated at different temperatures for 10 days after application of NH\(_4\)NO\(_3\). Open bars represent \(\text{^{15}N-N}_2\text{O} \) from denitrification, grey bars represent \(\text{^{15}N-N}_2\text{O} \) from denitrification and heterotrophic nitrification (since autotrophic nitrification was blocked with C\(_2\)H\(_2\)). **Vertical bars** are +1 SE of four replicates. ... 94

Figure 4.5. The concentrations of ammonium and nitrate in the dermosol soil exposed at different temperatures after application of 100 µg N g\(^{-1}\) as NH\(_4\)NO\(_3\) to soil on day 0. Soil samples were maintained at 60% FC during the incubation time.
The pooled ANOVA was applied to determine the different rates of mineral N change over incubation time. Different letters indicate significant difference among temperatures. *Vertical bars* are +1 SE of four replicates.

Figure 4.6. The production of CO$_2$ in response to different incubation temperatures. Soil moisture was maintained at 60% field capacity (33kPa). Different letters indicate significant differences in CO$_2$ concentration among temperature treatments for the dermosol (*p* < 0.05). *Vertical bars* are +1 SE of four replicates.

Figure 5.1. Study sites and major characteristics (0-10 cm depth) of unamended experimental soils used in this study.

Figure 5.2. The variation in daily air temperature with maximum temperature (red line), minimum temperature (blue line) and monthly total rainfall in two study sites (green vertical bars) from 2012-2014 (unpublished data from Nigel Swarts, The University of Tasmania for temperate soil and Melissa Royle, HCPSL for tropical soil).

Figure 5.3. Experimental procedures, including: Pre-incubation, repacking soil core, addition of NH$_4^+$ solution and C$_2$H$_2$ (0.01% v/v) then incubation at different temperatures.

Figure 5.4. Soil ammonium concentrations at different temperature and with and without acetylene addition in two tested soils after N application of 100µg N g$^{-1}$ soil, as (NH$_4$)$_2$SO$_4$. Soil moisture was maintained at 60% FC during incubation. Error bars represent +1 SE (*n* = 4).

Figure 5.5. Soil nitrate concentrations at different temperature and with and without acetylene amendment in two tested soils after N application at 100 µg N g$^{-1}$.
soil, as (NH₄)₂SO₄. Soil moisture was maintained at 60% FC during incubation. Error bars represent +1 SE (n = 4).

Figure 5.6. Cumulative N₂O production at different temperatures and with and without acetylene amendment in two soils after N application at 100µg N g⁻¹ soil as (NH₄)₂SO₄. Soil moisture was maintained at 60% FC. Bars represent +1 SE (n = 4).

Figure 5.7. The rate of CO₂ production at different temperature in two tested soils after N application at 100 µg N g⁻¹ soil as (NH₄)₂SO₄. Soil moisture was maintained at 60% FC during incubation. Bars represent +1 SE (n = 4).

Figure 5.8. The effect of soil temperature on relative nitrification rate in this study compared with results from published results: relative nitrification rates (lines) and variation in mean of monthly air temperatures (bars).

Figure 6.1. The relationship between the rate of a reaction (k) and temperature.

Figure 6.2. Cumulative N₂O production over time in response to temperature and soil moisture following addition of N fertiliser to soil at 100 µg N g⁻¹ soil as ¹⁴NH₄¹⁵NO₃. Soil moisture was maintained at 60 % FC (a) and 75% FC (b).

Figure 6.3. Cumulative ¹⁵N-N₂ from denitrification over the 10 days of incubation at different temperatures and soil water contents following the addition of 100µg N g⁻¹ soil as NH₄¹⁵NO₃. Different letters indicate significant differences among temperatures (lower letters for 60% FC and capital letters for 75% FC). There was no significant difference between the two field capacities at all temperatures. A trendline indicates the relationship between temperature and ¹⁵N₂ production. Vertical bars represent +1 SE (n = 4).
Figure 6.4. Cumulative 15N-(N$_2$O+N$_2$) production from denitrification in soil incubated at different temperatures and soil moisture contents after 10 days following the application of 100 μg N g$^{-1}$ soil as NH$_4$15NO$_3$. Two-way ANOVA identified an interactive effect between temperature and soil moisture to control 15N$_2$O production ($p < 0.05$). Different letters indicate significant differences in total N losses as 15N$_2$O and 15N$_2$ among temperatures. Vertical bars indicate +1 SE (n = 4). .. 142

