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Abstract

This thesis focuses on the development of model predictive control (MPC) strategies for

reducing energy consumption in air-conditioned buildings. It is well known that the build-

ing sector is responsible for 40 per cent of the world’s energy usage and 33 per cent of

all greenhouse emissions. As a result of global environmental issues and decreasing en-

ergy resources, there is strong motivation to develop more efficient control strategies for

Heating, Ventilation, and Air Conditioning (HVAC) systems in buildings. The existing

HVAC control strategies are not energy or cost efficient, which results in energy waste,

high on-peak electricity demand and poor thermal comfort in buildings.

Previous works have shown that MPC can be utilised as a supervisory controller to

achieve energy saving while maintaining the indoor thermal comfort in buildings. How-

ever, most of the past studies were focused on small residential buildings or mid-size

commercial buildings. It is highly desired to improve the existing MPC strategies to

make them more reliable and applicable for large commercial buildings. This thesis ex-

tends the previous works by addressing the following challenges when dealing with the

large buildings. Firstly, HVAC plants and the thermal dynamics of buildings are inher-

ently nonlinear. Accurate modelling of these components is difficult due to the limited

number of sensors that are usually installed and the paucity of prior knowledge of the

system. There is a need to develop models that are capable of effectively handling the

nonlinearity to achieve better modelling accuracy. Secondly, in large commercial build-

ings with adjacent large open spaces, the effects of thermal coupling between differently
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controlled spaces play a crucial role. This significance of the interaction between zones

has seldom been discussed before and requires more thorough investigation. Thirdly, al-

though load shifting function of MPC have been proven to be effective in achieving cost

savings in buildings with a considerable thermal mass, it is demanding to investigate the

application value of these strategies in lightweight commercial buildings. Finally, given

the presence of uncertainties, these models may not be able to predict the indoor tem-

perature accurately, which may lead to poor control performance and even instability in

operation of the MPC strategy. The existing robust control approaches are generally too

conservative, and may not be suitable for use in real-world buildings.

In this study, the advantages of neural networks (NNs) will be exploited to address the

challenges outlined above. NNs are known as universal approximators, meaning that they

can model any continuous functions with any desired degree of accuracy. In particular,

the NNs will be used to conduct modelling work, generate control rule, and improve the

performance of classical MPC. The major contributions of this thesis are presented in four

chapters, with each based on an individual scientific paper.

Paper-1 presents a systematic modelling method for air handling units (AHUs) and

thermal zone using a recursive NN (RNN). As the major novelty, a cascade NN structure

is developed, which enables the thermal dynamics modelling of both interior zones and

perimeter zones within investigated building. This approach allows accurate prediction

of both supply air temperature and zone temperature prediction, making it suitable for

predictive control design.

Continuing with the first paper, Paper-2 introduces a multi-input, multi-output (MIMO)

model, which effectively models the convective heat exchange between open spaces within

multi-zone commercial buildings. The proposed model allows closed-loop prediction for

several adjacent zones simultaneously by considering their thermal interaction. A NN-

based optimal start-stop control method is also developed in this paper to demonstrate the

energy saving potential enabled by using the proposed predictive model.
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The NN models provide accurate prediction results, but they are in general difficult

to optimise under an MPC framework. Paper-3 presents a hybrid MPC (HMPC), which

combines the classic MPC with an inverse NN model. With the HMPC, the classical MPC

based on linearised building model optimises the supplied cooling energy. The inverse NN

model compensates the nonlinearity associated with the AHU process and generates more

accurate control inputs. Simulations and experiments demonstrate the feasibility of the

proposed method in achieving energy and cost reductions while maintaining good indoor

thermal comfort in the investigated large commercial building.

The MPC formulation in Paper-3 does not take the system uncertainty into account.

In reality, however, the modelled building energy systems are always affected by uncer-

tainties, so that the modelling errors become inevitable which cause control performance

degradation to the MPC. Paper-4 considers the application of a robust MPC (RMPC) to

handle the system uncertainty within buildings. In particular, an uncertainty estimator is

developed based on the previously presented RNN model to provide uncertainty bound

to the conventional closed-loop min-max RMPC. The newly developed bound estimator

reduces the conservatism of the RMPC and achieves improved control performance.

In conclusion, the research work presented in this thesis has made important contribu-

tions to the research of intelligent model predictive control for air-conditioning systems

in commercial buildings. The methodologies developed in this thesis can be utilised for

other buildings or for the control of other dynamic systems.

iii



Declarations

I certify that this work contains no material which has been accepted for the award of any

other degree or diploma in my name, in any university or other tertiary institution and, to

the best of my knowledge and belief, contains no material previously published or written

by another person, except where due reference has been made in the text. In addition, I

certify that no part of this work will, in the future, be used in a submission in my name,

for any other degree or diploma in any university or other tertiary institution without the

prior approval of the University of Adelaide and where applicable, any partner institution

responsible for the joint-award of this degree.

I give consent to this copy of my thesis when deposited in the University Library, being

made available for loan and photocopying, subject to the provisions of the Copyright Act

1968.

The author acknowledges that copyright of published works contained within this

thesis resides with the copyright holder(s) of those works.

I also give permission for the digital version of my thesis to be made available on the

web, via the Universitys digital research repository, the Library Search and also through

web search engines, unless permission has been granted by the University to restrict ac-

cess for a period of time.

SIGNED: ....................... DATE: .......................

iv



Acknowledgements

First of all, I would like to extend my sincere gratitude to my supervisor, Dr Lei Chen

who brought me into the interesting research filed. He has provided me with tremendous

guidance and support during the PhD journey. His wisdom and diligence have helped me

to overcome all the difficulties and to keep me on the right track. He has also encouraged

me to engage in various activities to promote my research, from which I benefited a lot.

I would like to express my gratitude to Associate Professor Eric Hu who supervised

me on a weekly basis. Eric has provided precious resources and great ideas in this study.

He has also given me great encouragement which helped me to go through the hardest

period of my research .

I would like to thank Dr Moterza Mohammadzaheri who was co-supervising this

project during the first year of my PhD. He was always willing to share his experience

and knowledge with the others, from where I have learned a lot.

In particular, I am grateful to Professor Robert Bidmead for his suggestions that have

greatly inspired me and opened my eyes in conducting my research. I cannot go that far

to implement my idea without his kind suggestions.

I feel very fortunate to have the opportunity to study and work in the School of Me-

chanical Engineering, University of Adelaide. I have received precious feedback and

suggestions from other academic staff, who had illustrated me and helped me from many

aspects. Also, many thanks to Ms Dorothy Missingham and Ms Alison-Jane Hunter for

running the terrific writing workshop which improves my writing and speaking.

v



I would like to thank my PhD colleagues: Yangkun Zhang, Boyin Ding, Difang Tan,

Da Sun and Fangtai Tan for those joyful time spending at the lab. I am grateful to Mr

Yu Ouyang for his suggestions from industry point of view. His advice has helped me to

conquer practical problems in the most effective way.

I would like to acknowledge Adelaide Airport Limited for providing financial support

and experimental data for this study. Also, I show my great appreciation to Johnson

Controls Australia Pty Ltd staff members: Trevor McGrath, Anthony Underwood and

Dave Furniss, who had offered technical help and support in setting up the experiment

platform and conducting experiment at T-1 building. Without their help and patience, the

filed test could never be finished.

Finally, but foremost, I would like to express my great love and appreciation to my

parents, who gave birth to me and supported me in my study. My eternal appreciation

goes to my beloved wife, Fu Xie, who had gone through so much tough time with me.

Her accompaniment, love and support have always been the energy of finishing my study.

vi



List of Publications

This thesis is submitted as a portfolio of publications either published or submitted for

publication by peer-reviewed journals according to the ‘Academic Program Rules’ of the

University of Adelaide. The papers included in this thesis are all closely related to the

field of the research of this work. This thesis is based on the following papers, which are

referred to by their Arabic numerals:

Paper-1 Huang H., Chen L., Mohammadzaheri M., Hu E., “A New Zone Temperature

Predictive Modeling for Energy Saving in Buildings”, In Procedia Engineering, vol.

49, pp. 142 - 151, 2012.

Paper-2 Huang H., Chen L., Hu E., “A neural network-based multi-zone modelling ap-

proach for predictive control system design in commercial buildings”, In Energy

and Buildings, vol. 97, pp. 86 - 97, 2015.

Paper-3 Huang H., Chen L., Hu E., “A new model predictive control scheme for energy

and cost savings in commercial buildings: An airport terminal building case study”,

In Building and Environment, vol. 89, pp. 203 - 216, 2015.

Paper-4 Huang H., Chen L., Hu E., “Reducing energy consumption for buildings under

system uncertainty through robust MPC with adaptive bound estimator”, Submitted

to Building and Environment, 2015.

The following conference papers are of close relevance to the present work and are

included in the appenices.

vii



2013 Huang H., Chen L., M. Mohammadzaheri., Hu E., Chen ML., “Multi-zone temper-

ature prediction in a commercial building using artificial neural network model”, In

Control and Automation (ICCA), 2013 10th IEEE International Conference on, pp.

1896-1901, 2013.

2014 Huang H., Chen L., Hu E., “Model predictive control for energy-efficient buildings:

An airport terminal building study”, In Control Automation (ICCA), 11th IEEE

International Conference on, pp. 1025-1030, 2014.

2015 Huang H., Chen L., Hu E., “A hybrid model predictive control scheme for energy

and cost savings in commercial buildings: Simulation and experiment”, In Ameri-

can Control Conference (ACC), 2015, pp. 256-261, 2015.

viii



Nomenclature

Cz capacitance associated with the fast-dynamic masses (kJ/◦C)

Cw capacitance associated with the slow-dynamic masses (kJ/◦C)

Ca specific heat of air (kJ/kg◦C)

Ccw the overall thermal capacity of the chilled water and metal body of cooling coil

(kJ/◦C)

Cpw specific heat capacity of chilled water (kJ/◦C)

CO2 carbon dioxide concentration (ppm)

Dout outdoor air damper opening level (%)

A area of the solid surface (m2)

fw chilled water flow rate (l/s)

fcw chilled water flow rate (l/s)

Hr relative humidity (%)

T thermal node temperature (◦C)

Tc chilled water temperature (◦C)

Tsp set point temperature (◦C)
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Toc temperature constraints during occupied hours (◦C)

Tuc temperature constraints during unoccupied hours (◦C)

Tcwo outflow water temperature (◦C)

Tao discharge (outflow) air temperature (◦C)

Tcwr return chilled water temperature (◦C)

Tcws supply chilled water temperature (◦C)

Tai temperature of the air going into the cooling coil (◦C)

mw water mass-flow rate of the cooling coil (kg/s)

ṁ mass flow rate of the supplied air (kg/s)

Pc power consumption of cooling energy consumed by the cooling coils (kW)

Pf power consumption of supply fan (kW)

Qchil cooling load of the building (kW)

Q f supplied free-cooling energy (kW)

Qc supplied cooling coil energy (kW)

Qs heat gain generated by solar radiation (W)

Qp heat gain generated by occupancy (W)

Qleak heat gain caused by the leakage of the zone (W)

R thermal resistance associated with walls, window or floor (◦C/W)

Rc convective heat transfer coefficient between adjacent zones (◦C/W)
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Rw convective heat transfer coefficient associated with the air node and surface of the

wall (◦C/W)

Rwin convective heat transfer coefficient through window (◦C/W)

R f convective heat transfer coefficient associated with the floor (◦C/W)

Sr global horizontal irradiation (W/m2)

U overall heat transfer coefficient (kJ/m2K)

h convective heat transfer coefficients per unit area (W/m2K)

Vc chilled water valve opening level (%)

Vcw chilled water valve opening level (%)

Vz volume of the zone (m3)

∆t sampling time of the building data (s)

na,nb orders of the input variable

r order of the system

nk time delay of the input variable

f nonlinear neural network function

ρ density of the air (kg/m3)

k time delay of the input variable

w uncertainty

Subscripts

i indices for zones
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sa supply air

r return air

out outdoor air

w walls and ceiling

g windows

f floor

N prediction horizon

k time step

cws supply chilled water

cwr return chilled water

Abbreviations

COP Coefficient of Performance of the chiller plant

MPC Model Predictive Control

HMPC Hybrid Model Predictive Control

MIMO Multi-input, Multi-output

HVAC Heating, Ventilating, and Air Conditioning

BMS Building Management System

AHU Air Handling Units

CAV Constant Air Volume
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VAV Variable Air Volume

ANN Artificial Neural Network

RNN Recurrent Neural Network

RMPC Robust MPC

ARMPC Adaptive Robust MPC

SMPC Stochastic MPC

BC Baseline Control

RC Resistance Capacitance

OSSC Optimal Start-Stop Control

TOU Time-of-Use

LTI Linear Time Invariant

PMV Predicted Mean Vote index

NARX Nonlinear Autoregressive models with exogenous input

ARMAX Autoregressive Moving Averagemodel with exogenous inputs
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Chapter 1

Introduction

1.1 Motivation

Buildings account for about 40 per cent of global energy consumption and are also respon-

sible for 33 per cent of carbon emissions [1]. About 50 per cent of the end energy usage

in buildings is related to their heating, ventilation and air conditioning (HVAC) systems.

For these reasons, any efficiency improvements made to HVAC systems can significantly

contribute to the reduction of energy consumption and greenhouse gas emissions.

Many countries have set long-term building energy saving targets for the development

of ‘greener’ and more sustainable buildings. For example, in the United States (US), the

California Public Utilities Commission plans to achieve reductions of 60-70 per cent of

commercial building energy usage by 2030 [2]. In China, the Building Energy Conser-

vation Plan in the Twelfth Five-Year Period sets goals of reducing 81.2 Mtoe of building

energy consumption by the end of 2015 [3]. In Australia, the Equipment Energy Effi-

ciency Committee has set a ten year strategy to improve the energy performance of HVAC

systems by 20 per cent [4]. Achieving these goals requires both zero-carbon technology

for future buildings as well as a reduction in the energy consumed by existing buildings.

A rapid, and economic way to reduce energy consumption is to retrofit existing buildings

1
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by implementing more advanced control algorithms.

Typical commercial HVAC control uses interconnected proportional-integral-derivative

(PID) loops [5], ON/OFF control [6] or rule-based control (RBC) [7, 8] to regulate the

local actuators. Their main task is to track the set point of the actuators designated by the

building management systems (BMS). A typical example is the regulation of indoor tem-

perature using chilled (hot) water valves to track the specified set-point. Despite the fact

that fine-tuned local controllers can provide good set point tracking and modest distur-

bance rejection, they cannot provide optimal solutions when a building’s overall perfor-

mance is considered. This is because local controllers regulate thermal comfort by using

the currently measured indoor temperature, but do not consider any information on ambi-

ent weather changes, the dynamics of the physical building and its real-time occupancy.

Due to the existence of building thermal mass, HVAC systems governed by the current

control rules usually respond to indoor temperature changes with significant time-delays.

This causes both over-cooling and over-heating, which are two of the main causes for

energy waste in public buildings.

Therefore, it is better to have a supervisory controller, which considers environmental

factors and optimises the overall performance of the HVAC system. Basic supervisory

functions include scheduling of cooling and heating systems, component sequencing and

operational mode switching. The main goal is to provide a comfortable environment for

the building’s occupants with minimum energy input or operating cost [9]. For example,

to avoid high electricity demand charges, a load-shifting control can be used by speci-

fying different set point temperatures at different time of the day. Despite the popular

use of BMSs in the HVAC industry, the energy saving potential achievable by applying

supervisory control has not been fully exploited yet. In existing buildings, a night setback

technique is used to achieve energy saving by relaxing the setpoint temperature during

unoccupied hours. However, this strategy does not maximise the energy saving potential

of the building system and can even cause thermal discomfort [10].
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The need for the development of supervisory control motivates the investigation of

Model Predictive Control (MPC). MPC is a control method that is able to solve con-

strained multivariable control problems and deal with multivariable coupling systems. It

uses mathematical models to predict the future evolution of a dynamic process to optimise

the control signal. At each sampling time, it solves a constrained optimisation problem

over a finite future horizon, then applies the first input to the system. When a new step

starts, it repeats the optimisation process using the new measurement [11]. The benefits of

applying MPC to achieve energy savings in buildings come from several aspects, which

are:

• The indoor temperature does not always need to be kept at a fixed value, because

comfortable temperature is indicated by a temperature range [12]. By setting up

constrained optimisation problems, MPCs allow the indoor temperature to vary

within a specific thermal comfort range, without causing any violations.

• The most critical disturbances affecting building systems, such as occupancy and

weather change can be predicted and easily incorporated into the MPC.

• By using the buildings’ thermal mass, it is possible to shift the cooling (or heating)

load from peak hours to off-peak hours, thereby reducing the total electricity bill

and demand costs.

• Occupants’ schedules have relatively fixed patterns and can also be predicted in

advance, and can be formulated as time-varying constraints in the MPC to meet the

occupants’ actual demands.

1.2 Research Objectives

For the development of an MPC, the selection of the predictive models is the most crucial

step , since it affects the computational speed and accuracy of the control algorithm. These
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models are required to capture the dynamics of the HVAC building in a building: such as

the building’s physical properties, interactions between zones, the dynamics of the HVAC

components, and influences from occupants and weather conditions. MPC should have

good prediction accuracy, be robust against disturbance and simple in structure. Once

such a model is made available, it can be used to optimise energy usage while maintaining

good thermal comfort. MPC algorithms based on linear models are most commonly used.

In such cases the resulting optimisation problem is a convex one, which guarantees global

solutions can be obtained. Unfortunately, since building systems are inherently nonlinear

and uncertain, linear models may result in poor closed-loop control performance, and

even cause instability.

Intelligent models, such as neural networks (NN), provide more accurate results for

the modelling of building energy systems [13, 14]. In particular, the NN models in recur-

sive forms always demonstrate good control performance in the presence of uncertainty,

thus are more suitable for modelling dynamic systems as compared to the static NNs.

However, such models always require a large amount of experimental data to be trained

with, which is not always available at the building sites. Moreover, there is not a fast or

reliable optimisation algorithm to handle these types of models under the MPC frame-

work.

Research on the application of MPC for building system control has attracted increas-

ing attention from the control community. However, more research effort is still needed to

develop an MPC that is more implementable and stable. To conclude, the main challenges

of implementing MPC in real-world buildings are:

• Classical MPCs are based on linear, differentiable models, while building energy

systems are always modelled as nonlinear systems. This is because air-conditioned

buildings’ processes, such as the operation of the cooling coil and outdoor air

damper, contain static nonlinearity and cannot be accurately modelled by using

first-principle models. Also, the simplified models for cooling and heating energy
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are expressed in bilinear forms, which often results in non-convex optimisation

problems that are hard to solve [7, 15, 16].

• The development of an MPC requires a thermal dynamic model to perform long-

term predictions. This prediction model is subject to errors because a buildings

thermal dynamics are affected by a number of disturbances, such as outdoor tem-

perature, solar radiation, internal heat gain and the occupants’ behaviours. The

problem becomes even harder to solve when several spaces of a building are con-

sidered simultaneously, in that heat transfer from the neighbouring zones becomes

another source of uncertainty.

• HVAC faults, such as wrong sensor readings, stuck air dampers and improper con-

trol settings or algorithms cause inaccurate monitoring and control of air-handling

units (AHUs). These faults directly cause improper control of airflow and cool-

ing (heating) energy and a waste of energy. It is therefore important to guarantee

proper monitoring and control of the systems before the MPC is developed and

tested [17, 18].

• Since physical buildings are influenced by a number of uncertainties, these mod-

els cannot always perform indoor temperature prediction precisely, which causes

deterioration in control performance. This motivates the use of robust MPC. It is

usually assumed that uncertainty is bound to be Gaussian distributed and known a

priori in the previous robust MPC (RMPC) studies. These approaches are not suit-

able for dealing with real-world buildings, which are affected by time-varying and

non-Gaussian distributed uncertainty [19, 20].

Motivated by the need for reducing energy consumption while maintaining thermal

comfort in commercial buildings, this thesis investigates an advanced control strategy for

HVAC systems. The objective building is an airport terminal controlled by a modern BMS

system. The overall aim is to develop a robust, cost-effective and implementable MPC
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strategy for commercial HVAC plants, including the strategies for the local AHUs, chiller

and boiler. Throughout the thesis, the advantages of both classical MPC and intelligent

approaches will be investigated to address the above challenges. In particular, the thesis

makes the following contributions:

• Developing a systematic approach for the modelling of building heating and cooling

energy systems. Recursive neural network (RNN) models are employed for the

modelling of the AHUs and thermal zone processes. In particular, a cascade NN

structure is proposed, which enable the model to predict indoor temperaure in both

perimeter and interior zones inside large commercial buildings.

• Developing a multi-input, multi-output (MIMO), neural network modelling method

for multi-zone buildings. This modelling approach is especially designed for build-

ings with wide open space, where the thermal coupling between the adjacent space

is a major source of uncertainty. The model is subsequently employed in the design

of a simple and effective optimal start-stop control algorithm for reducing energy

consumption within the investigated building.

• Presenting a hybrid model predictive control (HMPC) for building energy systems.

In the hybrid structure, a resistance-capacitance (RC) model is built to represent the

thermal dynamics of the thermal zone. The system nonlinearities associated with

the AHUs processes are handled by feedback linearisation. An inverse NN model

is developed to perform a nonlinear mapping between the linearised control input

and the actual control command. The proposed HMPC also improves the efficiency

of the existing economizer control. A simulation study is conducted to demon-

strate the advantages of MPC over the baseline control method in achieving energy

and cost savings. The potential benefits of conducting pre-cooling in lightweight

commercial building is also investigated in a real-time experiment.

• Designing a robust MPC with uncertainty bound estimator for building energy sys-
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tems, so that the expected electricity cost is minimised while guaranteeing thermal

comfort. The proposed uncertainty bound estimator models the system uncertain-

ties by comparing the difference between the nominal model and the previously

presented RNN model. The proposed estimator computes the possible uncertainty

bound, and solves the resulting min-max robust optimisation problem using the

tightened constraint sets.
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Chapter 2

Literature Review

With the fast development of computational technology, the costs of data storage, pro-

cessing, and modelling have significantly decreased over recent years. This makes the

design and implementation of more complex control techniques for advanced building

HVAC control strategies more feasible. In general, advanced HVAC control strategies

can be classified into those based on classical MPC theory and those on intelligent con-

trol theory. Although these two methods have been widely discussed in the literature, a

critical review is still needed in order to address the following problems:

1. How is MPC connected to the concept of supervisory control?

2. What are the main challenges when implementing MPC at real buildings?

3. What are the pros and cons of the classic MPC and intelligent control methods and

how to make a selection between them?

2.1 Early Studies on Supervisory Control

The idea of applying MPC for building energy control originates from the idea of the

supervisory control strategy. The main task of supervisory control is to determine the set

10
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point values for local controllers. Its main purpose is to seek the minimum energy input

or operating cost to provide satisfactory indoor environmental conditions by considering

varying weather conditions as well as HVAC characteristics [1]. Most HVAC systems are

equipped with some types of energy conservation technologies, for example, the active

thermal storage system [2, 3], chiller sequence control [4], variable speed control for

the pump and supply fan [5], blind control [6] and economizer control [7]. These control

strategies are usually pre-programmed into the BMS and configured by the HVAC vendors

to suit specific buildings. Supervisory control is able to re-organise these conservation

strategies to achieve a more significant energy reduction.

The night setback strategy is a commonly used supervisory approach in intermittently

occupied buildings to achieve basic savings. It simply turns on the cooling (or heating)

systems before the occupants arrive at the building and turns them off before they leave.

However, operational schedules determined by the night setback strategy are fixed, and

are not adaptive to the varying weather conditions. This could even result in energy

waste and thermal comfort violations. A straightforward way of achieving energy savings

is to use an optimal start-stop control method [8–10]. The optimal start-stop control

is an ‘advanced’ version of night setback strategy. On different days, it schedules the

cooling (heating) systems smartly so that indoor temperature can be maintained with a

comfortable range only during occupancy.

The optimal start-stop control has been investigated by several studies. For example,

Seem et al. [8] compared seven different methods for predicting the optimal return time

from night setback under a simulation environment. They found that a quadratic equation

related to the initial room temperature could predict the optimal return time properly. Sun

et al. [4] developed a simplified building model to predict the cooling load, and decide

the optimal number of operating chillers and their pre-cooling time. Yang et al. [11] built

a backpropagation-based NN model to determine optimal start time for a heating system

in a building. The proposed NN model uses room temperature, outdoor air temperature
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and their varying rates as the inputs to predict the temperature rising time. Ben-Nakhi et

al. [12] applied a general regression NN to optimise air conditioning setback schedule in

public buildings. Simulation shows that the NN can accurately predict the temperature

setback time with a good robustness.

Although the optimal start-stop control can be used together with the night setback to

reduce the total energy consumption, this method still results in high utility costs, as it

uses a fixed temperature set point during occupied hours. One way to reduce the utility

costs is using the buildings’ thermal mass to perform load shifting (e.g., by shifting the

cooling load from expensive peak hours to cheap off-peak hours). This method schedules

the set point to a lower value during the unoccupied hours and then releases it during the

occupied hours. This control strategy results in lower operational costs, even though the

total cooling or heating load may increase. Using building thermal mass to reduce the

operating costs for cooling has four benefits [13]:

1. It can reduce mechanical cooling using cooler morning ambient air to perform free-

cooling;

2. It uses much cheaper off-peak electricity energy to perform precooling;

3. The demand costs can be greatly reduced by shifting the peak load;

4. The coefficient of performance (COP) of the chiller plant can be improved using

more favourable part-load and ambient conditions.

This load shifting (or precooling strategy) was first proposed by Braun [13] and forms

the basic concept for many of the MPC frameworks being investigated. In this work, it

is shown that 10% to 50% of energy costs can be achieved using the precooling strategy.

In general, more cost savings can be achieved when higher ratios of peak to off-peak

rates and more free cooling are available. To achieve more significant savings, Lee and

Braun [14] developed and compared three ways to optimise the set-point temperature for
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limiting demand in buildings. In these methods, the set-points are set to the lower comfort

limit before the start of occupancy. The temperature set-point is then adjusted during the

discharge period to save more energy. The result shows that the set-point trajectories that

are optimised using demand limiting have a logarithmic shape.

Although the above-mentioned supervisory control technologies have been proven

effective in reducing energy or utility costs, they have rarely been implemented in real-

world buildings. This is because these control strategies are dependent on several factors,

such as building thermal capacitance, weather conditions, electricity rate structure and

occupancy schedule. Simply scheduling the set point with a specific pattern can cause

thermal comfort violation or even more energy waste. A systematic optimisation frame-

work is required to take into account all these factors. Further, the embedded hardware

system has a limited computational capability which makes the real-time implementation

of these control methods problematic [15]. With the fast development of computational

technology in recent years, the implementation of a supervisory control is becoming more

realistic nowadays. This is why MPC has garnered increasing attention in recent years.

2.2 Classical Model Predictive Control

2.2.1 Building Models

The essence of MPC is to optimise a predicted state trajectory, so the process model is

the heart of an MPC controller. Building energy system is a complicated combination

of different factors, such as HVAC equipment, building envelop, thermal mass, weather

conditions, occupants, their behaviours, and so on. Therefore, thermal dynamic models

to predict the building states, component models to predict the dynamics of each HVAC

component (fan, pump, valve, etc.), energy model to predict energy consumption and

operational costs, weather forecast models to predict environmental disturbance (outdoor

temperature, solar radiation, etc.), and occupancy models to predict the internal heat gain
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and occupancy status are necessary.

The choice of the model is crucial. When it comes to implementation, linear mod-

els are more preferable, because they allow convex optimisation to be conducted. As the

energy term of a simplified building model is bilinear, feedback linearisation is always ap-

plied to linearise the nonlinear models at the desired operating point [16, 17]. In summary,

the building models used for classical MPC can be categorised into three groups.

Detailed physical model

In the HVAC engineering society, energy simulation programmes, such as EnergyPlus

[18] TRNSYS [19], and ESP-r [20] are commonly used. These models are built based

on heat transfer, fluid mechanics and other engineering sciences to model building tem-

peratures, airflows and energy use; These detailed physical models can achieve very high

modelling accuracy, but they often require excessive parameter tuning and simulation.

Moreover, these models are generally complicated in size and can quickly lead to com-

putationally intractable optimisation problems. Therefore, detailed physical models are

usually developed to evaluate the performance of the new control approaches [10, 21, 22].

RC model

Simplified physical models are often referred to as a thermal resistance capacitance (RC)

network. The RC model uses an interconnection of thermal resistances and capacitances

to represent the heat transfer phenomenon between the air node, walls, windows, ceilings,

and furniture. The identification process of RC models depends on the measured data,

but still keeps its physical structure. Thus, they have better generalisation ability than

the black box models [23]. More importantly, the RC models are explicit and can be

converted into linear time invariant (LTI) models. This make the convex optimisation

problem applicable [24]. For these reasons, RC models have been commonly applied in

various research groups [2, 6, 25]. Past research has proven that high-order RC models
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achieve limited benefits over the low-order RC models; thus, reduced order RC models

are preferable to use control purposes [16, 26]. There are also several drawbacks to use

the RC models. For example, buildings’ thermal dynamics are nonlinear, but the structure

of RC models is linear; Additionally, several disturbance sources affecting the building

are not predictable and cannot be included with the model. These factors all affect the

prediction accuracy of the RC model.

Statistical model

Statistical models include autoregressive exogenous (ARX), autoregressive moving aver-

age exogenous (ARMAX), OE, BoxJenkins (BJ) [27], MPC relevant identification (MRI)

[24], and subspace models [28]. Most of these models are differentiable and therefore

suitable for control design. Statistical models are easy to build since they do not use any

prior knowledge on the physical systems, which can greatly reduce the costs of model

development. In addition, because most of the statistical models are in regression forms,

they can guarantee a certain degree of accuracy. For this reason, statistic models have

recently been applied in several implementation studies [17, 29, 30]. However, due to

their linear nature, large errors sometimes occur when the degree of uncertainty and non-

linearity are significant. Additionally, they cannot be easily modified to include other

disturbance models or be analysed .

2.2.2 Deterministic Model Predictive Control

The MPC refers to a class of control algorithms that utilise a process model to predict

the future states of a plant and optimise the inputs over the prediction, while taking into

account various types of constraints. The MPC method is perhaps the only advanced

control technique (more advanced compared to the PID control method) that has been

widely applied in the industry. The related fields include petroleum refineries, chemicals,

food processing, automotive, and aerospace applications [31, 32]. The way an HVAC sys-
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tem operates resembles an industrial process; it processes the energy through the boiler,

chiller, and AHUs. Therefore, the MPC has the potential of becoming an alternative con-

trol approach for building systems.

If the nominal prediction equals to the real system outputs, the MPC is referred to as

a deterministic MPC (DMPC). Considering an LTI model, the DMPC can be formulised

as a linear programming or a quadratic programming problem. The basic idea of DMPC

is to solve the following optimisation at each time step:

min
u

j=N−1

∑
j=0

l(xk+ j|k,uk+ j|k,dk+ j|k), (2.1)

subject to:

xk+ j+1|k = f (xk+ j|k,uk+ j|k,dk+ j|k), ∀ j = 0, ...,N−1

yk+ j+1|k = g(xk+ j|k,uk+ j|k,dk+ j|k), ∀ j = 0, ...,N

uk+ j|k ∈ U, ∀ j = 1, ...,N

yk+ j|k ∈ Y, ∀ j = 0, ...,N

(2.2)

where the double indices k+ j|k denotes the prediction value at time k+ j made at time

k, N is the prediction horizon, x is the system state of the building, such as zone tem-

peratures, relative humidity, CO2 concentrations and surface temperature of the building

envelop. Moreover, u denotes a vector of the control inputs applied to the building system,

for supervisory control purposes, u could be the set point for chilled water temperature,

supply air temperature, or zone temperature. Additionally, y is the output of the system,

and d denotes disturbance variables, such as outdoor temperatures, solar radiations, inter-

nal heat gain generated by occupants, and electrical devices. The function f denotes the

function which allows one to predict the future building states based on the initial states,

control inputs, and future disturbances. In classical control, f is usually a state space

model derived from differential equations. Further, X and U denote the constraints of the

states and inputs, respectively, and lk denotes the cost function.
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Various types of supervisory control strategies can be easily integrated into the MPC

framework. For example, the optimal start-stop control function can be realised by ap-

plying time-varying constraints in Eq. (2.2), such as that in [2, 5, 16, 28, 33]. The load

shifting function can be realised by adding penalty coefficients on the time-varying elec-

tricity price to the cost function lk, such as that in [30, 34].

