EFFECTS OF PROTEIN ON GASTROINTESTINAL FUNCTION AND APPETITE REGULATION

A thesis submitted by
Amy T Hutchison

for the degree of
Doctor of Philosophy

Discipline of Medicine
School of Medicine
University of Adelaide

November 2015
Table of Contents

List of Figures .. vii
List of Tables ... ix
Abstract .. x
Declaration of Originality ... xii
Publications Arising From This Thesis ... xiii
Other Publications .. xiv
Dedication ... xv
Acknowledgements .. xvi
List of abbreviations ... xvii

Chapter 1: Thesis Overview ... 1

Chapter 2: Human Obesity And Strategies To Achieve And Maintain A Healthy Body

Weight .. 5
2.1 Introduction ... 5
2.2 Definition, prevalence and health consequences of obesity 8

2.2.2 Prevalence of obesity .. 9
2.2.3 Obesity-related risk factors ... 10
2.3 Strategies for the treatment of obesity ... 10

2.3.1 Lifestyle modifications .. 12
2.3.2 Surgical interventions .. 14
2.3.3 Pharmacological interventions .. 20
2.4 Concluding remarks ... 24

Chapter 3: Diets High In Protein As A Strategy For The Management of Obesity 25
3.2 Satiety and appetite responses to protein ... 26

3.2.1 Pre-absorptive satiety signals in response to protein 27
3.2.2 Post-absorptive satiety signals in response to protein 28
3.2.3 Protein-specific appetite – the protein leverage hypothesis 29
3.3 Effects of high-protein meals on appetite and subsequent food intake 30

3.3.1 Effects of high-protein meals on appetite and energy intake 31
3.3.2 The importance of protein quantity and timing in appetite regulation 34
3.3.3 Effects of protein source on appetite ... 36
3.4 Longer-term effects of high-protein diets on appetite, food intake and body weight... 42

3.4.1 Effects of high-protein diets on appetite and food intake 42
3.4.2 Effects of high-protein ad-libitum, and energy restricted, diets on weight loss and changes in body composition ... 43
3.4.2.1 Effects of high-protein ad-libitum diets .. 43
3.4.2.2 Effects of high-protein energy-restricted diets 45
3.5 Metabolic effects of dietary protein ... 52

3.5.1 Effects of protein on glycaemic control .. 52
3.5.2 Effects of protein on energy expenditure .. 54
3.6 Risks and adverse effects of high-protein diets ... 55
3.7 Concluding remarks ... 58

Chapter 4: The Role of The Gastrointestinal Tract In The Regulation of Glycaemia, Appetite And Energy Intake ... 60
5.4 Evaluation of gastrointestinal and appetite responses to oral and intraduodenal nutrient .. 111
 5.4.1 Oral protein preloads .. 111
 5.4.2 Intraduodenal infusions .. 111
 5.4.2.1 Lipid infusions ... 112
 5.4.2.2 Protein infusions ... 112
 5.4.2.3 Lipid :protein combination infusions 113
 5.5 Assessment of plasma hormone, blood glucose and total amino acid concentrations 113
 5.5.1 Plasma ghrelin .. 114
 5.5.2 Plasma peptide tyrosine tyrosine (PYY) 114
 5.5.3 Plasma cholecystokinin (CCK) 115
 5.5.4 Plasma glucagon-like peptide-1 (GLP-1) 115
 5.5.5 Plasma glucose-dependent insulinoctropic peptide (GIP) ... 115
 5.5.6 Plasma glucagon .. 116
 5.5.7 Plasma/serum insulin .. 116
 5.5.8 Blood glucose concentrations 116
 5.5.9 Total amino acid concentrations 116
 5.6 Assessment of appetite and eating behaviour 117
 5.6.1 Visual analogue scale questionnaire 117
 5.6.2 Buffet meal ... 117
 5.6.3 Percentage compensation 120
 5.6.4 Three-factor eating questionnaire 120
 5.7 Statistical analysis .. 121
6.5.3 Appetite perceptions ... 131
6.5.4 Energy intake .. 131
6.6 Data and statistical analyses .. 131
6.7 Results .. 132
6.7.1 Gastric emptying .. 133
6.7.2 Gut hormone, insulin, glucagon, total amino acid and blood glucose responses 133
 6.7.2.1 Ghrelin ... 134
 6.7.2.2 CCK ... 134
 6.7.2.3 GLP-1 .. 134
 6.7.2.4 GIP ... 135
 6.7.2.5 Insulin ... 135
 6.7.2.6 Glucagon ... 136
 6.7.2.7 Total amino acids .. 136
 6.7.2.8 Glucose .. 137
6.7.3 Energy intake ... 137
6.7.4 Relationships between the magnitude of the change in gastrointestinal hormones,
 insulin, glucagon, total amino acids and glucose with calories emptied at 60 min 137
6.7.5 Relationships between energy intake at the buffet meal with peak/nadir
 gastrointestinal hormones, insulin, glucagon, total amino acids and glucose concentrations 138
6.7.6 Appetite perceptions ... 138
 6.7.6.1 Hunger ... 138
 6.7.6.2 Fullness ... 138
 6.7.6.3 Desire-to-eat .. 138
 6.7.6.4 Prospective consumption ... 139
6.8 Discussion .. 146