Figure 6.5. Cumulative CO$_2$ production in response to temperatures at different soil moisture contents (a & b) and estimated O$_2$ availability (c) during the experiment. Soil samples had addition of 100 μg N g$^{-1}$ soil as NH$_4$15NO$_3$. Error bars are +1 SE (n = 4). .. 144

Figure 6.6. Nitrate availability (μg NO$_3$-N g$^{-1}$ soil) exposed to different temperatures and soil moisture contents after 10 days of incubation. Soil NO$_3^-$ content measured on day 0 was 25.7 ± 0.3 μg N g$^{-1}$ soil... 145

Figure 7.1 The cumulative production of N$_2$O over time in response to temperature following amendments of N fertiliser to soil at 0 (N$_0$), 100 (N$_{100}$), 200 (N$_{200}$) and 300 μg N g$^{-1}$ soil (N$_{300}$) as NH$_4$15NO$_3$. Soil moisture was maintained at 75 % field capacity. Error bars indicate +1 SE (n = 4).............................. 158

Figure 7.2 Daily rates of 15N-N$_2$O over time in response to temperature following amendments of N fertiliser to soil at 0 (N$_0$), 100 (N$_{100}$), 200 (N$_{200}$) and 300 μg N g$^{-1}$ soil (N$_{300}$) as NH$_4$15NO$_3$. Soil moisture was maintained at 75 % field capacity. Error bars indicate +1 SE (n = 4). ns: non-significant difference; different letters indicate significant difference among temperatures within each N supply. .. 159
Figure 7.3 Daily rates of 15N-N_2 over time in response to temperature following amendments of N fertiliser to soil at 0 (N$_0$), 100 (N$_{100}$), 200 (N$_{200}$) and 300 µg N g$^{-1}$ soil (N$_{300}$) as NH$_4^{15}$NO$_3$. Soil moisture was maintained at 75 % field capacity. Error bars indicate +1 SE (n = 4). *ns*: non-significant difference; different letters indicate significant difference among temperatures within each N supply.

Figure 7.4 Cumulative CO$_2$ production vs time during incubation at different temperatures, regardless of N application (a) and the relationship between CO$_2$ production and O$_2$ availability (b). Soil moisture was maintained at 75% field capacity (33kPa). Error bars are +1 SE (n = 12).

Figure 8.1. A conceptual model of the effect of temperature on soil biological processes responsible for N$_2$O and N$_2$ production, constructed by integrating results obtained from experimental chapters. The size of the circles and arrows indicates the relative impact of temperature on size of the pools of each nitrogen form. The diagrams in the lower portion of the figure indicate some key results of the study in relation to temperature optima for N$_2$O production and the thermal effect on NH$_4^+$.
List of Tables

Table 2.1. The proportion of nitrified N as N\(_2\)O at specified temperatures in laboratory and field studies. .. 43

Table 2.2. Denitrification and associated N\(_2\)O production at specified temperatures in laboratory and field studies. .. 46

Table 3.1. The concentrations of NH\(_4^+\) and NO\(_3^-\) over time following amendment with different amounts of NH\(_4^+\) at time 0 (A\(_0\): 0, A\(_{50}\): 50, A\(_{100}\): 100 & A\(_{150}\): 150 \(\mu\)g N g\(^{-1}\) soil) with (0.01% v/v) and without C\(_2\)H\(_2\) addition. Soil moisture was maintained at 60% of the gravimetric water content at field capacity. Each value is followed by the standard error of the mean (n=4). ... 65

Table 3.2. The rate of total N\(_2\)O, N\(_2\)O from denitrification and/or heterotrophic nitrification (N\(_2\)ODH), N\(_2\)O from autotrophic nitrification (N\(_2\)OA), and autotrophic nitrification (N\(_{nitr}\)) in the chromosol soil after additions at time 0 of 0 (A\(_0\)), 50 (A\(_{50}\)), 100 (A\(_{100}\)), & 150 \(\mu\)g N g\(^{-1}\) soil (A\(_{150}\)) as (NH\(_4\))\(_2\)SO\(_4\). Soil moisture was maintained at 60% of the gravimetric water content at field capacity. Each value is followed by the standard error of the mean (n=4). … 67

