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Abstract

This thesis focuses on the development of model predictive control (MPC) strategies for

reducing energy consumption in air-conditioned buildings. It is well known that the build-

ing sector is responsible for 40 per cent of the world’s energy usage and 33 per cent of

all greenhouse emissions. As a result of global environmental issues and decreasing en-

ergy resources, there is strong motivation to develop more efficient control strategies for

Heating, Ventilation, and Air Conditioning (HVAC) systems in buildings. The existing

HVAC control strategies are not energy or cost efficient, which results in energy waste,

high on-peak electricity demand and poor thermal comfort in buildings.

Previous works have shown that MPC can be utilised as a supervisory controller to

achieve energy saving while maintaining the indoor thermal comfort in buildings. How-

ever, most of the past studies were focused on small residential buildings or mid-size

commercial buildings. It is highly desired to improve the existing MPC strategies to

make them more reliable and applicable for large commercial buildings. This thesis ex-

tends the previous works by addressing the following challenges when dealing with the

large buildings. Firstly, HVAC plants and the thermal dynamics of buildings are inher-

ently nonlinear. Accurate modelling of these components is difficult due to the limited

number of sensors that are usually installed and the paucity of prior knowledge of the

system. There is a need to develop models that are capable of effectively handling the

nonlinearity to achieve better modelling accuracy. Secondly, in large commercial build-

ings with adjacent large open spaces, the effects of thermal coupling between differently
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controlled spaces play a crucial role. This significance of the interaction between zones

has seldom been discussed before and requires more thorough investigation. Thirdly, al-

though load shifting function of MPC have been proven to be effective in achieving cost

savings in buildings with a considerable thermal mass, it is demanding to investigate the

application value of these strategies in lightweight commercial buildings. Finally, given

the presence of uncertainties, these models may not be able to predict the indoor tem-

perature accurately, which may lead to poor control performance and even instability in

operation of the MPC strategy. The existing robust control approaches are generally too

conservative, and may not be suitable for use in real-world buildings.

In this study, the advantages of neural networks (NNs) will be exploited to address the

challenges outlined above. NNs are known as universal approximators, meaning that they

can model any continuous functions with any desired degree of accuracy. In particular,

the NNs will be used to conduct modelling work, generate control rule, and improve the

performance of classical MPC. The major contributions of this thesis are presented in four

chapters, with each based on an individual scientific paper.

Paper-1 presents a systematic modelling method for air handling units (AHUs) and

thermal zone using a recursive NN (RNN). As the major novelty, a cascade NN structure

is developed, which enables the thermal dynamics modelling of both interior zones and

perimeter zones within investigated building. This approach allows accurate prediction

of both supply air temperature and zone temperature prediction, making it suitable for

predictive control design.

Continuing with the first paper, Paper-2 introduces a multi-input, multi-output (MIMO)

model, which effectively models the convective heat exchange between open spaces within

multi-zone commercial buildings. The proposed model allows closed-loop prediction for

several adjacent zones simultaneously by considering their thermal interaction. A NN-

based optimal start-stop control method is also developed in this paper to demonstrate the

energy saving potential enabled by using the proposed predictive model.
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The NN models provide accurate prediction results, but they are in general difficult

to optimise under an MPC framework. Paper-3 presents a hybrid MPC (HMPC), which

combines the classic MPC with an inverse NN model. With the HMPC, the classical MPC

based on linearised building model optimises the supplied cooling energy. The inverse NN

model compensates the nonlinearity associated with the AHU process and generates more

accurate control inputs. Simulations and experiments demonstrate the feasibility of the

proposed method in achieving energy and cost reductions while maintaining good indoor

thermal comfort in the investigated large commercial building.

The MPC formulation in Paper-3 does not take the system uncertainty into account.

In reality, however, the modelled building energy systems are always affected by uncer-

tainties, so that the modelling errors become inevitable which cause control performance

degradation to the MPC. Paper-4 considers the application of a robust MPC (RMPC) to

handle the system uncertainty within buildings. In particular, an uncertainty estimator is

developed based on the previously presented RNN model to provide uncertainty bound

to the conventional closed-loop min-max RMPC. The newly developed bound estimator

reduces the conservatism of the RMPC and achieves improved control performance.