Chapter 7: Intraduodenal Protein Modulates Antropyloroduodenal Motility, Hormone
Release, Glycemia, Appetite, and Energy Intake in Lean Men .. 153
7.2 Introduction ... 154
7.3 Subjects and methods ... 155
 7.3.1 Subjects .. 155
 7.3.2 Study outline ... 156
 7.3.3 Intraduodenal infusions .. 156
7.4 Protocol ... 157
7.5 Measurements ... 158
 7.5.1 Energy intake .. 158
 7.5.2 Appetite perceptions and gastrointestinal symptoms 158
 7.5.3 Antropyloroduodenal motility .. 158
 7.5.4 Plasma gut hormone, serum insulin, and blood glucose concentrations 158
7.6 Data and statistical analyses .. 159
7.7 Results ... 160
 7.7.1 APD pressures .. 160
 7.7.1.1 Antral pressures .. 160
 7.7.1.2 Basal pyloric pressures ... 160
 7.7.1.3 Isolated pyloric pressure waves 160
 7.7.1.4 Duodenal pressures .. 161
 7.7.2 Gut hormones, glucose and insulin concentrations 161
 7.7.2.1 CCK ... 161
 7.7.2.2 GLP-1 ... 162
 7.7.2.3 PYY .. 162
7.7.2.4 Ghrelin
7.7.2.5 Blood glucose
7.7.2.6 Serum insulin
7.7.3 Appetite perceptions and gastrointestinal symptoms
7.7.4 Energy and macronutrient intakes
7.7.5 Relations between APD motility, gut hormones, insulin and glucose with energy intake

7.8 Discussion

Chapter 8: Comparative Effects of Intraluminal Whey Protein Hydrolysate on Antropyloroduodenal Motility, Gut Hormones, Glycemia, Appetite and Energy Intake in Lean and Obese Men

8.2 Introduction
8.3 Subjects and methods

8.3.1 Subjects
8.3.2 Study outline
8.3.3 Intraluminal nutrient infusions

8.4 Protocol
8.5 Measurements

8.5.1 Antropyloroduodenal motility
8.5.2 Plasma CCK, GLP-1, GIP, insulin and glucagon, and blood glucose, concentrations
8.5.3 Insulin resistance
8.5.4 Appetite perceptions and gastrointestinal symptoms
8.5.5 Energy intake

8.6 Data and statistical analyses
8.7 Results

8.7.1 APD pressures
8.7.1.1 Antral pressures
8.7.1.2 Isolated pyloric pressure waves and basal pyloric pressures
8.7.1.3 Duodenal pressures
8.7.2 Gut hormone, insulin, glucagon and blood glucose concentrations
8.7.2.1 Plasma CCK
8.7.2.2 Plasma GLP-1
8.7.2.3 Plasma GIP
8.7.2.4 Plasma insulin
8.7.2.5 Plasma glucagon
8.7.2.6 Blood glucose
8.7.3 Appetite perceptions and GI symptoms
8.7.4 Energy intake at the buffet meal
8.7.5 Relations between APD motility, GI hormone, insulin, glucagon and glucose concentrations and appetite perceptions with load, and energy intake in the obese

