On the Detection of Dark Matter

Likelihoods and limits on spin-independent and spin-dependent WIMP couplings and the implementation of radiative muon decays in dark matter analyses.

Andre Scaffidi

Center of Excellence for Particle Physics at the Terascale School of Physical Sciences, Adelaide University.

University of Adelaide

This dissertation is submitted for the degree of

Master of Philosophy

August 2016
For Li.
Declaration

I certify that this work contains no material which has been accepted for the award of any other degree or diploma in my name in any university or other tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text. In addition, I certify that no part of this work will, in the future, be used in a submission in my name for any other degree or diploma in any university or other tertiary institution without the prior approval of the University of Adelaide and where applicable, any partner institution responsible for the joint award of this degree. I give consent to this copy of my thesis, when deposited in the University Library, being made available for loan and photocopying, subject to the provisions of the Copyright Act 1968. I also give permission for the digital version of my thesis to be made available on the web, via the University’s digital research repository, the Library Search and also through web search engines, unless permission has been granted by the University to restrict access for a period of time.

Andre Scaffidi
August 2016
I would like to offer my sincerest thanks to the people who have helped or encouraged me in my Masters journey.

First and foremost, I would like to thank my supervisors Prof. Anthony Williams and Dr. Martin White between them providing an endless supply of knowledge, advice and providing me with some fantastic projects that I thoroughly enjoyed every bit of. I am very glad that I found supervisors that complemented my study style so well, giving me the opportunity to produce results to the best of my potential, while not feeling overwhelmed.

I would like to thank the department of physics here at the University of Adelaide for always promptly being happy to help with any inquiry or paperwork. Next, I’d like to thank the Center of Excellence for Particle Physics at the Terascale (CoEPP), for all of the opportunities to conduct work overseas or participate in workshops that have enabled me to gain skills and knowledge that have benefited me greatly and that I will continue to utilize in the future. Furthermore, thank you to the CoEPP admin staff here in Adelaide for always being friendly and welcoming as well as extremely helpful with any and all matters.

I would like to offer special thanks to Nordita as well as Stockholm university and the Oskar Klein Centre (OKC) for the hospitality and resources that allowed a majority of the muons work to be undertaken.

I would especially like to thank Chris Savage who was a major contributor to the work presented in this thesis, not only giving me the opportunity to work on some interesting and stimulating projects but for being a fantastic mentor with an encyclopedic knowledge of everything dark matter related.

Next, I would like to thank my friends and bands for just accepting that I can’t make a gig/gathering/event because of something uni related. I’m really gratefully for the support and understanding, as well as your company.

Special thanks to all occupants of room 119 over the past two years. This experience has been made significantly easier having such a great group of friends to talk about everything from physics to Star Wars with. Sorry about all the foam
balls, yo-yo's and obnoxiously loud dink bottles - there are no other people I’d rather have sitting in my pockets for 5 days a week.

Lastly and most importantly, I want to thank my family. From showing me my first physics documentary, to making sure that my health is the best it can possibly be, I can’t overstate the appreciation I have for the constant and unconditional source of love and support. Most of all I am thankful for what you’ve had to give up on my account. To Dona, thank you for always being there.
Abstract

This thesis presents advancements in two of the three avenues for the detection of particle dark matter: direct and indirect searches. The first four chapters provide an introductory overview of particle dark matter and its distribution, evidence and constraints as well as statistical tools used in direct and indirect analyses.

The second main segment of the thesis presents LUXCalc, a new utility for calculating likelihoods and deriving WIMP-nucleon coupling limits from the recent results of the LUX direct search dark matter experiment. After a comprehensive review of WIMP-nucleon scattering, we derive LUX limits on the spin-dependent WIMP-nucleon couplings over a broad range of WIMP masses, under standard assumptions on the relevant astrophysical parameters. We find that, under these and other common assumptions, LUX excludes the entire spin-dependent parameter space consistent with a dark matter interpretation of DAMA’s anomalous signal, the first time a single experiment has been able to do so. We also revisit the case of spin-independent couplings, and demonstrate good agreement between our results and the published LUX results. Finally, we derive constraints on the parameters of an effective dark matter theory in which a spin-1 mediator interacts with a fermionic WIMP and Standard Model fermions via axial-vector couplings. A detailed section describes the use of LUXCalc with standard codes to place constraints on generic dark matter theories.