In conclusion, the research work presented in this thesis has made important contribu-

tions to the research of intelligent model predictive control for air-conditioning systems

in commercial buildings. The methodologies developed in this thesis can be utilised for

other buildings or for the control of other dynamic systems.
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Nomenclature

Cz capacitance associated with the fast-dynamic masses (kJ/◦C)

Cw capacitance associated with the slow-dynamic masses (kJ/◦C)

Ca specific heat of air (kJ/kg◦C)

Ccw the overall thermal capacity of the chilled water and metal body of cooling coil

(kJ/◦C)

Cpw specific heat capacity of chilled water (kJ/◦C)

CO2 carbon dioxide concentration (ppm)

Dout outdoor air damper opening level (%)

A area of the solid surface (m2)

fw chilled water flow rate (l/s)

fcw chilled water flow rate (l/s)

Hr relative humidity (%)

T thermal node temperature (◦C)

Tc chilled water temperature (◦C)

Tsp set point temperature (◦C)
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Toc temperature constraints during occupied hours (◦C)

Tuc temperature constraints during unoccupied hours (◦C)

Tcwo outflow water temperature (◦C)

Tao discharge (outflow) air temperature (◦C)

Tcwr return chilled water temperature (◦C)

Tcws supply chilled water temperature (◦C)

Tai temperature of the air going into the cooling coil (◦C)

mw water mass-flow rate of the cooling coil (kg/s)

ṁ mass flow rate of the supplied air (kg/s)

Pc power consumption of cooling energy consumed by the cooling coils (kW)

Pf power consumption of supply fan (kW)

Qchil cooling load of the building (kW)

Q f supplied free-cooling energy (kW)

Qc supplied cooling coil energy (kW)

Qs heat gain generated by solar radiation (W)

Qp heat gain generated by occupancy (W)

Qleak heat gain caused by the leakage of the zone (W)

R thermal resistance associated with walls, window or floor (◦C/W)

Rc convective heat transfer coefficient between adjacent zones (◦C/W)
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Rw convective heat transfer coefficient associated with the air node and surface of the

wall (◦C/W)

Rwin convective heat transfer coefficient through window (◦C/W)

R f convective heat transfer coefficient associated with the floor (◦C/W)

Sr global horizontal irradiation (W/m2)

U overall heat transfer coefficient (kJ/m2K)

h convective heat transfer coefficients per unit area (W/m2K)

Vc chilled water valve opening level (%)

Vcw chilled water valve opening level (%)

Vz volume of the zone (m3)

∆t sampling time of the building data (s)

na,nb orders of the input variable

r order of the system

nk time delay of the input variable

f nonlinear neural network function

ρ density of the air (kg/m3)

k time delay of the input variable

w uncertainty

Subscripts

i indices for zones
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sa supply air

r return air

out outdoor air

w walls and ceiling

g windows

f floor

N prediction horizon

k time step

cws supply chilled water

cwr return chilled water

Abbreviations

COP Coefficient of Performance of the chiller plant

MPC Model Predictive Control

HMPC Hybrid Model Predictive Control

MIMO Multi-input, Multi-output

HVAC Heating, Ventilating, and Air Conditioning

BMS Building Management System

AHU Air Handling Units

CAV Constant Air Volume
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VAV Variable Air Volume

ANN Artificial Neural Network

RNN Recurrent Neural Network

RMPC Robust MPC

ARMPC Adaptive Robust MPC

SMPC Stochastic MPC

BC Baseline Control

RC Resistance Capacitance

OSSC Optimal Start-Stop Control

TOU Time-of-Use

LTI Linear Time Invariant

PMV Predicted Mean Vote index

NARX Nonlinear Autoregressive models with exogenous input

ARMAX Autoregressive Moving Averagemodel with exogenous inputs
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