There have been several attempts to validate the energy saving potential of MPC,

through both simulation and experimental study.

In an experimental study conducted by Široký et al. [35], two conference rooms

of a building are modelled as an RC network. The cost function penalises the desired

temperature tracking error and temperature difference between supply and return water

heater circuits. The MPC designates the set-point temperature for each room, which

demonstrates 17% in energy savings over the conventional controller.

In a simulation study [5], a bilinear building model is built in which parameters are

obtained using historical building data. The optimisation problem is formulised as a linear

programming problem, which minimises total heating power and peak airflow. Compared

with the baseline controller, MPC reduces the peak air flow rate and total energy con-

sumption by 33.3% and 73.2%, respectively.

In an experimental study [36], MPC is developed to control a cooling system of the

HVAC at the University of California at Merced. A series of simplified models are de-

veloped for chillers, cooling towers, thermal storage tanks and building envelop. They

employ a strategy called moving window block to solve the optimisation problem. The

results show about a 19.1% improvement of the system COP over the baseline controller.

Ma et al. [30] presented an economic MPC to optimise set-points of HVAC systems

for achieving load shifting and operational cost reduction. The experimental study shows

that under a time-of-use electricity rate structure, the cooling load for HVAC systems was

successfully shifted from peak hours to off-peak hours. This operation reduces both the

demand cost and the total electricity bill.



2.2. CLASSICAL MODEL PREDICTIVE CONTROL 18

When MPC is used as a supervisory controller, the total energy or cost can be reduced

by solving optimisation problems. The saving opportunity comes from many aspects,

such as more efficient use of free cooling energy, reduced peak electricity usage, and bet-

ter thermal constraint satisfaction. Even the simplest linear MPC can achieve a certain

degree of savings. Unfortunately, building dynamics are always involved with uncer-

tainty, due to occupants’ behaviours and weather forecast errors. These factors cannot

always be accurately represented by the linear models. In this context, we investigate the

following two problems: What happens if model-plant mismatch exists? What happens if

the modelling errors are not uniformly distributed?

2.2.3 Robust MPC

The DMPC assumes nominal prediction to be the same as the real systems. However,

obtaining deterministic control decisions on the future states of a real system is not pos-

sible, as the buildings’ dynamics are highly uncertain and dependent on the accuracy of

disturbance forecasting. In addition, the parameters of building models are not always

correct and are subject to measurement noise. The feedback nature of the MPC allows

the controller to reject a small degree of uncertainty, but not for systems with large un-

certainties. The uncertainty should be considered in order to guarantee control stability.

Two methods, RMPC and stochastic MPC (SMPC) have been investigated to solve the

problem.

In RMPC, the uncertainty is assumed to be bound, so that the constraints are tightened

in order to achieve constraint satisfaction for all possible realisations of the uncertainty

along the horizon. The most commonly applied RMPC is minmax RMPC, which min-

imises the worst-case performance as follows:

min
u

max
w

j=N−1

∑
j=0

l(xk+ j|k,uk+ j|k,dk+ j|k,wk+ j|k), (2.3)

where w ∈W denotes unknown, bounded uncertainty. Open-loop minmax MPC is highly



CHAPTER 2. LITERATURE REVIEW 19

conservative and can result in infeasibility and instability problems [37]. The reason is

that the open loop control does not take into account that the information on the future

disturbance will be contained in the future measured state trajectory. A more commonly

considered form is the closed-loop MPC [37]. In closed-loop MPC, the future control

inputs are usually parameterised as affine functions of future measured states and decision

variables. A RMPC constructed in such a way is less conservative than an open-loop one

because of feedback prediction, but the affine structure of states and control input result in

challenging non-convex problem. This problem can be further solved by using min-max

MPC with disturbance feedback, which directly parameterises the control input sequence

into the uncertainty [38–41].

Although RMPC can guarantee stability and recursive feasibility, it is required that

the uncertainty bound of RMPC should be designed in advance which is not always pos-

sible. Improper choice of an uncertainty bound would cause thermal comfort violation

(too small) or energy waste to the system (too wide). More often than not, the bound

is chosen to be as wide as possible in order to cover the occurrence of high uncertainty

with low probability of occurrence. If possible, it is better to obtain a smaller uncertainty

bound which could result in less conservative solutions. This can be achieved using an

uncertainty bound estimator [42] or a comparison model [43].

2.2.4 Stochastic MPC

Stochastic MPC (SMPC) provides an alternative method to solve the uncertainty problem

with the least control performance loss [44]. In SMPC, the expected value of the cost

function is optimised:

min
µ

E[
j=N−1

∑
j=0

l(xk+ j|k,uk+ j|k,dk+ j|k,wk+ j|k)], (2.4)
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where E denotes the expected value of the cost. Moreover, SMPC also uses the chance

constraints instead of deterministic ones to achieve more savings:

P(xk+ j|k)> 1−α, (2.5)

where P denotes the probability of the event. Under such a formulation, the constraints

only need to be satisfied with a certain level of probability, and therefore could result in

less conservative solutions. SMPC has been studied in building energy control [17, 45–

47]. In these studies, the occupancy prediction errors and weather forecast errors are often

modelled as uncertainties.

Oldewurtel et al. [46] proposed an SMPC to regulate building temperature. In this

work, the weather forecast error is assumed to be Gaussian distributed and is modelled

by an autoregressive model. Chance constraints are used in the optimisation problem to

improve the energy efficiency of the method.

Mady et al. [45] used a building occupancy model to improve mean energy efficiency

while minimising expected discomfort. The occupancy pattern is modelled as a Markov

chain probability function. The experimental results show the advantage of the SMPC as

compared to the MPC with fixed occupancy schedules.

To consider cases that are more realistic, where the buildings are subject to non-

Gaussian disturbance, Ma et al. [17] proposed another stochastic MPC framework. In this

work, the uncertainties caused by occupation and weather prediction error were learned

from historical data and modelled as finitely supported probability distribution functions.

To make the SMPC computationally tractable, a feedback linearisation is used to trans-

form the chance constraints to deterministic ones.

In summary, SMPC interprets the constraints probabilistically, which can result in

less violation probability so that can result in less conservative solutions. However,

SMPC problems are hard in general and can only be solved approximately or by impos-

ing specific problem structures, e.g., assuming the uncertainty is bounded or uniformly

distributed. More research efforts are needed to handle the cases where the uncertainty
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is more significant and difficult to identify, which usually happens in real-world building

sites.

2.2.5 Dealing with Thermal Coupling

Commercial buildings typically consist of a number of zones that interact with each other

through convective or conductive heat transfer. The temperature in each zone is measured

by a sensor and controlled by an individual AHU or a variable air volume (VAV) terminal.

When MPC is employed to control these sub-zones, local models and objective functions

are usually designed for each individual subsystem, without considering the interactions

among the local systems. If the interaction between the adjacent zones is mild, satisfied

control performance can be achieved using the feedback signals. Nevertheless, for the

buildings where the zones are highly interactive, ignoring the interactions between sub-

systems may lead to a significant loss in control performance. Moreover, as the number

of controlled zones increases, the number of decision variables involved that must be op-

timised increases rapidly. This not only makes the optimisation problem intractable but

also the implementation work difficult.

The convective heat transfer coefficient is determined by a number of variables, such

as the airflow rate between the adjacent zones and the distance between the temperature

sensors. Generally speaking, the time constant related to the convective heat transfer

between two zones increases with the physical distance between them [48] . Currently,

convection heat transfer between zones can be analysed using Computational Fluid Dy-

namics (CFD) simulation [49]. However, CFD models are computationally complex, and

cannot be directly used to achieve control purpose, so they are more often to conduct con-

trol analysis [50]. Therefore, the development of more reliable and simple mathematical

models is needed. Goyal et al. [48] modelled the inter-zone convection of a building with

reduced order RC networks. They found that when the convection effects are considered,

the temperature predicted by the RC model is more accurate than the model that only
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considers the conductive heat transfer.

Distributed control provides a solution for managing energy distribution within multi-

zone buildings. Distributed MPC has been studied by a number of researchers [17, 25,

51, 52]. Most of these methods were based on the classic MPC method. Moroan [33]

concluded that a distributed MPC that considers the thermal coupling among zones out-

performs the MPC that does not consider thermal interaction. The effects of neighbouring

rooms seem to be negligible compared to the effects of opening windows and doors and

the supplied thermal energy.

Ma et al. [34] developed a distributed MPC based on dual decomposition. This tech-

nique distributes the computational load of a centralised MPC to a set of VAV box em-

bedded controllers, making the implementation of the control algorithm possible. In [53],

a primal-dual active-set method is proposed for the DMPC to reduce the communication

delays between the controllers. This method is shown to generate much less communica-

tion delay than other proposed distributed algorithms.

Despite of the past works, some underlying questions must be answered: How signif-

icant is thermal interaction for the control development? Do we need to consider it when

designing the predictive controller? These problems seem to be more significant for large

commercial buildings, in which coupling effect become a more significant factor due to

jointing of many separated zones.

2.3 Intelligent Control

2.3.1 Neural Network Modelling

Intelligent models include (NN) [54–57], fuzzy systems [58, 59], adaptive neuron-fuzzy

systems [60], genetic and evolutionary algorithms [61, 62] and support vector machine

[63]. In this thesis, we focus on NNs. An attractive feature of NNs is they are able to learn

complicated nonlinear relationships between input and output variables. NNs have been
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used to predict the cooling load, electricity usage or indoor temperature as a function of

time varying input variables in the building [64–66]. To improve the generalisation ability

of NNs, different categories of NN models have been applied to building systems, such as

the recursive NN [67, 68], adaptive NN [69], reinforcement learning NN [70], and deep

learning NN [71].

Past research has compared the NN model against several other models, including the

detailed physical model [72], time-series ARX model [64], RC model [57], and several

other intelligent models [56]. It has been found that the ANN outperforms these models

in terms of prediction accuracy. For example, Ruano et al. [73] incorporated a multiple

objective genetic algorithm (MOGA) with radial basis function NN to build a temperature

prediction model for a school building. Three objectives were set for the MOGA, which

aim to reduce model complexity and improve model performance and model validity. The

model was used for long-range prediction and achieved more accurate prediction results

than a physical model.

2.3.2 Neural Network Based Control

In some studies, the NN models are used for supervisory control to achieve energy sav-

ings. The principle of this control method is similar to the classical MPC. The difference

is that the nonlinear neural model is used for prediction. To handle these models, nonlin-

ear optimisation approaches such as sequential quadratic programming (SQP), are often

used to compute the gradients of the predicted output trajectory [74]. Computational intel-

ligence algorithms, such as the evolutionary algorithm [75], particle swarm optimisation

[76], and discrete branch and bound approaches [54] can also be used to optimise NN

models.

Massie [3] developed an optimal NN controller to minimise the total energy consump-

tion of building HVAC systems by controlling a commercial ice storage system. The su-

pervisory controller consists of a training network and a predictor network. The training
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network adjusts the weights of the network and passes them to the predictor network. The

predictor network can then modify its weights and finds values for the chiller setpoint

temperature and ice tank valve position to minimise overall operating cost.

In [77], a multi-layer perceptron NN is employed to model a multi-zone HVAC sys-

tem. A firefly algorithm is applied to solve the constrained, NN based optimisation model,

which provides set point for the supply air temperature and the supply air static pressure.

Ferreira et al. [54] developed an ANN-based model predictive control for a campus build-

ing. The energy usage is optimised by using a discrete branch and bound approach. Yang

et al. [70] implemented a reinforcement learning control method for LowEx Building

systems, in which the controller learns from previous operations to be adaptive to the

changing environment.

By reviewing the above work, it can be seen that, if the building systems have a high

degree of nonlinearity, the NN model predictive control could provide a more accurate

prediction trajectory as compared with classical MPC. Their self-learning ability also

makes them adapt to the changing environment. However, when online implementation is

considered, the reliability and computational speed of the optimisation algorithms become

a problem.

For this reason, it is worthwhile to investigate the application of other types of NN con-

trol methods for building energy control. An example is NN based feedback linearisation

[78–80]. This algorithm firstly linearises the NN model into affine, linear equations. The

linear optimisation method can then be applied based on the nonlinear prediction results.

This algorithm transforms a nonlinear optimisation problem into a linear one; thus, it is

less computationally expensive and more suitable for online optimisation. Additionally,

since the RNN can maintain good modelling accuracy in the presence of uncertainty, it can

be also be used as an uncertain compensator for the first principle models [81, 82]. These

features make the NN suitable for the design of a hybrid MPC. Although these methods

have been demonstrated in a number of applications [81, 83–85], it is still worthwhile to
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Figure 2.1: Summary of supervisory control strategies for HVAC systems.

investigate the application value of these types of methods on building energy control.

After reviewing different supervisory control strategies, the connection between the

supervisory control and two categories of predictive control methods is identified and

illustrated in Fig. 2.1. The blue section illustrates the research methodology that has not

been exploited yet.

2.4 Review Summary and Research Gaps

The literature review has elucidated the great progress made in the application of MPC for

building energy management in the last decade. Despite this, the online implementation

of such a technology in real-world commercial buildings is still challenging. How to

deal with uncertainty and relax the computational burden are two major obstacles for

the implementation of MPC. Another challenge comes from the fact that the thermal

dynamics of buildings and HVAC systems differ greatly from one to another; therefore,

there is no universal method that can be applied to all building types. Specifically, the

following research gaps have been identified in this thesis:

• While simplified RC models dominate MPC related studies, the reliability of using
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RC models for large commercial buildings still requires more investigation. This is

because the past case studies primarily investigated small and mid-size buildings,

such as offices and conference rooms [2, 86]. The thermal zones in these buildings

have a relatively fixed occupancy pattern and are well isolated so that the dynamic is

more comprehensive. However, the reliability of RC models for thermal zones with

more complex dynamics, such as large buildings with wide-open space and frequent

change of occupancy, is still unknown. More expensive modelling approaches,

such as NN model, may provide a better modelling accuracy to such problems.

However, the trade-off of using NN models for predictive control requires further

investigation.

• The past building modelling works based on the NN models were mostly con-

strained to single zone studies. The effects of heat transfer between the adjacent

zones, especially convective, have rarely been considered in the past. This assump-

tion may be correct if the walls provide sufficient insulation, but not for the zones

where convective heat transfer between each other is significant. A model that is

able to accommodate the thermal interaction between adjacent zones within the

multi-zone building is therefore needed.

• Although NN models have been employed for load prediction and supervisory con-

trol [12, 54, 68], the use of the models for building energy optimisation poses a

challenge. The reason is that nonlinear optimisation or computational intelligence

algorithms needed for handling NN models may result in multiple local minima

and high computational complexity. A less expensive solution is to integrate the

NN model into the classical MPC, so that the uncertainty of the building can be

handled separately. However, this method has not been employed for building en-

ergy control yet.

• The load shifting strategy under the MPC framework has been proven to be effective
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in achieving cost savings [2, 30]. However, the application value of such strategies

for light-weighted commercial buildings with wide-open space lacks experimental

verification.

• The RMPC and SMPC were previously investigated to handle model uncertainty

within buildings. Both methods require extracting stochastic properties of the his-

torical data to reduce performance bound and conservatism. To deal with the non-

Gaussian distributed uncertainties in the investigated building, it is necessary to de-

vise a way that provides uncertainty bounds to the RMPC, so that less performance

loss will be occurred with the use of RMPC.
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control for thermal comfort and energy savings in public buildings,” Energy and

Buildings, vol. 55, no. 0, pp. 238 – 251, 2012.



REFERENCES 34

[55] A. Kusiak and G. Xu, “Modeling and optimization of HVAC systems using a dy-

namic neural network,” Energy, vol. 42, no. 1, pp. 241–250, 2012. cited By (since

1996)8.

[56] A. Kusiak and M. Li, “Cooling output optimization of an air handling unit,” Applied

Energy, vol. 87, no. 3, pp. 901 – 909, 2010.

[57] H. Huang, L. Chen, and E. Hu, “A neural network-based multi-zone modelling ap-

proach for predictive control system design in commercial buildings,” Energy and

Buildings, vol. 97, no. 0, pp. 86 – 97, 2015.

[58] M. Mohammadzaheri, S. Grainger, and M. Bazghaleh, “Fuzzy modeling of a piezo-

electric actuator,” International Journal of Precision Engineering and Manufactur-

ing, vol. 13, pp. 663–670, 2012.

[59] M. Killian, B. Mayer, and M. Kozek, “Effective fuzzy black-box modeling for build-

ing heating dynamics,” Energy and Buildings, vol. 96, pp. 175 – 186, 2015.

[60] K. Li, H. Su, and J. Chu, “Forecasting building energy consumption using neural

networks and hybrid neuro-fuzzy system: A comparative study,” Energy and Build-

ings, vol. 43, no. 10, pp. 2893 – 2899, 2011.

[61] R. Parameshwaran, R. Karunakaran, C. V. R. Kumar, and S. Iniyan, “Energy conser-

vative building air conditioning system controlled and optimized using fuzzy-genetic

algorithm,” Energy and Buildings, vol. 42, no. 5, pp. 745 – 762, 2010.

[62] G. Platt, J. Li, R. Li, G. Poulton, G. James, and J. Wall, “Adaptive HVAC zone

modeling for sustainable buildings,” Energy and Buildings, vol. 42, no. 4, pp. 412 –

421, 2010.

[63] J. Liang and R. Du, “Model-based fault detection and diagnosis of HVAC sys-



REFERENCES 35

tems using support vector machine method,” International Journal of Refrigeration,

vol. 30, no. 6, pp. 1104 – 1114, 2007.

[64] G. Mustafaraj, G. Lowry, and J. Chen, “Prediction of room temperature and relative

humidity by autoregressive linear and nonlinear neural network models for an open

office,” Energy and Buildings, vol. 43, no. 6, pp. 1452 – 1460, 2011.

[65] T. Lu and M. Viljanen, “Prediction of indoor temperature and relative humidity using

neural network models: model comparison,” Neural Computing and Applications,

vol. 18, no. 4, pp. 345–357, 2009.

[66] S. Karatasou, M. Santamouris, and V. Geros, “Modeling and predicting building’s

energy use with artificial neural networks: Methods and results,” Energy and Build-

ings, vol. 38, no. 8, pp. 949 – 958, 2006.

[67] N. Morel, M. Bauer, M. El-Khoury, and J. Krauss, “Neurobat, a Predictive and

Adaptive Heating Control System Using Artificial Neural Networks,” Solar Energy

Journal, vol. 21, pp. 161–201, 2001.

[68] S. Karatasou, M. Santamouris, and V. Geros, “Modeling and predicting building’s

energy use with artificial neural networks: Methods and results,” Energy and Build-

ings, vol. 38, no. 8, pp. 949 – 958, 2006.

[69] J. Yang, H. Rivard, and R. Zmeureanu, “On-line building energy prediction using

adaptive artificial neural networks,” Energy and Buildings, vol. 37, no. 12, pp. 1250

– 1259, 2005.

[70] L. Yang, Z. Nagy, P. Goffin, and A. Schlueter, “Reinforcement learning for optimal

control of low exergy buildings,” Applied Energy, vol. 156, pp. 577 – 586, 2015.

[71] P. Romeu, F. Zamora-Martnez, P. Botella-Rocamora, and J. Pardo, “Time-series

forecasting of indoor temperature using pre-trained deep neural networks,” vol. 8131



REFERENCES 36

of Lecture Notes in Computer Science, pp. 451–458, Springer Berlin Heidelberg,

2013.

[72] A. H. Neto and F. A. S. Fiorelli, “Comparison between detailed model simulation

and artificial neural network for forecasting building energy consumption,” Energy

and Buildings, vol. 40, no. 12, pp. 2169 – 2176, 2008.

[73] A. Ruano, E. Crispim, E. Conceicäo, and M. Lúcio, “Prediction of building’s tem-

perature using neural networks models,” Energy and Buildings, vol. 38, no. 6,

pp. 682 – 694, 2006.

[74] C. M. S. Mokhtar S. Bazaraa, Hanif D. Sherali, Nonlinear Programming: Theory

and Algorithms. New York: Wiley, April 2006.

[75] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist multiobjective

genetic algorithm: Nsga-ii,” Trans. Evol. Comp, vol. 6, pp. 182–197, Apr. 2002.

[76] X. He, Z. Zhang, and A. Kusiak, “Performance optimization of HVAC systems with

computational intelligence algorithms,” Energy and Buildings, vol. 81, pp. 371 –

380, 2014.

[77] Y. Zeng, Z. Zhang, and A. Kusiak, “Predictive modeling and optimization of a

multi-zone HVAC system with data mining and firefly algorithms,” Energy, vol. 86,

pp. 393 – 402, 2015.

[78] H. Deng, H.-X. Li, and Y. hu Wu, “Feedback-linearization-based neural adaptive

control for unknown nonaffine nonlinear discrete-time systems,” Neural Networks,

IEEE Transactions on, vol. 19, pp. 1615–1625, Sept 2008.

[79] A. Yeildirek and F. Lewis, “Feedback linearization using neural networks,” Auto-

matica, vol. 31, no. 11, pp. 1659 – 1664, 1995.



REFERENCES 37

[80] M. Mohammadzaheri, L. Chen, and S. Grainger, “A critical review of the most pop-

ular types of neuro control,” Asian Journal of Control, vol. 14, no. 1, pp. 1–11,

2012.

[81] F.-J. Lin, H.-J. Shieh, L.-T. Teng, and P.-H. Shieh, “Hybrid controller with recurrent

neural network for magnetic levitation system,” Magnetics, IEEE Transactions on,

vol. 41, pp. 2260–2269, July 2005.

[82] D. C. Psichogios and L. H. Ungar, “A hybrid neural network-first principles ap-

proach to process modeling,” AIChE Journal, vol. 38, no. 10, pp. 1499–1511, 1992.

[83] Y.-S. Yang and X.-F. Wang, “Adaptive H ∞ tracking control for a class of uncertain

nonlinear systems using radial-basis-function neural networks,” Neurocomputing,

vol. 70, no. 46, pp. 932 – 941, 2007.

[84] D. O. Pedro, Jimoh, “Neural network based feedback linearization control of a

servo-hydraulic vehicle suspension system,” International Journal of Applied Math-

ematics and Computer Science, vol. 21, no. 1, pp. 137–147, 2011.

[85] H. A. te Braake, E. J. van Can, J. M. Scherpen, and H. B. Verbruggen, “Control

of nonlinear chemical processes using neural models and feedback linearization,”

Computers & Chemical Engineering, vol. 22, no. 78, pp. 1113 – 1127, 1998.

[86] M. Maasoumy, M. Razmara, M. Shahbakhti, and A. S. Vincentelli, “Handling model

uncertainty in model predictive control for energy efficient buildings,” Energy and

Buildings, vol. 77, no. 0, pp. 377 – 392, 2014.



Chapter 3

Methodology

In order to address the research gaps mentioned in the literature, the details of the methods

that will be undertaken during the study are described in the following subsections. Fig.

3.1 illustrates the overview of the methodology adopted for this project. The developed

research methodology is formulated in four articles, with each paper aiming to fulfil some

research gaps and to achieve the corresponding research objective. Detailed descriptions

of the linkages between these papers and the main achievement will be demonstrated in

the latter sections. In the following sections, the aspects of building control that this thesis

focuses on will be introduced.

3.1 Research Building

This thesis focuses on the Terminal-1 (T1) building at Adelaide Airport, South Australia.

The T-1 is the main terminal for domestic and international flights, which is approximately

750 metres end to end and has a total floor area of approximately 75,000 m2. The energy

review shows that the annual electricity bill recorded in the T-1 building is about 1 million

dollars. About 40% of this energy consumption relates to HVAC systems. Different from

other airport terminals, the T-1 building has no flights during the night, so the HVAC
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Figure 3.1: Summary of research methodology applied in this study and their link with

the papers

system of this building has a relatively long period of night setback. Comfort requirements

only need to be met when occupants are present, (e.g., when a flight is approaching and

passengers are checking in). The comfort constraints can be relaxed when there is no

flight. These unique properties make the building a good research vehicle for testing the

proposed control strategies.
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3.2 Thermal Comfort

The main function of HVAC systems is to provide a comfortable indoor environment for

the occupants. The predicted mean vote (PWV) is the most commonly applied model to

indicate occupants’ thermal comfort. The PMV model was developed by P. O. Fanger us-

ing heat balance equations and empirical studies about skin temperature to define comfort

[1]. PMV is calculated based on temperature, relative humidity, mean radiant tempera-

ture, air velocity, and individual factors such as metabolism rate and clothing insulation.

When using PMV for the indication of thermal comfort, zero is the ideal value, repre-

senting thermal neutrality. The comfort zone is defined by the combinations of the six

parameters for which the PMV is within the range of [-0.5, 0.5].

The nonlinear characteristics of PMV make the implementation of MPC difficult,

as linear constraints cannot be directly applied under the nonlinear model framework.

For this reason, thermal comfort is more commonly indicated by operative temperature

bounded by upper and lower temperature values [2, 3]. According to ASHRAEs Standard

55, comfort temperature should be ranged from 20-23 ◦C in the winter and 23- 26◦C in

the summer [4]. Additionally, a minimum ventilation rate must be met when the space

is occupied to maintain a reasonable level of carbon dioxide concentration. The actual

comfort requirement might be more specific than this. For the investigated study, it is

required that the indoor temperature be kept at 22 ◦C in the summer and 21.5 ◦C in the

winter. Therefore, the aim is to keep the temperature closed to the set point value for most

of the time during the occupancy. However, the temperature is allowed to vary between

the upper and lower comfort range during the transitional period between occupied and

un-occupied hours. To conclude, the thermal comfort is indicated by dry bulb temperature

and carbon dioxide concentration in this study.
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3.3 Occupancy Prediction

Occupant prediction is an important parameter for the design of predictive controls within

building systems. Not only because it represents a major source of internal heat gain,

but also because it is a constraint describing the occupants’s comfort requirements. The

energy saving potential for predictive controllers has been demonstrated in a number of

studies [5, 6]. Because the occupancy is highly uncertain and expensive to measure,

it is often modelled as a stochastic variable [7]. Several approaches have been used for

occupancy prediction. For example, Ma et al. [8] built a thermal model during unoccupied

hour. They use the difference between the prediction and the real data during occupied

hour to model the load profile. Maasoumy et al. [8] used the measurement of carbon

dioxide concentration to indicate the level of occupancy within the building. Liao and

Barrooah [9] developed an agent-based model to simulate the behaviour of the occupants

within the building.

To make it simple, in this study, the occupancy schedules are assumed to be perfectly

predicted. This schedule is set according to the actual working hours and the flight sched-

ule, which can be easily obtained from the BMS database. The thermal load brought by

the occupancy will be indicated using CO2 concentration, which is similar to [10].

3.4 Energy Price

Most of the existing buildings use the night-setback strategy, which turns on the HVAC

systems before occupation and turns them off before the occupied hours are over. This

strategy usually causes unnecessarily long operational hours. If the dynamic electricity

price is not utilised, the optimisation only minimises the energy costs, which could reduce

the AHU operational hours [11]. On the other hand, while advanced electricity pricing

methods, such as time-of-use (TOU) rates, critical-peak-pricing (CPP), and real-time pric-

ing (RTP) are applied by utilities, it is possible for the end users to reduce both the peak
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electricity and demand costs [12, 13]. In this study, we employed the TOU rate in Ade-

laide, South Australia, as the criterion to investigate the energy and cost saving potential

of MPC.

3.5 Energy and Cost Saving Evaluation Methods

Evaluating the energy saving potential of the proposed control strategies can be realised

by both simulation and experiment. For simulation, two methods are often employed. The

first one is to conduct a closed-loop simulation using the control model obtained from the

measured data and then to compare the results produced by the MPC with the baseline

controller. The parameters of the models are sometimes perturbed to make the simula-

tion more realistic [14]. This approach allows one to make a comparison between the

existing control strategy and the developed one straightforwardly. However, this requires

an accurate model to be built, otherwise the simulation result will deviate a lot from the

true value, and the comparison becomes meaningless. The second method is to test the

advanced control algorithm on high fidelity models [15]. For example, using the TRN-

SYS model together with the Matlab optimisation toolbox to perform the simulation [16].

However, the high fidelity model can hardly model the uncertainty presented at the real

buildings, which could make the simulation un-realistic.

In this thesis, we choose the first approach for simulation purposes. Alternatively,

we use a well-trained recursive NN model as the reference model during the simulation.

Since the recursive NN can capture uncertainty of the building systems and achieve better

indoor temperature accuracy than the control model (usually a control oriented model), it

can often generate a control result that is closer to the experimental study.

The control methods proposed in this thesis have also been validated by experimental

studies. During the experiment, the optimal set-point was generated by conducting closed-

loop simulation one day ahead of the experimental day. The new set-point values are

then sent to the BMS. Making comparisons between the experimental method with the
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existing control method is achieved by choosing the days on which weather patterns and

occupancy profiles were similar to the experimental day. This method was previously

adopted in [17], which allows a easy comparison to be made between baseline control

and the proposed control method.

3.6 Linkage Between Papers

This section deals with authors’ results related to the thesis. This thesis is not written in a

conventional way but its core lies in four reviewed papers, which are included here with

a brief comment on how the particular paper contributes to the thesis. The novelty and

uniqueness of this research are presented in the following papers:

Paper-1 introduces a systematic NN modelling method for large commercial build-

ings using BMS data. In particular, we present a novel cascade RNN model, which uses

neighbouring zone temperatures as an input to perform indoor temperature prediction.

The method results in single-zone prediction results with enhanced prediction accuracy.

This method also makes it possible to model both interior and perimeter zones of large

commercial buildings with good accuracy. This method can also be used to evaluate the

degree of coupling between zones.

Although the NN model proposed in Paper-1 establishes a connection between ad-

jacent zones, it cannot be directly applied to perform long-term prediction for multiple

zones. This is because the neighbouring zone temperatures are only known to the current

step, but the future ones are unknown and dependent upon their coupling status. Paper-2

validates and improves the outcomes of the method proposed in Paper-1. It presents a

multi-zone NN model that is capable of predicting thermal dynamics of several adjacent

zones simultaneously. The developed model is the first recursive MIMO model which

models the convective thermal interaction between adjacent zones. This method is espe-

cially suitable for the modelling of the thermal zones which are wide open, adjacent, but

controlled by different AHUs. By comparing simulation results, we prove that this ap-
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proach produces better prediction results than using single-zone models. Moreover, based

on the model, a simple and effective optimal start-stop control method is developed for the

investigated building. The energy saving potential of applying this method to achieve en-

ergy saving is proved. Moreover, the proposed multi-zone model provides a more correct

optimal control result, due to its enhanced prediction accuracy.

The NN based predictive control presented in Paper-2 is rule based but does not pro-

vide any global optimised solutions. To take into account more factors, such as time-

varying electricity price, free-cooling and the thermal storage ability of the building,

a more systematic optimisation framework is needed. To achieve this, a hybrid MPC

(HMPC) is presented in Paper-3. The HMPC employs a low-complexity RC model as a

control oriented model, which is linearised using feedback linearisation. Linear program-

ming is applied to solve the optimisation problem, and an inverse NN is employed to map

the nonlinear relationship between the actual control command and the linearised control

output. Simulations and experiments were conducted, which demonstrate the effective-

ness of this strategy in achieving energy and cost savings within commercial buildings.

The HMPC introduced in Paper-3 deals with the uncertainty associated with the non-

linear HVAC process, but it does not consider the uncertainty related to the building pro-

cess. Because the simplified RC model used for building dynamics modelling is linear,

time-invariant, it inevitably results in modelling errors, which cause degradation to the

performance of the MPC. This is particularly true for the experimental zones, which are

affected by a high degree of uncertainty, and accurate modelling results are hard to obtain.