The final segment looks at the fact that photons can be produced from final state muons, and the consequences of considering such a process in indirect searches. Modern Monte Carlo generators and DM codes include the effects of final state radiation from muons produced in the dark matter annihilation process itself, but neglect the $O(1\%)$ radiative correction that arises from the subsequent muon decay. After implementing this correction we demonstrate the effect that it can have on dark matter phenomenology by considering the case of dark matter annihilation to four muons via scalar mediator production. We first show that the AMS-02 positron excess can no longer easily be made consistent with this final state once the Fermi-LAT dwarf limits are calculated with the inclusion of radiative muon decays, and we next show that the Fermi-LAT galactic centre gamma excess can be improved.
with this final state after inclusion of the same effect. We provide code and tables for the implementation of this effect in the popular dark matter code micrOMEGAs, providing a solution for any model producing final state muons.
Table of contents

1 Introduction 1

I Dark matter: Overview of evidence, distribution and statistical techniques 5

2 Particle dark matter 7
 2.1 Rotation curves of spiral galaxies 8
 2.2 Evidence from galaxy clusters 9
 2.3 Dark Matter in Large Scale Structure, Cosmology and the cosmic microwave background 10
 2.3.1 The ΛCDM model 11
 2.3.2 Dark matter in large scale structure 12
 2.4 Properties of dark matter 13
 2.4.1 The zoo of candidates, and the WIMP 15
 2.5 Detecting particle dark matter: A brief overview 16
 2.5.1 Direct detection 18
 2.5.2 Indirect Detection 19

3 Statistical methods 25
 3.1 Maximum likelihood analysis 25
 3.1.1 Combined Likelihood 30
 3.1.2 Raster scans 31
 3.2 Goodness of fit testing 32
 3.2.1 Confidence intervals in the Gaussian limit 34
 3.3 Exclusion regions for when the signal and background likelihoods are known 35
 3.4 Confidence intervals with Yellin’s max gap method 36
Table of contents

4 Astrophysical dark matter distribution

4.1 Dark Matter Density profiles ... 39
 4.1.1 The universal density profile 40
 4.1.2 Issues on small scales .. 42
 4.1.3 The Milky Way: known unknowns 43

4.2 Local density .. 44

4.3 Dark matter velocity distributions 45
 4.3.1 The Standard Halo Model (SHM) 46
 4.3.2 Validity of the SHM ... 47
 4.3.3 The mean inverse speed 48

II Direct detection, the LUX experiment and LUXCalc

5 The particle physics of low background direct detection 53

5.1 The scattering cross section .. 54

5.2 The differential recoil rate for WIMP-nucleus scattering 56

5.3 Differential cross-sections for WIMP-nucleus elastic scattering 60
 5.3.1 General momentum and spin dependence 65
 5.3.2 WIMP-nucleon cross-sections 66
 5.3.3 Scalar-scalar interactions (spin-independent) 67
 5.3.4 AV-AV interactions (spin-dependent) 73