Table 3.3. Total N\(_2\)O emissions, N\(_2\)O production from different sources (autotrophic and heterotrophic nitrification, denitrification), autotrophic nitrification rate (N\(_{nitr}\)), ammonium oxidising bacteria (AOB) population and CO\(_2\) production in the chromosol soil after 4 weeks of incubation under different temperature patterns (FTP\(_1\): 8h -15 °C, 8h- 20 °C, 8h - 25 °C; FTP\(_2\): 12h -15 °C and 12h - 25 °C; CT at 20 °C). Soil sample was maintained at 60% of the gravimetric water content at field capacity (- 33 kPa). Each value is followed by the standard error of the mean (n=4). .. 73
Table 4.1. Some properties of unamended experimental soils used in this study. Soils were sampled from 0-10 cm depth.

Table 4.2. Outline of the 15N fertiliser and C$_2$H$_2$ inhibition treatments used to estimate the contribution of denitrification, autotrophic nitrification and heterotrophic nitrification to 15N-N_2O production (Baggs et al., 2003; Bateman and Baggs, 2005).

Table 4.3. Daily rate of 15N-N_2O emissions, cumulative 15N-N_2O from different sources and ammonium oxidising bacteria (AOB) population after 10 days of the incubation in the dermosol. Soil was applied 100μg N g$^{-1}$ as 14NH$_4^{15}$NO$_3$ or 15NH$_4^{15}$NO$_3$ and maintained at 60% FC. Each value has a standard error of the mean indicated under it (n=4).

Table 5.1. Daily rate of NO$_3^-$ production (N_{init}), nitrous oxide (N$_2$O$_A$) from autotrophic nitrification, the proportion of N$_2$O to NO$_3^-$(P_n) in the first 7 days of incubation and the growth rate of AOB population (d^{+}) after 14 days in soils added with 100μg NH$_4$-N g$^{-1}$ soil. Soil was maintained at 60% of field capacity (-33 kPa).

Table 5.2. Correlation coefficients (r values) among temperature, total N$_2$O, CO$_2$ production, autotrophic nitrification (N_{init}), N$_2$O from autotrophic nitrification (N$_2$O$_A$), ammonium oxidising bacteria (AOB) and the proportion of NO$_3^-$ to N$_2$O (P_n) (n = 30).

Table 6.1. Average of rates of 15N$_2$O and 15N production from denitrification in soil at different temperatures and water contents after addition 100 as NH$_4^{15}$NO$_3$.
Table 6.2. The activation energy (E_a) for N$_2$O reduction during denitrification between 25 to 45 C in two water contents in the tested soil. Each value has a standard error of the mean followed it. ... 140

Table 7.1. The concentrations of ammonium and nitrate at days 0 and 10 days after incubation at different temperatures and N applications to soil at 0 (N$_0$), 100 (N$_{100}$), 200 (N$_{200}$) and 300 µg N g$^{-1}$ soil (N$_{300}$) as NH$_4^{15}$NO$_3$. Soil moisture was maintained at 75% field capacity. ... 156

Table 7.2. Average of rates of 15N-N$_2$O production, 15N-N$_2$ production, the ratios of N$_2$O/(N$_2$O+N$_2$) and N$_2$O/N$_2$ from denitrification in the first 7 days of incubation at different temperatures and N additions to soil at t 0 (N$_0$), 100 (N$_{100}$), 200 (N$_{200}$) and 300 µg N g$^{-1}$ soil (N$_{300}$) as NH$_4^{15}$NO$_3$. Soil moisture was maintained at 75% field capacity (−33 kPa). ... 162

Table 7.3. The activation energy (E_a) for N$_2$ production from denitrification between 25 ºC to 45 ºC at N applied to tested soil (with 100 (N$_{100}$), 200 (N$_{200}$) and 300 µg N g$^{-1}$ soil as 14NH$_4^{15}$NO$_3$ (N$_{300}$)). ... 164