Therefore, Paper-4 mainly concerns the design of a RMPC to handle system uncertain-

ties and to guarantee constraints satisfaction. In particular, this paper proposes an adaptive

uncertainty bound estimator for robust MPC. The estimator is built upon the RNN model

introduced in Paper-2 and Paper-3. This approach makes it possible to handle the non-

Gaussian uncertainty effectively. The results show this method is able to obtain better

constraints satisfaction with the least performance loss.
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Finally, Chapter 8 summarise the main findings in this thesis, and discusses the topics

for further research.
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Chapter 4

Modelling of Building Energy Systems

This chapter is based on the following paper:

Full citation: Huang H., Chen L., Mohammadzaheri M., Hu E., “A New Zone Tem-

perature Predictive Modeling for Energy Saving in Buildings”, In Procedia Engineering,

vol. 49, pp. 142 - 151, 2012.

The above paper was written at the early stage of the study. Some modifications have

been made to make the knowledge more complete.

Contributions of this chapter: In this chapter, the capability of the RNN in modelling

the nonlinear AHU plants and thermal dynamics of the investigated building is demon-

strated. As a major novelty, the developed RNN model uses neighbouring zone temper-

atures as inputs to perform temperature prediction in the investigated zone. This method

results in improved prediction accuracies by considering the thermal coupling.

48



CHAPTER 4. MODELLING OF BUILDING ENERGY SYSTEMS 49



4.1. INTRODUCTION 50

Abstract

Currently in most buildings, the heating, ventilation and air conditioning (HVAC)

systems are controlled by the present temperature in the buildings. If the predictions

for future indoor temperature in the building or a zone were available, the build-

ing management system (BMS) could use both present and future temperatures to

control HVAC systems to optimise the energy usage of the buildings. Therefore, a

lot of research effort has been devoted to develop accurate temperature prediction

models using various approaches, e.g., traditional thermodynamic, simplified phys-

ical model, artificial neural networks (ANN), and fuzzy logic approaches. When a

sufficient amount of historical data of the building is available, the ANN approach

is thought to be the most cost-effective one. Most of the previous studies of ANN

modelling of building temperature, have either focused on single zone studies or as-

sumed that the thermal coupling between the zones are insignificant. In this study, a

more realistic multi-zone scenario in a large building is proposed in the development

of the ANN temperature predictive model. Different from the previous studies, the

coupled effects between zones caused by heat transfer are modelled using several

ANN models in cascade forms. The accuracies of the models were validated using

experimental data, which shows that the ANN models are very suitable to be used

for the modelling of the AHUs process. More importantly, it is found that consider-

ing the temperatures of the neighbouring zones can achieve more accurate results as

compared with the single-zone model, which indicates the importance of the thermal

coupling during the control design.

4.1 Introduction

Heating, ventilation and air conditioning (HVAC) systems in commercial buildings ac-

count for almost 50% of electricity bills for the buildings. An effective way to achieve

energy efficiency in HVAC systems is to implement supervisory control systems to opti-

mise the set points and operating modes of local control components [1]. In recent years,
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the supervisory control system design has benefitted greatly from the widespread use of

building management systems (BMS). BMS provides operators with a platform to moni-

tor and record the HVAC conditions, as well as to tune the local control parameters with

ease. To make the most efficient use of BMS for supervisory control systems design,

online predictive models with the ability to predict both the long-term and short-term dy-

namic behaviours of HVAC systems are needed. The predictive model should be accurate

within a wide operating range and be suited to model both perimeter and interior zones of

the building, by considering both the internal heat gain and varying ambient environment.

This dynamic model can be used for energy-efficiency control, such as model predictive

control (MPC) for building energy control [2–5].

In this paper, we focus on the investigation of the thermal zone process. Thermal

zone is referred to as an area in which the sensible temperature and relative humidity are

regulated by a single air handling unit (AHU) or a variable air volume box. The BMS

uses a series of PID controllers in cascaded form to regulate the indoor temperatures,

each associated with a particular zone. Zone thermal dynamics modelling is a challenging

task for a list of reasons. Firstly, a building’s operational environment is a time-varying

system, influenced by a variety of uncertainties. The change of occupancy level, weather

conditions and operational mode will affect the temperatures of zones inside a building.

Furthermore, HVAC system itself has several coupled control processes that cannot be

treated independently. For example, the AHU process suffers from process-gain and time-

delay variation due to the chilled water temperature change and flow-rate fluctuation [6].

Moreover, there are many nonlinear control variables such as temperature, humidity and

damper actions, which cannot be accurately modelled using the first principle models.

Lastly, the coupling effects between the adjacent zones are always unknown and hard to

model.

For achieving such a modelling task, energy and mass balance integral-differential

equations are often employed. The parameters in the equations are with physical signif-
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icance and can well represent the main characteristics of the systems. However, tuning

a detailed physical model requires extensive efforts and time consuming. On the other

hand, simplified physical models derived from grey-box modelling methods cannot al-

ways provide enough modelling accuracy. Recently, intelligent modelling technologies,

such as artificial neural network (ANN) models, have been extensively used for HVAC

zone temperature prediction. It has been shown in several studies that ANN models are

suitable for the modelling of nonlinear HVAC systems and buildings’ thermal dynam-

ics [7–11]. For example, Ruano et al. [8] built an adaptive radial basis function neural

network model to predict the temperature in a school building, with the result revealing

better performance than the multi-node physically based model. Using feedforward neu-

ral networks, Lu and Viljanen [7] constructed a nonlinear autoregressive with external

input (NNARX) model to predict both indoor temperature and relative humidity. Based

on this study, Mustafaraj et al. [10] developed both a linear ARX model and a neural

network-based NNARX model using BMS data to predict the thermal behaviour of an

open office. Besides pure modelling works, the ANN models have also been applied to

control applications. For example, an online ANN controller was developed and used in

[2] to control a commercial ice storage of an HVAC system. The controller determined

the hourly set-points for the chiller plant in order to minimize the total cost over a 24-hour

period. In another study, a back propagation-based ANN model was developed to deter-

mine the rising time for a heating system in a building [12]. The similar model structure

was later used in [13] to increase the thermal comfort level of occupants and reduce en-

ergy consumption by reducing temperature overshoot and undershoot phenomena in an

air conditioning system.

However, most of the existing studies had either focused on single-zone examination

or assumed that the interaction within the buildings were negligible [10, 14]. This as-

sumption may be true for the rooms that are well insulated, but not the zones with wide

open space, such as a public hall. In real-life buildings, thermal characteristics of the
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Figure 4.1: Schematic of the chiller plant.

zones are very different from one to another, and are correlated. It is therefore necessary

to develop a method suitable for multi-zone modeling, so that they can be used to pre-

dict zone temperature at any locations of a building. When a model predictive control is

considered, the effect of this thermal coupling will be lumped into the uncertainty terms,

which will increase the degree of uncertainty within the model and deteriorate its perfor-

mance. Investigating the effects of this thermal coupling therefore becomes important.

The paper starts by analysing the physical principle of the AHU plant and thermal

zone process. Afterwards, the thermal dynamics models for them will be modelled by

using RNN models. In particular, this research proposes a cascade NN structure which

enables modelling of temperature dynamics in both perimeter and interior zones of a large

commercial building.

4.2 System Description

4.2.1 AHU Model

In this section, some first principles models for the HVAC plants and thermal zones are

built and analysed. The purpose is to illustrate the complexity of the building modelling

problem. The HVAC system investigated in the case study has three chillers to provide

chilled water. The strategy of starting a new chiller is determined by the common chilled

water return temperature in the primary loop. If this temperature is above a threshold
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Figure 4.2: Schematic of the AHU. The arrows indicate the direction of the air flow inside

the duct.

value of 12◦C for more than five minutes, the BMS will enable a new chiller. Fig. 4.1

shows the schematic diagram of a chiller plant: chilled water is transmitted from the

chiller plants to the cooling coils at individual AHUs through control of variable speed

water pumps.

At the subsystem level, several AHUs are running in parallel to serve different zones.

Fig. 4.2 shows the schematic diagram of a constant air volume (CAV) air-handling unit. It

consists of a cooling coil, a heating coil, water valves, fans and air dampers. The return air

is partially recirculated through the mixed air damper and partially exhausted through the

exhaust damper. On the other side, the fresh air enters the circuit through the outdoor air

damper and then mixed with the return air. These three dampers are controlled to regulate

the percentage of return air and outdoor air used for conditioning the space. When ambient

temperature is sufficient low, the outdoor air damper will be open to allow more cool air

to come in. If we assume that no frictional losses occur across the converging section, the
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relationship among the return air, outdoor air and mixed air can be depicted as [15]:

mrCaTr +moutCaTout = mmCaTm, (4.1a)

mr +mo = mm, (4.1b)

where mr and Tr are mass flow rate and temperature of the return air, respectively, mout

and Tout are mass flow rate and temperature of the outdoor air, respectively, mm and Tm

are mass flow rate and temperature of the mixed air, respectively, and Ca is specific heat

of air. The mixed air passes through the cooling coil in which heat exchange happens. It

is assumed that the cooling coil is well mixed, so that the outflow water temperature is

the same as the mean temperature of the water inside the coil. The energy balance on the

water and air side of the cooling coil can therefore be expressed as:

Ccw
dTcwo

dt
= mwCp(Tcws−Tcwo)−UA(Tcwo−Tsa), (4.2a)

Ca
dTsa

dt
=UA(Tcwo−Tsa)− ṁCa(Tsa−Tai), (4.2b)

where Ccw is the overall thermal capacity of the chilled water and coil body, Tcwo is outflow

water temperature, Tao is discharge (outflow) air temperature, mw is water mass flow rate,

U is overall heat transfer coefficient, A is effective surface of the coil, Ca is the specific

heat capacity of the supplied air, and Tai is the temperature of the air going into the cooling

coil. The chilled water temperature and flow rate vary according to the cooling load of

the entire building, which causes disturbance to the AHU process.

The control input to the system is mw regulated by the opening level of chilled water

valve in percentage. The chilled water valve is simply controlled proportionally by the

difference between measured zone temperature and setpoint temperature to maintain the

desired zone temperature value. The water valve also has static nonlinearity, which is

caused by the water pressures around the installed valve in the pipe network. It can be
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Figure 4.3: Analytical model for calculating zone temperatures.

seen that the main factors affecting the supply air temperature are return air temperature,

outdoor air temperature, return chilled water temperature, chilled water flow rate, valve

opening level and damper opening level. Eq. (4.2a) is bilinear in structure, because of the

multiplication of chilled water temperature and chilled water flow rate.

4.2.2 Thermal Zone Process

It is assumed that there is a big room that is divided into two zones and the temperature

in each zone is uniform, as shown in Fig. 4.3. It can be seen that the temperatures of

the zones depend on the surface temperature of the walls, heat transfer coefficient of the

walls, outdoor temperature, flow rate of the supply air, supply air temperature, solar gain

and neighbouring zone temperature etc. The temperature distribution in each zone is

assumed to be uniform, the density of the air and air flow rates are both assumed to be

constant. Energy and mass balance governing equation of the zone can be written as [15]:

Cz
dTz

dt
= ṁ1Ca(Tsa−Tz)+URAR(TR−Tz)+UgAg(Tout−Tz)+UwAw(Tw−Tz)

+ṁ2Ca(Tn−Tz)+Qr +Qp +Qleak,

(4.3a)
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Cw
dTz

dt
=UwAw(Tz−Tw)+UwAw(Tout−Tw), (4.3b)

CR
dTR

dt
=URAR(Tz−TR)+URAR(Tout−TR), (4.3c)

where Cz is the overall thermal capacity of the zone, Tz and Tn are zone temperature and

neighbouring zone temperature, respectively, Tout is outdoor temperature, Tsa is supply air

temperature, Tw is mean temperature of inside surface of the walls, ṁ1 and ṁ2 are mass

flow rate of the supply air and the air between investigated zone and its neighbouring

zone, Uw, Ug and UR denote the overall heat transfer coefficient of surface of the walls,

window and roof, respectively, Aw, AR and Ag denote area of the wall, roof and window,

respectively, Qr, Qp and Qleak stand for heat gain from solar radiation, occupants and

leakage of the zones, respectively. Eq. (4.3) illustrates that the rate of temperature change

in the investigated zone is related to the dynamic variables such as the temperatures of

supply air, wall surface, outdoor air and neighbouring zone. The convective heat transfer

between zones can be expressed as:

R f = αdRvCv (4.4)

where α denotes the constant of proportionality, d denotes the distance between the two

temperature sensors, Rv denotes resistance per unit distance, and Cv denotes the capaci-

tance between the zones.

4.3 Recurrent NN

It can be seen that both simplified AHU model and thermal zone models are nonlinear

in nature and affected by uncertainties. Therefore, NN model could be a better method

to perform the modelling task. Feedforward neural network is a static network, and if

without tapped delay term, it is unable to represent a dynamic system. On the other hand,

the RNN has an internal feedback loop, so it can store information for latter use. Their



4.3. RECURRENT NN 58

abilities to deal with time-varying input or output through their own natural temporal op-

eration are of particular interests of researchers [16]. The RNN can always demonstrate

good control performance in the presence of uncertainty, and is more suitable for dynam-

ical systems as compared with the FNN.

Nonlinear autoregressive with exogenous inputs (NARX) model is used to express the

RNN structure. A multiple inputs, single output nonlinear system used for one-step-ahead

prediction has the following form:

ŷ(k) = f [φ(k),w]+ e(k), (4.5)

φ(k) = [y(k−1)...y(k−na),u1(k−d1)...u1(k−nb−

d1 +1), ...,ui(t−di)...ui(k−ni−di +1)]T ,
(4.6)

where ŷ denotes the predicted outputs, i denotes the number of input variables, d is the

delay time of input variables, k is time step, na to ni are the orders of input variables, f is

the NN function, w is the weighting factor, and e is modelling error. The output variable is

predicted one step ahead, as a function of past values of both input variable u and output

variable y. The delay time is an inherent property of the input variable, which can be

obtained from the physical characteristics of the dynamic system. The orders of inputs

variables, expressed by ni , reflects the persistence of dynamics within the system [17].

4.3.1 Multi-layer Perceptions Neural Network

ANNs are mathematical models inspired by biological NNs. They mimic a human neuron

system, to acquire learning ability. Learning from historical data, the networks adjust

the connection weights among the neurons according to learning rules, so that trained

networks can generate correct outputs. The most attractive feature of NNs is that they

are capable of approximating any measurable functions to any desired degree of accuracy
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Figure 4.4: (left): The structure of a feed-forward neural network model; (right): the

structure of a hidden node in the ANN.

[18]. Multi-layer perceptions (MLPs) are the most commonly used NNs in control [19].

The structure of an ANN is illustrated in Fig. 4.4. The first layer of MLP is a set of

sensory units containing the information from all input variables. The second layer is a

hidden layer containing a certain number of neurons. Each neuron has a sum operator and

an activation function, which perform nonlinear transformation. The hidden layer uses a

logistic sigmoid function as the activation function. A NN with three layers of neurons

was employed. The network function is expressed with the following equation:

ŷ(t) = F
nu

∑
i=1

Wj,u f (
nh

∑
i=1

wu,iϕi(k)+bu,0)+B j,0, (4.7)

f (x) =
1

1+ exp(−x)
, (4.8)

where u denotes the inputs to the network, wu, j is the weighting vector from the hidden

neurons to the output layer, Wj,u represents the matrix containing the weights from the

external inputs to the hidden units, bu,0 and B j,0 are the bias of the hidden units and the

output layer, respectively, and the scalars nu and nh denote the number of units in the input

layerand hidden layer, respectively. ϕi(k) indicates the vector that contains the regression

of the Eq. (4.6) at time step k, f is sigmoid function expressed by Eq. (4.8), and F uses a

linear function, and j = 1 as only one out put is considered. The weight vector w and bias
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vector b at the hidden layer were initialised using the Nguyen-Widrow method to keep

the trained model more consistent. Levenberg-Marquardt was employed to train the NN,

which minimises mean square error (MSE). The transfer function f in the hidden layer

can also be a linear one, which makes the NN model linear as well.

4.4 Data Preparation

ANN modelling was started by choosing the relevant input candidatures and storing them

in a matrix for preparation. Since some of the candidature variables selected above may

be correlated, noisy and have no significant relationships with the outputs, a suitable in-

put variable selection criterion is needed. To address the problem, a simple linear forward

selection criterion is used in this study to obtain the best ANN model structure as well as

to investigate the relevance of each input variable [17]. Using this method, the initial can-

didate variables are chosen based on the prior knowledge of the system. The performance

of the model is then maximised by changing the orders of input variables and number of

hidden layers. The remaining candidature variables are then added on top of the previous

ones, after the last optimisation process is finished. The candidate variables that fail to

improve the performance of the ANN model are abandoned and others will be preserved .

The experiment started by choosing a combination with three inputs: zone tempera-

ture (Tz), outdoor temperature (Tout) and supplied cooling energy (Qu). The delay times

of variables were estimated by observing the historical data and were used to re-arrange

the input variables. The data preparation method used in [20] was employed in this study.



CHAPTER 4. MODELLING OF BUILDING ENERGY SYSTEMS 61

After considering the delay, the data matrix can be rewritten as:

input︷ ︸︸ ︷
Tz(r) · · · Tz(r−na +1) Tout(r) · · · Tout(r−nb +1) Qu(r) · · · Qu(r−nc +1)

...
...

...
...

...
...

...
...

...

Tz(n) · · · Tz(n−na +1) Tout(n) · · · Tout(n−nb +1) Qu(n) · · · Qu(n−nc +1)

 ,
(4.9)

out put︷ ︸︸ ︷
Tz(r+1))

...

Tz(n+1)

 , (4.10)

where r is the order of the system, which is equal to the maximum order of input and

output variables. Eq. (4.9) was later expanded to include more input variable candidates

for NN training in order to obtain the best model structure. For example, when 31 days’

data are used for training, with na = 3,nb = 2,nc = 1, the data can be prepared in the

following way:

Data =

input︷ ︸︸ ︷
T3 T2 T1 Tout,3 Tout,2 Qr,3 Qu,3

T4 T3 T2 Tout,2 Tout,1 Qr,2 Qu,2
...

...
...

...
...

...
...

T4464 T4463 T4462 Tout,4464 Tout,4463 Qr,4464 Qu,4464

 ,

out put︷ ︸︸ ︷
T4

T5
...

T4465

 . (4.11)

4.5 Cascade MPC for Multi-zone Building

The thermal dynamics of a multi-zone building can be represented by an interconnected

system of several zones. Fig. 4.6 shows the layout of the experimental areas used in
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Figure 4.5: Structure of cascade RNN for multi-zone modelling.

this study. It has both perimeter zones which are directly connected to the ambient envi-

ronment, and interior zones which are only connected to the perimeter zones. Obviously,

outdoor temperature and solar radiation affect the external zones through convection, con-

duction and radiation but have negligible effects on the interior zones. Considering this

fact, a multi-zone temperature prediction follows the following rules:

1. To predict the temperature of the perimeter zone, the weather inputs, such as out-

door temperature and solar radiation must be considered.

2. To predict the interior zone temperatures, weather inputs can be ignored but tem-

perature of the perimeter zone should be considered.

3. When several zones are considered together, external zone temperatures must be

predicted first and then used as a input to predict interior zone temperatures.

A MIMO model with the structure as shown in Fig. 4.5 is used to express the dynamic

behaviour of a three-zone process, where u1 to u3 are the input variables, T1 to T3 are

measured zone temperatures and T3 is the predicted zone temperature. Following the

rules set above, the MIMO model can be decoupled into three individual multiple-inputs,

single-output (MISO) models. Each MISO model represents the thermal characteristic of

a single zone, but still maintains connection with its neighbouring zones. The availability

of this method on a real building will be tested in the following sections.
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Figure 4.6: Layout of the experimental zones.

4.6 Data Gathering

The experimental data used in this study were collected from a commercial HVAC sys-

tem at the Terminal One of Adelaide Airport through the BMS. To address the problem,

thermal zones located at two different locations of the building were selected for exper-

imental purposes: one is located at the perimeter zone (Zone-1) and the other located

at the interior zone (Zone-3). Fig. 4.6 shows the general layout of the selected zones.

Zone-1 is only adjacent to Zone-2 without any wall built between them. Zone-3 is an

office room, located in the central part of the building (Zone-3). This room is adjacent to

a spacious hall (Zone-4) but separated by a wall. The experiment data were collected on

typical summer days in January 2011. The data set were divided into two groups. The

first 20 days’ data were used for model training, and remaining days’ data were used for

model validation.

Table 4.1 lists a series of variables based on the analytical models presented in the

previous section. These include controllable variables related to the HVAC system, and
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Table 4.1: Input variables definition.

Variables Description Unit

HVAC process %

Vc Chilled water valve opening level l/s

Qu Supplied cooling energy kJ

fcw Chilled water flow rate ◦C

Tc Chilled water temperature ◦C

Dout Outdoor air damper opening level %

Zone process

Tout Outdoor temperature ◦C

Tn Neighbouring zone temperature ◦C

Tz Objective zone temperature ◦C

Tr Return air temperature ◦C

Sr Global horizontal irradiation W/m2
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Figure 4.7: Comparison between linear and nonlinear NN models.

uncontrollable variables indicating the thermal conditions of the internal and external

environment. The data are scaled between -1 and 1, before it is fed into the NN for

training to avoid the dominant effects of certain variables. The algorithm used to scale the

inputs into [-1,1] is:

x′ =
(ymax− ymin)(x− xmin)

xmax− xmin
+ ymin, (4.12)

where x′ and x denote the number before and after normalisation, ymax = 1 and ymin =−1

are the maximum and minimum values of specified range, xmax and xmin are the maximum

and minimum values of the data set to be scaled, respectively. Every time the neural

network function is used, the output values of the network should be reversed to obtain

the real system output.

We build two groups of RNN models in this section. The models in the first group

model the AHU process. At first, the prediction result of the linear NN is compared with

the nonlinear NN to investigate the nonlinearity of the AHU plant. Afterwards, the signif-

icance of the chilled water temperature is also investigated. The second group of models

are used for indoor temperature prediction in Zones 1 and 3, respectively. In particular, we

investigate the influence of the neighbouring zone temperature on the prediction accuracy

of the investigated zone.
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Table 4.2: Simulation results when different models are used.

RMSE (in ◦C) NMSE (in ◦C)

AHU model-1 1.53 73%

AHU model-2 1.21 80%

AHU model-3 (Linear NN) 1.55 47%

Zone-1 model-1 0.54 75%

Zone-1 model-2 0.45 86%

Zone-3 model-1 0.27 62%

Zone-3 model-2 0.17 89%

Table 4.3: Different model structures

Model type Model structure

AHU-1 model-1 f (Tr(k),Dout(k),Vc(k)),Tout(k−1),Tout(k),Tcw(k),Tcw(k−1))

AHU-1 model-2 f (Tr(k),Dout(k),Vc(k)),Tout(k−1),Tout(k))

AHU-1 model-3 (linear) f (Tr(k),Dout(k),Vc(k)),Tout(k−1),Tout(k),Tcw(k),Tcw(k−1))

Zone-1 model-1 f (T1(k−2),T1(k−1),T1(k),Tout(k−1),Tout(k),Qu(k),Sr(k))

Zone-1 model-2 f (T1(k−2),T1(k−1),T1(k),Tout(k−1),Tout(k),Qu(k),Sr(k),T2(k))

Zone-3 model-1 f (T3(k−2),T3(k−1),T3(k),Tout(k−1),Tout(k),Qu(k),Sr(k))

Zone-3 model-2 f (T3(k−2),T3(k−1),T3(k),Tout(k−1),Tout(k),Qu(k)),Sr(k),T4(k))
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Figure 4.8: AHU model without considering chilled water temperature.
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Figure 4.9: AHU model considering chilled water temperature.
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Figure 4.10: Chilled water temperature
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Figure 4.11: Prediction results for Zone-1; Left: Neighbouring zone temperature was not

used; Right: Neighbouring zone temperature was used.
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Figure 4.12: Temperature difference between Zone-1 and Zone-2.
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Figure 4.13: Prediction results for Zone-3; Left: Neighbouring zone temperature was

not used; Right: Neighbouring zone temperature was used.

4.7 Validation Results and Discussion

After the training process, the obtained models should be validated. An important con-

cern when training the NN model is to avoid the phenomenon of over-fitting. Over-fitting

means the model performs well during the training process, but generates large errors

during the testing process. To avoid this phenomenon, the trained models were always

validated using another set measured data, which were different from the training data.

During the validation, the measured output data were only used at the first step. Starting

from the second step, the predicted outputs are used as the input variables for the predic-

tion. This is called multiple-steps-ahead prediction. In general, the performance of the

predictive model degrades as the step size increases. In this study, one-day-ahead pre-

diction was selected. The best neural network structure (in terms of input orders, hidden

layer number) was chosen based on relative mean squared error (RMSE) and normalised
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mean squared error (NMSE). The obtained final model structures are listed in Table 4.3.

The following observations have been made:

• The overall simulation result is reported in Table 4.2. It clearly shows that a substan-

tial reduction in prediction error was achieved when the chilled water temperature

was considered by the AHU model. It also demonstrates that the nonlinear model

outperforms the linear one. The prediction accuracies in Zone 1 and 3 were also

improved after their neighbouring zone temperatures were considered as inputs.

• A comparison between the plots of the predictive supply air temperature trajectory

is illustrated in Fig. 4.7. It can be seen that the nonlinear NN model outperforms

the linear ARX model considerably. The nonlinear NN model has a NMSE of 80%,

which is much higher than the linear ARX model (47%) . This result proves that

there are some nonlinearities in the AHU process that are captured by the nonlinear

NN model.

• According to Fig. 4.8, when the first AHU model was considered, an obvious

temperature error was generated. This error was successfully eliminated (as shown

in Fig. 4.9) when the second AHU model, in which chilled water temperature

was used as a variable, was used. This indicates that the operating status of the

local AHUs are closely related to the operating status of the chiller plant. This is

especially true for the system installed with multiple chillers, whose staging up and

down causes fluctuation to the chilled water temperature. From Fig. 4.10, it can be

seen that the chiller staging up caused the chilled water temperature to raise from

7 ◦C to 14 ◦C and then back to 7 ◦C at 9:00 am. This effects of this change on the

supply air temperatures at the local AHUs can be modelled by the RNN with very

a good prediction accuracy.

• Fig. 4.11 and 4.13 compare the prediction results when the neighbouring zone

temperature was considered as an input or not. Interestingly, it shows that when the



4.8. CONCLUSIONS 70

neighbouring zone temperature was employed as an input for the NN model, the

prediction accuracies for both Zone-1 and 2 were improved. This indicates that both

conductive and convective heat transfer influence the dynamics of the investigated

zone, and the heat transfer phenomenon can be well presented by the proposed

cascade NN model. Fig. 4.11 also shows that there was a persistent prediction

error happened on the second day. During the same period of time, there was a big

temperature difference between Zone-1 and 2, as shown in Fig. 4.12. This clearly

indicates the relationship between the prediction error and temperature difference

between the adjacent zones.

4.8 Conclusions

In this paper, a series of RNN models have been built to model the thermal dynamics

of the AHU plant and thermal zone process, and validated using BMS data. It is found

that the RNN is capable of modelling the nonlinear AHU process with a good prediction

accuracy. Moreover, we used a cascade NN model to identify the thermal connection

between adjacent zones. It was found that the temperature of the investigated zone can

be predicted more accurately, when the neighbouring zone temperature is employed as

an input. This proposed method enables the temperature prediction for both perimeter

and interior zones. The proposed model can be utilised for achieving energy savings

in buildings. For instance, the operating hours and set point temperature for individual

AHUs can be re-scheduled based on the prediction result, while taking the constraints

such as occupant hours and time-based electricity price into account. Since there are

always a large number of AHUs inside large buildings, a significant amount of energy

saving is possible when the same strategy is applied on each of them. In further studies,

the RNN model will be used to design predictive control strategies.
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Chapter 5

Multi-zone Modelling and Control

This chapter is based on the following paper:

Full citation: Huang H., Chen L., Hu E., “A neural network-based multi-zone mod-

elling approach for predictive control system design in commercial buildings”, In Energy

and Buildings, vol. 97, pp. 86 - 97, 2015.

Contribution of this chapter: Continuing with the previous chapter, this paper pro-

poses a MIMO model for indoor temperature prediction in multi-zone buildings. An

optimal start-stop controller is also built based on the model, which demonstrates great

energy saving potential.
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Abstract

Predictive control techniques for heating, ventilation and air conditioning (HVAC)

systems have been paid an increasing attention in recent years. Such methods rely on

building models to accurately predict indoor temperature and make optimal control

decisions. Obtaining building models is challenging, as buildings thermal dynamics

are nonlinear, have long time delays, and contain uncertainties. Previous studies on

building modelling work mostly focused on small-scale buildings and single-zone

cases. They do not accommodate some important features of real-world commercial

buildings, such as the effects of thermal coupling between adjacent zones. This pa-

per presents an artificial neural network (ANN) model-based system identification

method to model multi-zone buildings. The proposed model considers the energy

input from mechanical cooling, ventilation, weather change, and in particular, the

convective heat transfer between the adjacent zones. The testing of the temperature

history shows that the proposed ANN model captures the thermal interactions be-

tween the zones reasonably well, therefore achieves more accurate prediction results

than a single-zone model. Based on the model, a simple and effective model-based

predictive control method is developed, with the results showing that comfortable

temperature can be maintained with reduced energy consumption.

5.1 Introduction

Buildings are responsible for 40 per cent of the energy consumption and 33 per cent

of carbon dioxide emissions in the world. Within building sectors, almost half of the

energy use is related to heating, ventilation and air conditioning (HVAC) systems [1].

Reducing the building energy costs has become an urgent task, due to the increasing

environmental concerns and energy prices. Despite of this fact, HVAC systems at the

existing buildings are not operating in the most efficient ways. Therefore, this study aims

to develop a building modelling approach, which is suitable for the design of predictive
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control strategies in commercial buildings. The control strategy can be used to reduce the

energy consumption and improve thermal comfort in the buildings.

Most current, proportional-integral-derivative (PID) control and on/off control are be-

ing widely used for commercial HVAC systems. They use current measured tempera-

tures as the inputs to control local actuators, such as chilled water valves and mechanical

dampers. However, since building dynamics have strong thermal inertial, the indoor tem-

perature may delay in response to the control actions. This causes a waste of energy

use and poor thermal comfort. In recent years, researchers have shown predictive con-

trol strategies can significantly reduce the energy costs associated with HVAC systems,

through both simulation [2–6] and experimental studies [7–10]. Predictive control allows

one to take advantage of weather forecast and occupancy prediction to reduce energy

costs and improve thermal comfort. In general, predictive control can be regarded as an

integration of different supervisory control methods, such as optimal start-stop control

[6], load shifting control [11] and demand-limiting control [12]. The most crucial step of

implementing such a control strategy is to create a thermal dynamic model, able to accu-

rately predict changes in the building temperature. For control purpose, the model should

have simple structure and be suitable for a wide operational range. However, building

modelling is challenging, for several reasons. The complexities of building dynamics

modelling are listed as below:

1. A building’s operational environment is a time-varying system with many uncertain

variables. For example, a sudden change in the number of occupants or accumulated

change in solar gain will cause fluctuation of indoor temperature.

2. Air-conditioned buildings possess several nonlinear variables, such as temperature,

relative humidity and outdoor air damper actions, which are difficult to model using

the standard methods (such as the simplified physical model).

3. HVAC systems have several coupled control processes that cannot be treated in-
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dependently. For example, air handling unit (AHU) processes are affected by the

chilled water temperature changes and flow-rate fluctuations.

4. The internal space of buildings is divided into adjacent zones, each controlled by

an individual AHU. The temperatures of the individual zones are not uniform, and

are coupled, which makes building modelling a multiple-input, multiple-output

(MIMO) problem.

A variety of approaches has been proposed for modelling the thermal dynamics of

the buildings. Probably the most commonly used one is resistance-capacitance (RC) net-

works, which is based on the first principle of thermal dynamics. The use of RC models

for model predictive control (MPC) has been applied to several building energy studies

[11, 13–16]. RC networks use lumped capacitance and resistance in an analogy electric

circuit to represent the thermal elements of a building. When heat transfer among zones

is considered, RC networks can be used to model multi-zone buildings by linking a series

of linear differential equations [17, 18]. For example, Goyal et al. [19] model inter-zone

convection of a building with RC networks. They conclude that the temperature predicted

by the RC model that includes convection effects are closer to the measured temperature

than those by the model that considers conductive heat transfer only. However, applying

such an approach to model convective heat transfer among the zones can cause model

mismatch, mainly because the uncertain coupling effects between zones can hardly be

identified by the simplified models.