8.8 Discussion

Chapter 9: Effects of Intraluminal Lipid and Protein on Gut Motility and Hormone Release, Glycemia, Appetite and Energy Intake in Lean Men

9.1 Summary
9.2 Introduction
9.3 Subjects and methods

9.3.1 Subjects
9.3.2 Study outline
List of Figures

Figure 2.1: Model of energy balance in the treatment of obesity, and effects of therapeutic interventions ...11

Figure 2.2: Graphical depiction of commonly used bariatric surgery techniques. (A): Normal GI anatomy; (B): Roux-en-Y Gastric Bypass (RYGB); (C): Adjustable Gastric Banding (AGB); (D): Sleeve Gastrectomy. (adapted from Cummings (2012)) 19

Figure 3.1: Satiety cascade (recreated from Blundell, 1996) .. 27

Figure 3.2: Energy intake (kJ) in lean and obese individuals following high-protein (HP, % energy from protein/fat/carbohydrate/45/25/30), adequate-protein (AP, 30/30/40) high-carbohydrate/low-protein (HC/LP 10/30/60) or high-fat (HF 15/55/30) test meals 33

Figure 3.3: Mean total daily energy intake (○) and body weight (♦) for 19 healthy subjects plotted against day of study. Subjects undertook a 2 week run-in diet comprised of 15 % protein, 35 % fat and 50 % carbohydrate, followed by a 2 week isocaloric diet where energy from protein was increased from 15 to 30 %, and fat decreased to 20 %. 45

Figure 4.1: Basic anatomy of a taste bud ... 62

Figure 4.2: Basic anatomy of the stomach and small intestine in the human 62

Figure 5.1: Ultrasonic image of the stomach, demonstrating A) region-of-interest; and B) 3D reconstructed volumetric image of the stomach .. 108

Figure 5.2: Schematic representation of the silicone-rubber manometric catheter used for intraduodenal nutrient infusion .. 110

Figure 6.1: Gastric emptying as % meal retention over 3 hours following the consumption of 450-mL test drinks containing either 30 g (L) or 70 g (H) whey protein isolate, or saline control (C) .. 142

Figure 6.2: Profiles of plasma (A) ghrelin, (B) CCK, (C) GLP-1, (D) GIP, (E) insulin, (F) glucagon, (G) total amino acid, and (H) blood glucose concentrations over 3 hours following the consumption of 450-mL test drinks containing either 30 g (L) or 70 g (H) whey protein isolate, or saline control (C) .. 143

Figure 6.3: Profiles of subjective ratings of (A) hunger, (B) fullness, (C) desire-to-eat and (D) prospective consumption over 3 hours following the consumption of 450-mL test drinks containing either 30 g (L) or 70 g (H) whey protein isolate, or saline control (C) 145

Figure 7.1: Plasma CCK (A)(treatment*time interaction, P<0.001), GLP-1(B) (P<0.001), PYY (C) (P<0.05) and ghrelin (D) (P<0.001), blood glucose (E) (P<0.01) and serum insulin
(F) (P<0.001) concentrations during 60-minute intraduodenal infusions of 0.5 kcal/min (P0.5) 1.5 kcal/min (P1.5), 3 kcal/min (P3), or saline control (C).

Figure 8.1: (A) Mean MI for antral PWs, (B) total number of IPPWs, (C) mean basal pyloric pressures and (D) mean MI for duodenal PWs, during 60-min intraduodenal infusions of saline control (C-O), 1.5 kcal/min (P1.5-O) or 3 kcal/min whey protein hydrolysate (P3-O) in obese, and 3 kcal/min whey protein hydrolysate (P3-L) in lean, participants.

Figure 8.2: Profiles of plasma (A) CCK, (B) GLP-1, (C) GIP, (D) insulin, (E) glucagon and (F) blood glucose concentrations during 60-min intraduodenal infusions of saline control (C-O), 1.5 kcal/min (P1.5-O) or 3 kcal/min whey protein hydrolysate (P3-O) in obese, and 3 kcal/min whey protein hydrolysate (P3-L) in lean, participants.