5.4 Finalizing the differential recoil rate $\frac{dR}{dE}$ 82

5.5 Maximising the differential recoil rate in direct detection searches .. 83

6 Constraining dark matter properties with the LUX TPC experiment

6.1 The LUX TPC experiment and main results 85
 6.1.1 Average expected number of events 87

 6.1.2 LUX collaboration analysis region 89

 6.1.3 LUXCalc analysis region 90

 6.1.4 WIMP detection efficiencies $\phi(E)$ 90

6.2 Analysis: Constraining the $\sigma-m_\chi$ parameter space 91
 6.2.1 Background discrimination 93

 6.2.2 Feldman-Cousins Poisson-based method 93

 6.2.3 Max-Gap method .. 95

6.3 Physics results .. 96
 6.3.1 Generic coupling limits 96

 6.3.2 Official LUX SD constraints 102
Table of contents

6.4 Application to an effective theory ... 102

7 The LUXCalc package 107

| 7.1 Usage .. 107 |
| 7.2 LUXCalc .. 107 |
| 7.2.1 Program ... 109 |
| 7.2.2 Library: Fortran usage 110 |
| 7.2.3 Library: C++ usage 112 |
| 7.2.4 Useful software 113 |

III Radiative muon decays and the consequences for indirect detection 115

8 The particle and astrophysics of DM-DM self annihilation 117

| 8.1 Thermally averaged Cross-Section 118 |
| 8.1.1 Analytical derivation 119 |
| 8.2 Differential Flux (Prompt Emission) 121 |
| 8.2.1 Differential flux in galactic coordinates 123 |
| 8.3 Cascade energy spectra .. 124 |
| 8.3.1 $\chi\chi \rightarrow l^+l^−$ 124 |
| 8.3.2 $\chi\chi \rightarrow \phi\phi \rightarrow l^+l^−l^+l^−$ 126 |

9 Photon spectra from dark matter annihilation into muons 127

| 9.1 The radiative muon decay 128 |
| 9.1.1 Background theory 128 |
| 9.1.2 Spectrum of photons from the radiative decay. 133 |
| 9.2 Final state radiation ... 136 |
| 9.3 The total photon spectrum 138 |
| 9.4 Monte Carlo Event Generation 139 |
| 9.4.1 Validation: Photon spectrum in muon rest frame 142 |
| 9.5 Results: Photon spectrum in the DM annihilation frame 144 |
| 9.5.1 For $\chi\chi \rightarrow \mu^+\mu^−$ 144 |
| 9.5.2 For $\chi\chi \rightarrow \phi\phi \rightarrow 4\mu$ 144 |
| 9.6 PYTHIA 8 settings .. 145 |
| 9.7 Use of spectra in micrOMEGAs 146 |

10 Applications of radiative muon decays 149

| 10.1 Constraining the final AMS-02 explanation using the Fermi dwarfs . 150 |
10.1.1 The AMS-02 anomaly 150
10.1.2 The Fermi dwarfs 153
10.1.3 Improving the Fermi dwarf constraints: Results 159
10.2 The galactic center excess .. 161
10.2.1 Fitting the Fermi GC excess with a spectrum arising from
\(\chi \chi \rightarrow \phi \phi \rightarrow \mu^+ \mu^- \mu^+ \mu^- \) 164

11 Conclusions 167

References .. 171

Appendix A The WIMP 189
A.0.1 WIMP relic density 191

Appendix B The scattering cross-section 195

Appendix C Program tools 205
C.1 Pythia 8 .. 205
C.2 micrOMEGAs .. 205
C.3 DarkSUSY .. 206

Appendix D Numerical methods 207
D.1 Monte carlo sampling 207
D.1.1 Accept and reject MC 208
D.1.2 Particle spectra as probability functions (dN/dE) 210
D.2 Linear interpolation 211

Appendix E Spin-dependent structure function coefficients 213

Appendix F .. 215
F.1 Calculating the mean inverse speed 215

Appendix G Supplementary material for chapter 9 219
G.1 Integrating out intermediate W boson from radiative muon decay 219
G.1.1 Photon emitted off muon or electron 220
G.1.2 Photon emitted off intermediate W boson 222
G.2 The differential branching ratio 224
G.3 Kinematic constrains for the radiative muon decay 225
G.3.1 Constraints on the electron energy \(E_e \) 226
G.3.2 Constraints on the photon energy \(E_\gamma \) 227