Statistical models derived from system identification methods have also been investi-

gated. This includes autoregressive with the exogenous (ARX) model [20], autoregressive

moving average model with exogenous inputs (ARMAX) model [21] and subspace model

[7]. For example, Morosan et al. [22] presented a distributed model predictive control

strategy for a multi-zone building with intermittently operating mode. They found that

the distributed MPC which considers the thermal interaction among zones outperforms

the MPC which does not consider thermal interaction. However, because the statistical
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models are linear, time-invariant, they can easily lose accuracies when strong nonlinearity

and uncertainties are presented at the systems. Therefore, growing attention has also been

paid to artificial neural network (ANN) models, for building modelling and control [23–

26]. ANN models are suitable for building dynamics modelling due to their abilities to

deal with nonlinear, multivariable modelling problems. Different from the physical mod-

els, the parameters of ANN are the number of neurons and the values of interconnection

weights and biases. If a dynamic ANN model is employed, the orders and delay terms

should also be considered during the model development.

Several studies have proven ANN models superior to linear models [24, 27] and physi-

cal models [25, 28] in modelling the nonlinearity of HVAC systems. Using a feed-forward

neural network, Lu and Viljanen [27] constructed a nonlinear autoregressive with external

input (NARX) model to predict both indoor temperature and relative humidity. Ruano et

al. [25] incorporated a radial basis function neural networks to build an adaptive model

to predict indoor temperature of a school building. Ferreira et al. [26] tested an ANN

based model predictive control at a campus building, and applied a discrete branch and

bound approach to optimise the energy usage. Spindler and Norford [28] built a multi-

zone, multi-node ANN model to predict indoor temperature inside a multi-zone residen-

tial building. The accuracy of the predictive model is smaller than the one obtained in

other similar studies. In Ref. [29], a predictive control method was developed to de-

termine the optimal cooling mode, which results in a reduced fan energy usage while

maintaining a comfortable temperature. Garnier et al. [6] built an ANN model-based pre-

dictive control strategy to satisfy the thermal comfort index of a non-residential building.

The result shows that the predictive controller which considers the heat transfer between

the adjacent rooms offers improvement in both energy efficiency and thermal comfort.

In summary, previous studies focusing on neural network modelling have largely con-

sidered multi-input, single-output (MISO) structures for single zones. The effects of ther-

mal interactions (for example, convective or conductive heat transfer) have rarely been
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addressed. Multi-zone modelling using ANN can be found in [6, 28]. However, the ef-

fects of thermal interaction between zones on the modelling accuracies have not been

discussed in detail by these studies. It is believed that with enough building data, ANN

models are able to model effectively the thermal interaction between the zones, towards

the achievement of a MIMO model with better prediction accuracy and generalisation

capabilities. Motivated by this, this study proposes a new ANN model-based modelling

approach for multi-zone buildings. The model considers factors such as mechanical cool-

ing, ventilation, weather conditions and heat transfer between the adjacent zones. Further,

we investigate the significance of convective heat transfer among zones, through compar-

ing predictive accuracies of single-zone models to a multi-zone model. To verify our

method, an airport terminal building equipped with a modern HVAC system is employed

as the research vehicle. The accuracies of the models are validated and compared us-

ing field data measured from the building. Based on the proposed models, a predictive

control framework with a simple structure is also proposed, with the objective being to re-

duce energy consumption while maintaining comfortable temperature at the investigated

building. The merits of the multi-zone model based control method as compared to the

single-zone model based control method will also be discussed.

This paper is structured as follows: Section 2 describes the building and the HVAC

system used in this study. Section 3 addresses the physical analysis of the building dy-

namics, and the detailed procedures of obtaining an optimal ANN model. The principle

of the optimal start-stop control method is introduced in Section 4. Section 5 illustrates

the simulation results and compares model performance through error analysis. The use

of ANN-based optimal start-stop control at the investigated system is discussed in Section

6. The paper concludes with a description of future work.
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Figure 5.1: The top view of T-1 building, Adelaide Airport.

Figure 5.2: Check-in hall located at level-2 of Adelaide airport.
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5.2 Building Description

The test building, as shown in Fig. 5.1, is the Terminal 1 building of Adelaide Airport,

South Australia. The check-in hall consisting of four thermal zones was selected as the

experimental area. Each zone is served by an individual AHU, as illustrated in Fig. 5.2.

The selected zones are located at the perimeter areas of level-2 of the building, isolated

from the outdoor environment by a large glass facade to the north. Two motorised blinds

are installed at the north window, which is used to reduce the effects of solar radiation.

During the occupied hours, passengers enter the check-in hall through automatic doors.

The investigated zones are lightweight in structure, because it has a significant thermal

coupling with the outdoor environment and the adjacent space. The uncertainties such as

solar radiation, internal gain, leakage and thermal interaction make the modelling work

very difficult.

The building is controlled by a Johnson Controls Australia Pty Ltd BMS. At the high

level, three chillers provide chilled water to the entire water circle. The chilled water is

transmitted from the chiller plants to local AHUs through variable-speed water pumps. At

the lower level, AHUs transfer the cooling energy from the chilled water circuit into air-

flows, and then supply to the local thermal zones. Fig. 4.2 shows the schematic diagram

of the AHU used in this study. During the operation period, the return air is recirculated

through the outdoor air damper and then mixed with the return air. The mixed air then

passes through the cooling coil and the air temperature decreased after the heat exchange.

The chilled water valve is controlled proportionally to the difference between measured

zone temperature and set point temperature, in order to maintain the zone temperature at

the desired value. The AHUs are installed with an economizer. When the outdoor air

temperature is lower than the return air temperature but higher than a minimum value,

the mixed air damper will control the return air volume mixed with the outdoor air. Each

AHU is mounted with three sensors: a supply air temperature sensor, a return air temper-

ature sensor, and a zone temperature sensor. There are also two sensors installed at the
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Figure 5.3: Model for calculating zone temperatures.

building’s roof to provide information on outdoor air temperature and relative humidity.

All information is connected to the BMS, allowing a master PC workstation to monitor

and control different zones throughout the building. In this study, we mainly focus on the

investigation of the cooling plant. However the proposed method can also be applied to

the heating system, which uses boilers as the central plant.

5.3 Modelling

5.3.1 Analytical Model

This section introduces simplified physical models to illustrate the thermal hehaviour of

a multi-zone building. The models are modified based on the zone model introduced in

Ref. [30]. Fig. 5.3 shows the energy balance network diagram of a double-zone case. The

selected zones are identical to each other and have no wall built in between. Therefore, the

convective heat transfer between the two zones becomes an important factor to concern.

At first, the following assumptions are made:
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1. The air in the zone is fully mixed, so that the temperature distribution in each zone

is uniform;

2. The density and flow rate of the air in the zones are constant and not influenced by

the temperature change.

3. The walls and ceiling have the same thermal influence on the zone temperature.

The effect of ground on the zone temperature is not considered.

Under the assumptions made above, the energy and mass balance-governing equations

of the zones can be derived as below:

C1
z

dT1

dt
= ṁCa(Tsa,1−T1)+

(T2−T1)

R f
+

Tout−T1

Rg,1
+

Tw,1−T1

Rw,1
+Q1, (5.1)

C2
z

dT2

dt
= ṁCa(Tsa,2−T2)+

(T1−T2)

R f
+

Tout−T2

Rg,2
+

Tw,2−T2

Rw,2
+Q2, (5.2)

C1
w

dTw,1

dt
=

T1−Tw,1

Rw,1
+

Tout−Tw,1

Rw,1
, (5.3)

C2
w

dTw,2

dt
=

T2−Tw,2

Rw,2
+

Tout−Tw,2

Rw,2
, (5.4)

where Ci,(i=1,2)
z denotes thermal capacitance associated with the fast-dynamic masses such

as the air around the temperature sensors, Ci,(i=1,2)
w represents the thermal capacitance

associated with the slow-dynamic masses, such as the internal walls and ceiling, ṁ is the

mass flow rate of the supply air, Ca is the specific heat of the air, Ti,(i=1,2) represents the

air temperatures of zones 1 and 2, Tout is the outdoor air temperature, Tw,i,(i=1,2) denotes

the mean wall temperatures in zones 1 and 2, Tsa,i,(i=1,2,) is the temperatures of the supply

air to zones 1 and 2, Rg,i,(i=1,2) represents the thermal resistance related with the elements

with little thermal capacitance, such as windows, Rc represents the heat transfer coefficient

between the zones, Qi,(i=1,2) represents the heat gains caused by solar radiation (Qs),

leakage (Ql) and occupants (Qp).
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Eqs. (5.1) to (5.4) illustrate that the coupling strength between the adjacent zones

depends on two factors: 1. The temperature difference between two zones, and 2. The

heat transfer coefficient (R f ). Although the temperature difference can be measured by

the temperature sensors mounted in the individual zones, the convective heat transfer

coefficient, which is related with the air flow rate between the zones, is hard to estimate.

Additionally, the unmeasured disturbances variables Q1 and Q2 also contain uncertainties,

which can hardly be directly modelled by traditional mathematical equations.

5.3.2 NARX Model for MIMO Modelling

As the building thermal system is nonlinear in nature, and is involved with several stochas-

tic uncertainties, the simplified physical models described above can hardly represent a

real building system. Therefore, we employ a nonlinear autoregressive models with ex-

ogenous input (NARX) as the model structure [31, 32]. The NARX is a recurrent dynamic

network, with feedback connections enclosing several layers of the network. An impor-

tant feature of the NARX model is that its output depends not only on the current inputs

to the network, but also on the current and previous outputs of the network. According to

the NARX structure, a MIMO dynamic system in discrete form can be expressed by the

following equations:

ŷ(k+1) = f [φ(k),w]+ e(k), (5.5)

φ(t) = [y(k)...y(k−ny),u(k−nk), ...,u(k−nu−nk)], (5.6)

where u = [u1,u2, ...,un]
T and y = [y1,y2, ...,yn]

T are the system input and output vectors,

respectively, k denotes the time step, ŷ(k+1) denotes the output predicted by the model,

nk is the delay time of the inputs, φ(k) is the regression vector, and nu and ny are the orders

for the input and output variables, respectively. f is the nonlinear neural network function,

and e represents the prediction errors. Eq. (5.6) illustrates that the output values of y1 at
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time steps k, (k−1),...,(k−ny) are the inputs to ŷ1(k+1). Further, the output ŷ1(k+1) is

also affected by the output from its neighbouring system: [y2(k),y2(k−1), ...y2(k−ny)]
T .

For model training, it is necessary to prepare the input-output data in a proper way

so that they can be fitted into the NARX structure. The double-zone case (as shown in

Fig. 5.3) is used to demonstrate the method of data preparation. The inputs of the NARX

model are the outdoor temperature (Tout) and supply air temperatures of the two zones

Tsa,1 and Tsa,2. The outputs of the model are the zone temperatures: T1 and T2. The delay

time of input is chosen to be k = 0, because the time lag from input to output is shorter

than the sampling time of the system (10 min). Therefore, the input-output matrix written

in Eq. (5.8) can be altered as:

U =


Ti(r) · · · Ti(r−na +1) Tout(r) · · · Tout(r−nb +1) Tsa,i(r)

Ti(r+1) · · · Ti(r−na +2) Tout(r+1) · · · Tout(r−nb +2) Tsa,i(r+1)
... . . . ...

... . . . ...

Ti(n) · · · Ti(n−na +1) Tout(n) · · · Tout(n−nb +1) Tsa,i(n)

 ,

(5.7)

Y =


T̂i(r+1)

T̂i(r+2)
...

T̂i(r+n)

 , (5.8)

where Ti,(i=1,2) is the temperature in zones 1 and 2; Tsa,i,(i=1,2) is the supply air temperature

in zones 1 and 2; na and nb denote the orders of output and input, respectively; r denotes

order of the system, which equals to the maximum order of the inputs.
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5.4 Model Selection

To retain the accuracy and efficiency of the model, this paper employs a forward selection

method to perform model selection [33]. Forward selection selects individual candidate

variables one at a time. It increases the input variables linearly, until the optimality cri-

teria is reached. This method searches for the optimal set of input variables, as well as

their corresponding orders for the ANN. The detailed procedures of performing forward

selection are as described as follows:

1. Select the most relevant input variables according to the physical characteristics of

the system. Use an initial order of one, for each input.

2. Use the input-output data set to train the ANN model. Compute the Root Mean

Square Error (RMSE) between measured and modelled output on a separate set of

validation data, to evaluate the performance of the model.

3. Increase the order of each input, adjust the hidden layer number and repeat Step 2

until the minimum RMSE is reached. The training parameters (such as momentum,

learning rate and training algorithm) are kept the same during the process.

4. Compare the performance of the updated model with the previous one. If increasing

the ordinal number of the existing inputs improves the model’s performance, con-

sider a higher order. Otherwise, incorporate a new input into the model and then

repeat Steps 2 and 3.

The above loop is repeated, which makes the dimension of the matrices Eqs. (5.7)

and (5.8) varying with different inputs combinations, and selection of orders. The en-

tire searching procedure terminates when the increment of input variables fails to reduce

the RMSE. As the forward selection method starts with the simplest models, and trials

increasingly larger input variable sets until the optimal set is reached, it will eventually

generate the ANN models with a small input variable set.
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5.4.1 ANN Model Training

The description about the ANN has already been given is Section (4.3.1). This section

focuses on the training method.

BMS provides a wide variety of data for building modelling. In the proposed model,

we use the same set of variables listed in Table 4.1 for training purpose. To achieve sat-

isfactory performance, the data used for the training neural network should cover a wide

operational range, and the coverage of data within this range should be uniform. Dur-

ing the training phase, the data gathered from the days with the maximum and minimum

historical records were added to the training data set, to increase the ability for gener-

alisation. However, because the data used for training in this study were selected from

the summer season, the performance of the model will deteriorate when the weather con-

ditions change. The sliding window method can be applied to make the ANN model

adaptive to the change of weather [25]. With this method, the data used for training are

stored in a sliding window, and updated at each time interval. The recently measured

data will replace the oldest pair stored in the window. The ANN can be retrained using

the newest data so that the model can be updated periodically. Data from January, 2013

(4464 points) were selected as the training data. Among the selected training data, 70 per

cent are used for training the network, 15 per cent for the validation set and 15 per cent for

the test set. The data are scaled between -1 and 1, before it is fed into the neural network

for training to avoid the dominant effects of certain variables. Eq. (4.12) is used to scale

the all the variables into [-1,1].

Every time the neural network function is used, the output values of the network

should be reversed to obtain the real system output.We employed Bayesian regularisa-

tion as the training method, to obtain the ANN parameters. This algorithm has a slower

convergence speed, compared with the LM algorithm, but can improve the generalisation

of ANN models and prevent overfitting [34]. The ANN was trained in 500 epochs (itera-

tions) and the training process was terminated when the target mean square error (MSE)
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was reached.

5.4.2 Multi-step-ahead Prediction

To test the prediction accuracy of the obtained ANN model, another set of data, com-

pletely different from the training data were employed for validation purpose. The vali-

dation data were selected from 1th Feb, 2013 to 6th Feb,2013 (864 points). Due to slow

dynamics of the building process, short-term prediction can always achieve very accu-

rate result. However, for predictive control design purposes, long-term prediction is often

needed. For example, an optimal start-stop control strategy requires a prediction horizon

that is longer than the response time of the cooling (heating) systems [20]. A load shifting

strategy which considers time-of-use electricity price may require a prediction horizon of

hours to a day [2]. Therefore, the quality of the model can be better evaluated by multi-

step-ahead prediction accuracy, rather than one-step-ahead accuracy. In multi-step-ahead

prediction, measured outputs are only used for the first step. Starting from the second

step, the predicted outputs are used instead of the measured ones to perform the next pre-

diction. The controllable inputs are the ones which need to be optimised, so they still use

the measured values during the validation. The trajectory of the future weather inputs,

e.g. dry bulb temperature and relative humidity, are obtained from Bureau of Meteorol-

ogy of Australia. Therefore, the model can be used to perform a real-time prediction,

once the weather forecast becomes available. For example, if we consider a system with

two inputs: Tout ,Vc with the input orders of 2 and 1 respectively, and one output T1 with

an order of 3, the k-step-ahead validation process can be expressed as such:

T̂1(4) = f (T1(3),T1(2),T1(1),Tout(3),Tout(2),Vc(3)), (5.9)

T̂1(5) = f (T̂1(4),T1(3),T1(2),Tout(4),Tout(3),Vc(4)), (5.10)
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T̂1(6) = f (T̂1(5), T̂1(4),T1(3),Tout(5),Tout(4),Vc(5)), (5.11)

...
...

T̂1(k) = f (T̂1(k−1), T̂1(k−2), T̂1(k−3),Tout(k−1),Tout(k−2),Vc(k−1)), (5.12)

From Eqs. (5.9) to (5.12), it can be seen that the estimation error from the previous steps

return to the validation process, which increases the prediction error for the next step

repeatedly. This process is defined as error accumulation [31]. If the step size k is a small

number, the measured outputs can be used to replace the predicted ones to correct the

error. If k extends to an infinite step, no correction will be made and the k-step-ahead

prediction will become a pure simulation [28]. In principle, a model can be regarded

as accurate enough if it is capable of overcoming the error accumulation during a pure

simulation. When this method is used to validate the multi-zone model, it works in a

similar way: at each step, the estimated values of all the outputs (zone temperatures in all

the investigated zones) are used as the inputs to predict the temperatures at the next step.

In this manner, the coupling effects of the predicted temperature values of a certain zone

to its neighbouring zones can be captured.

To test generalisation ability of the proposed model, that is, ability to deal with data

never seen before, we selected six successive days, during which the ambient temperature

continued to increase for a validation purpose. These data are classified into mild summer

days and hot summer days, according to the maximum daytime outdoor temperature.

Days in which the maximum temperature reached above 30 ◦C are defined as hot days, and

those in which the maximum outdoor zone temperature was below 30 ◦C are defined as

mild days. As well as RMSE, Normalised Mean Squared Error (NMSE) fitness value and

Maximum Absolute Error (MAE) are used to evaluate the models’ performance. Using

the aforementioned input selection method, both the single-zone and multi-zone models
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Figure 5.4: Indoor temperature trajectory in an air-conditioned zone.

are obtained, which are illustrated in Fig. 5.6.

RMSE =

√
1
n

k=1

∑
n
(yk− ŷk)2, (5.13)

NMSE f it = 1−
(

‖yk− ŷk‖
‖yk−mean(yk)‖

)2

, (5.14)

where yk and ŷk denote the actual and predicted outputs, corresponding to a set of test

data.

5.5 Control Design

5.5.1 ANN Model-based Optimal Start-stop Control

The proposed predictive model can be useful in a variety of ways. For example, it can

be used for nonlinear MPC design [26], optimal start-stop control [6], and fault detec-

tion [35]. In this study, we focus on the use of an ANN based optimal start-stop control

strategy to achieve energy savings for the investigated building. The energy saving poten-

tial of applying this control approach stems from the fact that most commercial buildings
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Figure 5.5: Block diagram of the optimal start-stop control strategy.

are not continuously occupied. Therefore, comfortable temperature should only be main-

tained during occupied hours. Due to the thermal initial of the buildings, the AHUs should

be turned on (off) before the start (end) of occupation, so that energy will not be wasted

cooling an empty space. Fig. 5.4 illustrates the temperature profile when the optimal con-

trol strategy is applied. In this figure, Tup and Tlow represent the upper and lower comfort

limits, respectively, and [t1, t2] is the scheduled occupied hour. Due to the complexity of

the building system, it is difficult to accurately estimate response time of the system. In

this study, we employ the proposed ANN model as a basis to achieve the control purpose.

The block diagram of the proposed optimal start-stop control strategy is proposed

in Fig. 5.5. The controller uses the identified ANN models to predict the temperature,

and optimises the start-stop time of AHUs, taking into account the comfort requirement

during the occupied periods. For online implementation, two modules have been created:

a weather prediction module, receiving real-time forecast data from the public website,

and an occupancy module, used to receive occupancy information from the BMS. The

weather forecast module is updated every ten minutes, and imports the predicted outdoor

temperature data (T̂out) into the ANN model. The occupancy information is set according

to actual flight schedules, from 5:00 am until 9:30 pm. If a change occurs in occupancy

information (for instance, due to the flight delay), the previous schedule will be updated

and sent to the occupancy module. Therefore, the optimal start-stop controller will operate

according to a new occupancy schedule.
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Instead of conducting a nonlinear optimisation, we apply a rule-based algorithm in

this study. The control rule works in the following way: Prior to the start of occupancy toc

at each time stamp, the controller sets the set point temperature Tsp to the desired value,

and then calculates the output trajectory within the prediction horizon N1:

(
T̂ (k+1) T̂ (k+2) · · · T̂ (k+N1)

)
, (5.15)

It checks whether the following two criterions can be met simultaneously:

T̂ (k+n−1)≥ Tuc T̂ (k+n)< Tuc, (5.16)

If the conditions of Eq. (5.16) are met, it checks if the following condition can be met:

round(0.1(tup− t(k)) = n, (5.17)

where tup and tk denote the clock time at start of occupancy and step k, respectively. If

conditions Eqs. (5.16) and (5.17) are both met, Tsp will be set into the set point value (22
oC), which in turns starts the AHU; otherwise, the same procedure will be repeated when

the next sampling time begins. As the time stamps progress, the optimal start point will

be ultimately sought. Similarly, before the end of the occupancy, the controller discards

the controllable inputs, and repeats the prediction. This operation determines the best stop

time for AHU, to ensure a smooth transition from an occupied to an unoccupied hour.

5.5.2 Energy Model

To examine the energy saving potential of the proposed control strategy, it is necessary

to calculate the energy use of the individual AHUs. As the measurement of the energy

consumption for the AHUs is not available, we use the simplified models introduced in

[10, 11] to estimate them. The simplified models are built based on two assumptions:

1. The energy consumed by the transfer of latent heat is negligible.
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2. The mixed air ratio of return air to outdoor air is proportional to the opening level

of the outdoor air damper.

With the above assumptions, the model used to calculate the energy consumption are

Pc =
ṁCa∆Tc

COP
, (5.18)

∆Tc = (1−Dout)Tr +DoutTout−Tsa, (5.19)

Pf =Co +C1ṁ+C2ṁ2, (5.20)

where Pc is the power consumption related to the cooling energy consumed by the cooling

coils, ṁ is the flow rate of the air passing through the cooling coil, Ca is the specific heat

of the supply air, ∆Tc is the temperature change of the supply air after the heat exchange

occurred at the cooling coil, COP is coefficient of performance of the chiller plant, Dout

is the opening level of the outdoor air damper, Tr is the return air temperature, ∆Tc is the

temperature change of the supply air after the heat exchange occurred at the cooling coil,

Pf is the energy consumed by supply fan, and Co to C2 are parameters related to the fan

energy. In Eqs. (5.18) to (5.20), Tr, Tsa and Dout are measured by BMS, ṁ, COP and ηc

all use fixed values. The models are employed to compare the energy use when different

control strategies are used.

5.6 Modelling Results and Discussion

5.6.1 Single-zone Results

This section validates the accuracies of the models. The numerical results of the identified

model parameters and the corresponding simulation results are shown in Table 5.1, where

models 1-5 represent the different ANN models representing zone 1, using different inputs
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Figure 5.6: Structure of the ANN models used for zone temperature prediction. (a) Single

zone model. (b) Multi-zone model.

combinations. The same approach was applied to the other three zones, to obtain the

corresponding optimal model structures.

Fig. 5.7 shows the results of performing six-day-ahead temperature prediction, us-

ing the single-zone models developed for zones 1 to 4. It can be seen that the models

work reasonably well during most investigated days. However, the single zone models

sometimes over-predict zone temperatures, especially during the unoccupied hours. For

example, the maximum error occurred at 120th hour, when the absolute errors of zone 1,

zone 2 and zone 3 are 0.5 ◦C, 1 ◦C, and 0.5 ◦C, respectively.

Table 5.1 shows that in zone 1, the overall model performance on mild days is better

than on hot days. Fig. 5.7(a) and 5.7(b) indicate that the largest error occurred during

the last two days in zone 1 and 2, when the outdoor temperature was at its maximum

value. The reason is that when the outdoor temperature was high, the cooling demand

of the investigated area could not be met as expected. Therefore, the desired set point

temperature value could not be reached even with 100% opened cooling valves. This

model performance was substantially improved after the chilled water temperature was

employed as an input (in model 3). It can be observed that, by adding the chilled water
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Table 5.1: RMSE, MAE and NMSE in ◦C for simulation results with different model

structures in zone 1.

Order number of the inputs Model-1 Model-2 Model-3 Model-4 Model-5

T1 3 3 3 3 3

Tout 2 2 2 2 2

Vc 1 1 1 1 1

Dout 0 1 1 1 1

Tc 0 0 2 2 2

Hr 0 0 0 1 0

Sr 0 0 0 0 1

Hidden Layer Number 10 12 14 16 16

Tout < 30◦C

RMSE (in ◦C) 0.28 0.17 0.17 0.22 0.20

MAE (in ◦C) 0.45 0.71 0.54 0.82 0.58

NMSE(fitness in %) 80% 92% 93% 84% 89%

Tout > 30◦C

RMSE (in ◦C) 0.52 0.58 0.43 0.64 0.48

MAE (in ◦C) 1.13 1.17 0.85 1.14 0.92

NMSE(fitness in %) 80% 79% 85% 76% 84%
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Table 5.2: Simulation results using single-zone and multi-zone models.

Zone-1 Zone-2 Zone-3 Zone-4

Single-zone models

RMSE (in ◦C) 0.35 0.47 0.30 0.40

MAE (in ◦C) 1.08 1.27 0.94 1.34

NMSE (fitness in %) 79% 74% 78% 77%

Training time (in s) 3.6 6.7 4.3 4.8

Simulation time (in s) 55 58 60 56

Multi-zone model

RMSE (in ◦C) 0.29 0.41 0.26 0.32

MAE (in ◦C) 0.71 1.23 0.87 1.01

NMSE (fitness in %) 91% 77% 85% 83%

Training time (in s) 37.6

Simulation time (in s) 58

temperature, the RMSE improves from 0.36 ◦C to 0.19 ◦C and the NMSE improves from

79 per cent to 85 per cent on hot days. Additionally, it was found that adding relative

humidity as a variable in model-4 does not improve the prediction accuracy of the model.

This suggests that the effect of relative humidity variables on dry bulb temperatures is

small. It was also found that when solar radiation is considered, the resultant model

(model 5) could not achieve improved model performance either. This also makes sense,

because with the operation of the blinds in this area, the effects of the solar gain on the

indoor temperature were significantly reduced.
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5.6.2 Multi-zone Results

In this section, we extend the single-zone approach to a multi-zone case, by considering

the thermal interaction among all the adjacent zones. Compared to the conductive heat

transfer between zones through the walls, the convective heat transfer through open space

is more significant. Therefore, we ignore the conductive heat transfer for simplicity in

this study.

Table. 5.2 presents a comparison of simulation results between the multi-zone and

the single-zone models. It shows that the prediction errors for all the investigated zones

were decreased after the multi-zone model was used. The RMSE was reduced by about

0.1◦C and RMSE of 5% on average. Prediction results from zones 1 to 4, using multi-

zone model, are illustrated in Fig. 5.8. It can be observed that the aforementioned

over-prediction phenomenon was eliminated. This illustrates that thermal interaction

between the adjacent zones exist, and the proposed multi-zone model has revealed the

phenomenon. Another important finding is that the convective heat transfer appears to

be more significant during night time, when all the AHUs stopped working. This is be-

cause when the AHUs were turned off, no cooling energy was supplied to the space, so

that the environmental variables become the dominant inputs. As a result, all the room

temperatures either increase or decrease along with the outdoor temperature, and will

eventually reach the same value. In opposition, zone temperatures are less influenced by

the heat transfer when the AHUs are running, because the control command forced the

temperature to be maintained at the set point values, making the thermal coupling less

significant.

The programs for model training and validation were coded in Matlab, which runs

on a PC with Intel Core i7 CPU 2.4GHz. Training a multi-zone model takes more time

than training a single-zone model, as expected. For example, it takes 37.6 s to train a

multi-zone model while only 3.6 s to train a single-zone model (as shown in Table 5.2).

This is because the multi-zone model has a larger size of input variables and hidden layer
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neurons than the single-zone models. However, because the process of training a neural

network model is performed offline, this process time is not critical. On the other hand,

the execution time of conducting the pure simulation using the multi-zone model is closed

to the time using the single-zone models. However, by exchanging information among

the zones, several multiple-step-ahead prediction problems can be solved simultaneously,

using the multi-zone model. It is not necessary to repeatedly run several single-zone

models. Therefore, running the multi-zone model for real-time prediction is a more com-

putational efficient approach than the single-zone models. Normally, a predictive control

strategy often requires a much shorter prediction horizon than the pure simulation. For

example, in this study we consider a prediction horizon of 2 hours (12 steps), which only

takes about 0.8s for the multi-zone model to complete.

Six-days’ pure simulation have an RMSE of 0.2 ◦C-0.4 ◦C for most zones. This result

is similar to the results obtained in [28]. Since the prediction horizon used for simulation

is much longer than the one required by predictive control, we can conclude that the

proposed model is suitable to be used for predictive control design purpose.

5.7 Control Results and Discussion

5.7.1 Energy Saving with the Predictive Control

To test the aforementioned control strategy, a simulation study is scheduled using histori-

cal data on 24th, January, 2013. The selected area is zone 1 located at the east end of the

building. An assumption made is that the weather condition can be perfectly predicted.

The occupied hour is from 5:00 am to 9:30 pm. The upper comfort limit is set to be 24
◦C, and the set point temperature is set to be 22 ◦C. The prediction horizon is chosen to

be 2 hours (12 steps). As a default setting, all the AHUs were running from 4:00 am

to 22:00 pm, to offset the time delay caused by thermal inertia. This is defined as the

baseline control. During the simulation process, we run the predictive control algorithm
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under the simulation environment with the initial temperature equals to the measured zone

temperature. After, temperature performance and corresponding energy consumption are

compared, when using these two different strategies.

Fig. 5.9(a) shows the performance comparison between baseline control and the pro-

posed predictive control at zone 1. With the baseline control, zone temperature reaches

24 ◦C, before people started to enter the building. Concurrently, after the AHU was

stopped, the temperature started to increase, but did not reach upper comfortable temper-

ature of 24 ◦C. This control method is not energy efficient, because the controlled space

was over-cooled at the start and end of occupation. When the predictive control was ap-

plied, the start time was delayed by 20 minutes, with zone temperature reaching the upper

comfortable temperature of 24 ◦C when the first members of staff arrived at the build-

ing. Similarly, with the predictive control, the AHUs are set to unoccupied mode several

hours earlier than the baseline control method. Due to the thermal storage ability of the

building, the zone temperature can be kept within the comfortable range before the end

of occupation. The indoor temperature rises slowly after the unoccupied mode was used,

because the ambient temperature was decreasing in the afternoon. On the specific day,

a daily saving of 28% can be achieved using the proposed control algorithm, as shown

in Fig. 5.9(b). By extending the simulation result to a month, an estimation of 10% of

energy savings can be achieved by applying the proposed control strategy.