Figure 9.1: (A) Motility index (MI) for antral pressure waves, (B) isolated pyloric pressure waves, (C) basal pyloric pressures and (D) MI for duodenal PWs, during 90-minute, 3 kcal/min intraduodenal infusions of saline control (C), whey protein hydrolysate (P3), Intralipid and whey protein hydrolysate in 1:2 (L1P2) and 2:1 (L2P1) ratios, or pure lipid (L3).

Figure 9.2: (A) Plasma CCK, (B) plasma GLP-1, (C) serum insulin, (D) plasma glucagon and (E) blood glucose concentrations during 90-minute, 3 kcal/min intraduodenal infusions of saline control (C), whey protein hydrolysate (P3), Intralipid and whey protein hydrolysate in 1:2 (L1P2) and 2:1 (L2P1) ratios, or pure lipid (L3).

Figure 9.3: (A) Hunger, (B) prospective consumption, (C) fullness, (D) nausea and (E) bloating ratings measured using visual analog scales (VAS) during 90-minute, 3 kcal/min intraduodenal infusions of a saline control (C), whey protein hydrolysate (P3), Intralipid and whey protein hydrolysate in 1:2 (L1P2) and 2:1 (L2P1) ratios, or pure lipid (L3).
List of Tables

Table 2.1: Proxy indicators for health risk in Adult Caucasian populations.........................9
Table 3.1: Studies examining acute effects of high-protein meals on appetite and energy intake ..38
Table 3.2: Effects of high-protein diets on weight loss and body composition49
Table 4.1: GI hormones and their described roles within the body71
Table 5.1: Foods offered in buffet meals ...119
Table 6.1: Peak/Nadir and time-to-peak values for gut hormones, insulin, glucagon, total amino acids and glucose in response to oral test drinks with increasing loads of protein....140
Table 6.2: Amount and total energy consumed at a buffet meal 3 hours after oral test drinks with increasing loads of protein ..141
Table 7.1: Total number, mean amplitude and motility index of antral and duodenal pressure waves, mean basal pyloric pressures and isolated pyloric pressure waves165
Table 7.2: Energy content, weight and macronutrient distribution of food consumed at buffet meal ..166
Table 8.1: Areas under the curve (AUCs) of plasma CCK, GLP-1, GIP, insulin, glucagon and blood glucose profiles, change in blood glucose and HOMA-IR during 60-min intraduodenal infusions ..189
Table 8.2: Energy content and amount of buffet meal consumed following 60-min intraduodenal infusions ..190
Table 9.1: Baseline values for number and amplitude of antral, pyloric, and duodenal pressure waves, mean basal pyloric pressures, and hormone and blood glucose concentrations ..218
Table 9.2: Number, amplitude and motility index of antral and duodenal pressure waves, number and amplitude of isolated pyloric pressure waves and mean basal pyloric pressures during 90-min intraduodenal infusions ..219
Table 9.3: Areas under the curve (AUCs) for plasma CCK, GLP-1, insulin, glucagon and blood glucose concentrations during 90-min intraduodenal infusions ..220
Table 9.4: Energy content, weight and macronutrient distribution (% energy derived from fat, CHO or protein) of food consumed at a buffet meal and % compensation in response to 90-min intraduodenal infusions ...221
Abstract

The prevalence of obesity and associated diseases, including type-2 diabetes mellitus, continues to increase at an alarming rate. The available therapies have largely ignored the key role of the gastrointestinal tract in determining appetite and blood glucose regulation in responses to ingested nutrients. A detailed understanding of these gastrointestinal mechanisms is critical in aiding development of new and effective interventions for obesity.

The research presented in this thesis focuses on the complex gastrointestinal mechanisms involved in the regulation of glycaemia, appetite and energy intake in response to protein in lean and obese individuals. In particular, this research explores the gastrointestinal motor and hormonal responses to nutrients involved in energy intake regulation and blood glucose control in both healthy lean and obese individuals. Using the novel, non-invasive technique of 3-dimensional ultrasound, the study described in chapter 5 reports that, in lean individuals, the rate of gastric emptying of drinks containing 30g and 70g of protein was comparable (kcal/min; 30g: 2.6±0.2, 70g: 2.9±0.3), and within the ranges previously observed for fat and carbohydrate (1-4 kcal/min). This was reflected by similar releases of cholecystokinin (CCK), glucagon-like peptide 1 (GLP-1), glucose-dependent inhibitory polypeptide (GIP), insulin and glucagon, for ~45 min following the drinks. Beyond 45 min, the 70g load resulted in more sustained hormone release, reflecting greater total calories and thus prolonged delivery of nutrient to the small intestine. Energy intake was comparable between the two loads, suggesting that a threshold amount of protein may exist, beyond which no additional appetite-suppressive benefit occurs.