Table 7.4. Correlation coefficients (r values) among temperature, nitrogen applied (N), N$_2$O, N$_2$, denitrification (N$_2$O + N$_2$), N$_2$O/N$_2$ ratio and O$_2$ (n = 36) in the first 7 days of incubation. ... 164
Acronyms and abbreviations

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>µg</td>
<td>Microgram</td>
</tr>
<tr>
<td>15N (%)</td>
<td>Labelling nitrogen (percentage of excess 15N atom)</td>
</tr>
<tr>
<td>ANOVA</td>
<td>Analysis of variance</td>
</tr>
<tr>
<td>AOA</td>
<td>Ammonia-oxidising archaea</td>
</tr>
<tr>
<td>AOB</td>
<td>Ammonium oxidising bacteria</td>
</tr>
<tr>
<td>BD</td>
<td>Bulk density</td>
</tr>
<tr>
<td>C$_2$H$_2$</td>
<td>Acetylene</td>
</tr>
<tr>
<td>CT</td>
<td>Constant temperature</td>
</tr>
<tr>
<td>DEA</td>
<td>Denitrification enzyme activity</td>
</tr>
<tr>
<td>DNRA</td>
<td>Dissimilatory nitrate reduction to ammonium</td>
</tr>
<tr>
<td>E_a</td>
<td>Activation energy</td>
</tr>
<tr>
<td>FC</td>
<td>Field capacity</td>
</tr>
<tr>
<td>FTP</td>
<td>Fluctuating temperature pattern</td>
</tr>
<tr>
<td>HSD</td>
<td>Honestly significant difference</td>
</tr>
<tr>
<td>mg</td>
<td>Milligram</td>
</tr>
<tr>
<td>MPN</td>
<td>Most probable number</td>
</tr>
<tr>
<td>N</td>
<td>Nitrogen</td>
</tr>
<tr>
<td>N$_2$</td>
<td>Dinitrogen</td>
</tr>
<tr>
<td>N$_2$O</td>
<td>Nitrous oxide</td>
</tr>
<tr>
<td>N$_2$OR</td>
<td>Nitrous oxide reduction</td>
</tr>
<tr>
<td>na</td>
<td>Not applicable</td>
</tr>
<tr>
<td>NH$_2$OH</td>
<td>Hydroxylamine</td>
</tr>
<tr>
<td>NH$_4^+$</td>
<td>Ammonium</td>
</tr>
<tr>
<td>NO</td>
<td>Nitric oxide</td>
</tr>
<tr>
<td>NO$_2^-$</td>
<td>Nitrite</td>
</tr>
<tr>
<td>NO$_3^-$</td>
<td>Nitrate</td>
</tr>
<tr>
<td>ns</td>
<td>Not significant</td>
</tr>
<tr>
<td>O$_2$</td>
<td>Oxygen</td>
</tr>
<tr>
<td>OC</td>
<td>Organic carbon</td>
</tr>
<tr>
<td>P_n</td>
<td>The proportion of N$_2$O to NO$_3^-$ by nitrification</td>
</tr>
<tr>
<td>SE</td>
<td>Standard error</td>
</tr>
<tr>
<td>TEA</td>
<td>Terminal electron acceptor</td>
</tr>
<tr>
<td>T_{max}</td>
<td>Maximum monthly temperature</td>
</tr>
<tr>
<td>T_{min}</td>
<td>Minimum monthly temperature</td>
</tr>
<tr>
<td>T_{opt}</td>
<td>The optimum temperature</td>
</tr>
<tr>
<td>v/v</td>
<td>Volume per volume</td>
</tr>
<tr>
<td>WFPS</td>
<td>Water-filled pore space</td>
</tr>
</tbody>
</table>
Abstract