The percentage of energy that optimal start-stop control can save depends on the

weather condition. For example, when the outdoor temperature is low enough, the current

control logic will open the outdoor air dampers more widely, bringing in more cool out-

door air to assist mechanical cooling. As a result, the cooling energy required to bring the

temperature to the set point value, as well as the possible savings due to the use of optimal

start-stop control, become less significant compared with those in hot days. When time

of use electricity price is considered, it is also possible to apply a load shifting control

strategy to reduce the utility costs.
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5.7.2 Influence of Heat Transfer on Control Performance

As the heat transfer between the zones affects the accuracies of the predictive models, a

complementary study is conducted to investigate the influence of the thermal interaction

on the performance of the controller. Zone-1 is selected for comparison purpose. Before

the start/stop time , the predictive controller is used to perform prediction and make con-

trol decision. Fig. 5.10(a) depicts the temperature trajectory generated by the proposed

control algorithm. It is evident that the estimated time it takes to drop the temperature to

the upper comfortable band (23.5 ◦C) using the multi-zone model is 30 minutes, while

the one estimated by the single-zone model is 40 minutes. The response time estimated

by the multi-zone model is closer to the actual one, compared with the one estimated

by the single-zone model. Therefore, the multi-zone approach avoids violating thermal

comfort at the start of the occupancy. Similarly, Fig. 5.10(b) shows that the rising time

estimated by the single-zone model is about 0.5 hours less than the actual one, which re-

sults in late stop and a waste of energy at the end of occupancy. The multi-zone approach,

on the other hand, predicts the rising time more accurately. It can be concluded that the

predictive control method based on the multi-zone model provides improvement in both

achieving better thermal comfort and saving more cooling energy.
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Figure 5.7: Simulation results for zones 1 to 4, when four individual, single-zone models

were used. The solid lines represent the measured temperature values from February 1

to February 8, 2013. The dashed lines represent the temperature values predicted by the

single-zone ANN models.
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Figure 5.8: Simulation results for zones 1 to 4, when the multi-zone model was used.

The solid lines are the measured temperature values from 1st to 8th February, 2013. The

dashed lines are the temperature values predicted by the multi-zone ANN model.
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Figure 5.9: (a) Temperature trajectory when the baseline and optimal start-stop control

are used on 24th, January, 2013, (b) Estimated cooling energy consumption during the

day, the shaded area represents the saved energy due to the use of the predictive control,

(c) Outdoor temperature.
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Figure 5.10: Comparison of measured and predicted response time for the zone temper-

ature to reach upper comfortable temperature after the AHU was: (a) turned on, and (b)

turned off.
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5.8 Conclusions

This paper presents an ANN-based thermal dynamics modelling approach for real-world

commercial buildings. While most existing building modelling studies only investigate

a single zone, the modelling framework proposed in this study, extends the methodology

to a multi-zone case. This provides a practical solution for the temperature modelling in

large commercial buildings, especially those with wide open space. During the study, we

used a forward inputs selection method to obtain the optimal model structure. Through

several cycles of training-validation processes, the most critical input variables which

affect the modelling accuracy were searched out. It is found that an accurate ANN model

does not necessarily have to be big in size: the best model usually contains an order

number no larger than four. Conversely, an oversized network with large input order and

hidden layer number will result in large prediction errors with high frequency noises.

The effect of thermal coupling between the adjacent zones through convective heat

transfer is hard to model, because the airflow between the zones is an uncertain factor. We

consider the ANN as a suitable tool to solve such a problem. The simulation results prove

that the method can accommodate the effect quite well: the overall prediction accuracies

for all investigated zones were increased to a certain extend after the MIMO model was

used. It is also found that the degree of thermal interaction between zones depends on

weather conditions and the operational status of AHUs. For example, the errors due to the

ignorance of thermal interaction appear to be bigger during the time when the AHUs were

not running, and the days with higher ambient temperature. The proposed multi-zone

model also has a faster computational speed than single-zone models, which enables the

development of a more accurate and effective ANN-based predictive control. Finally, the

effectiveness of applying the proposed model to achieve energy savings is demonstrated.

It is found that since the multi-zone model predicts zone temperature more accurately than

the single-zone models, the predictive control method built upon the multi-zone model

can be used to achieve energy savings in a more reliable way. This illustrates that the
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proposed methods have the potential to become valuable tools for modelling and control

in commercial buildings.
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Chapter 6

Hybrid Model Predictive Control

This chapter is based on the following paper:

Full citation: Huang H., Chen L., Hu E., “A new model predictive control scheme

for energy and cost savings in commercial buildings: An airport terminal building case

study”, In Building and Environment, vol. 89, pp. 203 - 216, 2015.

Contribution of this chapter: A hybrid model predictive control is proposed for com-

mercial buildings for optimising energy costs in buildings. Feedback linearisation is used

to simplify the optimisation problem, and an inverse neural network model is applied to

handle system nonlinearity associated with the AHU process. Experiment shows the pro-

posed MPC reduces the operational costs by 11%, through performing free cooling and

shifting cooling load.
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Abstract

Predictive control technology for heating, ventilation and air conditioning (HVAC)

systems has been proven to be an effective way to reduce energy consumption and

improve thermal comfort within buildings. Such methods rely on models to accu-

rately predict the thermal dynamics of a specific building to achieve the optimal

control. Implementing a predictive control at the building level faces several chal-

lenges, since buildings thermal dynamics are nonlinear, time-varying, and contain

several uncertainties. This paper presents a hybrid model predictive control (HMPC)

scheme, which can minimise the energy and cost of running HVAC systems in com-

mercial buildings. The proposed control framework combines a classical MPC with

a neural network feedback linearisation method. The control model for the HMPC is

developed using a simplified physical model, while the nonlinearity associated with

HVAC process is handled independently by an inverse neural network model. To

achieve the maximum energy saving, the proposed MPC integrates several advanced

air-conditioning control strategies, such as an economizer control, an optimal start-

stop control, and a load shifting control. This approach has been tested at the check-

in hall of the T-1 building of the Adelaide Airport, through simulations and a field

experiment. The merits of the proposed method compared to the existing control

method are analysed from both the energy saving and cost saving points of view.

The result shows that the proposed HMPC scheme performs reasonably well, and

achieves a considerable amount of savings without violating thermal comfort.

6.1 Introduction

The building sector is one of the world’s largest energy consumers. It has been estimated

that buildings consume 40 per cent of the world’s energy and generate 33 per cent of the

carbon dioxide emissions [1]. Heating, ventilation and air conditioning (HVAC) systems

are one of the major building energy consumers, which account for almost one-half of the

total building energy use. Despite their significance, HVAC systems in existing buildings
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are not operating in the most efficient ways. Therefore, this study develops an advanced

control strategy, with the aim of reducing the energy consumption and improving the

thermal comfort in large commercial buildings.

Despite great efforts having been dedicated to the research into advanced HVAC con-

trol technology, proportional-integral-derivative (PID) control and on/off control are still

the most commonly used control methods in commercial buildings. They use the current

and previous temperatures as the inputs to control local actuators, such as chilled water

valves, pumps, and dampers. As building dynamics are a slow process, subject to the pas-

sively changing ambient environment, the HVAC may respond to an indoor temperature

change with a significant time delay using the control methods. This causes over-heating

(cooling), high on-peak demand and poor thermal comfort in the buildings. In recent

years, researchers have demonstrated that the energy costs associated with HVAC can

be reduced greatly by implementing predictive control strategies [2–7]. MPC is a control

strategy which optimises the control input based on the system dynamics, constraints, and

couplings between the local controllers. When MPC is applied to buildings, it uses the

prior knowledge from the weather forecast, occupancy prediction, and time-varying elec-

tricity prices, to achieve energy savings as well as improve thermal comfort in buildings.

MPC is often employed at the supervisory level to optimise the energy use at the

building scale. The idea of using MPC to save building energy stems from the concept of

supervisory control [8]. This includes optimal start-stop control [9], pre-cooling control

[10], economizer control [11], and demand-limiting control [12]. MPC is a strategy which

integrates all these supervisory control methods into a single control scheme. Since com-

mercial buildings are not continuously occupied, the thermal comfort requirement should

only be met during the occupied hours. For this reason, the cooling or heating systems are

usually turned on (off) before the start (end) of occupation, so that thermal comfort will

only be maintained within the occupied hours. By solving an optimisation problem, MPC

is able to realise this start-stop control function [9, 13, 14]. Further, under certain condi-
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tions, MPC can aslo shift the cooling (heating) load from peak hours to off-peak hours,

using passive or active building thermal storages. This strategy is based on the efficient

use of the building’s thermal mass. Since such an approach uses cheap off-peak electricity

and free cooled ambient air, the utility costs of running HVAC systems can be greatly re-

duced [15]. The pre-cooling strategy has been successfully applied to buildings with both

active and passive thermal storage, and has achieved significant savings [4, 10, 16–18].

However, implementing MPC for real-world buildings is not straightforward, for a list

of reasons, which can be summarised as follows:

1. Building dynamics have several uncertain disturbances and thermal delays. This

requires the prediction of disturbances such as the ambient temperature and occu-

pancy load, which are non-Gaussian distributed, and subject to stochastic errors

[7].

2. The simplified building models for control purposes are nonlinear. This is because

the cooling and heating energy are computed by a multiplication of the supply air

mass flow rate, temperature, and outdoor damper opening level, which results in

control inputs in a bilinear form [7, 17].

3. Air-conditioned buildings possess several nonlinear variables, such as the tempera-

ture, relative humidity, and outdoor air damper actions, which can hardly be accu-

rately modelled using simplified physical models.

4. The internal space of a building is divided into several adjacent zones, each of

which is controlled by an individual air handling unit (AHU). Therefore, the thermal

dynamics of a building is a multiple-input, multiple-output (MIMO) system.

To solve the above problems, the first and most important step is to create a transient

thermal dynamic model, able to describe the relations between the input variables (such

as the outdoor temperature, and the HVAC operating status) and the output variables (such

as the indoor temperature). For control purposes, the developed model should have the
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ability to predict both short-term unexpected changes and long-term accumulated changes

in the building temperature. They should also be simple in structure, so that they can be

implemented within the existing building management system.

To build such a model, resistance–capacitance (RC) thermal models [3, 17–20], statis-

tical models [13, 21, 22], and neural network (NN) models [6, 23, 24] have been employed

in previous studies. The RC models are preferred by most researchers, because they are

physically meaningful and transparent in structure, making them understandable and re-

liable to use. With some prior knowledge about the system, the principle parameters of

the RC models can be identified using grey box identification methods [19]. The result-

ing model can be transformed into a linear state-space form so that the classical control

algorithms can be applied [25]. Several successful examples can be found. For example,

Bengea et al. [26] used a performance sensitivity approach to establish an estimation er-

ror target for the physical parameters of control models. They found that the most critical

parameters are the heat transfer coefficients of the building’s ceiling and ground. Hazyuk

et al. [14] built a low-order building model using an RC model. They considered solar

gain as the major disturbance source and modelled it using mathematical equations. A

modified cost function was used to determine the optimal operation for an intermittently

heating system [27].

Building statistical models requires less effort than an RC model, as they are purely

built on input–output data. These models are also in linear state-space forms, making

them able to be used for classical MPC design. Privara et al. [5] developed a multi-zone

building using a subspace state-space model. The MPC built on the model was proved to

achieve promising results compared with the rule based control. Both the RC model and

statistical models are linear and time-invariant, so a model mismatch sometimes occurs,

which in turn influences the control performance. To solve this issue, several advanced

MPC strategies have been proposed, such as robust MPC [28], stochastic MPC [7, 29],

and distributed MPC [13, 30]. Oldewurtel et al. [7] developed a stochastic MPC to handle
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the model uncertainty caused by weather forecast errors. Maasoumy et al. [28] employed

an unscented Kalman filter technique to estimate the parameters and states online. The

adaptive model was used for a robust MPC, which can handle the system uncertainties

well.

In recent years, growing attention has also been paid to artificial neural network

(ANN) models, for building modelling and control [6, 23, 24]. ANN models are suitable

for modelling building dynamics due to their ability to deal with nonlinear, multivariable

modelling problems. The parameters of an ANN include the number of neurons and the

values of the interconnection weights and biases. If a dynamic ANN model is employed,

the orders and delay terms should also be considered during the model development. Past

studies have shown that ANN models have better performance than linear models [31, 32]

and physical models [24] in modelling a building’s thermal dynamics. An ANN can also

be directly used for nonlinear model predictive control. Spindler and Norford [33] built a

predictive control method to determine the optimal cooling mode, resulting in a reduced

fan energy use. Ferreira et al. [33] developed an ANN-based model predictive control for

a campus building, and used a discrete branch and bound approach to optimise the energy

use. Although neural networks are effective in emulating nonlinear building dynamics

systems, two major drawbacks arise when they are used in an MPC structure:

1. A nonlinear optimisation routine must be used to calculate the control sequence

using the ANN model. This requires very high computational effort and may result

in a merely local minimum.

2. The well established theory of designing and tuning linear controllers cannot be

used for tunning nonlinear controllers.

For the above reasons, the implementation of an ANN-based MPC faces challenges, and

there is a need to re-think the use of neural networks in building energy control. Besides,

although a number of successful cases can be found, some research questions still need to

be answered to make a practical MPC. These include:
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1. How to effectively handle the nonlinearity and uncertainties of the system dynam-

ics.

2. How to choose the appropriate MPC schemes for different buildings.

Concerning the above problems, this paper aims to develop an MPC strategy, which can

be implemented within the building management system (BMS) to optimise the energy

use and reduce the cost of HVAC systems.

As the first contribution of this paper, a hybrid MPC (HMPC) for building predic-

tive control is presented. The approach exploits the excellent non-linear approximation

ability of the ANN model and the reliability of the simplified physical model, to im-

prove the control performance of the MPC method. The control model uses a linearised

RC model, which enables a linear programming optimisation method to minimise energy

consumption. A recurrent NN model captures the nonlinearity and uncertainty related to

the HVAC system, and provides a ‘real’ control command to the building system. This

method results in a simple linear controller with a wide operating range, without the need

for carrying out a computationally intensive non-convex optimisation at each time instant.

Although this control structure has been used in process control [34], it has not been used

for the building energy control before. Additionally, we introduce a novel simulation plat-

form to evaluate the closed-loop performance of the proposed HMPC. In this platform,

a forward neural network is used to approximate the thermal dynamics of the building,

which updates the initial status for the HMPC operation. This method allows the pa-

rameters of the model and controller to be reliably tuned, before they are tested at the

real plant. This represents the second contribution of this paper. Finally, an MPC which

integrates the economizer control with other supervisory control methods is introduced.

Its energy saving potential is evaluated using a real-time flight schedule and time-of use

(TOU) electricity prices, through both a simulation and an experimental study. All the

above methodologies are presented based on the BMS data collected from an airport ter-

minal building. The building has several wide open, adjacent zones, which are irregular
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Figure 6.1: Outside view of check-in hall of Adelaide airport.

in shape and structure. These factors make the case study different from the ones appear-

ing in the existing literatures. In this study we focus on the cooling plant, but the same

approach can be easily extended to heating as well.

The layout of this paper is arranged as follows: Section 2 introduces the simplified

physical models used to represent the building dynamics and HVAC process. The design

of the linear MPC using a feedback linearisation and an inverse neural network method

are introduced in Section 3. Section 4 demonstrates the results of the proposed MPC,

including the simulation and experimental results. The energy and cost saving potential

of the proposed method is analysed in that section. This paper ends with a conclusion and

a description of future research.

6.2 Modelling

6.2.1 Building Thermal Dynamics Modelling

The test building is the T1 building of Adelaide Airport, South Australia. The check-in

hall consisting of four thermal zones was selected as the experimental area. Fig. 6.1 shows

the external appearance of the investigated zones. The selected zones are located at the

perimeter areas of level 2 of the building, isolated from the outdoor environment by a large
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glass wall to the north. Two motorised blinds are installed at the north window, to reduce

the effects of solar radiation. The blinds schedule is programmed into the BMS according

to the solar angle at different times of year. The AHU is with a constant air volume (CAV),

while the angle of the jet nozzle changes according to the measured temperature. Fig. 5.2

shows the general layout of the four-zone case. It can be seen that each zone is served

by an individual AHU. All the zones are with open space, and adjacent to each other. In

the rest of the paper, zone 1 and zone 2 are used as a benchmark to explain the proposed

method.

The thermal dynamics of the zones are modelled by an RC thermal network, which

uses resistances and capacitances to represent the heat transfer coefficients of a building.

Past study has shown that 3R2C models represent the best compromise between predic-

tion accuracy and model complexity [35]. Therefore, this model structure is employed in

this study. The schematic of the RC network for these two zones is shown in Fig. 5.3. This

study focuses on a single zone, but the influence of the thermal interaction of its adjacent

zone will also be discussed. Before building the RC model, the following assumptions

were made:

A1. The temperature distribution in each zone is uniform.

A2. The density and flow rate of the air in the zones are constant and not influenced by

the temperature change.

A3. The walls and ceiling have the same effect on zone temperature. The windows have

negligible thermal capacitance.

A4. The convective heat transfer between open space is more significant than conductive

heat transfer through walls.

Based on the above assumptions, the energy and mass balance governing equations
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for zone 1 can be written as

C1
z

dT1

dt
= ṁCa(Tsa,1−T1)+

Tf −T1

R f
+

Tout−T1

Rg
+

Tw−T1

Rw
+

T2−T1

Rc
+Q1,

(6.1)

C1
w

dTw

dt
=

T1−Tw

Rw
+

Tout−Tw

Rw
, (6.2)

where C1
z = CaρVz is the overall thermal capacitance of the zone, ρ is the density of the

air, Vz is the volume of the zone, C1
w is the thermal capacitance of the internal walls and

ceiling, which is much larger than C1
z , ṁ is the mass flow rate of the supply air, Ca is the

specific heat of the air, T1 and T2 are the air temperatures of zones 1 and 2, respectively,

Tout is the outdoor air temperature, Tw is the mean temperature of the walls and ceiling,

Tf is the mean temperature of the floor, Tsa,1 is the temperature of the supply air to zone

1, Rw = 1/(hwAw) is the thermal resistance of the wall and ceiling, R f = 1/(h f A f ) is the

thermal resistance of the floor, Rg = 1/(hgAg) is the thermal resistance of the window

facade, Rc is convective heat transfer coefficient between adjacent zones, hw and h f are

the convective heat transfer coefficients per unit area associated with the walls (including

the ceiling) and the floor, respectively, hg is the conductive and convective heat transfer

coefficient per unit area of the windows, Aw, A f and Ag are the areas of the walls, floor and

window surfaces, respectively, and Q1 represents the heat gains caused by solar radiation

(Qs), leakage (Ql) and occupants (Qp).

The installed motorised blinds in the test zones prevent the sun from irradiating the

space, which greatly reduces the effects of solar radiation. Therefore, the solar radiation

is not directly modelled by the equations. Instead, it will be modelled as a stochastic vari-

able. The heat gain from the occupants is indicated by the carbon dioxide concentration

in the investigated zone [28], which can be directly obtained from the BMS database. The

occupancy load is indicated with the following equation:

qp = αCO2(i)+ν , (6.3)
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where α and ν are parameters which will be identified together with Eq. (7.1). Other

disturbances, such as solar gain, the heat generated by electronic equipment, and the

leakage and coupling from other un-controlled spaces, are modelled by a white noise

with Kalman gains: this will be discussed later. Eqs. (7.1) and (7.2) are discretized by

using the backward Euler method:

C1
z

T1(k)−T1(k−1)
∆t

= ṁCa(Tsa,1(k−1)−T1(k))+
Tf (k−1)−T1(k)

R f
+

Tout(k−1)−T1(k)
Rg

+
Tw(k−1)−T1(k)

Rw
+

T2(k−1)−T1(k)
Rc

+qp(k−1)+ k(e), (6.4)

C1
w

Tw(k)−Tw(k−1)
∆t

=
T1(k−1)−Tw(k)

Rw
+

Tout(k−1)−Tw(k)
Rw

,
(6.5)

where ∆t is the sampling time of the measured data. Eqs. (6.4) and (6.5) can be written

in innovation represenation state-space form [36]:

xk+1 = Axk +Buk +Edk + ke(k), (6.6)

where x = [T1,Tw] is the vector containing the states of zone 1, u = [Tsa,1, ṁ] is the vector

of controllable input variables, and d = [Tout ,T2,CO2] are the measured disturbance vari-

ables; k and e are the Kalman gain and Gaussian noise, respectively, which represent the

stochastic part of the system. The method used to estimate the Kalman gain is derived

from the Algebraic Riccati Equation (ARE) [36]. A grey box identification method is

used to identify the unknown parameters in Eq. (7.4). During the identification, the initial

states and the boundary conditions of the unknown parameters [Rw, Rg, R f , Rc, α , C1
z ,C1

w]

were configured first, based on the static parameters defined previously. The unknown

parameters are identified by a nonlinear least squares algorithm using real-time BMS data

with a sampling interval of 10 minutes [36]. The data used for training were collected

from between the 1st and 31st of January 2013, and the validation data were selected
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from between the 1st and 10th of February, 2013. The output of the model is the indoor

temperature. The inputs to the model are the supply air temperature, the supply air mass

flow rate, the neighbouring zone temperature, and the carbon dioxide concentration. The

outdoor temperature Tout is obtained from the Bureau of Meteorology of Australia. The

identified parameters for the RC model are listed in Table 6.1.

The performance of the models is evaluated by the normalised relative mean squared

error (NRMSE) fitness value:

NRMSE =
1

N−1

√√√√√√√√
n

∑
k−1

(y(k)− ŷ(k))2

n

∑
k−1

(y(k))2
, (6.7)

where y is the measured output and ŷ is the predicted output. In building predictive con-

trol, different prediction horizons are needed for different control purposes. In this study

we used a pure simulation as the validation approach: the measured outputs are only used

for prediction at the first step, and starting from the second step, the predicted outputs

are used instead. This operation allows the performance of the control oriented model to

be tested under infinite prediction horizons. The pure simulation uses more strict evalua-

tion criteria than with an one-step-ahead prediction result, and thus can better reflect the

‘quality’ of the models.

The first set of simulations was performed using a single-zone model. When a single-

zone model is used, the impact of the thermal coupling with the adjacent zone is not taken

into consideration. This approach is subjetive to errors, as a change in the neighbouring

zone temperature may affect the zone investigated. Fig. 6.2(a) shows that the single-zone

model has a fitness of 72% when a pure simulation is conducted. The prediction error is

mainly caused by the ignorance of unmeasured disturbances, such as the coupling with

the neighbouring zones, leakage and the solar radiation. Clearly, the RC model is able

to capture the main thermal characteristics of the building with its simple structure. This

is because when the system is operating within a small operational range, the building’s
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Table 6.1: Parameter estimation results for RC model

Parameter Value Parameter Value

C1
w 252,000 kJ/K C1

z 9080 kJ/K

Rg 43 K/kW Rw 0.9 K/kW

R f 2.2 K/kW k [0.5,0]

thermal dynamics can be approximated by a linear, time invariant model. A strategy, such

as, a multiple model approach can be adopted to make the building model suitable for a

wider operational range [37].

To investigate the effects of the thermal coupling on the investigated zone, another RC

model, which takes into consideration the thermal coupling between the zones, was devel-

oped. In this model, the neighbouring zone temperature T2 is considered as a disturbance,

and assumed to be known in advance. Fig. 6.2(b) shows that the model that considers the

neighbouring zone temperature (T2) generates smaller prediction errors than the single-

zone model. This proves the fact that the thermal interaction between the adjacent zones

influences the accuracy of the models. However, since the value T2 is only known until the

current step, it cannot be directly employed for MPC, which requires multiple step pre-

diction. In the subsequence experiment, the same control command will be used for zone

1 and zone 2, based on their average temperatures. This is to simplify the multi-input,

multi-output (MIMO) control problem into a multi-input, single-output (MISO) problem.

6.2.2 HVAC Process Modelling

Chiller Plant

The investigated building is controlled by a Johnson Controls Australia Pty Ltd BMS.

At the building level, three chillers provide chilled water to the entire water circle. Each
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Figure 6.2: (a): Simulation results of RC model (Model fit = 0.72); (b) Error distribution

comparison between single-zone RC model and RC model with thermal coupling

chiller is rated at 1767 kW output and 320 kW electrical inputs at a full load. The chilled

water is transmitted from the chiller plants to local AHUs through variable-speed water

pumps. There are 200 AHUs running simultaneously to meet the cooling requirement of

the entire building. The total cooling load of the building can be expressed by

Qchil =Cpwmw(Tcwr−Tcws), (6.8)

where Qchil is the cooling load of the building, Cpw is the specific heat capacity of the

chilled water, mw is the mass flow rate of the chilled water, and Tcws and Tcwr are the

chiller water supply and return temperature, respectively. The set point temperature for

the supply chilled water temperature has a constant value of 7◦C. If the supply chilled

water temperature (Tcws) in the primary loop is above 12◦C for more than five minutes,

the BMS will automatically start another chiller to meet the cooling load requirement.
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Figure 6.3: Control logic of the economizer.

The cooling load consumed by the chiller plant accounts for the majority of the energy

consumption, which is distributed to the local AHUs.

AHU Process Modelling

At the subsystem level, the AHUs transfer the cooling energy from the chilled water

circuit to the airflows, and then supply it to the local thermal zones. Fig. 4.2 shows the

schematic diagram of the AHU used in this study. During the operation period, the return

air is recirculated through the outdoor air damper and then mixed with the return air. The

mixed air then passes through the cooling coil and the air temperature decreases after the

heat exchange. The chilled water valve uses the difference between the measured zone

temperature and the set point temperature to maintain the zone temperature at the set point

value. The actuating signal to the system is the cooling valve position, which regulates

the mass flow rate of the chilled water. The AHUs also have CO2 sensors installed in the

return air ducts. When the measured CO2 level rises above 500 ppm, the outdoor damper

will be modulated to maintain good air quality. In this study, the CO2 sensor is also used

to indicate the level of occupancy.

As the measurements of some important variables within the AHU process are not

available, a series of simplified physical models are used. The main purposes of building

the simplified models are: 1. To estimate the energy consumption of the individual AHUs,
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and 2. To build connections between the air-side and water-side dynamics within the AHU

process. Before building the model, other assumptions are made:

A5. The air inside the cooling coil is perfectly mixed so that the supply air temperature

equals the air temperature inside the cooling coil.

A6. The energy consumed by the transfer of latent heat is negligible.

A7. The mixed air ratio of return air to outdoor air is proportional to the opening level

of the outdoor air damper.

With these assumptions, the energy balance equations for the air side can be written

as

∆Tc = (1−Dout)Tr +DoutTout−Tsa, (6.9)

Pc =
ṁCa∆Tc

COP
, (6.10)

where Pc is the power consumption related to the cooling energy consumed by the cooling

coils, ṁ is the flow rate of the air passing through the cooling coil, ∆Tc is the temperature

change of the supply air after the heat exchange has occurred at the cooling coil, COP is

the coefficient of performance of the chiller plant, for which we use a fixed value of 3,

Dout is the opening level of the outdoor air damper, and Tr is the return air temperature.

At water side, the following equations introduced in [2] are used:

Qc =UAw(Tb−Tcws) = α f β
cw(Tsa−Tcws), (6.11)

where Tb is the temperature of the cooling coil, Tcws is the supply chilled water temper-

ature, and UAw is the heat transfer coefficient of the chilled water. This coefficient can

be rewritten as a function of the water flow rates fcw, with two time-varying constants (α

and β ). Eq. (6.11) illustrates how the supply air temperature varies with respect to the

change of supply chilled water temperature and the chilled water flow rate in the coil.
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The fan power is expressed by a second order polynomial function:

Pf =Co +C1ṁ+C2ṁ2, (6.12)

where Pf is the energy consumed by the supply fan, with Co to C2 being the parameters

related to the fan power. For Eqs. (6.9)–(6.12), the return air temperature (Tr), supply air

temperature (Tsa), supply chilled water temperature (Tcw), and outdoor air damper action

(Dout) are obtained directly from the BMS measurement. Eq. (6.9) is used to estimate

the energy consumed by the individual AHUs, while Eq. (6.11) is used to estimate the

required chilled water flow rate to generate the required energy. Despite the fact that the

models are simple in structure, they are sufficient to be used for making parallel com-

parisons between different control strategies when the system is operating within a small

operational range.

6.2.3 Economizer Modelling

The economizer is an important energy saving function used in modern AHUs. When

the zone temperature is lower than the return air temperature but higher than 12oC, the

economizer will be enabled. The control logic of the economizer is illustrated in Fig.

6.3. In summary, the AHUs’ operational modes can be divided into the following three

different categories:

1. Normal mode. This mode uses 80% of return air as the supply air and 20% of

outdoor air to meet the minimum ventilation requirement.

2. Mixed mode. This mode is activated when the outdoor air temperature is lower than

the return air temperature. The outdoor air damper is 100% open but the AHU still

runs mechanical cooling to meet the cooling load demand.

3. Free cooling mode. The set point temperature is maintained by a pure ventilation.

This mode will only be activated when the cooling load and the ambient air temper-

ature are both sufficiently low.



6.2. MODELLING 130

In order to model the economizer, the energy term in Eq. (7.1) is expressed as

Qu = ṁCa(Tsa,1−T1), (6.13)

where Qu represents the overall cooling energy supplied to the room. This input will later

be used as the new input for the MPC design. From Eqs. 6.9 and 6.10, it can be seen

that the actual energy consumed by the cooling coil is not equal to Qu in Eq. (6.13),

because when the economizer is activated, cool outside air will be used to contribute fully

or partially to the cooling. Therefore, the energy term is rewritten as

Qu = DoutṁCa(Tout−Tr)︸ ︷︷ ︸
Q f

+(1−Dout)ṁCa(Tsa,1−Tr)︸ ︷︷ ︸
Qc

, (6.14)

where Qc is the energy consumed by the cooling coil, and Q f is the supplied energy by

free-cooling. Considering three different phases of the economy cycle control described

above, Eq. (7.4) can be written with three time invariant linear models:

x(k+1) =


Ax(k)+BQu(k)+Ed(k)+ e(k), Dout = 20% Tout > Tr

Ax(k)+B[Qc(k),Q f (k)]T +Ed(k)+ e(k), Dout = 1 Tmin < Tout < Tr

Ax(k)+BQ f (k)+Ed(k)+ e(k), 20% < Dout < 1 Tout < Tmin

(6.15)

where Tmin is the outdoor temperature threshold which enables free cooling to be per-

formed. Its value can be identified empirically using historical data. For the normal

mode, a minimum of outdoor air (20%) is used, and no free-cooling will be used. For

the mixed mode, the energy supplied to the zone is a mixture of mechanical cooling and

free-cooling. Under the mixed mode, the outdoor air damper is fully open (Dout = 1)

to maximise the free cooling energy. Therefore, the energy consumed by the system is

less than the supplied cooling energy. In the free-cooling mode, the outdoor air damper

manipulates between 20% and 100% to ensure the temperature does not exceed the lower

comfortable band. Under this mode, the energy consumed by the cooling system will be

zero. By dividing the model into the above three forms, the complexity of solving an

optimisation problem can be greatly reduced.
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Figure 6.4: The relationship between outdoor air damper operation and cooling valve

operation.

In the investigated system, it was found that the outdoor air damper was sometimes not

properly settled during the mixed mode: the outdoor air damper is only half open when

mechanical cooling is triggered. This has caused an ineffective use of the economizer.

To solve the problem, we set a rule in the MPC to force the outdoor air damper to be

fully open (Dout = 1) during the mixed mode. This modification greatly increases the

efficiency of the AHUs through employing more free cooling. Another benefit of applying

this strategy is that it simplifies the optimisation, because the outdoor air damper can be

always operating at the optimal point using this rule. A simple experiment was conducted

to illustrate the benefits. During the experimental day the outdoor temperature was low

enough to perform free-fooling. Fig. 6.4 shows that from 1:00 pm to 3:00 pm, both

cooling valve and outdoor air damper were partially open . After the outdoor damper was

forced to be set to fully open, the cooling valve started to be guadually turned off from

3:00 pm to 4:00 pm. This simple experiment demonstrates the effective of this method in

achieving energy saving.

The benefit of applying this method will be demonstrated in the discussion section.
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6.3 Control Design

6.3.1 Feedback Linearisation

From Eqs. (6.9) and (6.12), it can be seen that the simplified models associated with

both the thermal zone and the HVAC system contain bilinear terms, with the control

states (T1) multiplied by the control inputs (ṁ) and disturbance (Dout). Additionally, the

cooling coil process at the local AHU is affected by both the chilled water temperature

and the flow rate fluctuation within the main water loop. This effect is directly related

to the working status of the chiller plant. Using these models to conduct optimisation

results in a non-convex optimisation problem, which is very hard to solve. Inspired by the

universal approximation ability of neural network model, this study uses a neural network

based feedback-linearisation method to solve such a problem. The main idea is to cancel

the system nonlinearity using a neural network through feedback, so that the problem

can be converted from a nonlinear control problem to a linear one. The virtual input is

transformed to the real input using a neural network compensator.