In the studies described in chapters 6-8, intraduodenal infusions, combined with high-resolution manometry, were used to evaluate the effects of nutrients in the small intestine on
antropyloroduodenal motility and gastrointestinal hormone release. Nutrients were infused directly into the duodenum at standardised rates, reflecting the normal range of gastric emptying; intraduodenal infusion bypasses orosensory and gastric influences, isolating the effects of nutrient to the small intestine.

The first of these studies reported that intraduodenal protein has load-dependent effects on antropyloroduodenal motility, ghrelin, CCK, GLP-1, peptide tyrosine tyrosine (PYY), insulin and glucagon, glycaemia, and energy intake at a subsequent meal in lean individuals. The second study reported that load-dependent effects of protein on antropyloroduodenal motility and CCK, GLP-1, GIP, insulin and glucagon release are also apparent in obese individuals, suggesting that small intestinal sensitivity to protein remains intact in obesity. The final study demonstrated, in lean individuals, that intraduodenal lipid modulates gastrointestinal motor responses and CCK and GLP-1 concentrations more potently than an equicaloric protein load. In contrast, protein had more pronounced effects on insulin and glucagon release. Despite these differences, protein and lipid suppressed energy intake comparably, suggesting that different mechanisms may underlie the suppression of energy intake by these nutrients.

These data provide novel insights into the roles that gastrointestinal motor and hormone responses to dietary protein play in the regulation of blood glucose, appetite and energy intake in lean and obese individuals. These observations provide potential mechanistic explanations for the effects of high-protein diets on glycaemic control, and appetite. Importantly, they provide a basis for future development of nutrition-based interventions for the treatment of obesity.
Declaration of Originality

I, Amy Hutchison, certify that this work contains no material which has been accepted for the award of any other degree or diploma in my name in any university or other tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text. In addition, I certify that no part of this work will, in the future, be used in a submission in my name for any other degree or diploma in any university or other tertiary institution without the prior approval of the University of Adelaide and where applicable, any partner institution responsible for the joint award of this degree.

I give consent to this copy of my thesis when deposited in the University Library, being made available for loan and photocopying, subject to the provisions of the Copyright Act 1968. I acknowledge that copyright of published works contained within this thesis resides with the copyright holder(s) of those works. I also give permission for the digital version of my thesis to be made available on the web, via the University’s digital research repository, the Library Search and also through web search engines, unless permission has been granted by the University to restrict access for a period of time.

Amy Hutchison

November 2015
Publications Arising From This Thesis

The data presented in this thesis have formed the basis of the publications listed below:

Other Publications

Dedication

Ko te manu e kai ana i te miro, nōna te ngahere.
Ko te manu e kai ana i te mātauranga, nōna te ao.

The bird that partakes of the miro berry reigns in the forest.
The bird that partakes of the power of knowledge has access to the world.

This thesis is dedicated to
my husband, Rob,
for always inspiring and challenging me,
and my whānau,
for your unwavering love and support.
Acknowledgements

The studies reported in this thesis were performed at the Discipline of Medicine, Royal Adelaide Hospital. While conducting this research, I was financially supported by a Faculty of Health Sciences PhD Scholarship.

First and foremost, I would like to thank my primary supervisor Professor Christine Feinle-Bisset. I am grateful for your continual support, encouragement and the attention to detail that you have instilled into me. To my secondary supervisor Dr Natalie Luscombe-Marsh, thank you for your positivity, perspective, support and friendship. Thank you both for your time and patience in bringing this thesis, and the manuscripts, to fruition, through countless, countless drafts, to-ing and fro-ing, and I am sure a mountain of paper. I am so lucky to have been afforded the opportunities you have both offered me, and the mentorship you have provided.