Nitrification and denitrification are two major soil biological processes that release nitrous oxide (N$_2$O) from soils. N$_2$O production and reduction have been well-documented at temperatures below 35 °C, but are poorly understood at higher temperatures. N$_2$O production from nitrification was compared at a range of temperatures (10 °C to 45 °C) to mimic the typical temperatures encountered in soils from dairy pasture systems in Australia. Temperature was more important than soil type in controlling N$_2$O from nitrification, which was slow at 10 – 25 °C and peaked at 35 – 40 °C, suggesting a higher optimum temperature for N$_2$O production from nitrification than previous studies reported. Autotrophic nitrification produced N$_2$O predominantly below 35 °C, while heterotrophic nitrification, which used NH$_4^+$ for nitrifying, released N$_2$O principally between 35 °C and 40 °C. Total N$_2$O emissions measured at different temperatures were influenced by the climatic region from which the soils were sourced. The magnitudes of N$_2$O emissions in the tropical soil exceeded those in the temperate soil under experimental conditions, although N$_2$O/NO$_3^-$ from nitrification at different temperatures was independent of the climatic region from which soils were sourced. The N$_2$O/NO$_3^-$ ratio was positively correlated with increased temperature and was above 1.0% at 35 °C, regardless of climate.

Temperature interacted with soil moisture and NO$_3^-$ availability to regulate N$_2$O from denitrification, while the conversion of N$_2$O to N$_2$ was affected principally by temperature. The highest denitrification (N$_2$O + N$_2$) was found at 35 °C in the soils treated at 75% FC and N contents between 100 – 150 kg N ha$^{-1}$. Low N$_2$O/N$_2$ ratios at 40 – 45 °C was due to the enhancement of N$_2$ production at these temperatures, suggesting greater soil NO$_3^-$ loss as N$_2$ during summer, particularly in soils that are wet at that time.
Interestingly, high NH₄⁺ availability was observed at 45 ºC, which was hypothesised to relate to low nitrification rate and high rates of N mineralisation or dissimilatory nitrate reduction to ammonium at this temperature.

This work has improved the knowledge of N cycling processes at high temperatures. Soil moisture or NO₃⁻ content alone are poor predictors of N₂O and N₂ production, since these elements interacted with temperature to control denitrification. High soil NH₄⁺ availability at 45 ºC is a particularly interesting finding with potential to contribute to N losses. The findings confirm that management of soil moisture and NO₃⁻ availability, and a consideration of crop N demand are likely to reduce N losses as N₂O and N₂.
Declaration

I certify that this work contains no material which has been accepted for the award of any other degree or diploma in my name in any university or other tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text. In addition, I certify that no part of this work will, in the future, be used in a submission in my name for any other degree or diploma in any university or other tertiary institution without the prior approval of the University of Adelaide and where applicable, any partner institution responsible for the joint award of this degree.

I give consent to this copy of my thesis, when deposited in the University Library, being made available for loan and photocopying, subject to the provisions of the Copyright Act 1968.

I also give permission for the digital version of my thesis to be made available on the web, via the University’s digital research repository, the Library Search and also through web search engines, unless permission has been granted by the University to restrict access for a period of time.

Thang Viet Lai

September 2016
Acknowledgements

Vietnam International Education Development (VIED) and The University of Adelaide (AFSIU scholarship) are gratefully acknowledged for funding this project.

Special thanks to Matthew Denton, Ryan Farquharson, Nanthi Bolan – the most patient of supervisors. Thanks for your excellent guidance.

I would like to thank Kevin Kelly (Department of Economic development), Melissa Royle (HCPSL), Nigel Swarts (The University of Tasmania) for allowing site access for soil collection and for provision of environmental data; Nigel Charman for soil sampling; Ann McNeill, Philippa Tansing and Suan Mason for providing technical assistance on mineral nitrogen analysis; Nang Nguyen for soil physical measurements, Judith Rathjen for assistance with laboratory work.

Many thanks to Gupta Vadakattu and Stasia Kroker (CSIRO) for assistance with ^{15}N diffusion technique; Eileen Scott, Michael Keller and Cameron Grant for allowing the use of incubators and the Farming Systems group for the general advice and feedback on the project.

Peter Thorburn, Wendy Quayle, Ronald Smernik, Murray Unkovich are acknowledged for their advice on some chapters in my thesis. I acknowledge and thank anonymous examiners for their efforts in ensuring my thesis is of international academic standard.

Last but not least, my family. Special thanks to my wife and son, who have been with me during the journey.