The structure of the control framework is shown in Fig. 6.5. Generally speaking, the

design of the MPC consists of two steps: the controller design and the approximation of

the nonlinear functions. Firstly, a virtual input v is used to replace the original input u by

equating v = ṁCa(Tsa,1−T1). Eq. (6.6) can be written as

x(k+1) = Ax(k)+Bv(k)+Ed(k)+ ke(k). (6.16)

In the next sections, the design of the MPC using a linear programming based on the

refined state space model Eq. (6.16) is presented first. Afterwards, the method of convert-

ing the linearised input v into a real input u using an inverse NN model is introduced.
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6.3.2 MPC Design

The basic requirement of HVAC operation is to achieve thermal comfort during the occu-

pied hours. The classic form of cost function for an MPC minimises the set point tracking

error and varying rate of the actuator action. This form is useful in terms of providing

better set point tracking with a small input varying rate, but is not suitable for supervisory

control design. The ASHARE standard 55 [38] defines a comfortable temperature as a

range of temperature values instead of a fixed one. Therefore, the cost function should al-

low the indoor temperature to fluctuate within a specified range during the occupied hour.

In this study, the MPC is designed as a linear programming problem with time-varying

constraints on thermal comfort and energy costs, which was used in [13, 28]. In particular,

the cost function employed in this study should meet the following criteria:

1. It minimises the total energy consumption of an AHU, which includes the energy

consumption of the cooling coil and supply fan.

2. The indoor temperature should meet the minimum thermal comfort requirement,

which is formulated as a time-varying temperature constraint.

3. The indoor temperature should be maintained at the reference temperature, but can

be allowed to deviate to a certain extend.

4. TOU electricity prices should be taken into consideration if the goal is to reduce

utility costs. This also requires the peak energy use to be minimised.

Taking into account the above considerations, the following cost function is to be min-

imised:

J(k) = a
N−1

∑
k=0

pe|(vk+ j|k)+Pf (k+ j|k)|+b
N

∑
k=1
|ŷk+ j|k− rk+ j|k|

+c
N

∑
k=1

(|ek+ j|k|+ |ek+ j|k|)+d
N

∑
k=1

(max|vk+ j|k|),
(6.17)
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subject to:

xk+ j+1|k = Axk+ j|k +Bvk+ j|k +Edk+ j|k, ∀ j = 0, ...,N−1

yk+ j|k =Cxk+ j|k, ∀ j = 1, ...,N

T k+ j|k− ek+ j|k ≤ yk+ j|k ≤ T k+ j|k + ek+ j|k, ∀ j = 1, ...,N

Uk+ j|k ≤ vk+ j|k ≤ 0, ∀ j = 0, ...,N−1

ek+ j|k > 0,ek+ j|k > 0, ∀ j = 1, ...,N

(6.18)

where N is the prediction horizon, k+ j|k denotes the predicted value of a certain vari-

able at time step k+ j starting from time step k, v is a vector of the control inputs within

the prediction horizon, ŷk+ j|k is the predicted output at time k, which is obtained by it-

eratively solving Eq. (6.18) using the control input vector v, Pf is the energy consumed

by the supply fan, d is the predicted disturbance, and r is the reference temperature. e

and e are the temperature violations from the lower and upper comfortable temperatures,

respectively, and T and T are the lower and upper comfortable temperatures, respectively.

U denotes the maximum cooling energy that the system can supply, which is a negative

value if a cooling system is considered. pe is the time-varying electricity price in dollars

per kWh. The cost function in Eq. (6.17) minimises a weighted sum of the energy costs,

the deviations from the set point temperature, and the deviations from the comfortable

bands. These terms are penalised by the weighting coefficients a, b, c and d, respectively.

Some constraints should also be met:

1. Toc ∈ [ 21◦C, 24◦C] Thermal comfort during occupied hours.

2. Tuo ∈ [ 19.5◦C, 26◦C] Thermal comfort during unoccupied hours.

3. Qu ∈ [ 0, 12Kw] Maximum cooling energy that can be supplied to each zone.

4. Dout ∈ [20%,100%] Outdoor damper should meet the minimum amount of supply

air requirement.
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Figure 6.5: Hybrid MPC control scheme based on RNN.

As the time step progresses, the time-varying constraints on thermal comfort shift

forward. Meeting the constraints guarantees a smooth transition from an occupied hour

to an unoccupied hour, without violating the comfort requirement. The constraint for the

refined control inputs Qu is nonlinear in principle, as it is bilinear and affected by the cool-

ing capacity of the AHUs. This constraint is also time-varying, because it is influenced

by the chilled water temperature at the main water loop. For simplicity, this constraint is

calculated by Eq. (6.9) using the historical data of the supply air temperature, zone tem-

perature, and outdoor air damper opening level. This enforces that the energy generated

by the mechanical cooling should not exceed the maximum energy that the cooling coil

can generate. Also, the free cooling energy supplied by ventilation is constrained by the

outdoor air temperature. The requirement of a minimum percentage of outdoor air during

occupied hours should also be met, to ensure good ventilation.

The linear programming optimisation problem is solved using Yalmip [39], which

generates an optimised input variable trajectory. The first control signal v1|k is applied to

the building, and the rest are disposed of. When a new time interval starts, the optimisation

problem is repeated again with the updated initial condition xk+1 and shifted constraints.
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6.3.3 Inverse Neural Network Modelling

In the aforementioned optimisation problem, the optimised input is the supply energy Qu.

However, the real inputs to be optimised are the cooling valve operation and outdoor air

damper. To obtain the actual input signal, this section employs an inverse NN model to

establish the connection between the virtual input and the actual input. In this study, both

a forward neural network model and an inverse model are used in the feedback loop. The

forward neural network model is used during the simulation process to provide feedback

to the MPC. The inverse model serves as a nonlinear compensator, which supplies the

appropriate control action, u, to drive the system towards its desired states.

When ANN is used for control purposes, its output is the controllable input to the

building. For this consideration, an inverse ANN model representing the inverse of the

system dynamics is used [40]. In an inverse ANN, the network is fed with the required

future output (v) together with the past inputs and the past output variables, with the aim

of predicting the current input. The inverse NN model has the following form:

u(k) = f [yr(k+1),y(k), ...,y(k−na +1),u(k−1), ...,u(k−nb +1)], (6.19)

where yr denotes the desired output, which in this case is the optimal input v calculated

by solving the linear programming problem.

The training was performed for both the forward and inverse models using the same

training data. For the inverse NN model, the inputs to the network are the past and present

values of the chilled water temperature, return air temperature, outdoor temperature, air

mass flow rate, and the desired output Qu. The output of the neural network model is the

opening level of the chilled water valve. The delay time nk is set to be 0, as the time lag

from input to output is shorter than the sampling time of the system (10 minutes). Among

the selected training data, 70 per cent is used for training; 15 per cent for the validation

set and 15 per cent for the test set. The data are scaled between -1 and 1 using Eq.

(4.12). The orders of the inputs and the number of neurons are determined through a trial
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and error method. The models which generate the best validation results are maintained.

Mathematically, the following models are derived:

The forward neural network model has the following form:

ŷ(k) = f [T1(k−1),T1(k−2),T1(k−3),Tout(k−1),Tout(k−2),Vcw(k−1),

Dout(k−1),Tcws(k−1)],
(6.20)

The inverse neural network model has the following form:

û(k) = f [v(k+1),Tr(k),Tout(k−1),Tout(k−2),u(k−1),Tcws(k)]. (6.21)

The simulation results of applying the ANN for temperature prediction are illustrated in

Fig. 7.6(a). It can be seen that the forward ANN model has a fitness of 85%, which

is better than the previously illustrated RC model. This is because when the system is

modelled as a linear RC model, the unmeasured disturbances are assumed to be Gaussian

distributed, while in neural network modelling, the uncertainties are directly modelled

through learning from the historical data. Fig. 7.6(b) depicts the one-step ahead predic-

tion results from using the inverse model. It can be seen that the desired control input can

be predicted accurately. Still, some offsets from the idealised control input can be seen.

These errors occurred also due to the presence of the uncertainties within the building sys-

tem, and are impossible to eliminate completely. Fig. 6.7 illustrates the inverse mappling

from energy Qu to setpoint Tsp.

6.4 Results and Discussions

6.4.1 Simulation Setup

Before incorporating the hybrid MPC strategy in an on-line experiments, it was tested

under the simulation environment. The objective of the simulation study was to exam-

ine the closed-loop performance of the MPC and investigate its stability with regards to
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Figure 6.6: (a): Simulation results of the forward NN model (model fit=0.85), (b) one-step

ahead prediction results of the inverse NN model.
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Figure 6.8: Test platform for model predictive control using the forward neural network

model.

plant/model mismatch. Usually, when MPC is applied online, the system outputs are

measured by the sensors and then fed back to the controller. For simulation purposes, the

reference model (which is used to approximate the real building) should be different from

the control model, otherwise a model mismatch would result in errors during the simula-

tion. A commonly applied approach is to replace the real building by a detailed physical

model [21] to provide system feedback. In this study, the forward neural network model

developed previously is used to achieve the same purpose, as shown in Fig. 6.8. The

forward neural network works as an observer to provide the feedback to the controller.

The benefits of conducting a simulation in such a way is that the model output is very

similar to the real output, so that it will not be disturbed by the errors generated by the

linear models. This allows the MPC to be tested before it is applied to the real building.

The selected zone for simulation purpose is zone 1 located at the east end of the

building. A detailed description of this zone is given in Section 2. The reason for choosing

this area is that the space is only adjacent to one neighbouring zone, thus is less affected

by thermal interactions. The occupancy hours are set according to the existing flight

schedule, which are from 5:00 am to 9:30 pm. The default schedule of AHUs are from

4:00 am to 9:00 pm. The building uses two electricity rates, which are shown in Table
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Table 6.2: Electricity rate of a T-1 building

Time of day Energy charge ($/kWh)

Peak 7:00 am–9:00 pm 0.090 $/kWh

Off-peak All other 0.024 $/kWh

6.2. The weighting coefficients of the cost function were found empirically as a = 5,

b = 1, c = 1.5, and d = 1.5. The prediction horizonwas set to be six hours (36 steps).

The historical BMS data from the 24th to 25th January, 2013 was chosen for comparison

purposes. The outdoor temperature is the forecast temperature provided by the Bureau of

Meteorology of Australia.1 In particular, we compare the following two MPC schemes

with the baseline control method.

1. Optimal start-stop MPC considers time-varying constraints based on real-time sched-

ule.

2. Pre-cooling MPC (PMPC) considers time-varying constraints and TOU electricity

prices.

6.4.2 Simulation Results

In the first simulation, the performance of the optimal start-stop MPC was evaluated on

24th January, 2013. To better illustrate the method, a real-time flight schedule is added

into the existing schedule: besides the normal operational schedule, 10:00 am to 12:00

pm is also set to be unoccupied as there were no passengers checking in at the inves-

tigated area during the time. This is to show the special suitability of this strategy for

intermittently occupied buildings, such as an airport terminal building. Fig. 6.9(a) shows

the control results of using the optimal start-stop MPC. It illustrates that when the MPC

is applied, the zone temperature can be kept within the comfortable bound only during

the occupied hours. Fig. 6.9(b) indicates the set point trajectory computed by MPC. Fig.
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6.9(c) compares the power consumption when the baseline control and MPC are used. In

the morning, the MPC turns on the AHUs later than the default setting, so that the tem-

perature reaches the upper comfortable temperature at the start of occupancy. Similarly,

before the end of the occupancy hours, MPC turns off the AHUs earlier, to maintain a

comfortable temperature before the end of occupancy. Whenever the building is unoccu-

pied during the day (according to the schedule), the cooling supply of AHUs will also be

turned off to save energy. The AHU stops supplying cooling energy between 6:00 am and

12:00 pm. It is shown that this simple optimal start-stop MPC achieves up to 41% of the

energy savings compared to the baseline control method.

In the second simulation, a pre-cooling test is conducted on 25th January, 2013. Fig.

6.10(e) shows that, on the investigated day, there is a big difference in temperature be-

tween morning and daytime This day belongs to a category of weather pattern when a

pre-cooling can achieve a satisfactory result. Fig. 6.10(a) shows that the initial zone tem-

perature during the simulation day was not high (24◦C). As a consequence, the baseline

control waited until the zone temperature started to increase to run the AHU. On the other

hand, the PMPC precools the temperature to 21oC after the AHU was turned on. This op-

eration was taken because the MPC takes advantage of cheap off-peak electricity prices

to precool the building’s thermal mass and to store cooling energy. Fig. 6.10(b) shows

that the pre-cooling process ended before the peak hour started (7:00 am). After 7:00

am, the AHUs were turned off and the stored cooling energy started to release, so that

very little cooling energy was needed to compensate for the increasing heat gains during

the daytime. It can also be seen that the MPC reduces the power during the peak period

by applying a higher set point value, while still maintaining the temperature within the

comfort band. The temperature increases slowly until it reaches the upper comfort band

(24◦C) at the end of occupancy. Fig. 6.10(c) shows that the process of cooling down the

zone temperature from 24◦C to 21◦C does not require the cooling valve to be fully open.

This is because the outdoor door air damper was forced to open 100% under the opera-
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Figure 6.9: Comparison results between baseline control and optimal start-stop MPC.
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Figure 6.10: Comparison results between baseline control and PMPC.
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tion of the MPC, while with the default setting, the outdoor air damper was only partially

open. MPC increases the energy efficiency by employing more cool cooling energy, as

illustrated in Fig. 6.10(d).

6.4.3 Experiment Results

After simulation, the optimal setting of model parameters and optimisation configurations

were determined. The proposed MPC control method was tested at the same area as for

the simulation. The experiment was conducted with the following steps:

1. Download the updated building data from the BMS one day ahead of the experi-

ment.

2. Download one-day-ahead weather forecast information from the Australian Bureau

of Meteorology.

3. Build both a linear model and a neural network model using the newest building

data. Use the aforementioned simulation methods to obtain the optimal control

parameters.

4. Calculate the optimal trajectory for the cooling valve operation, and the correspond-

ing zone temperature set point trajectory, for the next day.

5. Send the new set point trajectory to the BMS. Obtain the experimental data and

repeat step 1.

The real-time experiment was executed over a period of three successive days: from

the 23rd January to the 25th January, 2014. The comfort requirements were set to be the

same as during the simulation. Fig. 6.11(a) shows the temperature profile on the investi-

gated days. It can be seen that the AHUs started to pre-cool the space from early morning

by setting a low set point value. After 7:00 am, the set point temperature was relaxed to
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Figure 6.11: Experimental results from 23rd January, 2013 to 25th, January, 2013.
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higher values. On day 1 and day 3 the PMPC shifted the cooling load from the peak hour

to the off-peak hour. Unexpectedly, the pre-cooling was not able to cool down the tem-

perature to the desired value on day 2, even with a fully opened cooling valve. The reason

is that during the pre-cooling process, the instant supply chilled water temperature was

not low enough to provide the required cooling demand. The comparison of the chilled

water temperature during pre-cooling is highlighted with red in Fig. 6.11(b). Making a

comparison between the experimental results with the baseline results over the three suc-

cessive days is difficult. Therefore, this study employs a comparison method introduced

in [41]. This method uses the ratio of peak-hour energy use to overall daily energy use

to address the merit of the pre-cooling method. Fig. 6.13 compares the daily percentage

of peak hour energy consumption during the normal days with the experimental days. It

can be seen that almost all the energy was consumed during peak hours during normal

days. After the MPC was applied, the percentages of energy use during peak hours were

reduced, compared to those of the normal days.

To better compare the performance of the MPC with the baseline control method, we

chose 10th January, 2014 as the reference day. On this day, the outdoor temperature, ini-

tial zone temperature, and occupancy level were similar to day 1. For a fair comparison,

we only compare the energy use between 3:00 am and 6:00 pm, as there is a big difference

in outdoor temperature starting from 6:00 pm; this is shown in Fig. 6.12(c). Fig. 6.12(a)

compares the zone temperature trajectory between the baseline control and the predictive

control. It is observed that the baseline control simply maintained the temperature at the

fixed setpoint, while MPC performed an intensive pre-cooling to bring down the tempera-

ture to the lower bound of 21◦C before the start of peak hour. As the ambient temperature

was not as low as during the simulation, the benefit of applying free cooling was relatively

small. However, the cheap off-peak electricity price allows the pre-cooling process to be

performed at a very low cost.

When the peak hour started, as the sun irradiated the space and people entered the
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Figure 6.12: Control performance comparison between two homogeneous days.
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Table 6.3: Comparison of performance between baseline control and PMPC from 3:00

am to 6:00 pm

Controller Total en-

ergy input

(kWh)

Off-peak

energy in-

put (kWh)

Utility

costs (in $)

Cost savings (%)

Baseline control(10th Jan.) 423 50.5 12.3 0

MPC(23rd Jan.) 447 137.1 10.7 13%

building, the heat gains of the zone started to increase. Under the operation of the baseline

control, the cooling valve opened more widely to compensate for the increasing heat

gains. On the other hand, the MPC delayed supplying the cooling energy, by closing

down the cooling valve. This is because the cooling energy stored in the thermal mass

was being released, which reduced the cooling load during the peak hours. Fig. 6.12

(b) depicts the cooling energy consumed by the AHUs. It can be seen that the MPC has

partially shifted the cooling load from an on-peak hours to off-peak hours, at the cost of

consuming more off-peak energy (three times that of the reference day). Before the end

of the occupancy hour, both the MPC and baseline control closed the cooling valve in

advance. By calculation, it is estimated that 13% of cost savings were achieved compared

with the baseline control, when the MPC was used during the comparison period (see

Table 6.3).

The experimental result matches the simulation result well. However, both the RC

thermal network model and the ANN model were trained using historical data when the

system was operating under baseline control. The data may not contain enough informa-

tion that a pre-cooling control requires, which may result in prediction errors. Excitation

of the system is needed in order to collect more informative data to improve the quality

of the model. In addition, the precooling strategy should be treated carefully because the
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Figure 6.13: Percentage of peak hour energy consumption to overall daily energy con-

sumption. Green: Experimental days, Blue: Baseline days.

process of cooling the thermal resistance may result in extra energy cost. An inaccurate

prediction of the indoor temperature may result in wasteful energy consumption.

6.5 Conclusion

This study proposes a new type of MPC scheme based on neural network feedback lin-

earisation to achieve energy-savings for a commercial building. In the proposed control

framework, the thermal dynamics of the building are modelled by a linearised RC model,

while the uncertainties associated with the HVAC process are handled separately by an

inverse neural network model. These two models are coupled using a feedback lineari-

sation method. Treating the main characteristics of the building’s thermal dynamics as

linear, we model it using a simplified RC model and then transformed it into a state-space

model. The validation of the model using the field data shows that such a model is able

to capture the main characteristics of the building, as the building dynamics has a mild

nonlinearity. It is also shown, through simulation and experiment, that satisfying con-

trol results can be achieved when applying the proposed method, even though the RC

model does not match perfectly the actual building. The results were analysed from both

the energy saving and cost saving points of views. To achieve this purpose, two types

of MPC schemes are investigated: an optimal start-stop MPC which only optimises the

energy use, and a pre-cooling MPC which optimises utility costs. By conducting exper-



6.5. CONCLUSION 150

iments and simulations, it is shown that when TOU electricity pricewas not considered,

the MPC starts the AHU later and stops the AHU earlier to avoid over-cooling, due to

the use of time-varying constraints on the thermal comfort. The energy savings become

more promising when a detailed occupancy pattern, e.g., the flight schedule within a day,

is available. However, when the morning temperature is low, the potential for achieving

energy savings by optimal start becomes not very obvious. On the other hand, when the

TOU electricity price was taken into consideration, the utility costs can be reduced using

the PMPC, despite more off-peak energy being required. The savings come from the use

of cheap off-peak electricity, more free cooling, and reduced on-peak electricity demand.

The pre-cooling is able to achieve a more significant amount of savings when the ambi-

ent temperature is low enough. Additionally, we have also developed a simple strategy,

incorporated into the existing MPC, which increases the efficiency of the economizer.

It is found that the performance of the local AHUs is also related to the performance

of the chiller plant. For example, during the experiment, the required cooling demand

could not always be met. This is because when the instant cooling load of the entire

building system is high, a new chiller needs to be run. This causes a change in the input

constraints, thereby affecting the performance of the MPC. Therefore, how to handle the

input constraints in a more effective way should be investigated in the future. It is also

found that the energy storage capability of the building is not very strong, as compared

to the ones in the existing literature. The main reason is that the investigated zones have

a large window area, unfurnished and wide open areas, making them lightweighted. It

is expected that a more significant amount of savings can be achieved if a heavy weight

building is treated. Future research will be focusing on the use of the proposed control

strategy for building sectors with a sufficient thermal mass. Additionally, how to make

the model adaptive to changes in the environment will be another area of research interest.

This should be able to improve the robustness of the proposed control method.
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[5] S. Pı́vara, J. Široký, L. Ferkl, and J. Cigler, “Model predictive control of a building

heating system: The first experience,” Energy and Buildings, vol. 43, no. 23, pp. 564

– 572, 2011.

[6] P. Ferreira, A. Ruano, S. Silva, and E. Conceiçâo, “Neural networks based predictive

control for thermal comfort and energy savings in public buildings,” Energy and

Buildings, vol. 55, no. 0, pp. 238 – 251, 2012.

[7] F. Oldewurtel, A. Parisio, C. N. Jones, D. Gyalistras, M. Gwerder, V. Stauch,

B. Lehmann, and M. Morari, “Use of model predictive control and weather fore-

casts for energy efficient building climate control,” Energy and Buildings, vol. 45,

no. 0, pp. 15 – 27, 2012.

[8] A. Afram and F. Janabi-Sharifi, “Theory and applications of HVAC control systems



REFERENCES 152

a review of model predictive control (MPC),” Building and Environment, vol. 72,

no. 0, pp. 343 – 355, 2014.

[9] A. Garnier, J. Eynard, M. Caussanel, and S. Grieu, “Low computational cost tech-

nique for predictive management of thermal comfort in non-residential buildings,”

Journal of Process Control, vol. 24, no. 6, pp. 750 – 762, 2014.

[10] G. P. Henze, D. E. Kalz, S. Liu, and C. Felsmann, “Experimental analysis of model-

based predictive optimal control for active and passive building thermal storage in-

ventory,” HVAC R Research, vol. 11, no. 2, pp. 189–213, 2005.

[11] J. Seem and J. House, “Development and evaluation of optimization-based air econ-

omizer strategies,” Applied Energy, vol. 87, no. 3, pp. 910 – 924, 2010.

[12] K. Lee and J. E. Braun, “Model-based demand-limiting control of building thermal

mass,” Building and Environment, vol. 43, no. 10, pp. 1633 – 1646, 2008.

[13] Y. Ma, G. Anderson, and F. Borrelli, “A distributed predictive control approach

to building temperature regulation,” in American Control Conference (ACC), 2011,

2011, pp. 2089–2094.

[14] I. Hazyuk, C. Ghiaus, and D. Penhouet, “Optimal temperature control of intermit-

tently heated buildings using model predictive control: Part 1 building modeling,”

Building and Environment, vol. 51, no. 0, pp. 379 – 387, 2012.

[15] J. E. Braun, “Reducing energy costs and peak electrical demand through optimal

control of building thermal mass,” ASHRAE Transactions, pp. 264–273, 1990.

[16] C. D. Corbin, G. P. Henze, and P. May-Ostendorp, “A model predictive control op-

timization environment for real-time commercial building application,” Journal of

Building Performance Simulation, vol. 6, no. 3, pp. 159–174, 2013.



REFERENCES 153

[17] Y. Ma, A. Kelman, A. Daly, and F. Borrelli, “Predictive control for energy efficient

buildings with thermal storage: Modeling, stimulation, and experiments,” Control

Systems, IEEE, vol. 32, no. 1, pp. 44–64, Feb 2012.

[18] P. May-Ostendorp, G. P. Henze, C. D. Corbin, B. Rajagopalan, and C. Felsmann,

“Model-predictive control of mixed-mode buildings with rule extraction,” Building

and Environment, vol. 46, no. 2, pp. 428 – 437, 2011.

[19] J. E. Braun and N. Chaturvedi, “An inverse gray-box model for transient building

load prediction,” HVAC Research, vol. 8, no. 1, pp. 73–99, 2002.

[20] M. Sourbron, C. Verhelst, and L. Helsen, “Building models for model predictive

control of office buildings with concrete core activation,” Journal of Building Per-

formance Simulation, vol. 6, no. 3, pp. 175–198, 2013.
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Chapter 7

Robust MPC with Adaptive Bound

Estimator

This chapter is based on the following paper:

Full citation: Huang H., Chen L., Hu E., “Reducing energy consumption for buildings

under system uncertainty through robust MPC with adaptive bound estimator”, Submitted

to Building and Environment, 2015.

Contribution of this chapter: This paper presents a robust MPC with a new type of

adaptive bound estimator for building temperature regulation. The estimator learns the

uncertainty distribution from the historical data to provide a more tightened uncertainty

bound for the RMPC. By performing intensive simulations, the advantages of the pro-

posed RMPC over the conventional one for the investigated building are demonstrated.
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Abstract

The use of model predictive control (MPC) for building-energy management sys-

tem has been widely discussed in the literature. Since physical buildings are influ-

enced by a number of uncertainties, the models cannot always perform indoor tem-

perature prediction precisely. This may cause both thermal comfort violation and

energy waste. Robust MPC (RMPC), which requires knowledge of the bounds on

the system uncertainty, has been applied to enhance the stability of the MPC. How-

ever, the RMPC presented in the previous studies usually assume that the uncertainty

bounds are fixed and known a priori. This makes the RMPC not suitable for dealing

with real-world buildings, which are affected by time-varying and non-Gaussian dis-

tributed uncertainty. This paper presents a novel adaptive RMPC scheme for temper-

ature regulation in commercial buildings. The novelty comes from the development

of an adaptive uncertainty bound estimator for the RMPC. The estimator depends

on a recursive neural network model built using the historical measurement. The

proposed RMPC method is tested on a simulation model developed from building

data collected from a light-weighted commercial building. By conducting simula-

tion using different MPCs, it is found that the proposed RMPC method is able to

behaviour robustly against uncertainty with the least performance loss. This means

the maximum energy saving and the least thermal comfort violation.

7.1 Introduction

A considerable building-energy savings can be achieved by incorporating supervisory

control at the HVAC systems. The supervisory controller determines the set-point temper-

ature for the local controllers that respond to changing weather and building conditions,

so that operating costs can be minimised [1]. Improving energy efficiency through de-

veloping supervisory controllers is attractive to building managers because it does not in-

volve re-design processes and requires low investment. Recently, the application of model

predictive control (MPC) as a supervisory controller for optimising building-energy usage
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has received increasing attention. The advantage of MPC over the traditional control strat-

egy is that the former one is able to handle systematically and effectively constraints on

control inputs and states, by taking advantage of weather forecast to perform disturbance

prediction. In the last decades, researchers have demonstrated that MPC can achieve 10

to 40% of energy saving potential [2–6]. MPCs have also been implemented in real-world

buildings and achieved promising savings [2, 7, 8].

The performance of an MPC is largely dependent on how accurately the specific model

describes the real building process. While different model types are available for building

modelling, the mainstream is to use resistance-capacitance (RC) models as the control-

oriented model [8–10].This is because the RC models can be accurately identified using

experimental data while maintaining physical significance.

However, generating highly accurate RC models by using experimental data is theoret-

ically not possible, mainly for two reasons. The first reason is the existence of persistent

disturbances. For example, the behaviour of the occupants, such as temporary opening of

windows, doors and blinds may bring extra heat flux to the building; the second reason

is the parametric uncertainty of the thermal dynamic models. When constructing an RC

model, many factors have been simplified, which lead to an estimation error of the heat

transfer coefficients and system states [11]. The above two factors cause an inaccurate

prediction of indoor temperature to happen. Because the MPC saves energy by maintain-

ing the indoor temperature close to the upper (in summer) or lower (in winter) comfort

limits, an over-prediction or under-prediction can result in thermal comfort violations or

energy waste. For the above reasons, the explicit consideration of the uncertainties be-

comes especially crucial [12].

Conventionally, the MPC employs linear, time-invariant (LTI) models to predict fu-

ture dynamics of the system, despite the fact that controlled systems (thermal zones) are

non-linear and non-deterministic. This type of MPC is referred to as deterministic MPC

(DMPC). Because a receding horizon provides feedback to the control system [13], a
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DMPC can achieve a certain degree of robustness under a low level of uncertainty. But as

the level of uncertainty increases, the linear MPC will eventually become unstable.

The necessity for developing a more stable MPC for building-energy systems moti-

vates the need for the development of a robust MPC (RMPC). We call the MPC robust,

if closed-loop performance of the MPC satisfies the constraints for all the known and un-

known disturbance sequences. The main idea of RMPC is to consider the model–plant

mismatch as an uncertainty and address it explicitly in the control algorithm. One com-

mon formulation of RMPC is min–max RMPC, which minimises the ‘worst-case’ cost

that could result from a future disturbance sequence [14–17].

The RMPC has been recently investigated and applied to building-energy systems

[18–21]. For example, Kim [18] designed an RMPC to improve the stability of traditional

MPCs under uncertainty conditions. He found that robust MPC outperforms DMPC when

uncertainty is dominant and the model mismatch is significant. Maasoumy et al. [19]

compared the performance of a closed-loop robust MPC with rule-based control and nom-

inal MPC under different levels of uncertainties. They suggest that robust MPC should

only be chosen within a certain range of uncertainties. In Ref. [20], a least-restrictive ro-

bust MPC law is designed for indoor temperature regulation. The proposed method elimi-

nates the conservativeness of traditional min–max open-loop prediction MPC while guar-

anteeing reasonable computational complexity. Past studies show that correctly choosing

the uncertainty bound is crucial for the design of RMPC: a too narrow bound would cause

thermal comfort violation while a too wide uncertainty bound cause performance lose.

An alternative solusion is to use stochastic MPC (SMPC) to obtain a better trade-off

between performance and constraint satisfaction. Oldewurtel et al. [22] implemented an

SMPC for a building climate control to increase energy efficiency while respecting con-

straints resulting from desired occupant comfort. In this study, the uncertainty is modelled

as an autoregressive model driven by Gaussian noise. Based on this work, an adaptive

SMPC is proposed in [23], in which the constraints are adapted according to the histori-
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cal thermal violation frequency. By considering a non-Gaussian probability function and

chance constraints, Ma et al. [24] proposed an SMPC scheme to deal with the disturbance

caused by the occupants. Zhang et al. [25] built a probabilistic disturbance model is built

that enables the RMPC to sample directly from the uncertainty set, which removes the

assumption that the uncertainty has a Gaussian distribution.

An unsolved issue in the previous studies [18, 19] on RMPC is how to design the

uncertain bound properly to reduce conservatism and guarantee robustness. For the con-

venience of research, the uncertainty bounds in these studies are usually assumed to be

fixed and known a priori. This does not work for real-world buildings, as the occurrence of

some activities, such as door opening and change of occupants number are actually time-

varying and non-Gaussian distributed. The RMPC, based on fixed uncertainty bounds,

will inevitably lead to conservative solutions, because it has to work conservatively at all

times to guarantee that the thermal comfort is always satisfied. In this paper, we continue

with our previous work [5] and presents an adaptive uncertainty bound estimator for the

RMPC. The bound estimator is built upon a recursive neural-network model (RNN). The

idea is to use the recursive nature of RNN model to capture the uncertainty dynamics and

nonlinear properties of the buildings. The uncertainty bounds on the control model can be

computed and updated, based on the difference between the output predicted by control

model and the RNN model. This algorithm allows one to estimate the error bound in

an adaptive fashion over the given prediction horizon. Once the uncertainty bounds are

obtained, the optimisation problem is solved as a closed-loop min–max RMPC problem,

based on nominal model predictions and tightened constraint sets. We intend to show that

by using the proposed adaptive robust MPC (ARMPC), it is possible to deal with both

high- and low-uncertainty building plant, in the least restrictive manner. The proposed

method is demonstrated at the terminal building of Adelaide Airport, South Australia.