Special thanks must also go to all of those who have helped me over the years in the conduct of this research, as well as surviving a PhD. Alex Saies and Asimina Kallas, thank you both for all of your help in the earlier studies. Penelope Fitzgerald, thank you for your invaluable help and assistance, especially with the last studies, and for giving up so many of your weekends to assist. Thank you also, along with Briohny Johnston and Caroline Giezenaar, for all of your friendship and laughs, and the coffee breaks. A special thank you to Diana Piscitelli (Dr Di) for the many hours we spent together in your office going over at ultrasound images. I have learned a lot from you, and will be eternally grateful for both the academic, and life, knowledge that I have gained from you.

To all other staff and students in the Discipline of Medicine, thank you for being so supportive throughout my candidature, and for the friendship and welcome distractions you offered. Thank you to Judith Wishart and Scott Standfield for the hormone analysis and Kylie Lange for help with the statistical analysis. A special thank you to all the individuals who volunteered their time to participate in the studies presented in this thesis.

Thank to you all of my friends and family for your love and encouragement, especially those that have helped make our home Adelaide. Finally, the biggest thank you of all must go to Rob, my husband, for your unconditional love, support and encouragement over the years.
List of abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>APD</td>
<td>Antropyloroduodenal motility</td>
</tr>
<tr>
<td>ANOVA</td>
<td>Analysis of Variance</td>
</tr>
<tr>
<td>ARC</td>
<td>Arcuate nucleus</td>
</tr>
<tr>
<td>AUC</td>
<td>Area under the curve</td>
</tr>
<tr>
<td>BMI</td>
<td>Body Mass Index</td>
</tr>
<tr>
<td>CCK</td>
<td>Cholecystokinin</td>
</tr>
<tr>
<td>CHO</td>
<td>Carbohydrate</td>
</tr>
<tr>
<td>CV</td>
<td>Coefficients of Variance</td>
</tr>
<tr>
<td>DPP-IV</td>
<td>Dipeptidyl peptidase-IV</td>
</tr>
<tr>
<td>EDTA</td>
<td>ethylenediaminetetraacetic acid</td>
</tr>
<tr>
<td>ELISA</td>
<td>Enzyme-linked immunosorbance assay</td>
</tr>
<tr>
<td>FFM</td>
<td>Fat free mass</td>
</tr>
<tr>
<td>GI</td>
<td>Gastrointestinal</td>
</tr>
<tr>
<td>GIP</td>
<td>Glucose-dependent insulinotropic peptide</td>
</tr>
<tr>
<td>GLP-1</td>
<td>Glucagon-like peptide-1</td>
</tr>
<tr>
<td>HbA1c</td>
<td>Glycated haemoglobin</td>
</tr>
<tr>
<td>HOMA-IR</td>
<td>Homeostatic model assessment of insulin resistance</td>
</tr>
<tr>
<td>ID</td>
<td>Intraduodenal</td>
</tr>
<tr>
<td>IPPW</td>
<td>Isolated pyloric pressure wave</td>
</tr>
<tr>
<td>LCD</td>
<td>Low calorie diet</td>
</tr>
<tr>
<td>MI</td>
<td>Motility index</td>
</tr>
<tr>
<td>MMC</td>
<td>Migrating motor complex</td>
</tr>
<tr>
<td>mV</td>
<td>Millivolt</td>
</tr>
<tr>
<td>NIDDM</td>
<td>Non-insulin dependent Diabetes Mellitus</td>
</tr>
<tr>
<td>NS</td>
<td>Not significant</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>--------------------------------------</td>
</tr>
<tr>
<td>PWs</td>
<td>Pressure waves</td>
</tr>
<tr>
<td>PYY</td>
<td>Peptide tyrosine tyrosine</td>
</tr>
<tr>
<td>RIA</td>
<td>Radioimmunoassay</td>
</tr>
<tr>
<td>TAA</td>
<td>Total Free Amino Acids</td>
</tr>
<tr>
<td>TFEQ</td>
<td>Three Factor Eating Questionnaire</td>
</tr>
<tr>
<td>TMPD</td>
<td>Transmucosal potential difference</td>
</tr>
<tr>
<td>T2DM</td>
<td>Type 2 Diabetes Mellitus</td>
</tr>
<tr>
<td>VAS</td>
<td>Visual Analog Scale Questionnaire</td>
</tr>
</tbody>
</table>