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Abstract

Cirrus and mixed phase clouds represent a major uncertainty in climate and weather
models. This uncertainty can be reduced with a better understanding of the lifecycle and
radiative properties of cirrus and mixed phase clouds, and by inputting local measurements
into models. A cloud’s radiative properties are dependent on the thermodynamic phase of the
cloud particles. Measurements made with a polarimetric lidar can be used to determine
thermodynamic phase and improve our understanding of cirrus and mixed phase clouds. Few
polarimetric lidar instruments are used in the southern hemisphere, representing a gap in
understanding and measurements. An existing lidar instrument was upgraded and run for 6
months; 3 months with polarisation measurements. Important properties such as height,
frequency of occurrence and thermodynamic phase have been measured up to heights of
around 6 km. These measurements are consistent with ground and satellite based lidar, and
with radiosonde measurements. Methods for determining additional properties of the clouds,
such as the optical thickness and lidar ratio were researched. Sufficient measurements of
cloud macrophysical properties allow for the determination of cloud microphysical
properties, such as particle density and shape. To assist with determining these properties a
polarimetric lidar simulation was written. Microphysical properties were not determined due
to the lidar lacking sufficient range and resolution. Due to the low peak power of the laser
used, increasing the range and resolution by increasing the peak power of the laser would be

relatively easy.
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