The investigated zone is uncertain due to frequent variation of passenger flow, as well

as unknown coupling from both controlled and uncontrolled neighbouring space. The
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Figure 7.1: The layout of the check-in hall at level-2 of T-1, Adelaide Airport.

complexity and uncertainty of the investigated building make the case study suitable for

testing proposed control methods. To summarise, the following contributions are made in

this paper:

• Investigate the long-term prediction ability of two types of building models: RC

model and RNN model.

• Compare the performance of DMPC with RMPC in presence of model uncertainty.

• Develop an adaptive bound estimator for the RMPC to provide a good compromise

between thermal comfort satisfaction and control performance.

The remainder of this paper will proceed as follows: Section 2 introduces grey-box

and RNN modelling methods for building thermal dynamics modelling. The design of

DMPC, RMPC and the novel RMPC are introduced in Section 3. Section 4 discusses the

results of using the proposed controllers, including the control performance comparison

between different configurations of DMPC and RMPC. The paper ends with a conclusion

and a description of future work.
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7.2 System Modelling

7.2.1 Case Study Building

The test building is the Terminal-1 (T1) building of Adelaide Airport, South Australia.

The perimeter zones of the second floor were selected as the test site for the experiment.

The layout of the test area is shown in Fig. 7.1. This area serves as the check-in hall from

where most passengers enter or leave the building. A large glass facade is installed to

the north to ensure good lighting conditions, while two motorised blinds are installed to

reduce the effects of solar gain. The position of the blinds is programmed into BMS and

controlled with a fixed schedule. The hall is divided into four adjacent zones. Each zone

has an associated CAV (Constant Air Volume) box to condition the space and a sensor to

measure the zone temperature. Different from other airport terminals, T1 has no flights

during the night, so the HVAC system is scheduled to be switched off during the night.

The occupied period for the testing area is 7:00 am to 10:00 pm.

7.2.2 RC Modelling

Past research has compared different structures of RC models in modelling the thermal

dynamics of buildings [11, 26, 27]. A common conclusion that can be drawn from the

above studies is that an RC model does not have to be high order to achieve good accuracy.

In fact, it has been found that only a few model types are needed to represent both heavy

and light mass buildings [27]. For control purposes, this study employs a second order

RC model to represent the thermal dynamics of the building.

Before modelling work was begun, we make the following assumptions:

• The air in each zone is evenly distributed.

• Only dry bulb temperature is considered.



CHAPTER 7. ROBUST MPC WITH ADAPTIVE BOUND ESTIMATOR 165

Tout

Tn
Rwin

Cw

rinQ
 routQ

TwRw Rw

pQ
Cz

χ4|0
(1)

χ4|0
(2)

χ4|0
(3)

χ4|0
(4)

χ4|0
(5)

χ4|0
(6)

χ4|0
(7)

χ4|0
(8)

)

( 3| )0,χ 3|0u

( 3| )0,χ 3|0u

( 3|0,χ 3|0u

( 3| )0,χ 3|0u

1

1

1

1

)

-1

-1

-1

-1

-1

1

(1)

(4)

(3)

(2)

Rc

Figure 7.2: RC modelling of the building thermal model.

• The convective resistances between the building envelope and the outdoor and in-

door air is the same.

• The influence of the floor temperature on the zone temperature is ignored.

The modelling work is a typical multi-input (thermal energy supplied to individual

zones) and multi-output (zone temperatures) problem. The parameters that are of concern

are the heat transfer coefficients between the air handling units (AHUs) , adjacent zones,

internal walls and uncontrolled spaces. Zones 1 and 2 located at the east end of the

building were selected as the experimental area in this study. Zones 3 and 4 are not

considered in this study because they have similar dynamics with zones 1 and 2.

The structure of the RC model is depicted in Fig. 7.2. The corresponding energy and

mass balance governing equations for a single zone can be written as:

Cz
dTz

dt
= ṁCa(Tsa−Tz)+

Tout−Tz

Rwin
+

Tw−Tz

Rw
+

Tn−Tz

Rc
+Qrin +Qp +Qin f ,

(7.1)

Cw
dTw

dt
=

Tz−Tw

Rw
+

Tout−Tw

Rw
+Qrout , (7.2)

where Cz is the overall thermal capacitance of the air and other fast-response elements, Cw

is the thermal capacitance of the interior walls and ceiling, Ca is the specific heat of the air,
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Tz is the temperature of the investigated zone, Tn is the temperature of the neighbouring

zone(s), Tout is the outdoor air temperature, Tw is the mean surface temperature of the

interior walls and ceiling, Rwin is the thermal resistance of the windows, Rw represents the

convective resistances between the building envelope and the outdoor and indoor air, Rc is

the convective heat transfer coefficient between adjacent zones, Qrin and Qrout denote the

inside and outside surface solar radiation heat flux, respectively, Qp is the internal heat

gain generated by the presence of occupants and their behaviours, and Qin f is the internal

heat gain from leakage and door openings.

Observing Eq. (7.1), we found that the only non-linear component in the simplified

model is the bilinear term ṁCa(Tsa−Tz). Using feedback linearisation, the control input is

redefined as Qu = ṁCa(Tsa−Tz). The new control input Qu represents the thermal energy

supplied to the individual zones.

Eqs. (7.1) and (7.2) are discretised using the Euler forward method:

Ṫ =
T (k+1)−T (k)

∆t
, (7.3)

where k is the time step, and ∆t is the sampling time. By substituting Eq. (7.3) into Eqs.

(7.1) and (7.2), the following state space model is obtained:Tz(k+1)

Tw(k+1)

=

1− ∆t
CzRwin

− ∆t
CzRw

∆t
CzRw

∆t
CwRw

1− 2∆t
CwRw

,

Tz(k)

Tw(k)

+

∆t
Cz

0

(Qu(k)
)
+

 ∆t
CzRwin

∆t
CzRc

∆t
Cz

0 ∆t
Cz

∆t
Cz

∆t
CwRw

0 0 ∆t
Cw

0 0





Tout(k)

Tz(k)

Qrin(k)

Qrout(k)

Qp(k)

Qin f (k)


,

(7.4)

There are three disturbance inputs in Eq. (7.4). The first input is the incident solar ra-

diation on the inside and outside of the building envelope. The data used for calculating
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the solar radiation heat flux is global horizontal irradiation (w/m2). Therefore, the solar

radiation heat flux can be obtained by multiplying Ir by the corresponding surface area.

We use Qrin = αIr and Qrout = β Ir for calculating the solar radiation heat flux. α and β

denote the coefficients associated with the area of the inside and outside building envelop.

The second input to the system is the internal gain generated by the occupants. The inter-

nal gain is proportional to the number of occupants in the hall, so it can be indicated by

the carbon dioxide concentration (ppm). Therefore, it is presented by Qp = γCO2. Here

γ denotes the coefficient associated with the number of occupants. The two variables are

identified together with Eq. (7.4). The third input Qin f is not measurable so they are re-

garded as unmeasured uncertainty. Taking into account the uncertainty and measurement

noise, Eq. (7.4) can be re-written as state-space form [28]:

x(k+1) = Ax(k)+Bu(k)+Ed(k)+Fe(k), (7.5)

where A, B, E, and F are the corresponding matrices, x is state vector, u is input vector,

d denotes measurable disturbance, and e denotes the uncertainty and measurement noise

that is assumed to be Gaussian distributed. The unknown parameters in Eq. (7.5) are

identified using measured building data. The data used for model identification were col-

lected from between the 1st and 20th of January, 2013. The input is the supplied cooling

energy Qu, the meteorological data of the Bureau of Meteorology of Australia provide

disturbance forecast (Qr and Tout) to the thermal zones, the output is indoor temperature.

A source of uncertainty in building control comes from the errors in forecasting. The

outside ambient temperature forecast uncertainty increases with longer prediction hori-

zon. However, this study does not specifically investigate the effects of weather forecast

error on the modelling results. Instead, we use measured outside air temperature instead

of the predicted value to perform analyse. All the other uncertainties are lumped into the

error terms.

Due to the existence of the uncertain variables in matrix A, the resulting dynamic

system is nonlinear. Thus, a nonlinear least-squares problem is solved with respect to θ
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as follows:

min[y− f1(x1, ...xm;θ)]T [y− f1(x1, ...xm;θ)]

= min
m

∑
k=1

[yk− f (xk;θ)]2,
(7.6)

where f1 is a nonlinear function, x is a vector of states variables, y is a vector of output

variables, m is number of measured states and outputs variables, θ = [Rw,Rg,R f ,Rc,α,

β ,γ,C1
z ,C

1
w] is a vector of parameters to be identified, the lower and upper bounds of θ are

estimated and initiated, based on the material properties and geometry of the investigated

zone. Our objective is to find vector of θ so that the function f best fits the input-output

data [xk,yk], The nonlinear least squares problem is solved using a Trust-Region reflective

algorithm [29].

In this work, we focus on minimising the supplied thermal energy Qu at the AHUs

level and will not model the efficiency of the AHU system. However, Qu is not the actual

control input to the system. The actual control input might be the set-point command for

zone temperature, supply air temperature or the chilled water temperature, depending on

the types of HVAC system being considered. The low-level controllers work accordingly

to track the designated set-point value. If a variable air volume (VAV) system is consid-

ered, the control objective will be both the air flow rate and supply air temperature, then

the optimisation problem becomes a non convex one. In this study, a CAV is considered,

so the only variable to be optimised is the supply air temperature. One could obtain the

optimal set-point temperature once the virtual input Qu is obtained.

7.2.3 Recursive Neural Network Modelling

In this section, the thermal dynamics of the same zone will be modelled by an RNN

model. Nonlinear autoregressive with exogenous inputs (NARX) model is used to express
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the RNN structure:

y(k) = f2(y(k−1), ...y(k−ny),u(k−1), ...u(k−nu)+ e(k), (7.7)

where y(k) = [y1(k), ...yp(k)]T , u(k) = [u1(k), ...um(k)]T , and e(k) = [e1(k), ...em(k)]T are

the system output, input and noise, respectively; p and m are the number of outputs and

inputs, respectively; ny and nu are the maximum lags in the outputs and inputs, respec-

tively; k is the process dead time; and f2 is a vector-valued non-linear function. Model

order selection is an important step of system identification, but it will not be elaborated

this paper. For detailed procedures see [30].

A neural network with three layers of neurons was employed. The network function

is expressed with the following equation:

ŷ(t) = F
nh

∑
i=1

Wj,u f3(
nu

∑
i=1

wu,iϕi(k)+bu,0)+B j,0, (7.8)

f3(x) =
1

1+ exp(−x)
, (7.9)

where Wj,u and wu, j are weights vector to the hidden layer and output layer respectively.

b j,0 and Bu,0 are the bias of the hidden units and the output layer, respectively, ϕi(k) indi-

cates the vector that contains the regression of the Eq. (7.7) at time step k, f3 is sigmoid

function expressed by Eq. (7.9), and F uses a linear function and j = 1 as only one output

is considered. The weight vector w and bias vector b at the hidden layer were initialised

using the Nguyen-Widrow method to keep the trained model more consistent. Levenberg-

Marquardt algorithm was employed to train the neural networks, which minimises mean

square error (MSE). For training the RNN, the input-output data cannot be directly fed

into the network but should be arranged to follow the structure of the NARX model.
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7.2.4 Model Validation and Comparison

The data used for validation purposes were a completely different set of data, obtained

from 21st January 2013 to 24th January 2013. Because the primary purpose of building

the models is to achieve predictive control, the multi-step-ahead prediction is needed.

However, both of the aforementioned training algorithms only minimise the error over

a single step ahead. A more reasonable way to validate our model is to consider multi-

step-ahead prediction by taking into consideration the recursive feature of the model [5].

To evaluate the performance of predictive models, RMSE (relative mean squared error,

NMSE (normalised mean squared error) and MAE (maximum absolute error) are used in

this study:

RMSE =

√√√√1
n

n−N

∑
k=0

N

∑
j=1

(yk+ j− ŷk+ j|k)2, (7.10)

NMSE f it = 1−

( ∥∥yk+ j− ŷk+ j|k
∥∥∥∥yk+ j−mean

(
yk+ j

)∥∥
)2

, (7.11)

MAE = max(|y1− ŷ1|, |y1− ŷ1|, ..., |yn− ŷn|), (7.12)

where yk and ŷk denote the actual and predicted outputs, corresponding to a set of test

data.

The selected inputs for RC model are also used as the inputs for RNN model. Fig. 7.3

plots the simulation results using the RC model and RNN model. Obviously, the RNN

model achieves a better prediction accuracy compared with the RC model. It is believed

that the RNN model has captured some stochastic uncertainties of the investigated system,

using its recurrent property. In other words, the uncertainty information has been included

in the temperature regression terms. The RC model generates a larger modelling error,

especially during the time from 21:00 to 22:00 pm, which is due to the simplification that

has been made (see Fig. 7.4). Fig. 7.5 and 7.6 illustrate one month’s simulation result

by using the two models. The histogram of the residuals generated by the two models is
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Figure 7.3: Indoor temperature prediction results by conducting multi-step-ahead predic-

tion.
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Figure 7.4: Model–plant mismatch generated by RC model.

plotted in Fig. 7.7. Obviously, compared with the RC model, the residuals generated by

the RNN model are smaller and closer to a normal distribution.

However, the prediction errors are inevitable even by using the most accurate models.

The reasons are summarised below:

• The temperature readings from sensors mounted on the walls are used to approxi-

mate the average room temperature. This leads to slightly wrong parameter estima-

tion values.

• Because the investigated zones are wide open, infiltration through the opening door,

and coupling from the adjacent space could influence the
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• Some heat flows cannot be estimated precisely, e.g. the solar radiation is affected

by the tilt angle of the sun and cloud level.

• The internal load, such as heat gain generated by occupancy and their behaviour, is

not measurable and also hard to evaluate.

• Weather forecast of solar radiation and outside temperature can introduce some

errors.

• Faulty sensor readings and wrong actuator operations could introduce some errors.

The modelling error caused by the above reasons is collectively called uncertainty in

the rest of this paper. By analysing the pros and cons of the RC model and the RNN

model, we have drawn the following conclusions: First, because RC models are differ-

entiable and physically meaningful, they are suitable for use as control-oriented models.

However, as a full-state feedback is always lacking, a large model–plant mismatch always

occurs when using low-order RC models. On the other hand, the recurrent nature of RNN

model enables the model to capture some stochastic, uncertain features of the building

system. Therefore, they generally have better long-term prediction accuracy compared

with the RC model. Direct use of RNN models as the control model would result in

a non convex optimisation problem, which is computationally intractable. For this rea-

son, the RNN model mainly plays two roles in this study: 1) performs as a comparison

model for uncertainty bounds estimation, and 2) works as the reference model during the

closed-loop simulation.

7.3 Control Design

7.3.1 Baseline Control and MPC

Thermal comfort is a complicated parameter and indicated by predicted mean vote (PMV).

In this study , for simplicity we employ the dry bulb temperature as the parameter to in-
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Figure 7.5: 31 days’prediction results generated by RC model.
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Figure 7.6: 31 days’prediction results generated by RNN model.
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Figure 7.7: Histogram of residuals (31 days) generated by the two models.
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dicate the level of thermal comfort. According to ASHRAE Standard 55, indoor tem-

peratures should be maintained within the range 20–23◦C in the winter and 22.5-26 ◦C

in the summer [1]. In commercial buildings, the actual comfort requirement would be

different from one building to another, which is usually formalised in the lease between

building managers and tenant. For the case at hand, the building manager attempts to

maintain the indoor temperature at 22 ±0.5 ◦C in summer and 21.5 ±0.5 ◦C in winter.

These two set-point temperatures are controlled by a simple proportional control at the

fixed values during occupancy. Typically, a night setback control with fixed schedules is

programmed by the BMS to achieve some basic energy savings. This simple configura-

tion cannot always satisfy the real demands of the occupants, because the conditions in

the real building differ greatly from one day to another. In the following sections, we first

use a simple example to describe how DMPC saves energy as compared with the base-

line night setback control method. Afterwards the use of a closed-loop min–max RMPC

for dealing with uncertainty and its drawbacks will be demonstrated. Finally, the use of

an adaptive uncertainty bound estimator for improving the RMPC’s performance will be

presented.

7.3.2 Deterministic MPC

We first consider the DMPC formulation as a basis for the discussion of the robust MPC.

In particular, the following optimisation problem is considered:

min
u

N−1

∑
j=0

pe|(uk+ j|k)|+Q(|ŷk+ j|k− rk+ j|k|)+R
N

∑
k=1

(|ek+ j|k|+ |ek+ j|k|), (7.13)
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subject to:

xk+ j+1|k = Axk+ j|k +Buq,k+ j|k +Edk+ j|k +Fwk+ j|k, ∀ j = 0, ...,N−1

yk+ j|k =Cxk+ j|k, ∀ j = 1, ...,N

Tmin,k+ j|k− ek+ j|k ≤ yk+ j|k ≤ Tmax,k+ j|k + ek+ j|k, ∀ j = 1, ...,N

ek+ j|k > 0,ek+ j|k > 0, ∀ j = 1, ...,N

Umax,k+ j|k ≤ vk+ j|k ≤Umin,k+ j|k, ∀ j = 0, ...,N−1,

(7.14)

The constraints that should be met are:

1. Toc ∈ [ 21◦C , 24◦C] Thermal comfort during occupied hours.

2. Tuo ∈ [ 19.5◦C, 26◦C] Thermal comfort during unoccupied hours.

3. uq ∈ [ -10 kW, 12 kW] Maximum cooling energy that can be supplied to each zone.

where the double indices k+ j|k denote the prediction value at time k+ j made at time k,

U = [uk|k,uk+1|k, ...,uk+N−1|k] is a vector of the control inputs (supplied energy) applied to

the model, ŷk+ j|k is the predicted output at time k, which is obtained by iteratively solving

Eq. (7.14) using the control input sequence U , Tmax = [Tmax,k|k,Tmax,k+1|k, ...,

Tmax,k+N−1|k] is a vector of the upper comfort temperature band within the horizon, Tmin

is a vector of the lower comfort temperature band, variants e and e denote the temperature

violation from the upper and lower bounds, respectively, N is the prediction horizon, d

is the measured disturbance, r is the set-point temperature, Umin and Umax denote the

maximum cooling and heating energy that the system can supply, respectively, pe denotes

time of use (TOU) electricity price in dollars per kWh, Q is the penalty on the comfort

constraint violation and R is the penalty on the set-point temperature deviation.
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Figure 7.8: Scheme of uncertainty evolution for closed-loop minmax RMPC with a hori-

zon of 3.

7.3.3 Closed-loop min–max Robust MPC

In designing the DMPC, it is assumed that the model can predict the real-world building

plant perfectly. In the context of RMPC, which is designed to address model mismatch

explicitly, the effects of model mismatch on state estimations should be addressed. There-

fore, Eq. (7.5) is rewritten as:

x(k+1) = Ax(k)+Bu(k)+Ed(k)+Fw(k), (7.15)

where wk ∈W2 denotes the model uncertainty. wk is bounded but its exact value is not

known. In the previously illustrated DMPC, the predicted states are updated by solving

iteratively the equality constraints. This does not make any sense for the robust control

scheme because it is impossible to make a prediction in the presence of the uncertainty

variable w. Therefore, we use an explicit representation of the predictions, which is writ-

ten as:

X = Ax j|k +BU +ED+GW (7.16)

where X =(xT
k+1|k,x

T
k+2|k, ...,x

T
k+N−1|k)

T is the vector of predicted states, D=(dT
k+1|k,d

T
k+2|k,

...,dT
k+N−1|k)

T is the vector of predicted disturbances and W =(wT
k+1|k,w

T
k+2|k, ...,w

T
k+N−1|k)

T
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is the vector of uncertainties.

The basic idea of min–max RMPC is to determine all possible evolutions of the dis-

turbance sequence over the control horizon, and to minimise worst-case cost. Min–max

RMPC can be either in the form of open-loop predictions [31] or closed-loop predictions

[15, 31]. The open loop approach fails to take into account that feedback is presented in

the receding-horizon implementation of the control, therefore leads to conservative solu-

tions and could even make the optimisation problem infeasible [15, 16].

In this study, we focus on the application of a closed-loop RMPC to building-energy

control. Different from the open-loop approach, the closed-loop RMPC considers the

feedback over the prediction horizon and incorporates it into the prediction. In partic-

ular, at each step, the closed-loop RMPC considers the future value X under different

disturbance trajectories. The controller generates a family of control sequences, each one

corresponds to a different measured state. The maximum costs can be calculated along

with some of the worst-case predictions. To consider the feedback term in the optimisa-

tion problem, a standard way is to parameterise U as an affine function of X:

U = LX +V, (7.17)

which can be rewritten as:

U = (1−BL)−1(Axk|k +BV +GW )+V, (7.18)

From Eq. (7.18) it can be seen that the mapping from L and V to X and U is non-linear,

hence optimisation over both L and V cannot be solved by a standard convex optimisation

method. Therefore, an alternative parameterisation method presented by Lofberg [15] is

applied in this study.

U = LW +V, (7.19)



7.3. CONTROL DESIGN 178

L =



0 0 · · · 0

L10 0 · · · 0

L20 L21 · · · 0
...

... . . . ...

L(N−1)0 L(N−1)1 L(N−1)(n−2) 0


,V =


vk|k

vk+1|k
...

vk+N−1|k,

 (7.20)

Instead of parameterising the control trajectory in the future states xk, the control sequence

is parameterised directly in the uncertainty. This avoids solving a non convex optimisation

problem by considering U = LX +V . In considering the trajectory of uncertainty, only

extreme disturbances [w,w] are considered. For example, if one assumes w=1, w=-1,

for a prediction horizon of 3, there could be 23 disturbance realisations. This is shown

in Fig. 7.8. It can be seen that the optimisation problem grows exponentially with the

increase of prediction horizon. A prediction horizon that is too long may cause the curse

of dimensionality [15]. For this reason, a long prediction horizon should be avoided by

using the closed-loop RMPC.

Considering the same control-oriented model and constraints in Eq. (7.14), the fol-

lowing min–max optimisation problem is formulated:

min
u

max
w

N−1

∑
j=0

pe|(vk+ j|k)|+Q(yk+ j|k− rk+ j|k)+R
N

∑
k=1

(|ek+ j|k|+ |ek+ j|k|), (7.21)

subject to:

xk+ j+1|k = Axk+ j|k +Buq,k+ j|k +Edk+ j|k +Fwk+ j|k, ∀ j = 0, ...,N−1

yk+ j|k =Cxk+ j|k, ∀ j = 1, ...,N

Tmin,k+ j|k− ek+ j|k ≤ yk+ j|k ≤ Tmax,k+ j|k + ek+ j|k, ∀ j = 1, ...,N

ek+ j|k > 0,ek+ j|k > 0, ∀ j = 1, ...,N

wk+ j|k 6 wk+ j|k 6 wk+ j|k, ∀ j = 0, ...,N−1,

Umax,k+ j|k ≤ vk+ j|k ≤Umin,k+ j|k, ∀ j = 0, ...,N−1,

(7.22)
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Figure 7.9: Three phases of zone temperature trajectory when the MPC is applied.

where wk+ j|k and wk+ j|k denote the lower and upper uncertainty bounds, respectively. By

comparing Eq. (7.14) with Eq. (7.22), it can be seen that the difference between RMPC

and DMPC is explicit consideration of the uncertainty w. All possible trajectories are

included in bands that depend on wk+ j|k and wk+ j|k. The value of [w;w] depends on the

future state of the real system, which is not known. Obviously, if all errors lie within the

error bound [w;w], the robustness of the MPC can be guaranteed. On the other hand, the

optimisation does not necessarily lose robustness if only a single error exceeds the bound

[32]. A possible way of estimating the error bounds is to obtain them directly from the

historical residuals, e.g. determine the numerical range where a certain probability of the

modelling errors happens. However, this method still relies on the choice of the proba-

bility density. If the uncertainty set is chosen to be too large, the controller becomes very

conservative and control performance will be lost. The conservatism will be demonstrated

with an example in a later section.

7.4 RMPC with Adaptive Uncertainty Bound

The above-mentioned bounding method can result in conservative solutions, because it is

purely based on the historical data but fails to take into account that the errors are also
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related to the occurrence of future disturbances. The uncertainty can be predicted using a

comparison model [33] or mismatch function [34]. For example, Fukushima and Bitmead

[33] used a comparison model to transform the given robust MPC problem into a nominal

MPC without uncertain terms. Illustrated by this idea, we propose a novel uncertainty

bound estimator in this study, constructed based on the RNN model presented in the

previous sections. The idea is to use the recurrent nature of the RNN model to capture the

uncertainties that exist in the building system. The RNN model can then make use of the

disturbance prediction to conduct long-term prediction. The unknown model mismatch

between the RC model and the actual building plant can therefore be approximated by the

difference between the RC model and the RNN model. The positive uncertainty can be

calculated as

z = max
k∈1...n

(ŷnn(k)− ŷrc(k)), (7.23)

where ŷrc and ŷnn are open-loop prediction results generated by RC and RNN models,

respectively. z denotes the maximum error within n steps, n 6 N is the number of steps

considered.

When solving a building control problem, different uncertainty levels should be con-

sidered at different stages. This is explained with a simple example here. Fig. 7.9 illus-

trates the temperature trajectory generated by an MPC. When temperature is maintained

during the occupancy (stage-2), the only goal of MPC is to track the set point tempera-

ture, and the uncertainty in the far future becomes less important. So we consider z over a

small number of steps (n < N) for this stage. During the transitional period (stage-1 and

3), because the MPC needs to foresee the change of occupancy status, the information in

the far future becomes more important. Therefore we can choose n the same as N so that

a wider uncertainty is allowed to happen during the transitional period.

Because the bounds are estimated based on the RNN models, which are also subject

to errors, there is a probability that the actual bound is wider than the estimated bound,

and the robustness could not be guaranteed. Therefore, it is also necessary to take the
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residuals of the RNN model into consideration. Recall that the error generated by the

RNN is close to a normal distribution (see Fig. 7.3), so that a statistical regression analysis

can be applied. The confidence region forms uncertainty bands around the response of the

calculated error bound:

w = z+ r(k)+Zα/2
σ√

n
, (7.24)

where r(k) denotes the residuals generated by the RNN model against real plant, Zσ = 2

is the confidence coefficient, α is the confidence level, which is chosen to be 95%, σ is

the standard deviation of r̂(k) calculated over the selected data. r̂(k) is the centre of the

residuals. This bounding algorithm allows the designer to choose the probability of this

occurrence as a parameter in an adaptive control scheme. For example, applying a higher

value of percentage allows the constraints to be tightened more effectively, but this may

also result in over-conservative results. On the other hand, a lower percentage value can

improve the RMPC but could lead to constraints violations. The choice on the probability

should always be based on the accuracy of the designed model. Fig. 7.10 shows the

adaptive RMPC (ARMPC) procedure and the adaptive RMPC algorithm is summarised

as follows:

Algorithm: Adaptive Robust MPC

1. Choose the initial bounds using sampling method introduced in the previous sec-

tion.

2. DMPC computes the open loop input trajectory U = [u1,u2...un].

3. The RNN performs n-steps ahead prediction using input vector U and disturbance

vector D to obtain a comparison set of output trajectory Y = [y1,y2...y1+N ].

4. Calculate the error bounds based on Eq. (7.23) and Eq. (7.24) .

5. During occupation period, if z is positive (underestimation), then update uncertainty

bounds to [−w,w] by setting n = 3. Else the uncertainty bound is set to the mini-

mum range.
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Figure 7.10: Control structure of the ARMPC scheme.

6. During transitional period, if z is positive (underestimation), then update uncertainty

bounds by setting n = N. Else the uncertainty bound is set to the minimum range.

7. Increment k. Go to Step 2.

7.5 Results and Discussion

7.5.1 Deterministic MPC

In this section, the DMPC is studied as a basis for the discussion of RMPC. The programs

for model training, validation and control optimisation were coded in Matlab, which runs

on a PC with Intel Core i7 CPU 2.4 GHz. The optimisation problem associated with both

DMPC and RMPC are solved using Yalmip [35]. First, we select a day on which the LTI

model can achieve a satisfactory result (fitness = 80%). We then use the RNN model as

the sub-system models to conduct a closed-loop simulation. During the simulation, while

a sequence of N control values is computed, only the first value is applied to the RNN

sub-system. Similarly, the RNN only conducts one-step ahead prediction and this is used

as the feedback to the DMPC. The coefficients of the DMPC cost function are tuned until
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Figure 7.11: Comparison between baseline control and DMPC.
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Table 7.1: Parameters of the DMPC.

DMPC parameters

Sampling interval 10 min

Prediction horizon, N 30

Control horizon, P 30

Weight for energy input Q (when TOU is not considered) 0.8

Weight for energy input Q (when TOU is considered) 40

Penalty on soft-constraint violation in R 1

Weight for set-point temperature deviation W 1

Occupancy hour 5:00 am to 9:30 pm

off-peak hour 7:00 am to 9:30 pm

Peak hour electricity price 0.090 $ /kWh

Off-peak hour electricity price 0.024 $ /kWh

the best performance is achieved. The optimised control parameter is shown in Table 7.1.

Fig. 7.11 compares the DMPC with the baseline control strategy. Clearly, the baseline

night setback control (red, dashed line) turned on the cooling system too early and off too

late, leading to unnecessary energy costs. The blue, solid line illustrates the solution of

the DMPC scheme with a prediction horizon of 30 (five hours). It shows that the con-

troller starts to precool the space starting from 5:30 am, with the aim to store the cooling

energy using passive building thermal mass. This action saves utility costs because it

takes advantage of cheap off-peak electricity and cooler ambient air in the early morning.

During the occupied hours, the set-point temperature is maintained at the designated value

to ensure maximum thermal comfort. Before the end of occupancy, the DMPC stops the

cooling system so that the temperature reaches the upper comfort limit exactly at the end

of the occupancy. For the given example, the cost saving of DMPC over baseline control

is 26%.
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Table 7.2: Parameters of the RMPC.

RMPC parameters

Prediction horizon, N 15

Weight for uncertainty term 0.1

Fixed uncertainty bound [−0.2,0.25]

Number of look-ahead steps 10

7.5.2 DMPC vs RMPC vs ARMPC on Energy Saving

In this section, we present a comparison study on three different MPC approaches, which

are DMPC, RMPC and ARMPC, in the presence of model uncertainty. Our goal is to

compare the performance of these three controllers in terms of conservatism, stability and

computational speed. As illustrated in the previous section, MPC can save energy by

keeping the zone temperature close to its upper or lower comfort limit. Because cooling

is considered in this study, only underestimation T̂ > T will cause thermal comfort vio-

lation on the upper comfort bound. We do not consider TOU electricity price during the

simulation to speed up the simulation process. The parameters of the RMPC are listed in

Table 7.2.

First, we choose a day on which the LTI control model suffers from a considerable

amount of uncertainty to conduct the comparison. The uncertainty is illustrated in Fig.

7.12. Remind that the reference model is the RNN model, so the uncertainty is calculated

as the difference between the predicted outputs by the LTI model and the RNN model.

The uncertainty bound for RMPC is set to be [-0.2, 0.25], based on the simple sampling

methods and the histogram of residuals. The set-point value is chosen to be close to the

upper comfort temperature (23 ◦C). Fig. 7.12 compares the performance of RMPC and

DMPC when a uncertainty is presented. The red, dashed line indicates the output of

DMPC. It can be seen that, although the uncertainty happened during the steady state, it

does not impose an unstable influence on the performance of the DMPC. This is because
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Figure 7.14: Two weeks’ control performance of baseline control.

the closed-loop nature of the DMPC makes it robust to some degree of uncertainty. How-

ever, when the temperature is moved towards the upper bound, the comfort constraint is

violated by the DMPC, which is due to the large error happens before the end of the oc-

cupancy. The blue, solid line shows the performance of the RMPC. The thermal comfort

is satisfied by the RMPC all the time, as the modelled uncertainty is located within the

designated uncertainty bound for most of the time. However, the RMPC consumes more

energy (32% with respect to DMPC), by maintaining the temperature below the set-point

value during steady states. This is expected because the RMPC performs conservatively

by lowering the indoor temperature to make sure that constraints are safely satisfied at all

times. The RMPC works in such a way to prevent a potential comfort violation due to

the positive uncertainty. The green, dotted line shows the performance of the ARMPC.

It can be seen that the ARMPC tracks the set-point temperature well during the steady

states, without wasting too much energy. This is because of the use of a smaller un-

certainty bound, as shown in Fig. 7.13. This proves the effectiveness of the proposed

method, because a smaller, adaptive uncertainty bound indicates a lower degree of con-

servatism without violating thermal comfort for RMPC. The ARMPC also satisfies the

thermal comfort requirement before the end of occupancy, when the uncertainty bound is

expanded to allow a larger uncertainty to happen. Similarly, this is because the ARMPC

expand the uncertainty bound during the transitional period to ensure a better robustness.
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Figure 7.15: Two weeks’ control performance of DMPC, RMPC and ARMPC.

The simulation period was then extended to two weeks, from 4th to 28th Feb, 2015.

The result is compared with the baseline control, which is shown in Fig. 7.14. One can

observe that the temperature trajectory generated by baseline control were away from the

upper comfort limit for most of the time, which is the main reason for energy waste.

Fig. 7.15 shows the simulation results using the three above-mentioned control meth-

ods. First, it can be seen that the DMPC (blue dotted) tries to save energy by controlling

the indoor temperature close to the upper comfort constraint. However, it also causes

temperature violations on a number of days, due to underestimated indoor temperatures.

The underestimation mainly comes from the use of the LTI model and the presence of

unknown uncertainty. Second, from Fig. 7.15, it can be seen that the use of RMPC (red

dotted) leads to a significant improvement in thermal comfort, with respect to the situation

obtained with the DMPC. However, it also moves the indoor temperature from the steady

state towards the lower comfort bound, which causes more energy usage. This is due to

the use of a fixed and conservative approximation of the error bound. Third, the tempera-

ture profile generated by the ARMPC (green, dotted) is mostly distributed in between the

previous two cases. This indicates that the proposed method consumes less energy than

the RMPC, and also achieves fewer thermal violations than the DMPC approach. The

improvements made in terms of energy saving and thermal comfort come from the use of

the adaptive uncertainty bound estimator.
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Table 7.3: Performance comparison between DMPC, RMPC and ARMPC.

Baseline DMPC RMPC ARMPC

Total energy (kWh) 3580 2440 3052 2656

Number of infeasible days 3 9 0 0

Simulation time per step n/a 0.4 s 4.4 s 7.1 s

A summary of the performance of each controller for the investigated days is reported

in Table 7.3. It can be seen that the baseline control consumes the most energy and vio-

lated the thermal comfort on 3 days. DMPC consumes the least energy which leads to the

greatest energy savings. However, the zone temperature regulated by DMPC violates the

comfort constraints in 9 days. This is because the DMPC does not take into account the

occurrence of positive uncertainty. The RMPC does not violate any comfort constraints,

but consumes 25% more energy than does the DMPC. The ARMPC does not violate the

thermal constraints on an days and at the same time consumes 12% less energy than the

RMPC. This is because the ARMPC controls the zone temperature much closer to the

set-point value. In terms of computational speed, DMPC is the most efficient one. Both

RMPC and ARMPC have slower computational speed, because the exponential increased

complexity with the increase of prediction horizon. The ARMPC is slower than RMPC

because estimating the uncertainty bounds using RNN estimator requires extra compu-

tational efforts. The computational speed of ARMPC is reasonable and can be solved ,

because the RNN model can be trained offline and does not always need to be re-trained.

7.6 Conclusions

Studies on the use of MPC for reducing energy consumption in commercial buildings have

been studies intensively in the recent years. One of the biggest obstacle of implementing

MPC at real buildings is that predictive models may lose accuracy with the presence of
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uncertainty, which could lead to thermal comfort violation and performance deteriorate.

Using a commercial building as a case study, this study develops a new RMPC framework

which can satisfies thermal comfort requirement, while still achieve considerable amount

of energy saving under modelling uncertainty. As the major contribution of this paper,

we have presented an adaptive bounds estimator, which allows the uncertainty bound

of RMPC to vary according to the dynamic changes of the system. It is shown that the

proposed method results in a smaller uncertainty bound when the actual uncertainty is low,

which greatly reduces the conservatism of the RMPC. This makes the implementation of

the MPC at real buildings more feasible. Besides this major finding, we have also made

the following findings:

1. We have presented and compared two types of thermal dynamic models for the in-

vestigated building. Simulation result shows that the RNN model achieves more

accurate long-term prediction result, whose generated error is closer to normal dis-

tribution, as compared with the linear RC model. We believe the former approach

captures the uncertainty and nonlinearity of the system using its recursive property.

The uncertainty causing the modelling error might be the heat gain generated by

the occupants and the infiltration due to the opening the doors. This will be experi-

mentally validated in the future study.

2. The closed-loop nature of the DMPC guarantees a certain degree of robustness.

The modelling error does not always result in poor control performance, but also

depends on the types of uncertainty and the time when this might happen. For

example, the DMPC usually performs more robustly during the steady states as

compared with the transitional period.

3. The selection of uncertainty bounds has a big impact on the performance of RMPC.

An improper choice of the bounds can easily generate over-conservative control

results, and waste energy.
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Conclusively, the proposed control method has reasonably combined intelligent mod-

elling technology with the classical control method. This opens up a new path for solving

complicated real-world building energy control problem. As a future study, the proposed

control method will be tested experimentally at the investigated building.
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Chapter 8

Discussion and Conclusion

8.1 Contributions

The focus of this thesis was to develop an MPC framework used for achieving energy and

cost savings in a large commercial building equipped with an HVAC system. A summary

of the main contributions of this dissertation is provided below:

• We proposed a cascade NN modelling framework that uses neighbouring zone tem-

perature as an input to conduct indoor temperature prediction. It shows that the

thermal coupling between zones could be significant, which should not be ignored

during the control design process. This result could be used to achieve some ap-

plication purposes. For example, the proposed cascade NN can be used as a tool

to test the degree of thermal interaction between zones. For the zones that are not

strongly coupled, considering the thermal coupling may not result in any improve-

ment in the modelling accuracy, then it is possible to treat the two zones separately.

On the other hand, if the coupling is significant, it is then possible to make use of

the neighbouring zone temperature as a disturbance observer to improve the control

performance of the investigated zone model. Another interesting application is to

use the model structure for sensor-free control: once the thermal connection be-
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tween a certain zone and its neighbouring zone is identified, the sensor for this zone

can be replaced by an artificial sensor. It is then possible to use the neighbouring

zone temperature to monitor or control the temperature in the investigated zone.

• We proposed a MIMO model that considers the convective heat transfer between

zones to model multi-zone buildings. The MIMO model considers the feedback

prediction for several zones, and perform long-term indoor prediction for the in-

vestigated zones simultaneously. The result shows that the MIMO model can learn

the convective heat transfer phenomenon within the building system, which also re-

sults in more accurate long-term prediction results and better control performance

as compared to the single zone models. The MIMO model can be used for the

purpose of predictive control design.

• We presented a model based optimal start-stop control method to reduce energy

consumption in buildings. By carefully analysing the historical data, we conclude

that one of the main causes for energy waste in the investigated building is that

the zone temperature trajectory does not follow the actual occupancy schedules.

Therefore, based on the previously developed NN models, we presented an optimal

start-stop control method, which generates the optimal operational schedules for the

local AHUs. The most attractive feature of this method is that the control algorithm

can be built quickly and accurately, once data are available, which directly results

in energy savings. The computational burden of this method is also low as the

algorithm only need be applied at the start and end of occupancy.

• We have made a comparison between the two most popular building models: the RC

model and the NN model. It is found that, for the investigated zones, the RNN model

in general achieves more accurate long-term prediction result as compared with the

low-order RC model. Additionally, the errors generated by the RNN model were

closer to a normal distribution. These facts indicate that the RNN models are able
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to capture the uncertain property of the investigated building, which is missed by

the RC model. Similarly, we have proven that due to their nonlinearity, the AHUs’

dynamics cannot be modelled accurately by linear models but the RNN model.

• We presented an HMPC that combines the merits of classical MPC and intelligent

model for achieving energy and cost savings in buildings. A major advantage of

the HMPC is its computational efficiency, since the optimisation problem can be

solved using a fast linear programming method. The inverse NN model handles

system nonlinearity associated with the AHUs process and provide more accurate

control input. Simulation results show that without considering TOU electricity

tariffs, the HMPC behaves similarly to the NN based optimal start-stop control

method proposed in Paper-2. With the TOU electricity tariff considered, the HMPC

triggers pre-cooling to store cooling energy and to shift the cooling load.

• Through an experimental study, we have proven that the pre-cooling technology

could also be applied to large commercial buildings to achieve cost savings. How-

ever, because this strategy saves electricity bill at the cost of consuming more off-

peak energy, it does not always suit any type of buildings. Factors such as weather

conditions, TOU electricity price and the degree of thermal mass contained in the

physical body, should be evaluated before applying this strategy to a specific build-

ing.

• We have developed an uncertainty bound estimator for the closed-loop RMPC to

reduce its conservatism for building energy control. By conducting robust analyses

in Paper-4, it has been found that the probability of thermal comfort violation is

higher during the transitional period than during the steady state period. Based on

the previously demonstrated RNN model, we have developed an adaptive bounds

estimator, which allows the uncertainty bound of RMPC to vary according to the

dynamic changes of the system. This method also offers a good compromise be-
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tween conservatism and robustness.

8.2 Directions for Future Research

The work presented in this thesis has successfully contributed to the knowledge of the

application of MPC to building energy systems. The methodology developed in this thesis

is not limited to the similar building type but could be extended to a number of other

building types, such as rooftop unit systems and compact air conditioners in the residential

buildings. Recently, we have applied the optimal start-stop method introduced in Chapter

5 to an educational building, which achieved 30% energy savings. Despite this, some

improvements could still be made to improve the existing technology. Some possible

directions for future research are outlined below:

• We have shown in Paper-1 that the thermal interaction plays an important role in

controlling multi-zone buildings. However, another raised issue is that the size of

the control problem grows rapidly as the number of AHUs and controlled zones

increases. This makes the implementation of the designed control method diffi-

cult. When the number of considered rooms is large, a distributed MPC may be

necessary. Considering the delay in the communication of input trajectories among

subsystems may cause problems, future research can be focused on designing more

computationally efficient algorithms for handling possible disruptions and delays.

• By conducting field work, it has been found that incorrect operation and faulty

components can cause a significant amount of energy waste in the HVAC systems.

A typical example is the faults detected in the operation of economizer in Paper-

3. Considering the complexity of the HVAC systems, the models developed in this

thesis can be used for the development of model-based fault detection and diagnosis

techniques. These techniques can be used to detect possible faults/failures that may

occur in the sensors and actuators of the HVAC systems to achieve energy savings
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and guarantee smooth operation of the new control strategy.

• In Paper-3 the TOU electricity rate has been considered in the cost function. It

will be interesting to investigate the performance of the MPC by incorporating both

demand charge and time-varying electricity tariff based on the spot market price

level into the cost function. This may provide solutions that flavour the electricity

grid.

• Considering thermal comfort can further improve the energy efficiency of the build-

ing control. Identifying a thermal comfort model adds some difficulties because the

estimation problem has a higher dimension when a moisture model is included. The

coupling effect makes both the thermal and moisture models nonlinear and their

identification becomes computationally demanding when using iterative methods.

This is worth investigating and will be considered in our future study.
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Multi-zone temperature prediction in a commercial building using
artificial neural network model

Hao Huang, Lei Chen, Member, IEEE, Morteza Mohammadzaheri, Member, IEEE, Eric Hu, and Minlei Chen

Abstract— Predicting temperature in buildings equiped with
Heating, ventilation and air-conditioning (HVAC) systems is
a crucial step to take when implementing a model predictive
control (MPC). This prediction is also challenging because the
buildings themselves are nonlinear, have many uncertainties and
strongly coupled. Artificial neural networks (ANNs) have been
used in previous studies to solve such a modeling problem.
Unlike most of the studies that have only considered small-
scale, single zone modeling task, this paper presents a novel
ANN modeling method for the modeling inside a real world
multi-zone building. By comparing ANN models with different
input variables, it was found that the prediction accuracies
can be greatly improved when the thermal interactions were
considered. The proposed models were used to perform both
single-zone and multi-zone temperature prediction and achieved
very good accuracies.

Keywords: HVAC; Model predictive control; Artificial neural
network; Multi-zone.

I. INTRODUCTION

Heating, ventilation and air-conditioning (HVAC) systems
contribute the largest proportion of energy consumption in
buildings. A small increase of efficiency in the performance
of the HVAC system can result in significant amount of
energy savings. For this reason, building energy control has
become a very active topic in the recent years [1], [2].

An important reason for the low efficiency of the HVAC
systems in commercial buildings is that their control parame-
ters are not adaptable to the changing weather conditions, oc-
cupancy level and human activities. This inevitably leads to
thermal discomfort, inefficient use of energy, and high main-
tenance costs [3]. To solve these issues, many researchers
have dedicated their efforts on the model predictive control
(MPC) for building energy control in the past ten years. [2],
[4]–[6]. When the MPC is used for building control, the
temperature inside the building is predicted several hours to
days in advance, so that the control variables of the HVAC
system can be optimized to meet thermal demands and to
achieve minimum energy cost. Obviously, a well-designed
predictive model which describes the relationships between
inputs (ambient temperature, HVAC operating status, etc.)
and the output (indoor temperature) is essentially important.

Predicting temperature inside commercial buildings is a
complicated task. First, a building’s operational environment
is time-varying system with several unknown delays and
uncertainties. For example, a sudden change of outdoor
temperature or occupants number will cause the change

1Research supported by Adelaide Airport Limited.
2All authors are with the Faculty of Mechanical Engineering, University

of Adelaide, SA 5005, Australia (email: h.huang@adelaide.edu.au)

of indoor temperature. Furthermore, HVAC systems have
complicated nonlinear relationships including temperature,
humidity and damper actions. Finally, the internal space of
large commercial buildings is always divided into several
adjacent zones, each of which is controlled by a standalone
air handling units (AHU). The temperatures inside these
zones are not uniform and strongly coupled, which makes
the accurate prediction of zone temperature very difficult.

To solve such a modeling problem, three approaches have
been reported in the literature. The first one is to build
thermal models based on energy-and-mass balance equations
[2], [7]. A second approach uses lumped capacitance in
an analogue electric to represent thermal elements of a
building and uses genetic algorithms (GA) to optimize the
parameters of the models [1], [8]. The third approach is based
on machine learning, in which artificial neural networks
(ANNs) were used to model non-linear processes by learning
the historical data [3], [9]–[12]. When a large amount of
historical data are available from the building management
systems (BMS), the ANN becomes the most efficient mod-
eling method because it only requires information on the
input-output data.

The use of artificial intelligence in building modeling and
control have been extensively studied in the past ten years.
For example, an online ANN controller was developed and
used in [4] to control a commercial ice storage of an HVAC
system. The controller determined the hourly set-points for
the chiller plant in order to minimize the total cost over a
24-hour period. In another study, a backpropagation-based
ANN model was developed to determine the rising time
for a heating system in a building [13]. The similar model
structure was later used in [14] to increase the thermal com-
fort level of occupants and reduce energy consumption by
reducing temperature overshoot and undershoot phenomena
in an air conditioning system. To make the best of ANN
model, Ruano et al. [11] incorporated a multiple objective
genetic algorithm with radial basis function neural networks
to build an adaptive model to predict indoor temperature of a
school building. This model was used to determine ON/OFF
time for an air conditioning system, and shows good energy
savings result. A feed-forward neural network was used by
Lu and Viljanen [12] to construct a nonlinear autoregressive
with external input (NNARX) model to predict both indoor
temperature and relative humidity. Using as many as ten
different input variables, Mustafaraj et al. [5] developed an
ANN model using BMS data to predict the thermal behavior
of an open office. The ANN model was also shown better
compared with the linear model.

2013 10th IEEE International Conference on Control and Automation (ICCA)
Hangzhou, China, June 12-14, 2013
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A general concern of the above modeling work is that
a building process is nonlinear, time-varying and weather
dependant. However, they were all focused on single-zone
modeling, or made assumption that the zone temperature
distribution is unifrom [1]. The coupling affects among
adjacent zones were not considered. In real-life buildings,
thermal characteristics of the zones are very different from
one to another, and are correlated with each other. It is
therefore necessary to develop a method suitable for multi-
zone modeling, so that they can be used to predict zone
temperature at any locations of a building.

The objective of this paper is to present an ANN based
modeling method which can be used to predict multi-zone
temperature. To achieve the goal, data obtained from dif-
ferent zones of a real building was used for experiment
purposes. The proposed model considers neighboring zone
temperature as a variable to build relationships among zones.
The importance of this variable was evaluated under the
guidance of a feed-forward input variables selection criterion.
The results show the prediction accuracy of the model was
greatly improved when the neighboring zone temperature
was taken into account.

The rest of the paper is organized as follows: Section 2
describes the building process using analytical models. Sec-
tion 3 introduced the employed ANN model, data preparation
method and multi-zone modeling method. In section 4, the
proposed models will be tested on two separated zones first
and then two adjacent zones. The prediction results when the
neighboring zone temperature is used as an input or not are
compared to shown the importance of thermal interaction in
zone temperature prediction.

II. SYSTEM DESCRIPTIONL

A. Zone process

To identify the most relevant input variables used for ANN
modeling and investigate the thermal interactions affects be-
tween zones, some detailed information on the zone process
should be investigated. For this reason, analytical models
for a double-zone case were built. Fig. 1 shows the energy
(balance) network diagram of a double-zone case. These
two zones are adjacent to each other with no wall between
them. Before building the models, three assumptions were
made: 1. Temperature distribution in each zone is uniform;
2. The density of the air and air-flow rates are constant;
3. Two zones have the same heat transfer area of the wall.
Energy and mass balance governing equation of the zone can
therefore be written as:

Cz1
dT1
dt

= Cairf1ρair(Tsa − T1)+

Cairf2ρair(T2 − T1) +
n∑

s=1

hsAs(Ts − T1) + qc,
(1)

Cz2
dT2
dt

= Cairf1ρair(Tsa − T2)+

Cairf3ρair(T1 − T2) +
n∑

s=1

hsAs(Ts − T2) + qc,
(2)

Fig. 1. Model for calculating zone temperatures

where Cz1 and Cz2 are the overall thermal capacities (kJ/C)
of zone-1 and zone-2 respectively, T1 and T2 are Zone-A
and Zone-B temperature, respectively, Tout is the outdoor
temperature, Tsa is the supply air temperature, Ts is the
temperature of inside surface of the wall, ρair is the air
density (kg/s3), f1 is volume flow rate of the supply air
(m3/s), f2 and f3 are volume flow rates of two zones due
to convection respectively (m3/s), hs(W/m2◦C) the heat
transfer coefficient for surface of the wall, Aw area of the
wall m2. qc stands for heat gain from the solar radiation
(qc l), occupants (qc p), and leakage of wall (qc l), etc. Eq.
(1) and Eq. (2) illustrate that the rates of temperature change
in a zone is related to the air flow rates, temperature dif-
ference between zone temperature and outdoor temperature,
supply air temperature and neighboring zone temperature. It
can be seen that the influence of the neighboring zone on
the objective zone is significant only when the temperature
difference is big.

The HVAC system used for the case study has 3 chillers
for cooling and 3 boilers for heating. Fig. 2 shows the
schematic diagram of a chiller plant: chilled water is trans-
mitted from the chiller plants to the cooling coils at individ-
ual AHUs through control of variable speed water pumps.
The cooling load Q can be calculated by:

Q = ṁCp(Tchwr − Tchws), (3)

where ṁ is mass flow rate of chilled water (kgs−1), Cp

is the specific heat of chilled water (Jkg−1K−1), Tchws is
the temperature of supply chilled water; Tchwr is chilled
water return temperature (◦C). Eq. (3) shows the cooling
(heating) capacity of a HVAC system is closely related to the
temperature and mass flow rates of the chilled (hot) water.
The change of this capacity will cause the change of supply
temperature Ts), in turn cause the temperature change at
individual zones.

At the subsystem level, 177 AHUs are running in parallel
to serve different zones. Fig. 3 shows the schematic diagram
of a constant air volume (CAV) air-handling unit, which
consists of a cooling coil, a heating coil, water valves, fans
and air dampers. The return air is recirculated through the
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Fig. 2. Schematic of a chiller plant

Fig. 3. Schematic of an AHU

mixed air damper or exhausted through the exhaust damper,
depending on the position of these two dampers. The fresh
air enters the circuit through the outdoor air damper and
then mixed with the return air. The mixed air then passes
through the cooling coil and the air temperature decreases
after the heat exchange. The chilled (hot) water valve is
controlled proportionally to the difference between measured
zone temperature and setpoint temperature to maintain the
zone temperature. The AHUs have fixed-speed fans thus the
airflow is a constant value.

After analyzing the main features of zone process and
HVAC system, a number of variables were identified as input
variable candidates and they are shown in Table I. These
variables will be selected for ANN modeling in the next
section.

TABLE I
CANDIDATURE INPUT VARIABLES

Variables Description Unit
Controllable variables

CV Chilled water valve opening level ◦C
SP Setpoint temperature ◦C
WT Chilled (hot) water temperature ◦C

Uncontrollable variables
OT Outdoor temperature ◦C
FR Chilled (hot) water flow rate %
T Zone temperature ◦C

III. MODELING

A. Model Structure

Nonlinear auto-regressive models with eXogenous inputs
(NARX models) are commonly used for classical system
identification [15]. According to this NARX structure, for
a single-input, single-output system, the dynamics can be
expressed by the following equations:

ŷ(t) = f [φ(t), w] + e(t), (4)

φ(t) = [y(t− 1)...y(t− na), u1(t− k1)...u1(t− nb−
k1 + 1), ..., ui, (t− ki)...ui(t− ni − ki + 1)],

(5)

where i is the number of input variables, k is the delay time
of input variables, na to ni are the orders of input variables,
f is an approximated nonlinear function, w is the weighting
factor, and e(t) is the error caused by unknown factors.
The delay time and inputs orders indicate the physical
characteristic of a dynamic systems.

B. Data Preparation

Data preparation is to arrange the input-output data in an
appropriated order so that they can be directly used for model
training. In this study, a data preparation method introduced
in [16] was used. To build an initial model, two most
relevant inputs variables, outdoor temperature and setpoint
temperature were chosen to form the initial model structure.
The data were prepared and stored in the following matrix:

where r is the maximum order of the input and output
variables, and n is the number of data used for training.
After the data were prepared in this way, they can directly
used for model training.

Since some of the candidate variables selected may be
correlated, noisy and have no significant relationships with
the outputs, a suitable input variable selection criterion is
needed. To find out the best inputs combination, a feed-
forward selection criterion is employed to obtain the best
model structure and to investigate the relevance of each
input variable [17]. This method is quite straightforward:
the initial candidate input variables are chosen based on
the prior knowledge of the system. The performance of the
model is then maximized by changing the orders of input
variables r. After the last optimization process is finished, the
new candidature variables are added and the same process
repeated again. The most important variables can then be
identified when the whole process is finished.

C. Model Creation

ANNs are mathematical models inspired by biology neural
networks. They mimic humans neuron system in order to
acquire learning ability. Learning from historical data, the
networks adjust the connection weights among the neurons
according to learning rules, so the trained networks can
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generate correct outputs. The most commonly used ANN
structure is Multi-layer-perceptrons (MLPs) based on back-
propagation and it is also employed in this study.

AnANN with three layers of neurons and three input
variables was first employed for training and its structure is
shown in Fig. 4. In this model, the inputs from the previous
layer are multiplied by the weights, summed up and added
with a bias. The results pass an activation function at the
hidden layer and then go to the next layer. The hidden layer
uses a logistic sigmoid function as the activation function.
Eq. (4) can therefore be rewritten as:

ŷ(t) =

nh∑
i=1

W1j logsig(

nu∑
i=1

wijui + bj0) +B10, (6)

where wij and Wij are weights to the hidden layer and
output layer, respectively. Bij and bij are the corresponding
bias. The weights and bias at the hidden layer were initialised
using the Nguyen-Widrow method to keep the resulting
model more consistent. Levenberg-Marquardt was employed
to train the neural networks in 500 epochs, and the training
process was terminated when the target mean square error
(MSE) was reached.

D. Multi-zone modeling

The thermal dynamics of a multi-zone building can be
represented by a interconnected system of several zones. Fig.
(6) shows the layout of the experimental areas used in this
study. They can be classified into external zones which are
directly connected to the ambient environment and interior
zones which are in the middle of the building. Obviously,
outdoor temperature affects the external zones through con-
vection, conduction and radiation but not the interior zones.
Considering this fact, a multi-zone temperature prediction
should have the following rules:

• To predict the external zone temperatures, both outdoor
temperature and their neighboring zone temperature
should be considered as the input variable.

• To predict the interior zone temperatures, only their
neighboring zone temperatures should be used as an
input.

• External zone temperatures must be predicted first and
then used as a input to predict interior zone tempera-
tures.

Fig. 5. ANN model for multi-zone modeling

Fig. 6. Layout of the experiment areas

Based on the above rules, a multi-zone modeling method
based on ANN is proposed. A example is given to illustrate
this method. A three inputs, three outputs ANN model with
the structure as shown in Fig. (5) is used to express the
dynamic behavior of a three-zone process, where u1 to u3 are
the input variables, T1 to T3 are measured zone temperatures
and T̂3 is the predicted zone temperature. Following the rules
set above, this model can be decoupled into three individual
multiple-inputs, single-output (MISO) models. Each MISO
model represents the thermal characteristic of a single zone,
but still maintains connection with its neighboring zones. The
availability of this method on a real building will be tested
in the following section.

IV. EXPERIMENT RESULTS AND DISCUSSIONS

Once the ANN model are determined using the method
described above, the model is tested under real building
environment. The experimental data used in this study were
collected from a commercial building management system
(BMS) at 10 minutes intervals during spring and summer
season (Oct, 2012 to Feb, 2013 ) at terminal building of
Adelaide airport. The outdoor temperature data is collected
from a public weather forecast website. Several individual
thermal zones, as shown in Fig. 6, were selected to test the
modeling method. Each zone is installed with a temperature
sensor to detect the zone temperature and controlled by
individual AHUs. Mean of square errors (MSE) between
measured temperature and predicted temperature is used to
test the performance of the model:
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Fig. 7. Comparison of forecast outdoor temperature and real temperature

Fig. 8. One day ahead prediction result for Zone-3

MSE =

∑n
i=1(ŷ − y)2

n
, (7)

where y is measured output, ŷ is the predicted output, and
n is number of data. Because the model developed in this
study is used for predictive control (with a horizon of two
or more), multiple steps ahead prediction accuracy should
be concerned. To illustrate the problems, three different
experiments were conducted and their results shown in the
following sections.

A. Single-zone prediction

The first experiment aims to investigate the real time
prediction accuracies of a single-zone model. Real-time pre-
diction means the model uses forecast outdoor temperature
instead of the measured one as an input to predict indoor
temperature. For this purpose, Zone-3 located at the west
end of the building was selected as the experiment area.
The heating system was operating during the day and the
setpoint temperature was set to be 23 ◦C. Using the feed-
forward input variable selection method mentioned , it was
found that the ANN models with the following structure can
generate the best prediction results for Zone-3:

T̂3(t) = f(T3(t− 1), T3(t− 2), T3(t− 3), T3(t− 4),

OT (t− 1), OT (t− 2), OT (t− 3), SP (t− 1)).
(8)

where f is the ANN nonlinear function. Eq. (8) shows set-
point temperature and outdoor temperature were the most im-
portant variables for indoor temperature prediction. Adding
input variables such as chilled water temperature and chilled
water flow rate inputs did not bring any improvement to
ANN model. The reason is that these two variables are both
influenced by the outdoor temperature, which has already
been considered in the model. Fig. 8 shows that, using the

Fig. 9. Predicted Zone-1 temperature when Zone-2 temperature is used or
not

weather forecast data, Zone-3 temperature can be predicted
by the ANN model with a MSE less than 0.1◦C. This
prediction result is accurate enough for the design of a MPC.
Fig. 7 compares the one-day-ahead forecast temperature with
the measured temperature on the test day, which shows a
MSE of 0.89 between forecast temperature and recorded
temperature. The largest weather forecast error happened at
19:00 pm, leading to a maximum error of 1◦C at the same
time .

B. Thermal coupling investigation

The second experiment was designed to investigate the
importance of thermal interactions between adjacent zones.
To achieve this goal, Zone-1 and Zone-2 located at the east
end of the building were selected for the test. The data
was chosen from hot summer day on January, 2013. Two
different types of model structures were used to predict
Zone-1 temperature: one uses Zone-2 temperature as an
input and the other did not. The simulation results were
shown in Fig. 9. It is shown that by adding the Zone-2
temperature as an input, the prediction accuracy for Zone-1
was greatly improved. This indicates that interaction between
zones caused by convection is important and the proposed
model has revealed the significance.

C. Multi-zone prediction

The third experiment was conducted to test the proposed
multi-zone modeling method. Two adjacent zones, Zone-4
and Zone-5 were selected for this purpose. From Fig. (4),
it can be seen that Zone-5 is not directly connected to the
outdoor environment but to Zone-2 and Zone-4. According
to the aforementioned modeling rule, to predict Zone-4
temperature, the outdoor temperature will be used as an
input; To model Zone-5, Zone-4 temperature will be used as
the inputs. In this way, both Zone-4 and Zone-5 temperatures
can be predicted simultaneously. The following equations
were obtained after model optimization:

T̂4(t) = f(T4(t− 1), T4(t− 2), T4(t− 3),

OT (t− 1), OT (t− 2), OT (t− 3), SP4(t− 1)),
(9)

T̂5(t) = f(T5(t− 1), T5(t− 2), T5(t− 3), T5(t− 4)

T4(t− 1), T4(t− 2), T4(t− 3), SP5(t− 1)).
(10)
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Fig. 10. Multi-zone prediction results for Zone-4

Fig. 11. Multi-zone prediction results for Zone-5

Using the model structure indicated in Eq. (9) and Eq.
(10), ANN models were used to perform zone temperature
predictions for both Zone-4 and Zone-5. Fig. 10 and Fig. 11
show that the ANN model can maintain prediction errors of
less than 0.3 ◦C in both external and interior zones for suc-
cessive 6 days. The prediction This proves that the proposed
method is suitable to be used for multi-zone temperature
prediction in real buildings. The MSE between measured
values and prediction of Zone-4 is 0.15◦C, while the error
is about 0.25 ◦C for Zone-5. This error may be occurred
because of increase in occupants number

V. CONCLUSION AND FUTURE WORK

We propose an ANN based modeling method for multi-
zone temperature prediction in commercial buildings. Using
simple but reasonable input combinations, the proposed
model is able to perform real time temperature prediction
with good accuracies. The result of experiment-1 also shows
the performance of the predictive model largely relies on the
weather forecast accuracy. Another contribution is the use
of proposed model to identify the significance of thermal
convection between zones. The second experiment shows
adding neighboring zone temperature as an input variable can
improve the performance of the model, especially when the
temperature difference between two zones is big. Based on
this result, it is possible to build predictive models for both
external zones and interior zones on the basis of outdoor
temperature and control inputs within large commercial
buildings. The results shown in Fig. 10 and Fig. 11 have
also proved the availability of this method.

All the data used for modeling in this study were obtained
from a commercial BMS system. This method is meaningful

because predictive models can be built inside a built without
the need to obtain too much knowledge about the system.
As the future work, a robust test on the proposed models
will be conducted before they are used for MPC design. If
successful, the MPC can be designed for energy efficiency
control in buildings.
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A.2 Conference-2

Full citation: Huang H., Chen L., Hu E., “Model predictive control for energy-efficient

buildings: An airport terminal building study”, In Control Automation (ICCA), 11th IEEE

International Conference on, pp. 1025-1030, 2014.

This paper introduces a new simulation method to test developed MPC algorithms.

In the simulation, an RNN model built with measured data is used to replace the actual

building to provide feedback to the MPC. A linear MPC is tested under the simulation

platform to demonstrate feasibility of this method. This simulation method is latter ap-

plied in Paper-3 and Paper-4.
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Full citation: Huang H., Chen L., Hu E., “A hybrid model predictive control scheme

for energy and cost savings in commercial buildings: Simulation and experiment”, In

American Control Conference (ACC), 2015, pp. 256-261, 2015.

This paper is a short-version of Paper-3.
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